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Abstract

We address the problem of unsupervised learn-
ing of complex articulated object models from
3D range data. We describe an algorithm whose
input is a set of meshes corresponding to different
configurations of an articulated object. The al-
gorithm automatically recovers a decomposition
of the object into approximately rigid parts, the
location of the parts in the different object in-
stances, and the articulated object skeleton link-
ing the parts. Our algorithm first registers all
the meshes using an unsupervised non-rigid tech-
nique described in a companion paper. It then
segments the meshes using a graphical model
that captures the spatial contiguity of parts. The
segmentation is done using the EM algorithm,
iterating between finding a decomposition of the
object into rigid parts, and finding the location
of the parts in the object instances. Although
the graphical model is densely connected, the
object decomposition step can be performed op-
timally and efficiently, allowing us to identify a
large number of object parts while avoiding local
maxima. We demonstrate the algorithm on real
world datasets, recovering a 15-part articulated
model of a human puppet from just 7 different
puppet configurations, as well as a 4 part model
of a flexing arm where significant non-rigid de-
formation was present.

1 Introduction

Articulated objects consist of approximately rigid
parts, which are linked by joints to form an object
skeleton; examples include the human body, most
animals, office chairs, cars and many others. Mod-
els of such articulated bodies have been used exten-
sively in computer vision and in graphics, for appli-
cations such as object pose detection and tracking in
video [16, 7, 28, 23] and in 3D data [20], and for 3D
motion estimation and rendering [1]. In the vast ma-
jority of applications, the articulated skeleton struc-
ture and parameters are specified by hand, although
some applications optimize the parameters of the in-
dividual joints [1, 21, 14]. An algorithm that recovers

articulate models from 3D data in a completely unsu-
pervised way can greatly decrease the dependence in
many of these applications on human-engineered ar-
ticulated models.

In this article, we propose an algorithm that takes
a set of meshes corresponding to different configura-
tions of an articulated object as input and recovers
the articulated skeleton of the object. The algorithm
first registers the input meshes using an unsupervised
non-rigid registration algorithm — the Correlated Cor-
respondences algorithm [2]. Taking the resulting mesh
registrations as given, we define a graphical model cap-
turing the structure of the part decomposition prob-
lem. For each mesh point, the model defines a hidden
variable determining which object part the point be-
longs to. Reflecting our premise that the object is
largely rigid with articulate parts, out model assumes
that all of the points in each part move in the same
way, that is, they all undergo a single rigid transfor-
mation in each of the registered meshes. Finally, in
order to ensure that our part decomposition is reason-
able, our model also includes soft spatial contiguity
constraints, encoding a preference for part decompo-
sitions where nearby mesh points are assigned to the
same part; these constraints are encoded as undirected
edges in the graphical model. Our algorithm then
performs Expectation-Maximization on the resulting
model, iterating between finding a decomposition of
the object into rigid parts, and finding the location of
the parts in the object instances. Despite the fact that
the underlying graphical model is densely connected,
we show how the object decomposition into parts can
be performed as a global optimization step, which al-
lows us to identify a large number of object parts while
avoiding local maxima. Given a decomposition of the
object into rigid parts, we show how to estimate the
articulated skeleton linking the parts.

We tested our algorithm on two real-world
datasets, where it achieved very good results. We
demonstrate automatic recovery of a 15-part articu-
lated model of a human puppet from just 7 different



configurations of the puppet. To our knowledge, this is
the first implementation that estimates such a complex
skeleton from real world data from very few poses, in
a completely unsupervised way. We also demonstrate
that the algorithm performs well in the presence of sig-
nificant non-rigid motion, by demonstrating automatic
recovery of a 4-part model of a human arm.

2 Related Work

Our algorithm is related to a number of clustering ap-
proaches, which attempt to partition the input from a
scene into several coherent regions.

Early work in vision directly clusters motion esti-
mates obtained by locally tracking 2D image patches
in video data and representing the scene as a set of
image layers [26, 4]. These approaches assume small
local motion and do not readily generalize to 3D data.
They do not address articulation because the layers
are allowed to have arbitrary shape and connectivity.

Recently, some approaches on finding articulate
models in 2D data were proposed as well. The work
of Song et al. [24] demonstrates recovery of articulated
human models represented as decomposable triangu-
lated graphs from tracked 2D features in video. De-
composable triangulated graphs are a limited class of
graphs, unsuitable for representing 3D shapes and ar-
ticulation in 3D. Additionally, recovering articulation
in 2D is considerably more challenging, due to the
information loss arising from the projection of a 3D
scene to 2D. As a consequence, the models recovered
using such procedures tend to be very sparse (contain-
ing about a dozen points and triangles), and are fairly
far from being realistic human models [24].

Another class of related methods use non-negative
matrix factorization to decompose a database of im-
ages into a set of parts [18, 12]. These methods treat
each image as an additive collection of a set of ba-
sis images, which turn out to be rather sparse due to
the non-negativity constraints. However, such an ad-
ditive model is not suitable for modeling articulation,
because it does not attempt to associate parts in one
image with parts in another, and in particular treats
the same arm in raised and lowered position as two
different “parts”. This method was also applied only
to 2D data, and the extension to 3D does not appear
obvious.

The work of Taycher et al. [25], which applies in
both 2D and 3D, shows how to recover tree-shaped ar-
ticulation models, but it makes the restrictive assump-
tion that the rigid parts and their transformations are
known.

Our approach is most directly related to the work
of Cheung et al. [8], which shows how to estimate artic-
ulated object models from 3D Shape-From-Silhouette

(SFS) data, augmented with information about object
color. They report recovering an articulated human
model with 9 parts. However, their algorithm was ap-
plied only to sequences where a single body part is
moving at a time. Each sequence contains two ar-
ticulated parts, and allows the estimation of a single
human joint. The final articulated model is generated
by combining the joints estimated in all the two-part
sequences. Despite the important cue of color informa-
tion, they did not demonstrate simultaneous recovery
of multiple parts.

We believe that the reason for this limitation is the
presence of local maxima in their approach, arising for
two reasons. First, they solve for the point correspon-
dences between the input meshes while solving for the
articulated model. The approach is a generalization of
the Iterative Closest Point (ICP) algorithm [6] to mul-
tiple rigid parts. However, ICP is known to be prone
to local maxima (see a discussion of the problems with
ICP in [2]). The additional degrees of freedom pro-
vided by the possible part decompositions make the
problem more severe. By contrast, we take a two-phase
approach, first solving the correspondence problem us-
ing a non-rigid registration technique that allows large
deformations, and then learning the articulated ob-
ject model. Our approach has the potential limitation
of ignoring information about coherent part motion
in solving the registration problem. Nevertheless, its
ability to circumvent many local maxima appears to
significantly offset that potential disadvantage.

A second source for local maxima arises from the
choice of constraints enforcing that parts are contigu-
ous regions of the object surface. The approach of
Cheung et al. enforces part contiguity with discrete
constraints between assignments to mesh points and
their neighbors. This type of model does not allow the
application of efficient global optimization steps. By
contrast, our algorithm enforces part contiguity using
soft probabilistic constraints, which allow us to violate
these constraints locally as long as it is maximizing
the log-likelihood of the model as a whole. Moreover,
we can apply efficient global optimization methods to
determine the optimal part decomposition. These two
properties allow us to be less sensitive to initialization,
and to avoid local maxima even if a large number of
parts is present.

3 Mesh Registration

We start with a set of meshes D0 . . .DN corresponding
to different configurations of the same object. We as-
sume that the object is composed of a number of rigid
parts, whose orientations may vary in each configura-
tion. Each mesh Di is a tesselation of the respective
surface into polygons (usually triangles), and contains



the polygon vertices and the links between them.

We pick one of the meshes to be a template mesh
X ≡ D0 and denote its set of polygon edges as E(X).
We automatically register this template X with the re-
maining meshes D1, . . . , Dn. The registration process
aligns the template X with each mesh Di producing
a transformed instance mesh Zi in each case. Each
instance mesh Zi is produced by applying a non-rigid
transformation to the points of X , so it has the same
set of points and edges as X . Moreover, the one-to-one
correspondences between the instance mesh and the
template mesh points and edges are known. Through-
out our discussion, we will use the fact that a partic-
ular point xj of mesh X corresponds to point zi,j in
mesh Zi.

We use a non-rigid registration algorithm called
Correlated Correspondences (an independent contri-
bution described in a companion tech report [2]),
which can handle large deformations of the mesh sur-
face. The Correlated Correspondence algorithm for-
mulates the registration problem as one of finding a
deformable embedding of one mesh into another. It is
related to work in the vision community on deformable
template matching [9, 13]. The algorithm finds the
registration between points in the two meshes by using
a joint probabilistic model over all point-to-point cor-
respondences. The model encodes the correlations be-
tween the correspondence variable assignments, which
enforce the preservation of local geometry, and the
preservation of geodesic distance between correspond-
ing pairs of points in the two meshes. Loopy belief
propagation (LBP) [27] is used to find a good joint
assignment to all correspondence variables, which de-
fines the deformable embedding. The registration can
be additionally refined by applying EM-style iterative
techniques [15, 22].

The Correlated Correspondence algorithm does not
use markers, nor does it assume prior knowledge about
object shape, the dynamics of its deformation, or
the initial alignment of meshes. It successfully regis-
ters scans that exhibit large transformations, including
both movement of articulate parts and non-rigid sur-
face deformations. The Correlated Correspondence al-
gorithm is not universally applicable to any two scans,
because of its assumption that local geodesic distances
are approximately preserved. In cases when mesh
topology changes significantly, for example when an
arm touches the head, it may fail.

The algorithm for recovering articulated models
which we present in this paper is independent of the
Correlated Correspondence algorithm and is appropri-
ate whenever a reasonable registration of several scans
is available.

4 Probabilistic Framework

4.1 Generating the Instance Meshes

In this section we describe our beliefs about the pro-
cess which transforms the template mesh X into the
instance meshes Z1, . . . , ZN .

We assume that the surface of X is made up of the
set of P = {1, . . . , P} rigid parts. We associate each
template mesh point xj with a part label αj , denoting
the rigid part to which the point belongs. Each label
αj can take one of P possible values.

Every rigid part p is associated with a set of trans-
formations T1,p, . . . , TN,p, one for each instance mesh.
All points assigned to part p share this set of trans-
formations. More precisely, x̃i,j = Ti,αj

(xj), where
x̃i,j denotes the transformed location of xj in instance
i. We want to model objects which are not perfectly
rigid, so we allow the point locations zi,j in the meshes
Zi to deviate from these predicted locations. We as-
sume that each point location zi,j is generated from
x̃i,j by a Gaussian process:

P (zi,j | αj = p, Ti,p) = N (zi,j ; x̃i,j ,diag(σ2)) (1)

where σ2 is the variance, chosen to be a multiple of
the resolution of mesh X .

4.2 Introducing Contiguity Constraints

So far, our model allows a part to be composed of
an arbitrary set of points interspersed throughout the
mesh. What we actually want is that each part is
comprised of a set of points in a connected region.

We choose to enforce this preference by two kinds
of constraints. Soft contiguity constraints enforce the
preference that neighboring points in the template
mesh have similar part labels. More formally, we de-
fine two labels αj and αk to be neighboring if their
corresponding points xj and xk are connected by an
edge in X . We model soft contiguity constraints as
probabilistic potentials between all neighboring pairs
of labels αj and αk:

φ(αj , αk) =

{

τ : αj = αk

1 − τ : αj 6= αk
(2)

where τ > 0.5.

These soft constraints bias us toward a partitioning
of the template mesh into contiguous regions. They
induce a probabilistic model which can be optimized
efficiently (as we will shortly discuss). However, soft
contiguity constraints still allow each part to be com-
prised of several disjoint components. For example, if
the arms of an office chair always get raised and low-
ered together, the model as stated above will allow
both arms to belong to the same object part. Such
models can be preferable in some situations but they



Figure 1: Illustration of the part-finding process: (A),(a) a template mesh is registered to all other meshes by CC
algorithm. (B) the mesh is divided into parts by clustering the estimated local transformations for each template point,
different parts are color-coded. (b) the mesh is randomly divided into small patches of approximately equal areas,
different parts are color-coded. (C),(c) results in (B),(b) are used to initialize the EM algorithm which solves for the part
assignments and the transformation for each part. (D),(d) the joints linking the rigid parts are estimated.

are not appropriate for recovering an articulated ob-
ject skeleton: the notion of a joint between parts is
not well-defined when each part consists of several
disconnected regions. In order to model the object
articulation correctly, we impose another kind of con-
straint, which we call hard contiguity constraint. The
constraint specifies that a part can consist of no more
than one connected component in the template mesh.

4.3 Model Summary

Ignoring the hard contiguity constraints, the frame-
work described in Sec. 4 defines a Markov network over
the part labels α. A Markov network encodes the joint
distribution over a set of variables as a product of po-
tentials:

P (α) =
1

Z

∏

j

φ(αj)
∏

j,k

φ(αj , αk) (3)

where Z is a normalization constant.

The singleton potentials φ(αj) correspond to the
probabilities that a template point xj generates its
corresponding points z1,j , . . . , zN,j , as follows:

φ(αj = p) =
N
∏

i=1

P (zi,j | αj = p, Ti,p) (4)

The potential values depend on the transformations
Ti,p. Thus, the joint distribution depends on T , the
set of rigid part transformations. The pairwise po-
tentials in the Markov network correspond to the soft
contiguity constraints, and are defined in Eq. (2).

5 Optimization

We start with a template mesh X and instance meshes
Z1, . . . , ZN , and we need to solve for the set of part
transformations T , as well as for the part labels α.

We want to find a joint assignment to the part
labels and the transformations which maximizes the
log-likelihood of the model:

argmax
α,T

log P (α, T ) = argmax
α,T

{
∑

(j,k)∈E(X)

log φ(αj , αk)−

−
1

2σ2

n
∑

i=1

J
∑

j=1

‖zi,j − Ti,αj
(xj)‖

2} (5)

where J is the number of points in meshes
X, Z1, . . . , ZN . Note that our objective is defined as
optimizing both the part assignment and transforma-
tions simultaneously, rather than marginalizing over
the (hidden) part assignment variables. A hard as-
signment of points into parts is very appropriate for
our application, and it also allows the use of efficient
global optimization steps, as we discuss below. Note
that the hard contiguity constraints are not accounted
for in the above equation, and have to be enforced
separately.

The objective in Eq. (5) is non-convex in the set of
variables α, T . We optimize it using hard Expectation-
Minimization (EM) to find a good assignment for α, T
in an iterative fashion. EM iterates between two steps:
the E-step calculates a hard assignment for all part
labels α given an estimate of the transformations T .
The M-step improves the estimate for the parameters
T using the labels α obtained in the E-step.

5.1 E-Step

Our goal in the E-step is to find the MAP assignment
to the part labels maximizing Eq. (5) for a given set of
transformations T . It turns out that this is an instance
of the Uniform Labeling problem [17], which can be
expressed as an integer program. Following Kleinberg
and Tardos [17], we introduce indicator variables αjp



for the event αj = p, where we require that for all p

αjp ∈ {0, 1} and
∑P

p=1 αjp = 1. These integer con-
straints imply that we have only a single p for which
αjp = 1, and the others are all 0. The log-cost asso-
ciated with a particular single potential can then be
expressed as

∑P

p=1 c(j, p)αjp where

c(j, p) = −
1

2σ2

N
∑

i=1

‖zi,j − Ti,p(xj)‖
2 (6)

The separation cost of an edge in mesh X can also
be defined in terms of the variables αjp. The differ-
ence between the labels of the edge endpoints can be
expressed as

βjk =
1

2

P
∑

p=1

|αjp − αkp| =
1

2

P
∑

p=1

βjkp (7)

where βjkp = |αjp −αkp|. The cost associated with an
edge is therefore s · βjk , where s = log(τ)− log(1− τ).

We can now rewrite our optimization problem as
an integer program:

max
J

∑

j=1

P
∑

p=1

c(j, p) · αjp +
∑

(j,k)∈E(X)

s · βj,k

s.t.

P
∑

p=1

αjp = 1, j = {1, . . . , J}

βjk =
1

2

P
∑

p=1

βjkp, (j, k) ∈ E(X),

βjkp ≥ αjp − αkp, (j, k) ∈ E(X), p ∈ P

βjkp ≥ αkp − αjp, (j, k) ∈ E(X), p ∈ P

αjp ∈ {0, 1}, j = {1, . . . , J}, p ∈ P

In general, solving an integer program optimally is NP-
hard. However, we can define a linear programming
relaxation of the above problem by replacing the in-
tegrality constraints αjp ∈ {0, 1} with αjp ≥ 0. This
relaxation allows fractional solutions for the labels αj .
The linear program can be solved very efficiently by a
solver such as CPLEX.

For problems of this type, Kleinberg and Tar-
dos [17] describe a method for rounding the fractional
solution, losing at most a factor of 2 in the objective
function. In our experiments we did not need to per-
form this rounding because the relaxed linear formula-
tion always returned integer solutions. In this case, we
are guaranteed that our solution is the optimal assign-
ment of template mesh points to parts, which maxi-
mizes Eq. (5) given a set of rigid transformations T .

The assignment described so far does not enforce
the hard contiguity constraints. However, we can eas-
ily test if one of the parts returned by this solution

is split into several disconnected components in the
mesh. In this case, we simply split the part into its
connected components, introducing a separate part for
each one. This step satisfies the hard contiguity con-
straints, while preserving the value of the objective
function in Eq. (5).

5.2 M-Step

The goal of the M-step is to find the set of rigid part
transformations T which maximize the log-likelihood
in Eq. (5), given the part label assignments α supplied
by the E-step. The objective function decomposes into
a separate equation for each Ti,p:

argmin
Ti,p

J
∑

j=1

I(αj = p) · ‖zij − Ti,p(xj)‖
2 (8)

where I(·) is the indicator function. This problem is
isomorphic to the registration problem studied exten-
sively in the ICP literature. We adapt the canoni-
cal solution to this problem, proposed by Besl and
Mckay [6], where 3D rotations are represented as
quaternions, and a closed form estimate of Ti,p is ob-
tained by solving a small system of linear equations.

6 Initializing the Model

The optimization criterion for our model is a complex
non-convex function in terms of the transformations
T and part labels α. Our hard EM algorithm is only
capable of getting to a local minimum of this function.
Therefore, it is dependent on a good starting point.
This section addresses the problem of providing the
EM algorithm with a good starting point.

6.1 Obtaining Transformation Estimates

One way of initializing the algorithm is by performing
clustering in the space of rigid transformations, as sug-
gested by Cheung et al. [8]. Since the correspondences
between the template mesh X and all instance meshes
Zi are known, we can estimate the local rigid trans-
formation between a point xj and its counterpart zi,j .
To do so, we look at small local patches centered at xj

and zi,j , and assume that the local transformation be-
tween the patches is rigid. Using ICP [6], the optimal
rigid transformation τi,j registering these patches can
be computed. Every τi,j can be represented as a vec-
tor in 6 dimensional Euclidean space. Each point xj

becomes associated with N such vectors, correspond-
ing to its transformation in each instance mesh. The
resulting stacked vectors can then be clustered by ap-
plying adaptive PCA [3], a variant of Gaussian Mix-
ture Modeling. The cluster labels serve as an initial
set of part labels to the points xj . A result of this step
is demonstrated in Fig. 1(B). As it does not exploit
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Figure 2: Graphs showing the log-likelihood and the num-
ber of parts of the final model using different number of
parts as initialization, for the puppet dataset.

the connectivity of the mesh surface, it can serve as
initialization to our main algorithm, but is not good
enough by itself.

Using a Matlab implementation of adaptive PCA
available on the web [3], clustering a set of 7 puppet
poses (4000 points each) into 15 rigid parts takes about
an hour on a Sun Blade 2000 dual-processor machine.
Surprisingly, this pre-processing step becomes the bot-
tleneck of the whole part-finding pipeline. Here we
propose a more efficient way of initializing the model
that gives comparable or even better results than clus-
tering.

The main insight we will exploit is that the soft
contiguity constraints introduce a preference for mod-
els which have fewer parts: The more parts there are,
the more edges there are between mesh parts, the
larger the penalty introduced by the pairwise conti-
guity potentials. Thus, we can start the model with
a large number of possible parts, and redundant part
hypotheses will be automatically pruned.

We therefore initialize the model by dividing the
mesh into small surface patches, all of which have ap-
proximately the same area. This is done by uniformly
subsampling the mesh, and assigning each point on the
original mesh to the nearest point on the subsampled
mesh. All points on the original mesh that are given
the same assignment are grouped together to form a
patch. This process takes a fraction of a second, com-
pared to an hour for our previous initialization scheme.

When the subdivision into patches is fine enough,
some rigid parts will contain patches that lie com-
pletely inside them, and the transformations for those
patches from the model mesh X to the morphed
meshes Z will closely approximate the corresponding
transformations for the actual rigid parts. Using the
patches as initial part assignments for our algorithm,
we get a good starting point for the first M-Step.

6.2 Determining the Number of Parts

The idea of initializing the algorithm by subdividing
the surface of mesh X into patches leads to the ques-
tion of how many initial patches are necessary. In
principle, it is sensible to choose an initial number of

Figure 3: Four different poses from the puppet dataset
display the 15 rigid parts and the articulated skeleton, both
of which are recovered automatically

patches P to be larger than the actual number of rigid
parts we expect. The larger P is, the more likely it
is to get a patch that lies completely inside a rigid
part. As we discussed, our model encodes a prefer-
ence for having fewer parts, so that redundant part
hypotheses are pruned automatically. Indeed, our ex-
periments (Fig. 2) show that, initially, as we increase
the number of model parts P , the number of selected
parts increases; but once the optimal number of parts
is reached, increasing P further does not increase the
number of parts found.

In the case of rigid objects, the final number of
parts found by our algorithm is generally the correct
number of parts in the articulated objects. In cases of
objects that also undergo non-rigid deformations, the
number of parts found depends on the tradeoff between
allowing more deformation within a part and splitting
into more parts to preserve part rigidity. These prefer-
ences depend on the edge potential τ and the variance
σ2. As their ratio δ = σ2/ log(τ) increases, we allow
more local deformation, where instance mesh points
deviate from their predicted locations.

It turns out that, for large values of δ, the prob-
lem becomes underconstrained, with multiple possible
solutions that are plausible and have similar scores.
This large hypothesis space makes the relaxed inte-
ger program considerably more difficult to solve, es-
pecially in the absence of good transformation esti-
mates. To address the problem, we start with a low
δ ratio, and gradually increase it as we iterate. The
intuition behind this approach is that we separate the
error due to random initialization from the error due to
non-rigidity. During the early stages of the algorithm,
there is a great deal of error due to random initializa-
tion; we therefore start with a smaller-than-desired δ,
heavily penalizing discrepancies from the rigid part as-
sumption. As a side effect, our algorithm will tend to
split a non-rigid part into several rigid parts, resulting
in more parts than we want. As the algorithm con-



verges, the noise from random initialization becomes
less significant, so we can gradually relax the rigidity
assumptions and anneal the value of δ; this process re-
sults in the merging (and modification) of parts, and
the elimination of unnecessary part hypotheses.

7 Learning an Articulated Object

Skeleton

Once we obtain the part labels for every point in a
mesh, it is easy to recover the joint between two adja-
cent rigid parts. We adapt the solution by Cheung et
al. [8]. Suppose we want to find the joint between two
adjacent parts p and q. Let the coordinates of the joint
in the model mesh be yp,q. Since the joint belongs to
two object parts simultaneously, it should satisfy the
equation:

Tip(yp,q) = Tiq(yp,q), i = 1 . . .N (9)

Putting together the equations for all instance
meshes, yp,q is the solution to the following linear re-
gression problem:

argmin
yp,q

N
∑

i=1

‖Tip(yp,q) − Tiq(yp,q)‖
2 (10)

and can be solved using SVD.

Sometimes, the solution to the above equation can
be an entire subspace of points. Suppose the joint only
allows one degree of movement, such as the knee joint
of a human leg. Then any point on the line perpen-
dicular to the plane of allowed movement is a solution
to the above linear regression problem.

We choose to resolve this problem by introducing
an additional regularization term, which prefers that
the joint position is close to the centroid of the points
on the boundary between the two parts. After all, we
want the joint to be close to where the two parts meet.
More formally, denote the ‘boundary centroid’ in mesh
Zi by ci

p,q . Then yp,q is the solution to the following
weighted linear regression problem:

argmin
yp,q

N
∑

i=1

‖Tip(yp,q) − Tiq(yp,q)‖
2

+γ

N
∑

i=1

‖
1

2
(Tip(yp,q) + Tiq(yp,q)) − ci

p,q‖
2 (11)

8 Experimental Results

We applied our algorithm to meshes from two differ-
ent datasets. In one data set, we used a range scan-
ner [11] to acquire a set of seven different complete
surface meshes of a wooden puppet in different po-
sitions. Each mesh was constructed from ten range

Figure 4: Four different poses from the arm dataset dis-
play four (approximately) rigid parts and the articulated
skeleton, both of which are recovered automatically

scans taken from different viewing angles, composed
using the method of Curless and Levoy [5], and sub-
sampled to contain ∼4000 points and 8000 triangles.
Our second data set consisted of eight meshes of a hu-
man arm, acquired and used by Allen et al. [1]. These
meshes are not complete surfaces, and so cannot be
used directly by our algorithm; fortunately standard
hole filling techniques (e.g., [10, 19]) can be used to
construct a complete surface.

We automatically align one puppet mesh to the re-
maining six meshes in our puppet dataset using the
Correlated Correspondences algorithm [2]. We exper-
iment with both initialization approaches described
in Sec. 6.1. Results shown in Fig. 1 demonstrate
that both initialization methods performed equally
well. However, the method where we initialize the
M-step by partitioning the mesh X into small sur-
face patches is preferable because of its simplicity and
overwhelming computational advantage. The correct
model containing 15 parts was found whenever the
number of surface patches in the initialization was
equal to or greater than 16 (Fig. 2). More instances
of the final model superposed onto the recovered ar-
ticulated skeleton are displayed in Fig. 3. To our
knowledge, this is the first implementation that esti-
mates such a complex skeleton from real world data
with very few poses, in a completely unsupervised
way. For a visualization of the part-finding proce-
dure (among other applications of the Correlated Cor-
respondence algorithm), please refer to the movie at
http://robotics.stanford.edu/∼drago/cc/video.mp4.

The arm data is more challenging: the arm under-
goes significant deformations as it bends, so that it
is not purely an articulated model composed of rigid
parts. Fig. 5 demonstrates the progress of our algo-
rithm as the parameter δ is increased, until we end up



Figure 5: Illustration of annealing on the Arm dataset.
The sequence above is obtained by starting with low δ, and
gradually increasing it after each iteration of EM, until our
desired δ is reached. The algorithm anneals part hypothe-
ses and eventually converges at four parts (D). Setting the
value of δ to be too large (E) focuses more on the soft
contiguity constraints and less on the underlying geomet-
ric structure. This results in partitions which reduce the
number of links between parts.

with four parts, which is the intuitively correct num-
ber of parts for the arm (see Fig. 4). The partition of
the object depends on the exact setting of the param-
eter δ (see Fig. 5 D and E). Setting the value of δ to
be too large over-emphasizes the soft contiguity con-
straints. The part boundaries are shifted to a configu-
ration minimizing the number of links between parts,
ignoring the underlying geometric structure (Fig. 5 E).
Our results on the arm dataset suggest that even in the
presence of significant non-rigidity, such as twisting of
the forearm and bulging of the biceps, our algorithm
performs quite well.

9 Conclusion

We describe an algorithm which automatically recov-
ers articulated object models given a set of 3D meshes
of the object in different configurations. The algorithm
first registers all the given meshes using the Correlated
Correspondence [2] algorithm. Then it iteratively es-
timates the part assignment for each point and the
rigid transformation of each part. Once the part as-
signments are recovered, the joints are estimated by
articulation constraints.

We apply the algorithm to two challenging real-
world datasets, one having a large number of rigid
parts, and one consisting of parts that are slightly de-
formable. In both cases the algorithm recovers their
articulated models in an unsupervised manner from
only a small number of meshes. Our algorithm not
only recovers the parts and joints, but also figures out
the optimal number of parts automatically.

In this paper, we have decoupled the registration
algorithm from the algorithm which recovers the artic-
ulated object structure. While ideally both steps could
be executed simultaneously, this decoupling allows us

to apply robust global inference strategies during the
registration process and during the inference step par-
titioning the object surface into parts. The ability to
perform robust and efficient global inference is very
important, because it helps us to circumvent many lo-
cal maxima during both processes. Our approach can
be bootstrapped in a fairly straightforward way to use
the computed rigid parts and their transformations to
improve the registration results. However, there was
little to be gained from such bootstrapping on these
data sets given the quality of our registration results.

There are many interesting directions in which this
work can be extended. Most obviously, we would like
to introduce into our object model the ability for parts
to have small shape deformations, while still preserv-
ing the assumption that large deformations occur only
in articulated joints. It would also be interesting to
automatically learn a model of the allowable deforma-
tions at different joints. More long-term, it would be
interesting to explore the use of these ideas to impor-
tant tasks such as a marker-free solution to the limb-
tracking problem in medical and other applications.
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