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Abstract

Application of the decision-theoretic paradigm implicitly assumes knowledge of the

utility values assigned to the relevant outcomes by the person affected by the decisions.

However, in many cases, the task of acquiring such knowledge is infeasible due to the

size of the outcome space and the complexity of the preference elicitation process.

We argue that a person’s utility values for the outcomes under consideration can

be treated as we treat other domain attributes: as random variables with density

functions over their possible values. A probabilistic framework is a natural way to

express the uncertainty over utility values. It allows us to use a variety of well-known

tools, such as expectation, value of information and conditioning.

We show that we can apply statistical density estimation techniques to learn such

a probabilistic model from a database of partially elicited utility functions. The

Bayesian learning framework we define for this problem also allows us to discover

the number of statistically coherent subpopulations — groups of people with similar

utility functions. Each subpopulation may have a different utility model with its

own set of independence properties among utility attributes. We concentrate on a

class of independence properties that correspond to the additive decomposition of the

utility function. A decomposed utility function can be represented more compactly,

making knowledge acquisition, inference, and learning much more efficient. Using our

learning framework, we select the set of utility models that best matches the data.

The factorization of the utilities in the learned model and the generalization obtained

from density estimation allow us to provide a compact and robust representation of

the utility functions in the population.
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This probabilistic model of utilities in the population can serve as a prior distri-

bution when we encounter a new user whose utility function we need to identify. Any

information we obtain in the course of utility elicitation or by observing the user’s

behavior is used to adjust the model to the user by Bayesian conditioning. The longer

the interaction, the more information we have and the closer we get to knowing the

user’s utility function. At any point, we can use the probabilistic model to quantify

the confidence in the accuracy of our utility estimates.

We present two applications of such customizable utility models. The first appli-

cation, designed for a decision support system, directs the utility elicitation process

by choosing questions most relevant for the current user and the current decision

problem. The relevance of a utility elicitation question for the given problem can be

measured by using its value of information. Having a probabilistic model of utilities,

we can compute the best decision recommendation at any point relative to our cur-

rent beliefs about the user’s utilities. We can also compute the expected utility loss

resulting from our recommendation, which allows us to stop the elicitation process as

soon as the loss falls below a prespecified threshold.

The second application focuses on non-cooperative situations and considers the

task of predicting the future decisions of an agent based on his past decisions. In

such cases, we cannot rely on utility elicitation and must instead update our model

with information gathered by observing the user’s behavior. First, we show that the

user’s past decisions can be viewed as constraints on his utility function. We can

condition our utility model on these constraints to obtain a posterior distribution.

Using this distribution, we can predict the user’s future behavior. We show that this

capability is particularly useful in a two-player setting where a second agent is trying

to optimize his payoff which also depends on the first agent’s actions and utilities.

This work extends the traditional formulation of rational decision making to deal

with the uncertainty over utility information. Such uncertainty can be expressed in

probabilistic terms just as we express our uncertainty over domain events and thus

can be integrated in a natural way into the traditional decision-theoretic framework.

We believe that the tools we have developed can bring us closer to rational decision

making in the real world.
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Chapter 1

Introduction

1.1 Rational Decision Making

Every agent, human or artificial, makes decisions in the course of his interactions with

the world and other agents acting in the world. To make good decisions, we need

knowledge about events that occur in the world, as they may affect the situation we

find ourselves in. We also need knowledge about our own preferences capturing the

extent to which we value different situations. In order to interact with other agents,

we need to be able to predict their behavior, which also depends on world knowledge

and preference information.

We are never certain about events happening in the world. Our uncertainty about

possible events is best described within a probabilistic framework. Recent work on

compact probabilistic models such as Bayesian networks (Pearl 1988) provides the

basis for acquiring such models, whether by elicitation from experts, or by learning

from databases of sample data (Jordan 1998).

The decision maker’s preferences over outcomes (final states) are typically assumed

to be known or easily acquired.1 In fact, we usually assume not only that we know the

preference information, but also that we have at our disposal the numerical values,

or utilities, an agent assigns to every relevant outcome.

Given the probability distribution and the utility values, we can recommend the

1Except for some game-theoretic contexts; see Section 2.2.4.
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2 CHAPTER 1. INTRODUCTION

optimal decision by following the principle of maximum expected utility (von Neumann

and Morgenstern 1947; Savage 1954; Luce and Raiffa 1957). The expected utility of

a decision is the sum of utilities of all possible outcomes weighted by the probabilities

of these outcomes given the decision. The decision with the highest expected utility

is considered to be the best course of action. An agent following the principle of

maximizing expected utility is commonly called a rational agent.

1.2 Uncertainty over Utilities

The use of the maximum expected utility principle assumes easy access to the decision

maker’s utilities for all relevant outcomes. In the real world, however, we rarely have

full utility information at our disposal.

In contrast to the task of learning probabilistic models, the problem of acquiring

utility functions is not well understood. In some sense, utility elicitation is innately

harder; there are no experts to ask, and every person’s utility function may be differ-

ent. Thus, each individual’s utility for each possible outcome must be elicited.

The process of utility elicitation is time consuming, cognitively difficult, and noisy.

It is also prone to errors. People need to be trained before they can participate in a

utility assessment procedure, and even after training, some people find answering elic-

itation questions difficult. Assessment is highly sensitive to an adequate description of

outcomes. However, even with very precise descriptions, people tend to assign imagi-

nary negative outcomes a much lower and imaginary positive outcomes a much higher

utility value than the outcomes they have experienced (Schkade and Kahneman 1998;

Lenert, Treadwell, and Schwartz 1999; Jansen, Stiggelbout, Wakker, Nooy, Noordijk,

and Kievit 2000). Also, in long interviews, fatigue can influence the accuracy of the

assessment.

There are many elicitation methods, and the fact that they produce very dif-

ferent utility values for the same outcomes when applied to the same person is

well documented (Llewellyn-Thomas, Sutherland, Tibshirani, Ciampi, Till, and Boyd

1982; Fromberg and Kane 1989a; Fromberg and Kane 1989b; Read, Quinn, Berwick,

Fineberg, and Weinstein 1984; O’Leary, Fairclough, Jankowski, and Weeks 1995).
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It is impossible to determine which of these utility values is the “right” one. As a

result, the numerical values we obtain in the process of utility elicitation can only be

considered an approximation to the true utility values.

In complex decision problems, the outcome space may become quite large. In the

domain where we have focused our attention — medical problems — instances with

dozens of possible outcomes are not uncommon. In problems of this size, full utility

elicitation is infeasible — it would take many hours. Therefore, we can either elicit

utilities for a subset of outcomes or make some simplifying assumptions about the

structure of the utility function.

The use of structure (implied by conditional independence properties among ran-

dom variables) has been shown to be crucial for modeling uncertainty over world

events, simplifying both the representation and the associated knowledge acquisition

process. Structure also exists in utilities. Utility functions can often be decomposed

as a linear combination of subutility functions, each of which involves only a few of

the relevant variables. Decomposable utility functions can be used to support more

efficient inference (Tatman and Shachter 1990; Jensen, Jensen, and Dittmer 1994).

In principle, as they require fewer parameters to be specified, they should also ease

the knowledge acquisition process (Keeney and Raiffa 1976).

In practice, however, decomposable utility functions are rarely used (except in

certain settings where everything easily reduces to a common basis, such as money).

Why? Unfortunately, the task of discovering the structure of utility functions differs

from the task of discovering structure of probability distributions. One might hope

that there is some structure that holds for the entire population. Thus, we can elicit a

database of utility functions, and try to find a common structure. Several researchers

take this approach, usually trying to detect simple additive decompositions via a pro-

cess of linear regression (Fromberg and Kane 1989a; Kuppermann, Shiboski, Feeny,

Elkin, and Washington 1997). Unfortunately, such structure rarely seems to exist, so

one typically resorts to explicit utility elicitation for the entire outcome space.

At the individual level, one could ask individuals about their decompositions.

However, this approach is difficult to implement. Unlike probabilities, utilities cannot

be marginalized. The utility of a specific instantiation of one state attribute does not
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have any intuitive meaning and cannot be assessed without making some assumptions

about the values of other attributes. Thus, the decomposition of utility functions is

much more difficult for people to understand than the decomposition of probability

functions.

Finally, in some situations, we may want to reason about the decision making

process of other agents. These agents may prefer to keep information about their

utility functions to themselves. In such cases, we cannot rely on utility elicitation at

all.

Thus, in real world domains, complete and precise utility information is never

available. The values for some parameters may be missing, for some others known

only with a certain error margin. Some parameters may be only loosely constrained.

How can we make rational decisions in these cases?

1.3 Utilities as Random Variables

Traditional decision theory accepts our uncertainty over events and allows us to rep-

resent it with a probability distribution. At the same time, it assumes that we have

full utility information at our disposal. We will argue that the asymmetric treatment

of events and utilities in the traditional framework is not justified. Just as we are not

sure which situations we may find ourselves in, we have uncertainty over the values

we (or other agents) assign to these situations. These two types of uncertainty can

be dealt with in the same manner: by using the probabilistic framework.2

Treating utilities as random variables allows us to model our uncertainty in a

principled way. In addition, it offers many benefits:

• It allows us to represent our uncertainty over utility function structure. Un-

certainty over numerical utility values and uncertainty over the structure can

be integrated in one model, which can be learned together from a database of

utility data.

2The probabilistic framework is sometimes used to represent uncertainty over utility information
in game theory; see (Fudenberg and Tirole 1991). In Artificial Intelligence the early work in this
area includes (Jimison, Fagan, Shachter, and Shortliffe 1992; Poh and Horvitz 1993). We discuss it
in detail in Section 9.2.
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• Utility function structure discovered in the learning process lets us use simpler

models to represent utility functions. Such models are easier to acquire and

more efficient to reason with.

• Any prior knowledge can easily be incorporated into the model.

• Our model can represent utilities of different subpopulations with different util-

ity function structures and encode their prevalence in the entire population.

• Our model can be easily updated based on new utility information.

• We can compute a point estimate of an agent’s utility and express our confidence

in that estimate.

• We can choose optimal actions with respect to our current utility information

as represented in the model.

• We can apply various tools developed for the probabilistic framework, such as

the value of information.

• Utility elicitation can be made more efficient, less sensitive to noise and more

robust. It can also be customized for a specific patient and a specific decision

problem.

Most importantly, the probabilistic framework allows us to make rational decisions

under utility uncertainty without resorting to unreasonable simplifying assumptions,

approximations, heuristics, or ad hoc solutions.

To motivate the problems of acting rationally in the presence of utility uncertainty

we discuss briefly two possible settings — one-person decision problems and non-

cooperative interactions — and illustrate each by introducing an application domain.

1.4 One-Person Decision Problems

Consider the task of building a medical expert system designed to advise patients on

a best sequence of decisions. The probabilistic model is too complex for humans to
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reason with, so the use of a decision support tool is very important. However, the

utility space is so large that full utility elicitation is not possible.

The tool is supposed to serve many patients. Each of these patients may have

a different utility function. Each will be willing to participate in a short interview.

During that interview, we need to elicit enough utility information to be able to decide

on the best course of action for a given patient.

Example: Prenatal Diagnosis

Such a decision support tool was developed for the domain of prenatal diagnosis by

the Panda project at Stanford Medical Informatics.3 Panda is a loose acronym

for “prenatal testing decision analysis.” Panda uses knowledge gained from many

studies and from practicing clinicians to advise patients on which prenatal diagnostic

tests they should choose during their pregnancies.

The goal of prenatal diagnosis is to detect chromosomal abnormalities present in

the fetus in the early stages of the pregnancy. Different abnormalities (diseases) have

different prevalence rates and can affect the child with varying severity. There are

several tests available to diagnose these diseases. These tests have different sensi-

tivities and specificities (i.e., rates of false negatives and false positives), costs, and

health risks.

In the real world, the decision about the choice of tests is rarely easy. The patient’s

risk for having a child with a serious disease depends on the mother’s age, child’s sex

and race, and the family history. Some tests are not very accurate; others carry a

significant risk of inducing miscarriages. Both a miscarriage (spontaneous abortion

or SAB) and an elective termination of the pregnancy (induced abortion or IAB)

can affect the woman’s chances of conceiving again. The decision model for prenatal

diagnosis is presented in Figure 1.1.

The outcomes in this domain have many attributes: the inconvenience and ex-

pense of fairly invasive testing, the possibility of test-induced miscarriage, knowledge

3See http://smi-web.stanford.edu/projects/panda/.
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Decisions
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MOTHER’S-AGE
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CHILD’S-RACE FAMILY-HISTORY

RESULT

TRIPLE-TEST-RESULT

UTILITY-FUNCTION UTILITY

SAB

FUTURE-PREGNANCY

CHILD’S-SEX

Figure 1.1: Decision model for prenatal diagnosis (courtesy of Joseph Norman, Stan-
ford Medical Informatics)
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about the health of the child early in the pregnancy, the possibility of future con-

ception, and the actual health of the child. A recent study (Kuppermann, Shiboski,

Feeny, Elkin, and Washington 1997) showed that these attributes are highly corre-

lated and the utility of an outcome cannot be predicted from the utilities of the

individual attributes. For example, consider the attributes “future pregnancy” and

“miscarriage”. While it is generally the case that a woman would like to conceive

again following a miscarriage, and thus the attribute “future pregnancy” will be pre-

ferred to its negation, we can make no such assumption when a miscarriage has not

occurred. The initial analysis of the model revealed the considerable influence of the

utility function (especially the patient’s attitude towards the risk of having a child

with a serious disease and towards a miscarriage) on the optimal choice of actions.

The simplified model for the prenatal diagnosis domain we use in our work (shown

in Figure 1.2) considers only one possible chromosomal abnormality which can be

diagnosed during the pregnancy — Down’s syndrome — and two tests commonly

used to diagnose it: chorionic villus sampling (CVS) and amniocentesis (AMNIO).

We use five utility attributes:

• testing T (none, CVS or amniocentesis),

• fetus’s status D (normal, affected by Down’s syndrome),

• possible loss of pregnancy L (no loss, miscarriage, elective termination),

• knowledge of the fetus’s status K (none, accurate, inaccurate),4 and

• future successful pregnancy F (true, false).

The utility is a function of all of these variables.

Clearly, the number of outcomes is exponential in the number of attributes. Thus,

the specification of the utility function in full can become expensive. In our model,

there are 108 distinct outcomes; even after simplification and elimination of very

unlikely outcomes, 66 outcomes remain. Utility elicitation, which in the best of cases

is a long and tiring process, is extremely difficult for outcome spaces of this size.

4Knowledge is a deterministic function of fetus’s Down’s status and test result.
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Figure 1.2: Prenatal diagnosis — simplified decision tree model
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In this prenatal testing domain, the speed of utility elicitation was around 10

outcomes per hour (Kuppermann 1998). We were also told by several utility elicitation

practitioners that fatigue becomes a factor quite early in the elicitation process. After

the first few questions, the probability of inconsistent answers rises sharply.

1.5 Non-cooperative Settings

Consider the problem of trying to predict the future actions of an agent A. There are

many settings in which this capability is useful. In some settings, we might want to

help the agent make good decisions. In other, more competitive settings, we might

want to predict the agent’s actions so as to better optimize our own actions.

In a direct approach to this task, we might simply try to learn a mapping from

certain features of the current decision problem to actions. However, if the decision

problems that A encounters are varied, it is not clear how we can extrapolate from

one to the other. A better solution is to try to learn the basis for A’s decisions, and

use it to predict future decisions in a wide range of situations.

Our approach is based on the assumption that A is a rational decision maker,

using decision theory to pick a course of action. According to decision theory, rational

decision making amounts to the maximization of the expected utility of a sequence of

decisions (Section 1.1). Thus, to predict A’s actions, we need to know the probabilistic

model of the domain which he uses and his utility function. In some situations,

we can assume that the domain model constitutes common knowledge. In some

others, a history of previous interactions with A will allow us to acquire the model he

uses. However, the utility function remains a problem. In competitive situations, the

knowledge of the opponent’s utilities may constitute a strategic advantage. Thus, in

such situations we cannot directly ask our opponent about his preferences.

Example: On-line Bookseller

As an example, consider a problem where we are trying to learn the utility function of

some customer A of an online bookseller B. The customer A visits B’s website from
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time to time. He may browse or search for specific titles, check prices or read book

reviews. Over time, the customer may be presented with offers of different books at

various prices. From A’s purchases and browsing patterns, B learns which books A

expects to enjoy. (The customer A is never completely sure himself whether he will

enjoy a particular book. However, he can estimate how likely he is to enjoy it based

on a review, experience with other books by the same author, etc.) By watching A’s

behavior, B also gains insight about A’s utility function. A’s overall utility typically

depends on a combination of utility attributes, corresponding to such aspects as: the

price he paid, his enjoyment of the book, etc.

The bookseller B can acquire information about the customer’s utility function in

one decision problem, and then apply it in another. However, it is rarely necessary (or

possible) to learn A’s exact utility function. The observer B typically needs to deal

with A in the context of a particular interaction, and learning A’s utility function is

only useful inasmuch as it helps predict A’s actions in that context.

Consider a single interaction between a bookseller and his online customer, illus-

trated in Figure 1.3. Here, the bookseller B is considering whether to offer a frequent

customer A a discount on a newly published title. B would prefer to sell the book

at the full price, but selling at a discount is better than not making a sale at all. B

can furthermore alert his frequent customers by e-mail and notify them of the book’s

availability. However, this is only possible if the customer A previously signed up for

this e-mail service. The customer’s decision with respect to the e-mail service may

influence B’s decision about the discount offer.

We assume that both players can predict from A’s previous purchases the chances

that he will enjoy a particular title. This assumption, which may be unrealistic in

some domains, is commonly made in game theory. Enjoyment of a book is taken here

to be a decision made by nature. A cannot be sure of it before he actually reads

the book. On the other hand, B may be collecting book ratings from his customers,

which will allow him to predict A’s enjoyment with high accuracy.

Clearly, B’s utility depends on the actions taken by A, which in turn depend on

A’s unknown utility function.

The utility attributes we model for this problem are:
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A’s move B’s move
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Figure 1.3: Bookseller example
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• price (full, discounted or none in case of no purchase),

• enjoyment of the book (enjoy, hate, not read),

• dislike of junk mail,

• satisfaction from obtaining a bargain.

Clearly, the more the bookseller B knows about the customer’s utility function,

the easier it is for him to predict A’s future actions and maximize his gains by making

optimal decisions.

1.6 Dissertation Overview

In Chapter 2 and Chapter 3, we review some background from decision theory and

utility theory.

Chapter 4 develops the idea of utilities as random variables. It presents the

probabilistic framework we use to encode our uncertainty over utility information and

explains how we can exploit the independence properties among the utility attributes

to simplify the model. It describes how we can use this new formulation to reason

under utility uncertainty in a variety of settings.

In Chapter 5, we describe the process of learning a utility model. Our learning

framework allows us to estimate the density from a database of utility functions col-

lected from a population of users and discover the structure among utility variables

at the same time. Chapter 6 shows how to adapt the distribution over utility func-

tions in the population to a specific user by conditioning the prior density on new

information whether collected in the process of utility elicitation or by observing the

agent’s behavior.

Chapter 7 presents an algorithm for adaptive utility elicitation. In this algorithm,

we use the tools developed in Chapters 4 and 6 in the context of a medical deci-

sion support system. The utility elicitation process is customized for each patient.

We choose elicitation questions according to their informational value and terminate
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the process as soon as we are reasonably certain that the course of action we can

recommend based on the current information is very close to optimal.

Chapter 8 turns to non-cooperative situations. We consider a simple game in

which we have to reason about another agent’s utility function. We cannot elicit any

utility information, but we incorporate the information gathered by observing the

other agent’s behavior. Having a distribution over our opponent’s utility function,

we can compute the optimal sequence of actions to take.

We conclude in chapter 9 with discussion of related work and future directions.



Chapter 2

Decision Models

Decision theory is a framework for analyzing human decision making. On the one

hand, it attempts to describe how people arrive at the decisions they make. On the

other, it deals with choosing optimal decisions given a decision maker’s preferences

and his knowledge of the world. Thus, it has both descriptive and normative aspects

which it tries to satisfy at the same time.

In this work, we are concerned principally with the normative side of decision

theory. However, the two aspects are deeply interrelated. As we will see in Chapter 3,

we cannot conduct a process of utility elicitation, which forces the user to choose

actions in artificial decision scenarios, without acknowledging the fact that actual

human decision making sometimes departs from the mathematical model.

2.1 One-Person Decision Problems

A decision problem for a single agent consists of several decisions, taken in sequence,

often with some information revealed between one decision and the next. There

are many possible models for this type of situation, including influence diagrams

(Howard and Matheson 1984), Markov decision processes (MDPs) (Puterman 1994),

and decision trees (Raiffa and Schlaifer 1961). For finite horizon situations, decision

trees are a perhaps the most general representation from a semantic perspective. Any

influence diagram can be expanded into a decision tree (Pearl 1988), and any MDP

15
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can be unrolled into a tree whose depth depends on the horizon. Of course, these

transformations lose some of the structure of the original representation (and cause

an exponential increase in the representation size), but they are equivalent in terms

of the semantics of the decision task. Hence, we define decision problems in terms of

decision trees.

2.1.1 Decision Trees

A decision tree is a rooted tree consisting of a finite set T of nodes and a binary

relation / on T . We interpret ti / tj as meaning that the node ti precedes the

node tj. We require that / be transitive and acyclic. For any node ti ∈ T , the set

A(ti) = {tj ∈ T : tj / ti} of predecessors of ti is completely ordered by / .

The root node t1 is the node with no predecessors: A(t1) = ∅. Similarly, the set L

of leaves of the tree contains all the nodes with no successors L = {ti ∈ T : S(ti) = ∅},
where S(ti) = {tj ∈ T : ti / tj}. T − L is the set of interior nodes.

There are two types of interior nodes: decision nodes d and chance nodes y. A

decision node indicates a choice to be made by the agent; its values are actions the

agent can perform at the given point of the game. Each of the decision nodes d can

correspond to a different set of actions; the tree arcs going out of d correspond to

these actions. We represent the new information revealed to the agent in different

tree branches and at different stages of the problem using a set of chance nodes. A

chance node indicates a stochastic event. Each of the chance nodes y has a domain

of two or more values. When the game reaches a chance node, its value is determined

(by “nature”) according to some distribution P (y) and revealed to the agent. The

outgoing arcs correspond to the node’s values.

Note that the decision tree is not necessarily symmetric: in some branches of the

tree the agent may be required to make different decisions than in others and may

have different information at his disposal. The leaf nodes of the tree represent the

outcomes of the decision problem. The utility function, U , assigns values to all possible

outcomes. These values represent the decision maker’s preferences (see Chapter 3).

The decision process corresponds to a top-down traversal of the tree. If the root
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node is a chance node, nature starts the process; if it is a decision node, the first

choice belongs to the player. At every chance node y reached in the game, nature

“chooses” its value with the distribution P (y). At every decision node d, the agent

selects an action from the set of actions associated with d. Even if two decision

nodes have identical value sets, the agent can make different choices in each of them,

thereby allowing his decision to depend on the values of their predecessors. The tree

continues in this way, until at the very end, the final utility is determined according

to the value function defined over the outcomes.

A strategy or policy is a sequence of decision rules, π = (π1, π2, . . . , πn), one for

each of the decision nodes. Each πi is a mapping from a given decision node d to the

set of values of that node, or possible decisions. The optimal strategy, π∗, maximizes

the value of the decision problem, EV(π), which is taken to be the expected value of

U under the strategy π.

2.1.2 Expectimax Algorithm

The value of the decision problem, and the optimal strategy, can be found by following

the expectimax algorithm. The algorithm assigns the expected value EVt to each node

t in the decision tree. It proceeds from the leaves up, propagating expected values.

• At leaves, the values simply equal utility values for the outcomes:

EVt = U(t).

• At chance nodes, we take expectation over the values of the children Ch(t) of

the given node t:

EVt =
∑

t′∈Ch(t)

P (t′)EVt′ .

• At decision nodes d, we determine the optimal action π∗(d) by optimizing the

expected value:

π∗(d) = argmax
t′∈Ch(d)

EVt′ .
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The expected value for t = d is then set:

EVt = EVπ∗(d).

The expected value of the root node EVt1 is the expected value of the decision

problem.

2.1.3 Symmetric Decision Problems

Some decision problems exhibit a high degree of regularity: all of the nodes at each

stage of the game are of the same type (decision nodes or chance nodes) and have

the same set of values. This results in a symmetric tree. When we convert a decision

problem represented as an influence diagram to the decision tree representation, the

resulting tree is always symmetric. The sets of identical nodes at every stage of the

decision tree correspond to decision variables and chance variables in the influence

diagram.

We can order the decision variables D1, . . . , Dk according to their temporal struc-

ture. Similarly, the chance variables can be partitioned into mutually exclusive and

exhaustive sets Y1, . . . ,Yk+1, where Yi are the variables that are revealed to the de-

cision maker prior to Di. The value of a symmetric decision problem can be described

using the following sum-max-sum rule (Jensen, Jensen, and Dittmer 1994):

EV(π∗) =
∑

Y1

P (Y1)max
D1

∑

Y2

P (Y2 | Y1, D1) . . .

·
∑

Y
k

P (Yk | Y1, D1, . . . ,Yk−1, Dk−1)

·max
D
k

∑

Y
k+1

P (Yk+1 | Y1, D1, . . . ,Yk, Dk) · U(Y1, . . . ,Yk+1, D1, . . . , Dk+1)

The value of a symmetric decision problem can be computed by using the expec-

timax algorithm described above. More efficient algorithms exist for the influence

diagram representation (Jensen, Jensen, and Dittmer 1994), where we can take ad-

vantage of the regularity of the decision problem.
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2.2 Games

Game theory aims to model situations in which two or more rational decision makers

interact. The essentials of the theory were developed by von Neumann and Morgen-

stern (1947) in their famous book The Theory of Games and Economic Behavior,

which also initiated modern utility theory (see Section 3.1.1).

The basic framework of game theory assumes an interaction between several de-

cision makers. Each decision maker participating in this interaction (called a player

in game theory literature) has a set of decisions available to him in different cir-

cumstances. Decisions may be made by all players simultaneously or in sequence,

usually alternating between players. The set (in case of simultaneous moves) or the

sequence of decisions determines the final state or outcome. Each player has his own

preferences defined over the set of outcomes which is usually represented as a payoff

function which assigns numbers to outcomes in some way corresponding to the pref-

erence ordering. In games with an element of chance, the payoff function is simply

the utility function of the player (see Chapter 3).

In the basic formulation of a game, it is assumed that each player is fully aware

of the rules of the game and his own as well as others’ payoff functions. Similarly to

single player decision problems, each player’s objective is to the maximize his payoff

function. However, this goal, straightforward in the single-player case, is complicated

here by the players’ anticipation of each others’ moves.

A complete review of the field of game theory is beyond the scope of this dis-

sertation. It can be found, e.g., in (Fudenberg and Tirole 1991). In the remainder

of this section, we briefly review one of the classic representations of a game — the

extensive form — which generalizes the decision tree representation we used for single

player decision problems in Section 2.1.1. We also mention games with incomplete

information, a class of games in which some information (e.g., about another player’s

payoff function) is unavailable. A special case of a game with incomplete information

will be analyzed in Chapter 8.
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2.2.1 Extensive Form Representation

The extensive form representation of a game uses a rooted tree. The basic structure

of the tree is the same as the structure of a one-player decision tree described in

Section 2.1.1.

As before, the interior nodes of the tree represent either decision nodes or chance

nodes. Decision nodes in a game tree are annotated with the name or number of

the player who makes a decision at the given node, dp11 , . . . , d
pn
n , where pi denotes

the player making a decision at node di. As in single-agent decision trees, some

new information can be revealed to some or all the players at different stages of the

problem using a set of chance nodes. Chance nodes are often presented as decision

nodes of a special player, nature. Nature does not have its own utility function and

chooses its actions according to some pre-specified probability distribution known to

some or all players. The leaves of the tree, l ∈ L, are annotated with the payoff values

for all players, U p(l).

A player may or may not be aware of the moves made by other players or nature

earlier in the game. This situation is captured using the concept of an information

set. Two decision nodes di and dj belong to the same information set I if the player

who is supposed to make a decision in either of them cannot distinguish between the

two. All nodes in the information set must belong to the same player and the sets

of actions available to him at each of these nodes must be identical. We will refer to

the set of actions available to player p at each of the nodes in the information set I p

as a(Ip).

A game is said to have perfect information if each information set consists of a

single decision node. Chess is an example of a perfect information game. Most card

games (games in which the players do not reveal their cards to their opponents) are

games with imperfect information.

We restrict our attention to games with perfect recall, in which each player retains

all the information acquired at all the stages of the game and remembers his own

prior moves as well as the moves of other players he was able to observe.

Similarly to decision trees, the act of playing a game corresponds to a top-down

traversal of the tree. At each chance node y nature makes the choice about the value
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of y, with the distribution P (y). At every decision node dpii , player pi makes his

choice. The players can vary their decisions depending not only on the values of

chance nodes observed in the preceding stage of the game (if any), but also the moves

of other players and of nature that they were able to observe at earlier stages of the

game. One path through the tree is called a play or a game trajectory.

A pure strategy for player p is a sequence of decision rules, πp = (πp1, π
p
2, . . . , π

p
np),

where np is the number of information sets Ip for player p and each πpi is a map-

ping from Ipi to a(Ipi ). A notion of a player’s strategy can be extended to include

mixed strategies: stochastic choices between pure strategies according to some fixed

distribution.

2.2.2 Nash Equilibria

How can we compute the best strategy for a given player? If we knew in advance the

strategies adopted by all the other players, it would be simple: we would be able to

use our expectimax algorithm from Section 2.1.2. However, we usually do not have

any information about other players’ plans. Thus, we need to guess which actions

they are going to take and adjust our strategy accordingly. If every player guesses

right and behaves optimally with respect to his guess, the strategies will be at an

equilibrium — no player will have any reason to change his behavior.

A solution to a game is such an equilibrium, called after its inventor a Nash

equilibrium.

Definition 2.2.1: A Nash equilibrium for an m-player game is a set of strategies

{π1, . . . , πm} such that no player i can achieve a higher expected payoff by using any

strategy other than πi given that every other player j adheres to πj.

A famous theorem, proven by Nash and bearing his name (Nash 1951), states that

every game has a Nash equilibrium. However, it is not necessarily a pure-strategy

equilibrium. Not every game has a pure strategy Nash equilibrium; if it exists it is

not necessarily unique.

Nash equilibrium is not necessarily the most desirable state of the game. In a fa-

mous 2-player game called the Prisoner’s Dilemma, the unique Nash equilibrium is an
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outcome dominated by another outcome according to both players’ payoff functions.

2.2.3 Backward Induction

Extensive form games with perfect information can be solved by a process of back-

ward induction, which is a generalization of the expectimax algorithm described in

Section 2.1.2. Recall that in perfect information games every information set is a

singleton, so every player knows at every stage of the game which decision node he

finds himself at.

The algorithm assigns the expected payoff value for every player p to every node t

in the tree, EVp
t . It proceeds from the leaves up, propagating expected payoff values.

• At leaves, the values simply equal payoff values for the outcomes:

EVp
t = Up(t).

• At nature’s nodes, we take expectation over the values of the children Ch(t) of

the given node t, separately for each player:

EVp
t =

∑

t′∈Ch(t)

P (t′)EVp
t′ .

• At decision nodes di for player i, the algorithm determines the optimal action

π∗(di) by optimizing the expected payoff for player i:

π∗(di) = arg max
t′∈Ch(di)

EVi
t′ .

The expected payoff values for t = di are then set:

EVp
t = EVp

π∗(di)

for all players p.

The set of optimal actions computed by backward induction defines a pure strategy
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for every player in the game. It is easy to show that these strategies form a Nash

equilibrium. Unlike games in general, every finite game of perfect information has a

pure strategy Nash equilibrium.

2.2.4 Games with Imperfect or Incomplete Information

Backward induction cannot be applied to games with imperfect information — the

optimal action at one node in the information set is not necessarily the same as the

optimal action at another node in the same set. We do not have any principled

way to choose between them. Recall that games with imperfect information may

not have a pure-strategy Nash equilibrium. They are guaranteed, however, to have

a mixed-strategy one. Such equilibria can be computed by algorithms more complex

than backward induction; see a comprehensive survey by McKelvey and McLennan

(1996).

When some players do not know the payoff of the others, the game is said to have

incomplete information. When there is a small number of possible payoff functions

and we can assume that the distribution over these possibilities is commonly known,

we can convert the incomplete information game to an imperfect information game

in which the first move is made by nature and concerns the payoff functions.



Chapter 3

Utility Theory

Utility theory originated from the study of people’s economic behavior. The terminol-

ogy used reflects this origin: we talk about people’s preferences over “goods” and use

examples in which we gain or lose “assets” or simply money. Utility analysis, however,

is not limited to monetary or economic resources and can be applied equally well to

decision problems whose consequences are non-monetary, such as one’s health state

or enjoyment. We will use the term outcome for all types of decision consequences.

3.1 Basic Framework

3.1.1 Preferences and Lotteries

Modern utility theory was developed by von Neumann and Morgenstern (1947). The

axioms of the theory are formulated in terms of preference and indifference relations

defined on a set of outcomes O.

oi Â oj — outcome oi is preferred to outcome oj

oi ∼ oj — the agent is indifferent between oi and oj

oi
Â
∼ oj — the agent prefers oi to oj or is indifferent between them

The set of outcomesO can be enriched to include lotteries, or probability mixtures.

A lottery ticket represents a chance mechanism which yields the prizes o1, o2, . . . , on

24
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as outcomes with certain known probabilities. L = [oi, p, oj] denotes a lottery which

offers outcome oi with probability p and outcome oj with probability 1− p.

Several axiomatizations of utility theory have been developed since von Neumann

and Morgenstern’s original formulation (for a discussion and comparison see, e.g.,

(Luce and Raiffa 1957) or (Fishburn 1982)). We present the formulation used in

(Coombs, Dawes, and Tversky 1970), which closely follows the original one.

Given the primitives Â∼ and O, the following axioms are assumed to hold for all

outcomes oi, oj, ok in O and for all probabilities p, q that are different from 0 and 1.

A1 Closure: [oi, p, oj ] is in O.

A2 Â
∼ is a weak ordering of O. That is, the following conditions are satisfied:

A2.1 Reflexivity: oi
Â
∼ oi

A2.2 Connectivity: (oi
Â
∼ oj) or (oj

Â
∼ oi) or both

A2.3 Transitivity: (oi
Â
∼ oj) ∧ (oj

Â
∼ ok)⇒ (oi

Â
∼ ok)

A3 Reducibility: [[oi, p, oj], q, oj] ∼ [oi, pq, oj]

A4 Substitutability: oi ∼ oj ⇒ [oi, p, ok] ∼ [oj, p, ok]

A5 Monotonicity: oi Â oj ⇒ oi Â [oi, p, oj] Â oj

A6 Continuity: oi Â oj Â ok ⇒ ∃p [oi, p, ok] ∼ oj

The first axiom asserts that if oi and oj are available alternatives, so are all lotteries

of the form [oi, p, oj] that can be formed with oi and oj as outcomes. It is assumed

implicitly that [oi, p, oj ] = [oj, 1− p, oi].

The second axiom is very important. The requirements of reflexivity and connec-

tivity are very intuitive: It is easy to accept that any lottery or outcome is equivalent

to itself and that the decision maker should know what he wants. Transitivity is a

little more difficult. Although very compelling on normative grounds, it is the most

frequently violated axiom in practice. Some researchers suspect that these “mistakes”
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are due to the lack of careful thought — indeed, in some cases, people reportedly re-

vise their preferences when confronted with the analysis (Luce and Raiffa 1957). An-

other rationalization asserts that intransitivities often occur when the decision maker

is forced to make choices between inherently incomparable alternatives. The idea is

that each pairwise comparison invokes a preference response on a different “attribute”

scale and that, although each scale itself may be transitive, their combination need

not be. Here, we will assume that the transitive preference ordering is at least a close

approximation to reality even if it does not perfectly represent it.

Axiom A3 states that the preferences depend only on final outcomes, not the

process in which they are obtained. It implies that a person does not derive any

additional pleasure (or displeasure) from suspense or participation in the game.

Axiom A4 simply states that two equally preferred outcomes can be substituted

for one another in any lottery. It is reminiscent of the assumption of the independence

of irrelevant alternatives (Luce and Raiffa 1957).

The fifth axiom asserts that if oi is preferred to oj, then it must be preferred to

any probability mixture of oi and oj, which, in turn, must be preferred to oj. It

does not seem objectionable. It was challenged, however, by citing the examples of a

risky behavior such as Russian roulette or mountain climbing. People who choose to

engage in such behaviors seem to prefer a probability mixture of “life” and “death”

to “life”, even though they prefer “life” to “death.” The dispute is often resolved

by revising the outcome descriptions. The outcome “life” can mean “life without

climbing” or “life plus the thrill of a climb,” which allows us to model the situation

without violating the axioms.

The last axiom excludes the possibility that one alternative is “infinitely better”

than another one, in the sense that any probability mixture involving the former

is preferable to the latter. It captures the relationship between probabilities and

preferences and the form in which they compensate for each other. It turns out to be

an important justification for one of the methods of utility elicitation (see Section 3.4).
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3.1.2 From Preferences to Utilities

The existence of a utility function follows from the axioms governing preferences.

Theorem 3.1.1: (von Neumann and Morgenstern 1947) If an agent’s preferences

obey axioms A1–A6, then there exists a real-valued function U defined on O such that

oi
Â
∼ oj ⇔ U(oi) ≥ U(oj) (3.1)

U([oi, p, oj]) = pU(oi) + (1− p)U(oj) (3.2)

Furthermore, if U ′ is any other function satisfying 3.1 and 3.2, then there exist num-

bers a > 0 and b such that U ′(oi) = aU(oi) + b.

The theorem guarantees that if axioms A1–A6 hold, there exists a utility func-

tion that preserves the preference order of the agent. The utility scale is uniquely

determined except for the origin and a unit of measurement.

Equation (3.2) is sometimes referred to as the expected utility principle since it

asserts that the utility of a lottery is equal to the expected utility of its component

outcomes.

Given that an agent’s preferences can be represented by a utility function, when

the agent makes decisions according to his preferences, he behaves as if he were

maximizing his expected utility. (The agent may or may not be aware of making

choices in this manner.) The principle of maximizing expected utility has become

synonymous with making rational decisions.

The fact that a utility function is defined only up to a positive linear (affine)

transformation leads to problems for interpersonal comparisons of utility functions.

The simplest solution is to establish a fixed range by assigning specific values to the

least and most preferred outcomes in the decision problem. That creates its own

problems, however: the least preferred outcome is not necessarily equally valued by

everyone. A better solution is to find two anchor outcomes, o⊥ and o>, which represent

states whose values are supposedly independent of one’s life situation. The most

commonly used anchor states are the death of the decision maker for o⊥ and perfect

happiness (perfect health in medical domains) for o>. These states are assigned values



28 CHAPTER 3. UTILITY THEORY

of 0 and 1 respectively and the utilities of all other states are rescaled to the [0, 1]

range.

3.1.3 From Utilities to Preferences

Decision theory traditionally takes the preference relation as primitive and the utility

function as implied. However, in practice we also reverse this relationship.

A utility function U induces a preference ordering Â
∼U on lotteries (probability

distributions) over O as follows:

p1
Â
∼U p2 iff

∑

o∈O

p1(o)U(o) ≥
∑

o∈O

p2(o)U(o),

where p1 and p2 are two distributions over O. In other words, we prefer lotteries with

higher expected utility.

3.2 Multi-attribute Utility Theory

Multi-attribute utility theory deals with utility functions defined over outcomes rep-

resented as assignments of values to utility attributes. The main focus of the theory

is to identify regularities in an agent’s preferences. Such regularities result from

independence properties among utility attributes. The existence of a structure in

an agent’s preferences allows us to decompose his utility function into a sum or a

product of subutility functions, each defined over a subset of utility attributes. The

theorems linking various independence properties to different forms of utility function

decomposition are called representation theorems.

We will review the most important results of multi-attribute theory here; for a

thorough survey of the field the reader is referred to (Keeney and Raiffa 1976).

3.2.1 Utility Attributes

The naive representation of a utility function is a vector of real numbers, ascribing a

utility to each possible outcome. This representation is quite reasonable in domains
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involving a small number of distinct outcomes. Many real-life domains, however,

involve fairly complex outcomes. In such cases, it is convenient to represent the set

of outcomes as a product space over some set of attributes or variables.

Let V = {V1, V2, . . . , Vm} be a fixed set of m attributes. Each attribute Vi has a

domain DomVi of two or more elements. The set of outcomes (states), O, consists

of the set of points in the product space
∏m
i=1DomVi . Each o ∈ O is thus a vector

of m values, one value for every attribute: 〈v1, v2, . . . , vm〉. Clearly, the size of O is

exponential in m.

Example 3.2.1: Our prenatal diagnosis domain (Section 1.4) is a good example of

the vector representation. We have 5 utility attributes:

• pregnancy loss (domain: {no loss, miscarriage, elective termination}),

• fetus’ Down’s status (domain: {normal, Down’s}),

• mother’s knowledge (domain: {none, accurate, inaccurate}),

• future pregnancy (domain: {yes, no}), and

• type of test (domain: {none, CVS, amnio}).

An outcome is an assignment of values to all the attributes. For example, 〈no loss,

normal, none, yes, none〉 is one of the possible outcomes. It represents the situation in

which the fetus is not affected by Down’s syndrome, the patient decides not to take

any tests (as a consequence, she is unaware of the Down status of the fetus until the

end of the pregnancy), the pregnancy results in normal birth and there is a future

pregnancy. Another outcome, 〈miscarriage, normal, accurate, no, CVS〉 represents the
situation of a patient deciding to undergo the chorionic villus sampling test. The test

result correctly asserts that fetus is not affected by the Down’s syndrome. However, a

miscarriage occurs as a side effect of the procedure and there is no future pregnancy.

Since three of the attributes are ternary and two binary, the total number of

outcomes is 3 × 2 × 3 × 2 × 3 = 108. As can be easily seen, not all outcomes have

a positive probability. For example, in the absence of testing, knowledge about the
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fetus’ Down’s status is not possible. However, even after eliminating zero probability

outcomes, 84 possible outcomes remain.1

If the decision problem is represented as a symmetric decision tree (Section 2.1.3),

we often use decision and chance variables as utility attributes.

3.2.2 Subutility Functions

If X ⊆ V then f(X) stands for some real valued function all of whose arguments are

in X, i.e.,

f(X) :
∏

Vi∈X

DomVi → IR.

We will call such functions defined over subsets of V subutility functions.

Subutility functions are different from utility functions, since they are not defined

over complete outcomes. They do not always have an intuitive meaning. Unlike prob-

abilities, utilities cannot be marginalized. It is hard to talk about one’s utility function

over a subset of attributes without making some assumptions about the values of other

attributes. For example, consider the attribute “mother’s knowledge” in our prenatal

diagnosis domain. It is easy to develop an intuition behind marginal probability over

“mother’s knowledge”. There is not, however, an analogous “marginal value” concept

we could invoke. The value of knowledge could be different in different contexts (i.e.,

with the remaining attributes being set to different values) and it is not clear how we

could aggregate these different functions or what the aggregate would mean.

Note that subutility functions are different from conditional utility functions which

are defined over some subset of attributes X for fixed values y of the remaining

attributes Y and denoted U(X,y) or Uy(X).

1We can reduce the number of outcomes further by restricting the space of strategies allowed by
our model. For example, 18 outcomes involve an elective termination of the pregnancy following a
negative (i.e., indicating the absence of Down’s syndrome) test result. If we decide not to model
this unlikely scenario, we are left with only 66 outcomes.
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3.2.3 Preference Independence

In the simplest case the agent makes decisions with full information about the state

of the world. In the absence of uncertainty, we can compare the outcomes directly.

The set of attributes X is preferentially independent of its complement Y if the

agent’s conditional preferences over X given y (some value of Y) do not depend on

the particular value y. In other words, if x is preferred to x′ in the presence of some

y, it must be also preferred to x′ in the presence of any other value of Y. More

formally,

Definition 3.2.2: (adapted from (Keeney and Raiffa 1976), page 109) The set of

attributes X is preferentially independent of Y = V −X if and only if for all y,y′ ∈
∏

Vi∈Y DomVi ,

〈x,y〉 Â∼ 〈x′,y〉 ⇒ 〈x,y′〉 Â∼ 〈x′,y′〉

for all x,x′ ∈ ∏Vi∈X DomVi .

Preferential independence is not a symmetric relation — even if a set of attributes

X is preferentially independent of its complement Y, Y may not be preferentially

independent of X.

3.2.4 Utility Independence

Preference independence is only defined for decision making with certainty. The

corresponding property for the uncertainty case is utility independence.

To define utility independence, we need to extend our definition of preference

orderings to lotteries over a restricted set of outcomes, i.e., to cases where the values

of some of the attributes are fixed:

Definition 3.2.3: Let X ⊂ V, Y = V − X. Let y be any particular element

of
∏

Vi∈Y DomVi . Every probability distribution p over
∏

Vi∈X DomVi corresponds to

a distribution p∗ on O such that p∗(y) = 1 and p∗(X|y) = p(X). We define the

conditional preference over X given y, Â∼y to be the preference ordering such that

p Â∼y q iff p∗ Â∼ q∗,
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where p and q are any two distributions over
∏

Vi∈X DomVi .

Definition 3.2.4: (adapted from (Keeney and Raiffa 1976), pages 226 and 284) The

set of attributes X is utility independent of V −X when conditional preferences for

lotteries on X do not depend on the particular value given to V −X. That is,

(∀y,y′ ∈
∏

Vi∈V−X

DomVi) p Â∼y q iff p Â∼y′ q,

where p and q are any two distributions over
∏

Vi∈X DomVi . In this case, we write

UI(X,V −X).

Utility independence essentially asserts that the preferences on lotteries involving

outcomes with different values of a given attribute (or set of attributes) do not depend

on the values to which the remaining attributes are set.

Utility independence, like preference independence, is not a symmetric relation.

In a utility function with two attributes, all cases are possible: neither attribute is

independent of the other, one of the attributes is independent of the other but not

vice versa, or each attribute is independent of the other.

Note also that utility independence is only defined for a set of attributes and

its complement. That is, if a utility function is defined over a product space of

three attributes, we cannot say that one attribute is independent of another without

mentioning the third. Unlike probabilities, utility functions cannot be marginalized.

In our prenatal diagnosis example (Section 1.4), the attribute “Testing” is (for

most people) utility independent of the rest. One typically dislikes the invasive test-

ing regardless of one’s preferences over pregnancy outcomes. On the other hand, the

attribute “Future Pregnancy” is clearly utility dependent on the values of the remain-

ing attributes: one’s preferences towards the future pregnancy may well be influenced

by the outcome of the current one.

Utility independence gives us several decomposition theorems. First, consider the

simplest case when a subset of attributes is utility independent of the rest:

Proposition 3.2.5: (adapted from (Keeney and Raiffa 1976), page 226) X is utility

independent of its complement in a preference structure Â∼ if and only if Â∼ corresponds
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to some utility function UÂ
∼
of the form:

UÂ
∼
(V) = f(V −X) + g(V −X)h(X)

where g is positive.

Note that each of the functions f , g and h is defined over a subset of attributes.

Thus, despite the fact that we have to assess three functions now instead of one, this

may require fewer parameters to specify.

Can we decompose the utility function further if every attribute is utility inde-

pendent of the rest? The answer is yes: each function in the resulting decomposition

is a function of one attribute. However, the full specification of the utility function in

such a case still requires the assessment of potentially exponentially many constants.

Proposition 3.2.6: (adapted from (Keeney and Raiffa 1976), page 293) If every

variable is utility independent of the rest there is a function fi(Vi) for each variable,

such that UÂ
∼
(V) is a multilinear combination of the fi’s. That is,

UÂ
∼
(V) =

∑

X⊂V

(kX

∏

Vi∈X

fi(Vi))

for some constants k and functions fi.

An interesting case to consider is the situation when each subset of attributes

is preferentially independent of its complement. We say in such cases that a set of

attributes exhibits mutual utility independence (MUI). MUI utility functions have a

very simple decomposition:

Proposition 3.2.7: (adapted from (Keeney and Raiffa 1976), page 289) The at-

tributes in V are MUI (i.e., every subset of attributes is independent of its comple-

ment in Â
∼) if and only if there exists m functions fi(Vi) (i.e., each fi depends on a

single variable), such that either

UÂ
∼
(V) =

m
∏

i=1

fi(Vi) + c
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for some constant c, or

UÂ
∼
(V) =

m
∑

i=1

fi(Vi).

3.2.5 Additive Independence

A much stronger form of independence is additive independence. Intuitively, additive

independence not only requires that our preferences over values of some attribute are

independent of the remaining attributes, it also asserts that the “strength” of these

preferences remains unchanged for all possible values of other attributes.

Definition 3.2.8: (adapted from (Keeney and Raiffa 1976), page 295) Let Z1, . . . ,Zk

be a partition ofV. Z1, . . . ,Zk are additively independent (for
Â
∼) if, for any probability

distributions p1 and p2 that have the same marginals on Zi for all i, p1 and p2 are

indifferent under Â∼, i.e., p1 ∼ p2. In this case, we write ∀i AI(Zi,V − Zi).

Consider the following example, due to Bacchus and Grove (1995):

Example 3.2.9: We have two utility attributes: Health, with values h1 and h2(healthy

and ill) and Wealth, with values w1 and w2 (rich and poor). The agent’s utility func-

tion is defined as: U(h1, w1) = 5, U(h1, w2) = 2, U(h2, w1) = 1, and U(h2, w2) = 0.

It is easy to see that these two attributes are utility independent of each other: no

matter whether the agent is rich or poor he always prefers the lotteries which yield

h1 with higher probability. Similarly, whether he is healthy or ill, he will choose the

lottery which gives him a better chance to get rich.

Are these two attributes also additively independent? Consider two probability

distributions p1 and p2:

p1(h1, w1) = 1/4 p2(h1, w1) = 1/2

p1(h1, w2) = 1/4 p2(h1, w2) = 0

p1(h2, w1) = 1/4 p2(h2, w1) = 0

p1(h2, w2) = 1/4 p2(h2, w2) = 1/2
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Note that p1 and p2 have the same marginals over Health andWealth. Yet the expected

utility under p1 is 2, while the expected utility under p2 is 5/2. Thus, these two

attributes are not additively independent.

Intuitively, the increase in agent’s utility corresponding to moving from illness to

health when he is poor is not the same as the increase in the case when he is rich.

In other words, his preference for health is “stronger” when is rich. More technically,

he displays a preference for probability distributions in which health and wealth are

positively correlated.

Additive independence is a very strong assumption, too strong for many domains.

However, in many cases, we can fix a subset of the attributes to a specific value and

discover that the remaining (sets of) attributes are additively independent in the re-

sulting conditional utility function. The conditional version of additive independence

is defined in a straightforward manner:

Definition 3.2.10: (adapted from (Keeney and Raiffa 1976), page 336) X and Y

are conditionally additively independent (CA-independent) given Z (X, Y, Z disjoint,

X ∪Y ∪ Z = V) if, for any fixed value z of Z, X and Y are additively independent

in the conditional preference ordering over X ∪ Y given z. In this case, we write

CAI(X,Y | Z).

Conditional additive independence is a very useful notion in practice. Weaker

than additive independence, it is more likely to occur in real-life domains.

The notion of additive independence can be also applied to overlapping sets of

attributes:

Definition 3.2.11: (Bacchus and Grove 1995) Let Z1, . . . ,Zk be sets of variables

not necessarily disjoint such that V =
⋃

i Zi. Z1, . . . ,Zk is generalized additively

independent (for Â∼) if, for any probability distributions p1 and p2 that have the same

marginals on Zi for all i, p1 and p2 are indifferent under Â∼. In this case, we write

GAI(Z1,Z2, . . . ,Zk).

All forms of additive independence result in the additive decomposition of the

utility function. The simplest one corresponds to pure additive independence:
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Proposition 3.2.12: (adapted from (Keeney and Raiffa 1976), page 295) Let Z1, . . . ,Zk

be a partition of V. Z1, . . . ,Zk are additively independent for
Â
∼ iff UÂ

∼
can be written

as

UÂ
∼
(V) =

k
∑

i=1

fi(Zi)

for some functions fi.

Conditional additive independence and generalized additive independence cause

the utility function to decompose in a similar manner:

Proposition 3.2.13: (adapted from (Keeney and Raiffa 1976), page 338) X and Y

are conditionally additively independent given Z iff UÂ
∼
can be written in the form

UÂ
∼
(V) = f1(X,Z) + f2(Y,Z)

for some functions f1, f2.

Proposition 3.2.14: (Bacchus and Grove 1995) Let Z1, . . . ,Zk be sets of variables

not necessarily disjoint such that V =
⋃

i Zi. Z1, . . . ,Zk are generalized additively

independent for Â∼ iff UÂ
∼
can be written as

UÂ
∼
(V) =

k
∑

i=1

fi(Zi)

for some functions fi.

Additive independence and corresponding to it additive decomposition of the util-

ity function have received a great deal of attention due to their simplicity.

3.2.6 Utility Function Decomposition

The utility function structure plays an important role when we attempt to use deci-

sion theory in real-life applications. Our prenatal diagnosis domain from Section 1.4
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Independence Property Function Decomposition Number of parameters

None none |DomV|
Utility Independence

UI(X ⊂ V,Y = V −X) no standard name |DomX|+2×|DomY|
∀i UI(Vi,V − Vi) multilinear

∑

i |DomVi |+ 2|V|

MUI(V) additive or multiplicative
∑

i |DomVi |+ 1

Additive Independence

AI(X ⊂ V,Y = V −X) additive |DomX|+ |DomY|
∀i AI(Vi,V − Vi) additive

∑

i |DomVi |
CAI(X,Y | Z), V = X ∪Y ∪ Z additive |DomX| × |DomZ| +

|DomY| × |DomZ|
GAI(Z1,Z2, . . . ,Zk), V =

⋃

i Zi additive
∑

i |DomZi
|

Table 3.1: Utility function decomposition — summary

is not unusual in its complexity — many medical decision problems have utility func-

tions that depend on five or more attributes. To specify such a function completely

(assuming no structure), we need to assess more than 100 parameters.

Table 3.1 summarizes the decomposition results for different types of indepen-

dence assumptions. As can be easily seen, each independence assumption reduces the

number of parameters needed to represent the utility function.

Assuming some independencies between utility function attributes not only allows

us to use a more compact representation, but also reduces the complexity of inference

(such as expected utility computation used in determining the best action to take)2

and knowledge acquisition. As we describe in detail in Section 3.4, assessing people’s

utility functions in real-world domains presents considerable problems. The number

of parameters in the utility function is often critical for the success of the utility

elicitation process.

Table 3.2 presents the decomposition results for some specific independence as-

sumptions in the prenatal diagnosis domain (Section 1.4). We use as examples as-

sumptions people often hold, e.g., that the (dis)utility of invasive testing is (utility or

additively) independent of all the other parameters.

2in the influence diagram representation (Jensen, Jensen, and Dittmer 1994)
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Independence Property Number of parameters

None 108

Utility Independence

UI(T, DKLF ) 3 + 2× 36 = 75

UI(DKL, TF ) 18 + 2× 6 = 30

∀i UI(Vi,V − Vi) 3 + 2 + 3 + 2 + 3 + 25 = 13 + 32 = 45

MUI(V) 3 + 2 + 3 + 2 + 3 + 1 = 13 + 1 = 14

Additive Independence

AI(T, DKLF ) 3 + 36 = 39

AI(DKL, TF ) 18 + 6 = 24

∀i AI(Vi,V − Vi) 3 + 2 + 3 + 2 + 3 = 13

CAI(TF, K | DL), 6× 6 + 3× 6 = 54

CAI(TF, DK | L), 6× 3 + 6× 3 = 36

CAI(TF, LK | D), 6× 2 + 9× 2 = 30

GAI(TL, FL, LDK) 9 + 6 + 18 = 33

GAI(T, FL, LD, DK) 3 + 6 + 6 + 6 = 21

Table 3.2: Utility function decomposition in the prenatal diagnosis domain. At-
tributes: testing (T), Down’s status (D), pregnancy loss (L), knowledge (K), and
future pregnancy (F)

3.3 Psychological Aspects of Decision Making

3.3.1 Attitudes Towards Risk

People’s risk attitudes have been studied primarily in the context of the utility of

money. It is commonly assumed that people exhibit a monotonic preference for money.

That is, all other things being equal, they prefer to have more money rather than less.

However, our utility function does not have to be a linear function of money. Note

that this discussion applies equally to any monotonically increasing utility function

defined over a real-valued attribute. The example of money is commonly chosen since

it is considered to be the most intuitive.

Consider a lottery L = [oi, p, oj], where oi and oj are monetary payoffs. Associated

with this lottery are two expectations: its expected monetary value,

EV(L) = poi + (1− p)oj,
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and its expected utility,

EU(L) = pU(oi) + (1− p)U(oj).

These two numbers are not necessarily equal. Let oi = $1, 000, oj = $0 and

p = 1/2. The expected value of the lottery is EV(L) = $500. What is its expected

utility? Most people, when faced with a choice between a lottery and a guaranteed

payoff of the expected value of that lottery, would choose the expected value. Thus,

U([$1, 000, 1/2, $0]) < U($500).

According to the utility theory, every person will be indifferent between our lottery

and a guaranteed payoff ok, where the monetary value of ok is between 0 and 1,000. ok

is called the certainty equivalent of the lottery. The difference between the expected

value of the lottery and its certainty equivalent is the risk premium or the insurance

premium. If ok = $400, the risk premium is $100.

Why is the certainty equivalent of the lottery lower (for most people) than its

expected value? It is explained by the concave shape of the utility function: we

reportedly value our first $1, 000 more than the additional ones. The concavity of the

utility function (and implied by it the positive sign of the risk premium) is referred

to as the agent’s risk aversion. If the utility function is convex (as it often is for

negative payoffs), the risk premium is negative and leads to risk seeking behavior.

Linear utility functions imply risk neutrality. People are generally risk averse when

it comes to monetary gains and risk seeking with respect to monetary losses.

3.3.2 Uncertainty Perception and Prospect Theory

People make decisions taking into account their preferences over outcomes and their

beliefs concerning the likelihood of these outcomes. Two famous psychologists, Tver-

sky and Kahneman (1986a) have shown that human ability to estimate these likeli-

hoods is affected by many biases. People commonly use heuristics in their probability

assessments, which simplify the problem, but often lead to serious errors.
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Even when probabilities are stated explicitly, people often do not treat them in

the linear manner, as expected utility theory supposes. Rather, people tend to under-

and overestimate the likelihood of the outcomes these probabilities are assigned to.

Specifically, they often pay disproportionate attention to low probability events and

treat high probability events as though they were less likely than they actually are

(Tversky and Kahneman 1986b).

To explain the apparent inconsistencies in human behavior, Kahneman and Tver-

sky proposed prospect theory (Kahneman and Tversky 1979) as a more accurate de-

scriptive model of decision making under uncertainty. One part of the theory intro-

duces the notion of a decision weight π. Decision weight is a monotonic function of

probability, but it is not itself a probability measure. π(0) = 0 and π(1) = 1, but the

function is not well-behaved near the endpoints. For low probabilities, π(p) > p, but

π(p) + π(1− p) ≤ 1 — a phenomenon called subcertainty.3

The theory suggests that people transform probabilities into decision weights when

faced with a decision problem. This can happen because of psychological misconcep-

tions of numerical probabilities, but it can also be a conscious and deliberate choice of

the decision maker. For example, one can decide to pay relatively more attention to

worse outcomes than to better ones. Note that the decision weights are supposed to

measure not only the perceived likelihood of different events, but also “the impact of

events on the desirability of prospects” (Kahneman and Tversky 1979), thus blurring

the distinction between probability and utility.

According to Kahneman and Tversky, the intuitive notion of risk is not adequately

captured by the assumed concavity of the utility function. On the other hand, the

use of decision weights accounts much better for people’s dislike of lotteries. Prospect

theory can explain many famous paradoxes of decision theory, such as Allais’ paradox

described in Section 3.3.3. Note, however, that the prospect theory is purely descrip-

tive. It attempts to explain people’s behavior under uncertainty without making any

normative claims.

3Another part of prospect theory deals with the definition of the value function, an alternative
to the utility function. The value function is defined on deviations from the reference point (usually
the status quo), it is generally concave for gains and convex for losses and steeper for losses than for
gains.
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3.3.3 The Role of Regret

Von Neumann and Morgenstern’s axioms seem very compelling. However, from the

early days of decision theory, people have shown that they are sometimes violated.

The most famous of these “paradoxes” is due to Allais (1953).

Consider a choice between obtaining $1 million for sure and a lottery, in which

you have a 10% chance of winning $5 million, 89% chance of winning $1 million and

1% chance of winning nothing. Most people, when faced with this choice, prefer $1

million for sure. That preference implies the following inequality:

U(1m) > 0.10 · U(5m) + 0.89 · U(1m) + 0.01 · U(0).

Next, consider a choice between two lotteries. In the first lottery, you have a 10%

chance of winning $5 million and a 90% chance of getting nothing. In the second,

you have an 11% chance of winning $1 million and an 89% chance of getting nothing.

Most people prefer the first lottery. That preference implies

0.10 · U(5m) + 0.90 · U(0) > 0.11 · U(1m) + 0.89 · U(0).

As can be easily seen, these two inequalities are contradictory. Some researchers

have suggested that the inconsistency is caused by “mental shortcuts”, such as dis-

missing the difference between 10% and 11% as negligible. There are people, however,

who stick to their preferences even after seeing the expected utility analysis.

Their behavior can be explained using the notion of regret. A decision maker

who chooses a lottery over the sure $1 million may feel devastated if the result of

the lottery is the unlikely event of getting nothing. In the second choice, there is no

option with a sure payoff, so regret does not play a role.

Regret was first suggested as a decision criterion by Savage (1951). It is often

called the minimax risk criterion. According to this criterion, we should associate

with each outcome not only some utility value, but also a regret value. To compute

the regret value, we group outcomes into sets, placing in every set outcomes differing

only by the decision maker’s choice and identical in their attributes related to the
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state of the world. The regret value of an outcome o is the difference between the

utility of the most preferred outcome in o’s set and the utility of o itself. We choose

the decision that minimizes the regret.

The suggestion of regret as the sole decision criterion was criticized on several

grounds (see (Luce and Raiffa 1957) for discussion and examples). First, it is not

clear that the differences in utilities of different states are an adequate measure of

regret. In other words, the regret of going from a state of utility 5 to a state of utility

3 may be very different than the regret of going from a state of utility 105 to a state of

utility 103. Second, the regret criterion is not independent of irrelevant alternatives.

That is, adding a new, even sub-optimal, course of action to the decision problem

may alter our assessment of which of the two formerly present courses of action is

preferable. The reason for this unintuitive behavior is simple: adding a new course of

action requires that we also add one new outcome (corresponding to this new course

of action) to every set. This change may alter all regret values and thus our decision

choice.

A more refined approach to accounting for the role of regret in decision making

was proposed by Bell (1982). He suggested incorporating regret as an additional at-

tribute in a multi-attribute utility function. (A utility function should be a decreasing

function of regret.) This formulation allows us to stay within the traditional frame-

work of maximizing expected utility. The subutility function over the regret attribute

can be estimated in the process of utility elicitation just like the other components of

the overall utility function. Bell shows how his regret theory can be used to explain

such apparently irrational behaviors as gambling on negative expected value lotteries

or buying costly insurance.

3.4 Utility Elicitation

People have very different values and preferences. In a given decision problem, every

person’s utilities may be different. In building a decision support system, we assess

the probabilities in our model only once. (The probabilities of chance events do not

change across a population.) In contrast, utilities must be elicited many times —
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once for each user we hope to advise on the optimal course of actions.

Utility elicitation is an old field. The first methods appeared almost at the same

time as the original formulation of decision theory. However, at the beginning, the

primary applications were in the field of economics, and most research concentrated

on estimating people’s utility for money.

In the last twenty years, however, as decision theory has found uses in other

domains, more attention has been given to eliciting utilities for a large number of

discrete outcomes. We will concentrate on that aspect of utility elicitation here.

Since this work is motivated in large part by the need to create effective decision

support tools for medical domains, we pay particular attention to utility elicitation

practices in health care.

3.4.1 Standard Gamble

The standard gamble is the classical method of measuring preferences. First presented

by von Neumann and Morgenstern (1947), it is based on the axioms of utility theory.

Recall the continuity axiom:

oi Â oj Â ok ⇒ ∃p [oi, p, ok] ∼ oj

According to this axiom, to assess the utility of outcome oj, we need to find

two other outcomes: outcome oi, which is preferred to oj, and outcome ok, which

is less valuable than oj. This is easy: we usually have two anchor outcomes (see

Section 3.1.2) which are the most and the least valued outcomes in O and they can

be used for that purpose.

The next step is to construct the following decision problem: imagine the choice

between obtaining the outcome oj for sure and the lottery that offers oi with proba-

bility p and ok with probability 1 − p ([oi, p, ok]) for some p. The value p∗ for which

the user is indifferent between the lottery and the outcome oj for sure is called the

indifference point.

How do we find the indifference point? It is usually assumed that we cannot ask

the user to assess the value of p∗ directly; it is too difficult to estimate. Therefore,
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we need to use a search procedure. Several search procedures have been suggested in

the literature. The most common is titration. For a fixed increment value a, it starts

by asking the user to make a decision between outcome oj for sure and the lottery

involving the two anchor outcomes where p = 1 − a. If the user prefers the lottery,

p is decremented by a, thus making oi less likely and ok more likely, and the user is

asked to choose again. This process is repeated until the indifference point is found.

Other methods include ping-pong, which alternates between high and low values of p

(1− a, a, 1− 2a, 2a, etc.), and binary search.

Once the indifference point p∗ is found, we use the basic theorem of utility theory

(Equation (3.2)) to compute the utility of outcome oj:

U(oj) = U([oi, p
∗, ok]) = p∗U(oi) + (1− p∗)U(ok)

If we are using standard anchor outcomes with U(oi) = 1 and U(ok) = 0, it follows

that U(oj) = p∗.

A typical standard gamble question in a medical domain is formulated in this way:

“Imagine that you have a certain health condition which limits your ac-

tivities in a specific way [the detailed description follows]. Imagine that

there is a new experimental drug which only needs to be taken once. If

taken, it will cure the condition p percent of the time, and 1− p percent

of the time it will cause a painless death. Would you take the pill?”

Unfortunately, many independent studies have established that the final values

obtained in the process of standard gamble elicitation are sensitive to the choice of

anchors (Llewellyn-Thomas, Sutherland, Tibshirani, Ciampi, Till, and Boyd 1982)

and to the choice of the search procedure (Lenert, Cher, Goldstein, Bergen, and

Garber 1998). In addition, people are better at making gross distinctions than fine-

grained ones. As a result, a user’s answers are the most reliable far from the actual

indifference point and most error-prone immediately around it.
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3.4.2 Time Trade-Off

Not surprisingly, many people find it difficult to choose between an undesirable health

outcome and a magic pill which may result in their death. An alternative method,

time trade-off, was developed by (Torrance, Thomas, and Sackett 1972) specifically

for use in health care research. It attempts to maintain the spirit of the standard

gamble procedure while restricting the choices to the certain outcomes rather than

lotteries.

Time trade-off estimates what percentage of the remaining years of life in the

current health condition the patient would be willing to give up in order to spend

the rest of his life in a condition he considers superior. The two choices in a time

trade-off elicitation procedure are: (1) t years (where t is equal to the patient’s life

expectancy) in the current state oj; or (2) t′ years (where t′ < t) in perfect health

(o>). As in standard gamble, we vary t′ until the indifference point t∗ is reached. The

utility of the patient’s current state of health is taken to be t∗/t · U(o>).

Time trade-off was designed to produce similar results to the standard gamble

method at smaller cost and with less cognitive burden on the respondent.

A potential difficulty with the time trade-off method is the role of discounting.

Some researchers have suggested that people do not value each year of their lives

equally, giving less weight to the ones in the distant future (Lipscomb 1989; Stiggel-

bout, Kiebert, Kievit, Habbema, and Haes 1995).

A recent study of cancer patients in the Netherlands (Stiggelbout, Kiebert, Kievit,

Habbema, and Haes 1995) reported many interesting problems with administering

this elicitation method. Several patients refused to entertain the idea of trading some

portion of their life on religious grounds. Some felt that the period offered exceeded

the time they would be able to endure in their current health state, which made the

task impossible. The majority of the patients were not willing to trade off a fraction

of their life in any situation. The ones that were often gave inconsistent answers:

their indifference points for different values of t did not scale proportionally to t.
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3.4.3 Visual Analog Scale

The visual analog scale method (also called a rating scale or a thermometer method)

is the simplest technique for utility elicitation. It consists of a line (thermometer)

with clearly defined endpoints representing the utilities of the anchor outcomes. The

user is asked to specify the utility for the given outcome oj by placing a mark on

the line between the two anchors. The placement of the mark (its distance from the

endpoints) should indicate the relative desirability of the outcomes. A commonly

used variation of this method is to discretize the scale into 10 or more intervals and

ask the respondents to sort the outcomes into appropriate categories.

According to (Fromberg and Kane 1989b), visual analog scale is the most fre-

quently used method for measuring health state preferences. However, it has its own

share of problems. Some studies have shown (Read, Quinn, Berwick, Fineberg, and

Weinstein 1984) that the utilities elicited using the visual analog scale technique suf-

fer from the “distribution effect”: people tend to distribute the marks fairly evenly

along the scale, since crowding them at one end is less visually appealing.

3.4.4 Choosing the Elicitation Method

The standard gamble is the oldest method. It is theoretically appealing, since it is

built on the fundamental axioms of utility theory. It is the only one which forces the

respondent to make choices under uncertainty (even if the choice is made with respect

to an artificial scenario). Consequently, the standard gamble is very sensitive to risk

aversion, which has been considered to be one of its strengths by some researchers

and a major weakness by others. The main drawback of the standard gamble method

is the frequently demonstrated difficulty in explaining it to users.

On the other end of the spectrum, the visual analog scale method is the easiest

one to use and the most difficult to justify theoretically. The idea is easy to grasp, so

there is no need to train the interviewers. The users are comfortable answering the

questions. However, it completely ignores the uncertainty inherent in many decision

problems. It is not clear whether it is an appropriate assessment method in domains

involving risky choices.
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The time trade-off method shares some characteristics with each of the other two.

As with the standard gamble, it requires the respondents to make a decision, thus

forcing them to give more thought to the relative magnitude of the utilities they assign

to the two outcomes involved. On the other hand, it does not require evaluating the

utility of a lottery. For this reason, it is significantly easier for the users to understand

than standard gamble. At the same time, however, just as in case of the visual analog

scale, the utility values assessed by time trade-off are not necessarily a good basis for

decision making in the presence of uncertainty.

The standard gamble and the time trade-off methods are typically more expensive,

especially for large population studies. They both require asking many questions per

outcome to determine the indifference points, thus resulting in lengthy interviews.

They also require well-trained interviewers. The visual analog scale method is faster,

cheaper and cognitively easier for the users.

3.4.5 Validity of Utility Assessment

One may ask if there exists such a thing as a person’s “true” utility value for a given

outcome. If it does exist, is the person aware of it? Can this awareness be brought

about by the process of utility elicitation? How well can we estimate the “true”

utility values using existing assessment methods? We don’t have answers to all these

questions. However, we can develop some intuitions based on the results of studies

comparing people’s utilities that have been assessed at different points in time and

using different methods.

In general, people’s utilities tend to remain fairly stable over time. The correla-

tions between the utility values elicited up to 6 weeks apart for the same outcomes

and using the same method are quite high (Fromberg and Kane 1989b), typically

around 0.8. The correlations for assessments taken 1 year apart are lower (0.5 – 0.6),

but that may reflect a genuine preference change rather than a measurement error.

In many domains a preference change can be a credible explanation. Studies show

that people’s utilities sometimes depend on life experiences. In our prenatal diagnosis

domain, women who reported knowing a person with a Down’s syndrome consistently
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rated outcomes involving having a Down’s syndrome baby higher than those who did

not.

A similar dependence on previous experiences and current state of health was

reported by (Schkade and Kahneman 1998; Lenert, Treadwell, and Schwartz 1999;

Jansen, Stiggelbout, Wakker, Nooy, Noordijk, and Kievit 2000). In many cases,

utilities for a highly undesirable outcome (such as a serious health condition or an

unpleasant procedure) are higher among people who have previously experienced

it than among those for whom the outcome is purely hypothetical. On the other

hand, predicted utilities for desirable outcomes (such as winning a lottery) tend to

be overestimated. Schkade and Kahneman (1998) attribute this discrepancy to the

phenomenon they call a focusing illusion: when the attention of the person making a

utility judgment is focused on one aspect of the outcome, this aspect is likely to be

given an unduly large weight.

When we examine the consistency of the utility values elicited from the same

people for the same outcomes using different assessment methods, the results are

much less encouraging. Numerous studies ((Torrance 1976; Read, Quinn, Berwick,

Fineberg, and Weinstein 1984; O’Leary, Fairclough, Jankowski, and Weeks 1995;

Stiggelbout, Eijkemans, Kiebert, Kievit, Leer, and Haes 1996) among many others)

have demonstrated surprisingly low correlations between these utilities. Some re-

searchers have suggested specific forms of functional dependencies between results of

different assessment methods, but none of these findings have been consistent across

different studies. The only result demonstrated in multiple studies and uniformly

accepted is the fact that the utilities elicited using the standard gamble method are

higher than the utilities for the same outcomes elicited by other techniques. The com-

monly given explanations for this phenomenon are the risk aversion and imperfect

probability perception (see Section 3.3.1 and Section 3.3.2) which affect the evaluation

of lotteries in standard gamble.

Interestingly, it has been shown (Read, Quinn, Berwick, Fineberg, and Weinstein

1984) that the dependence between the utility attributes may also vary depending on

the assessment method.

The stability of utility values across assessments separated by short periods of time
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shows that people’s preferences are well established. It supports the argument for the

existence of the “true” utility function. The evolution of utility values in response to

life experiences is not necessarily inconsistent with it — the change can be explained

by the limitations of our imagination or the lack of adequate descriptions used in

utility elicitation of hypothetical outcomes. It is clear, however, that the discrepancies

between results of utility assessments performed with different techniques cast serious

doubts on our ability to approximate a person’s utility function well enough to avoid

serious errors in decision making.

3.4.6 Eliciting Decomposed Utility Functions

Decomposed utility functions typically require many fewer parameters than utility

functions with no structure. This property should make eliciting such functions much

easier. However, eliciting decomposed models raises its own problems.

Determining the Structure

First, how do we know which independence properties hold? Every person’s utility

function may be different. This is true not only of the numerical values assigned to

the outcomes, but also of the independencies present. For example, in our prenatal

diagnosis domain, some pregnant women may have a fixed preference for (or against)

a future pregnancy regardless of everything else, including the outcome of the current

one. In such cases the attribute “future pregnancy” is utility independent of the set of

remaining attributes. Some others, however, may change their preference depending

on whether or not the current pregnancy ends in a normal birth, resulting in a utility

model where that independence is absent.

Of course, we can always determine the appropriate decomposition given elicited

utility values for an adequate number of complete outcomes. Keeney and Raiffa (1976)

describe the following procedures designed to verify various independence properties.

Consider a utility function over two subsets of attributes, V = X ∪ Y, X and

Y disjoint. If the utility function is additively independent, the following condition
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must hold:

[〈x,y〉, 0.5, 〈x′,y′〉] ∼ [〈x′,y〉, 0.5, 〈x,y′〉] (3.3)

for all x, y given specific x′, y′. Note that the marginals on X and Y are the same

in both lotteries, so this property follows from Proposition (3.2.8).

This property immediately suggests the procedure to verify additive independence:

choose some fixed x′ and y′ and instantiate the lotteries in Equation (3.3) for several

different values of x and y. The number of different values of x and y should be high

enough to adequately cover the space.

Similarly, we can verify whether X is utility independent of Y by finding the

certainty equivalents for a number of lotteries [〈x⊥,y〉, 0.5, 〈x>,y〉] with varying val-

ues y. If all the certainty equivalents are the same, regardless of the y value, the

independence property holds.

Another technique for inferring the utility function decomposition from data was

proposed by Anderson (1974a, 1974b) as one of the applications of his functional

measurement approach to the measurement of subjective constructs. The theory

describes perception as integration of stimulus information. It considers individual

percepts to be the results of a combination of responses to stimuli of different kinds.

One of the motivating examples is depth perception, which involves integration of our

responses to cues like interposition, stereopsis and texture.

Anderson assumes that a response to a stimulus is based on a separate subjective

scale and has a subjective weight, both potentially different for every person. He

proposes several algebraic models to account for different combinations of responses:

additive, multiplicative and multilinear among them. One of Anderson’s contributions

is the introduction of the explicit error term indicating the presence of noise in the

measurement process.

Anderson’s integration theory can be applied in a straightforward way to percep-

tion of abstract concepts, social judgments, and, in particular, to decision making in

situations involving uncertainty (Anderson 1976; Anderson and Shanteau 1970). In

this case, individual utility attributes play the role of stimuli and the utility values
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assigned to them are our responses, each with its own scale and weight. Algebraic

models developed by Anderson correspond to different functional forms of the utility

function implied by various independence assumptions among utility attributes.

An important contribution of Anderson’s theory is a goodness-of-fit measure which

he uses to evaluate different hypotheses. He uses statistical analysis of variance to

check how well the data matches a given model. However, he does not consider re-

sponses defined for subsets of stimuli or conditional forms of independence properties,

thus reducing the space of possible models drastically. Therefore, exhaustive search

over possible models becomes a viable option.

A serious drawback of both Keeney and Raiffa’s and Anderson’s approaches is the

necessity of eliciting a significant number of utility values for full outcomes from every

person whose utility function we want to assess. Since the purpose of decomposition

testing is usually to avoid a long and difficult interview, this necessity makes their

techniques infeasible in large domains.

In practice, most attempts to infer the utility function decomposition from data

have been much more straightforward. Typically, researchers assume a fixed, simple

utility model (almost always the additive model) of the utility function. Then, they

elicit the utilities of a small number of complete outcomes. The parameters of the

model are estimated using simple least-squares regression (Fischer 1979; Fromberg

and Kane 1989a).

It is not clear, however, how to validate a model obtained in this way. All simple

methods for checking for the presence of additive decomposition assume that the

agent’s utility assessments are free from random response error. It is hard to determine

how large a deviation from linearity to tolerate before rejecting the given model.

Estimating Model Parameters

Even if the underlying structure of the model is known, it is difficult to elicit the

subutility functions directly. Utilities cannot be marginalized like probabilities — it

is hard to assign a utility to a specific value of one attribute of an outcome without

making (often subconsciously) some assumptions about the values of all the other

attributes. It is particularly difficult if the attributes are not additively independent.



52 CHAPTER 3. UTILITY THEORY

For example, consider assessing the subutility function over the attribute “future

pregnancy” in our prenatal diagnosis domain. It is hard to contemplate the values of

this attribute without making assumptions about the attributes related to the current

pregnancy.

Therefore, in order to obtain a reliable assessment, we need to make the as-

sumptions about the remaining attributes explicit and elicit conditional utilities (see

Section 3.2.2). Let V = X ∪Y, X and Y disjoint, where X is a subset of attributes

with no independence properties holding among the members of the set. For every

value y of Y, we elicit the conditional utility function U(X,y) (sometimes denoted

Uy(X) in the literature).

Since every conditional utility function is assessed using its own scale, in addition

to these functions, we need to assess the scaling constants. The number of scaling

constants can range from linear in the number of attributes (for an additive model) to

exponential (for a multilinear model) (see Section 3.2). To assess r scaling constants,

Keeney and Raiffa (1976) suggest obtaining r equations with r unknowns using any

combination of certainty equivalence and other properties.

Finally, it is advisable to elicit utilities for a few more outcomes and check their

consistency with the proposed model. Such consistency checks often lead to partial

reevaluation of the model.

3.4.7 Cognitive Difficulties

Regardless of the method chosen, the process of utility elicitation is cognitively diffi-

cult.

The outcomes whose utility the respondent is supposed to assess are often hy-

pothetical. If the respondent has not experienced a given outcome, a great deal

depends on providing an accurate and detailed description. Many studies have shown

that utilities are sensitive to the type of the description (in terms of losses or gains)

(Tversky and Kahneman 1986b) and even the gender and race of the hypothetical

patient represented in the description (Lenert, Ziegler, Lee, Unfred, and Mahmoud

2000). There is an obvious trade-off between the desire to represent all the relevant
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details and the need to keep the description short and not overburden the respondent

with too much information.

The choice of the anchor outcomes also requires a careful consideration. In many

domains, it is hard to find an outcome which would be rated highest (lowest) by

everyone. In such cases, we typically resort to outcomes not related to the given

decision problem. The top anchor is usually taken to represent “perfect health” and

the bottom anchor the death of the decision maker. The hope is that these two

outcomes are equally (un)desirable for everybody. That, however, is not necessarily

always the case. Moreover, it is very difficult for people to estimate the utility of

lotteries involving their own deaths. Some refuse even to entertain the idea. Not sur-

prisingly, people are typically extremely risk averse towards that outcome. Studies

have shown that people’s utilities assessed using the standard gamble method dif-

fer considerably depending on the choice of the bottom anchor (Llewellyn-Thomas,

Sutherland, Tibshirani, Ciampi, Till, and Boyd 1982).

Finally, utility elicitation requires long interviews, which cause fatigue that can

influence a user’s assessments. For every outcome, one first needs to allow the respon-

dent to study the description carefully. Then, for standard gamble and time trade-off,

a sequence of questions must be answered before we find the indifference point. Ac-

cording to some practitioners, one can assess between 5 and 10 outcomes in one hour.

To check for consistency, we sometimes ask preference questions, i.e., ones designed to

establish the ordinal ranking. We can use the result of these pairwise comparisons to

check if the utilities assigned in the process of utility elicitation satisfy Equation (3.1).

Unfortunately, as fatigue grows, the answers often start becoming inconsistent. The

respondents, when faced with these inconsistencies, often revise their answers. It is

not clear, however, to what extent we can rely on these “corrected” utilities.

In general, the process of utility elicitation is long, tedious and very noisy. Cogni-

tive difficulties are prevalent in all elicitation approaches, and there is no clear solution

to this problem. The numbers we obtain are only very rough approximations to the

“true” utility values.



Chapter 4

Utilities as Random Variables

Practical experience shows that it is virtually impossible to elicit a person’s exact

utility function. In domains with large outcome spaces it is impossible to ask about

every possible outcome. A few utility values we can elicit are unlikely to represent

the person’s true preferences — they may be imprecise due to a bias in the elicitation

method, fatigue, inability to imagine the outcome based on the description and many

other factors.

In this thesis, we propose to take another approach. Rather than aiming at a

completely specified utility function for a given person, we maintain a probability

distribution representing our beliefs about that person’s utility function.

4.1 Distributions over Utilities

Treating utilities as random variables allows us to deal in a principled way with the

uncertainty inherent in utility assessments.

Using a probability distribution over utility parameters, we can represent a com-

plete lack of knowledge about a person’s preferences as well as a slight uncertainty

over one utility parameter. We can deal with ignorance (absence of information about

a utility parameter) as well as lack of precision (e.g., due to noise and utility elicita-

tion bias). We can use any prior knowledge we may have. We can update our beliefs

based on new information.

54
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Following our motivating example from the domain of prenatal diagnosis (Sec-

tion 1.4), we concentrate on discrete outcome spaces. We consider the utility space

to be an n dimensional hypercube where n is the number of outcomes (or, more gen-

erally, utility parameters) o ∈ O needed to specify the utility function U completely.

We view the different quantities {Uo}o∈O as a set of continuous-valued random

variables (in the interval [0, 1]), with joint probability density function (PDF) p(U)

(U = {Uo1 , . . . , Uon}), representing our beliefs about the agent’s utilities.

This type of PDF can be represented in many ways. Our approach applies to any

representation that allows random samples to be generated from the PDF, thereby

allowing moments of the distributions and expectations over it to be estimated nu-

merically. However, inference with such a utility model can be made more efficient

in cases where the PDF allows some computations to be done in closed form. A

very convenient representation is one where PDFs are jointly Gaussians or a mixture

of Gaussians (cut off to fit in the [0, 1] hypercube). Recall that an n-dimensional

Gaussian distribution is defined as

P (X) =
1

(2π)n/2|Σ|1/2 exp
(

−1

2
(x− µ)TΣ−1(x− µ)

)

,

where µ is the mean and Σ is the covariance matrix. A Gaussian can represent

dependencies between a person’s utilities for different outcomes. In general, any PDF

can be approximated arbitrarily well with a mixture of Gaussians (see e.g., (Bishop

1995)). Furthermore, there are efficient algorithms for estimating these PDFs from

data and conditioning them on new information.

As we discussed in Section 3.2, we can sometimes find utility independence or

additive independence properties holding among utility attributes. For example, in

our prenatal diagnosis domain (see Section 1.4), we can hypothesize that the attribute

“Testing” may be additively independent of the other attributes. If this hypothesis

turns out to be true, the number of parameters required to specify our utility function

is reduced from 108 to 39.1

1Since “Testing” is ternary, the number of parameters required to specify the subutility function
over the remaining attributes is 108/3 = 36 and the number of parameters needed to specify the
subutility function over “Testing” is 3.
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In cases where the utility function can be assumed to have some structure, it

is better to represent and learn the distribution over utilities via a PDF over the

(much smaller set of) parameters of the subutility functions (a subutility function is

a function over a subset of utility attributes, see Section 3.2.2). As the utility variables

are linear in these parameters, a mixture of Gaussians over the subutility parameters

induces a mixture of Gaussians over the utility function U (see Section 4.3).

4.2 Representation for Factored Utility Functions

We are most interested in exploiting the structure corresponding to various ad-

ditive independence properties among utility attributes (see Section 3.2.5). Re-

call that we defined each outcome as an assignment to a set of attribute variables

V = {V1, . . . , Vn}. Each variable Vi has a domain DomVi of two or more elements.

Definition 4.2.1: Let C be a set of clusters of variables C1, . . . ,Cr. We say that a

utility function is factored according to C if there exist functions ui : DomCi
7→ IR

(i = 1, . . . , r) such that u(v) =
∑

i ui(ci) where ci is the assignment to the variables

in Ci in v. We call the functions ui subutility functions.

Note that this definition encompasses purely additive, conditionally additive and

generalized additive utility functions.

The decomposition of the utility function is equivalent to the following prop-

erty about the preference ordering (see Proposition (3.2.12), Proposition (3.2.13) and

Proposition (3.2.14)).

Proposition 4.2.2: (Bacchus and Grove 1995) A utility function u is factored

according to C if and only if for any probability distributions p1 and p2 that have the
same marginals on Ci for all i, it is the case that p1 and p2 are indifferent under u.

Factored utilities admit a representation in terms of subutility functions over a

much smaller domain. They can therefore be specified using a much smaller set

of parameters. However, there are many slightly different ways to parameterize a
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factored utility function over C. We choose one that will allow us to make our learn-

ing algorithm more efficient in some important special cases (see Section 4.4). The

formulation is standard; we review it here for completeness.

Definition 4.2.3: We say that two functions h, h′ over some domain Ω are orthogonal

if
∑

ω∈Ω h(ω) · h′(ω) = 0.

Our goal will be to construct a fixed basis hC of orthogonal functions, and represent

a factored utility function u over C as a linear combination of the functions in this

basis. The coefficients w of the different basis functions would be the parameters

specifying u. The orthogonality property will allow us to perform the computation

described in the subsequent sections more efficiently.

The atomic units in the construction of our basis are the basis functions that

depend only on a single variable. For each variable V with values v1, . . . , vk, we

define a set of k basis functions hV1 , . . . , h
V
k : DomV 7→ IR. Our construction is such

that:

• hV1 ≡ 1, i.e., hV1 (vi) = 1 for all i;

• the hVi functions are pairwise orthogonal.

For a binary-valued attribute B, we simply define:

hB2 (v1) = 1

hB2 (v2) = −1

For a three-valued attribute C, we define:

hC2 (v1) = 1 hC3 (v1) = 1

hC2 (v2) = 0 hC3 (v2) = −2
hC2 (v3) = −1 hC3 (v3) = 1

In general, we can define a set H[V ] of k orthogonal basis functions for any k-ary

variable V . Note that, as the functions are orthogonal, they span the space of all
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possible functions over V . In other words, for every function u : V 7→ IR, there exist

coefficients w1, . . . , wk such that u =
∑k

i=1 wih
V
i .

We now use these basic building blocks to construct an orthogonal basis for func-

tions over the entire set of outcomes. With a slight abuse of notation, we will view

a function hVi as a function over DomV. Let o be an outcome; recall that o defines a

value V [o] for each variable V ∈ V. We simply define hVi (o) = hVi (V [o]). Similarly, we

can view a function hVi as a function over DomC for some cluster of variables C. Each

assignment c defines a value V [c] for each variable V ∈ C and hVi (c) = hVi (V [c]).

We can now define a basis for a cluster of variables C as the set of all functions

that are composed as products of basis functions for the individual variables in C:

H[C] = {
∏

V ∈C

hV : hV ∈ H[V ]}.

Example 4.2.4: Consider a cluster C with three attributes: A, B and C. A and B

are binary and C is ternary. In this case, k = 2× 2× 3 = 12. The basis functions for

individual attributes in this cluster are:2

hA2 (c1) = 1 hB2 (c1) = 1 hC2 (c1) = 1 hC3 (c1) = 1

hA2 (c2) = −1 hB2 (c2) = 1 hC2 (c2) = 1 hC3 (c2) = 1

hA2 (c3) = 1 hB2 (c3) = −1 hC2 (c3) = 1 hC3 (c3) = 1

hA2 (c4) = −1 hB2 (c4) = −1 hC2 (c4) = 1 hC3 (c4) = 1

hA2 (c5) = 1 hB2 (c5) = 1 hC2 (c5) = 0 hC3 (c5) = −2
hA2 (c6) = −1 hB2 (c6) = 1 hC2 (c6) = 0 hC3 (c6) = −2
hA2 (c7) = 1 hB2 (c7) = −1 hC2 (c7) = 0 hC3 (c7) = −2
hA2 (c8) = −1 hB2 (c8) = −1 hC2 (c8) = 0 hC3 (c8) = −2
hA2 (c9) = 1 hB2 (c9) = 1 hC2 (c9) = −1 hC3 (c9) = 1

hA2 (c10) = −1 hB2 (c10) = 1 hC2 (c10) = −1 hC3 (c10) = 1

hA2 (c11) = 1 hB2 (c11) = −1 hC2 (c11) = −1 hC3 (c11) = 1

hA2 (c12) = −1 hB2 (c12) = −1 hC2 (c12) = −1 hC3 (c12) = 1

2We omit the first basis function for each variable, since hV
1 (ci) = 1 for all V and all i.
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and the basis for C is
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1 −1 1 1 1 −1 −1 −1 1 1 −1 −1
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Proposition 4.2.5: The functions in H[C] are pairwise orthogonal, and the set H[C]

exactly spans the set of all possible functions over C.

Proof: First, we are going to show that the basis functions in H[C] are pairwise

orthogonal, that is, for any two vectors in H[C], h and h′,
∑

c∈DomC
h(c)h′(c) = 0.

Each basis vector in H[C] is a product of basis functions for the the individual

variables in C. For two such vectors to be orthogonal, we must have

∑

c∈DomC

h(c)h′(c) =
∑

c∈DomC

∏

Vi∈C

hVi(c)
∏

Vi∈C

h′
Vi(c) = 0.

A value assignment c to a cluster C is defined as an assignment of values to all

variables V1, V2, . . . , Vl belonging to C. Recall that we defined a basis function of an

individual variable V over DomC as hVi (c) = hVi (V [c]). Therefore, we can rewrite the

expression above as

∑

v1∈DomV1

∑

v2∈DomV2

. . .
∑

vl∈DomVl

∏

Vi∈C

hVi(c)
∏

Vi∈C

h′
Vi(c)
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=
∑

v1∈DomV1

∑

v2∈DomV2

. . .
∑

vl∈DomVl

hV1(v1)h′
V1(v1) · hV2(v2)h′

V2(v2) · . . . · hVl(vl)h′Vl(vl)

=
∑

v1∈DomV1

hV1(v1)h′
V1(v1) ·

∑

v2∈DomV2

hV2(v2)h′
V2(v2) · . . . ·

∑

vl∈DomVl

hVl(vl)h′
Vl(vl)

The two basis functions h and h′ must differ in at least one of the individual

variable basis functions used in creating them. That is, there exists at least one i, such

that hVi 6= h′Vi . Since we constructed our individual variable vectors to be pairwise

orthogonal, it follows that
∑

vi∈DomVi
hVi(vi)h′Vi(vi) = 0. We can assume without loss

of generality that i = l (the expression above can always be rearranged to have the

terms depending on i in the innermost sum). This makes the entire expression equal

to zero. Therefore, the basis functions in H[C] are pairwise orthogonal.

Pairwise orthogonality together with the fact that none of the vectors in H[C] is

a zero vector imply their linear independence. Finally, linear independence implies

that H[C] spans IRk where k = |∏V ∈C DomV | (see e.g., (Strang 1980)).

By taking the union of the bases for the appropriate clusters, we can span any set

of factored utility functions.

Corollary 4.2.6: Let C be a set of clusters. The set of functions H[C] = ∪C∈CH[C]

spans the set of all factored utility functions over C.

Proof: Follows immediately from Proposition (4.2.5) and Definition (4.2.1).

We can therefore parameterize any factored utility function over C using a set of

coefficients wi, one for every function in H[C]. How many parameters are required?

For each cluster C, we have |DomC| functions in H[C]. However, the bases for the

different clusters are not disjoint.

Example 4.2.7: Assume that our clusters are {A}, {B,C}, and {C,D}, and that all

of our variables are ternary. We have 3 functions in H[A], and 9 in each of H[{B,C}]
and H[{C,D}]. However, the h1 (all 1) function is common to all clusters, and the

three hC functions are common to the two clusters that contain C. Of course, we

must be careful not to undercount by double-counting the overlap: h1 is also among
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the three functions in H[C]. A careful count reveals that the total number of distinct

functions in our basis is 3 + 9 + 9− 3− 1− 1 + 1 = 17.

In general, we can compute the total number of distinct functions in our basis by

a simple inclusion-exclusion formula, keeping in mind that the overlap between the

bases for two clusters C and C′ is precisely the basis for C ∩ C′ (taking H[∅] to be

the single vector h1):

|H[C]| =
∑

i

|H[Ci]| −
∑

i1 6=i2

|H[Ci1 ∪Ci2 ]|

+
∑

i1 6=i2 6=i3

|H[Ci1 ∪Ci2 ∪Ci3 ]| − · · ·

Thus, the total number of basis functions, and thereby of parameters required, grows

(at most) linearly with the number of clusters and exponentially with the size of each

one.

4.3 The Generative Model

Our approach relies on a few basic assumptions about the population of users whose

utility we are trying to model. The first assumption is that the population is com-

posed of several disjoint subpopulations, or types (which we model using a random

variable T ), where the utility functions of the individuals of each type are statistically

similar. Is it justified to postulate the existence of such types? Every person’s utility

function may be different, both in terms of the numerical utility values assigned to

different outcomes and the in terms of the independence properties among the utility

attributes.

However, while in principle any utility function is possible, some are much more

likely to occur in practice than others. In our utility database for the prenatal di-

agnosis domain, we can observe some interesting patterns. For example, a few of

the patients reported very high utility values for all outcomes, resulting in utility

functions which are close to constant. Another group of patients rated all outcomes

involving miscarriage significantly lower than the rest. These observations lead us
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Loss Knowledge

TestingFutureDown’s

(a)

Type

w(d0,l0) w(t2)
w(t0)
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w(t1)
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w(d1,l1)
w(d1,l0)

w(d0,l1)
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o1 o2 o3 o4 o5 o6 o7 o8 o9 o108...

Weights

Outcomes

(b)

Figure 4.1: (a) A possible decomposition of the utility function in the prenatal diag-
nosis domain; (b) the corresponding probabilistic model

to believe that a population of patients is likely to be composed of several distinct

subpopulations or types. The utility functions in each subpopulation may decompose

in a different way. More formally, each subpopulation (each type t) may utilize a

different factorization Ct of the utility function. Every individual is associated with a

vector wt of dimension mt = |H[Ct]|, where each wj is the coefficient of the jth basis

function hj ∈ H[Ct]. The vector wt[j] represents the user’s subutility functions.

We represent a probabilistic model over utilities by defining a vector random

variableWt. For each value t of T , we represent P (Wt | t) as a multivariate Gaussian

with mean vector µt and covariance matrix Σt. We assume that individuals in the

subpopulation are IID samples from the P ({Wt}t | T ) distribution.
An individual’s subutility vector wt defines a complete utility function, which
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specifies a utility for each of the n = |DomV| outcomes o. We can define this implicit

utility function using a simple matrix operation. Let At be the n ×mt matrix (atij)

where atij = hj(oi) for oi the ith possible outcome. Then, the user’s utility function

ought to be u∗ = Atwt. However, the utility elicitation process can be quite noisy.

We accommodate for that problem by assuming that the user’s actual utility vector

u is modified by some white noise, i.e., for each o, we have that uo is u∗o plus some

random white noise εt sampled from a zero-mean Gaussian distribution with some

variance σ2t . More formally, we have a vector random variable U of dimension n,

which is a linear Gaussian whose mean is AtWt and whose variance is σ2t I where I

is the unit matrix.

Note that, for each type t, the distribution over (Wt,U) is a simple multivariate

Gaussian, defined using a Gaussian distribution over Wt and a conditional linear

Gaussian for U given Wt. However, the distribution as a whole is not exactly a

mixture of linear Gaussians, as the dimension of the vector wt can vary for the

different types.

4.4 Estimating a Factored Utility Function

A model such as this can be used for several purposes. The most basic use is to

compute the most probable factored utility function for a given user. More precisely,

assume we are given a vector u representing the full utility function elicited from a

certain user. Our goal is to compute the type t and vectorwt such that the probability

P (wt | u, t) is maximized. We perform a separate computation for each t.

From the definition of our generative model, we have that:

P (wt | u, t) =
P (u | wt)P (wt | t)

P (u | t) .

The denominator is a constant, so it does not affect the choice of maximum.
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The individual components Uo of the vector variable U are conditionally indepen-

dent given Wt, so that our goal is to maximize

(
∏

o

P (uo |Wt)) · P (Wt | t).

Maximizing this function is equivalent to minimizing an error function corresponding

to its negative logarithm (see e.g. (Bishop 1995)):

−
∑

o

lnP (uo | wt)− lnP (wt | t).

Recall that the distribution of each variable Uo is given as:

P (Uo | wt) =
1√
2πσt

exp

(

−((At)owt)− Uo)
2

2σ2t

)

where (At)o is the row of the matrix At that corresponds to the outcome o. Thus,

the first term in our error function (for the given vector u) can be simplified to

− 1

2σ2t

∑

o

((At)owt − uo)
2 + n ln σt +

n

2
ln(2π) (4.1)

The conditional distribution of the Wt variables is expressed as

P (Wt | t) =
1

(2π)mt/2|Σt|1/2
exp

(

−1

2
(Wt − µt)

TΣ−1t (Wt − µt)
)

,

and its negative logarithm is

mt

2
ln(2π) +

1

2
ln |Σt|+

1

2
(Wt − µt)

TΣ−1t (Wt − µt). (4.2)

If we put together (4.1) and (4.2), and eliminate terms that do not depend on wt

(and therefore do not affect the choice of minimizing value), we get as our final error

function:

E(wt) =
1

2σ2t

∑

o

(At(o)wt − uo)
2 +

1

2
(wt − µt)

TΣ−1t (wt − µt)
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=
1

2σ2t
‖Atwt − u‖2 + 1

2
(wt − µt)

TBT
t Bt(wt − µt)

=
1

2σ2t
‖Atwt − u‖2 + 1

2
(Btwt −Btµt)

T (Btwt −Btµt)

=
1

2σ2t
‖Atwt − u‖2 + 1

2
‖Btwt −Btµt‖2

where BT
t Bt = Σ−1t . (We are guaranteed that such a decomposition exists because

the covariance matrix of a Gaussian is guaranteed to be positive definite.)

Thus, maximizing the posterior probability of the vector wt is equivalent to min-

imizing a squared-error function. Let Dt be the (n +mt) × mt matrix obtained by

concatenating the matrices 1
σt
At and Bt. We also define a vector u′ of length n+mt

defined by concatenating 1
σt
u and Btµt.

Our construction was designed especially to make this least-squares computation

efficient. Recall that, by construction, the columns of At are orthogonal. The columns

of Dt, while no longer necessarily orthogonal, remain linearly independent. Thus, we

can compute the optimal solution to the least-squares problem by projection (Strang

1980):

ŵt = (DT
t Dt)

−1DT
t u

′

= (
1

σ2t
AT
t At +BT

t Bt)D
T
t u

′

= (
1

σ2t
Λ + Σ−1t )−1DT

t u
′

where Λ is a diagonal matrix whose ith diagonal element is ‖hi‖2 =
∑

o hi(o)
2. Note

that the matrix ( 1
σ2
t
Λ + Σ−1t )−1DT

t does not depend on u, and can therefore be com-

puted once and reused for every individual for whom we want to estimate wt. If Σt

is a diagonal matrix, our choice of basis makes the computation very efficient.

This computation gives us, for each type t, the most likely vector wt for the user

given that he is in class t. We can now easily compute the most likely pair (t,wt) for

this user.

This model can also be used to give us more information. Recall that the condi-

tional distribution on Wt,U is a multivariate Gaussian distribution. At the cost of
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a little more work (i.e., by using standard probabilistic inference), we can compute

the entire posterior distribution P (Wt | u, t). The result would also be a Gaussian

distribution, over the variables Wt. The mean of this distribution would be precisely

the vector ŵt computed above. The covariance matrix of the distribution could be

used as an indicator for how confident we are in our estimate ŵt. Clearly, there are

situations where this information can be quite important, but it is not clear that it

is always worth the computational overhead. On the other hand, unlike projection,

this technique can be used even if some of the values in the original utility vector are

missing.

4.5 Benefits of Probabilistic Modeling

4.5.1 Using Population Models

Our probabilistic model of utility functions in the population allows us to represent

uncertainty over numerical utility values and uncertainty over the function structure

at the same time. We can use such a model in a variety of ways. It can give us insight

into a given population’s preferences, the number and character of distinct types

represented in that population and the range of utilities we are likely to encounter.

We can also use the model to develop behavioral guidelines. For example, in med-

ical domains, there is a need for general clinical practice guidelines to help doctors

schedule screening tests, choose among treatment options, etc. An example of such

a guideline is a rule that pregnant women over 35 years of age should be given an

opportunity to attend genetic counseling sessions and offered tests to diagnose chro-

mosomal abnormalities in the fetus, such as Down’s syndrome. (Women younger than

35 are considered to be at too low a risk for chromosomal abnormalities to warrant

the expense.) Some recent work (Sanders 1998) considered developing such guide-

lines automatically from probabilistic models of the domain. It has been pointed

out, however (e.g., in the context of the 35 year old cutoff guideline described above

(Kuppermann, Goldberg, Nease Jr., and Washington 1999)), that developing such

guidelines without a thorough study of the utilities for the problem outcomes in the
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target population can lead to highly suboptimal decisions.

A probabilistic model of utilities in the population could help remedy this situa-

tion. First, using our model, we could evaluate any guideline currently in use. A good

evaluation metric is the average difference between the expected utility resulting from

following the optimal strategy and the expected utility resulting from the strategy

considered to be optimal according to the guideline. Our population model allows us

to estimate the expectation of this difference (see Section 7.3).

We could also use the model directly in developing the guidelines. Instead of

computing the optimal strategy for an arbitrary utility function, we could compute

optimal strategies for the means of each of our subpopulations. We could also compute

the probability of encountering a “strange” utility function — one far away from the

means of our mixture components — for which a general guideline is likely to be

suboptimal.

4.5.2 Adapting the Model to a Particular User

In some domains, the risks involved are too great to use a general guideline — we

need a utility model specific to a particular user. Even in such cases, our population

model can be very useful.

When we encounter a new user, we can use the population model as our prior over

the new user’s utility function. Whenever we acquire some new information about

the user, we can incorporate it into the model by conditioning on it to obtain a more

informed posterior distribution. As our knowledge about the new user grows, our

belief about his or her utility function should exhibit smaller variance and favor one

of the types more and more. At every step, we can compute a point estimate of the

user’s utility function and our confidence in that estimate.

The process of adapting the population model to a particular user is described in

detail in Chapter 6. In that chapter we show how to condition the model on various

types of information, from constraints on utilities of individual outcomes obtained in

the process of utility elicitation to observations of the user’s behavior.
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4.5.3 Utility Elicitation

If we have the user’s cooperation and can ask him questions about his utility function,

the model is useful in determining which questions will be the most useful. There are

many ways to use the distribution over utility functions to facilitate utility elicitation

and improve the quality of the results.

The most obvious is simply to use the model as a guide to the range of utility

functions within the population. In particular, our model incorporates a built-in

measure of confidence. When we assess a new user’s utility function, we can quickly

discover if he or she is an “outlier” — a person with an atypical utility function. We

can ask such a person additional questions to make sure that there was no error in

the process.

A somewhat deeper use of the model, along the same lines, is for smoothing the

results of the utility elicitation process for a particular individual based on trends

in the population as a whole. Given the amount of noise in the utility elicitation

process, the mean of our posterior distribution (population prior conditioned on the

user’s answers to the utility elicitation questions) may be actually closer to the user’s

true utility function than the utility function obtained in the elicitation process.

Smoothing of this type is likely to be very useful in getting robust utility estimates.

We can also use the model in a much more fundamental way to change the entire

utility elicitation process in cases where the utility function can be assumed to exhibit

some form of additive independence. For (conditionally) additive decompositions,

Keeney and Raiffa (1976) describe a utility elicitation procedure which exploits the

structure to reduce the number of questions asked. A separate scale is established

for every utility function component and the user is asked a series of questions about

its parameters. At the end, a new set of assessments must be made to discover the

scaling constants (see Section 3.4.6). This procedure has become a gold standard in

many applications.

This method cannot take advantage of the more generalized factorizations (e.g.,

generalized additive independence). An alternative procedure, general enough to

handle all factorizations, would ask questions about full outcomes. When we assess

the utility function of a new user, we only need to ask as many questions as the number
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of parameters in our model. The simplest way to choose the outcomes to assess is

to convert the projection matrix to the reduced row echelon form and discard the

outcomes corresponding to the rows consisting entirely of zeros. Once the values

of all the subutility functions are known, we can compute the utility values for the

remaining outcomes. It would be good practice to double check that the chosen

decomposition really matches the new user’s utility function structure by asking a

few more “redundant” questions and comparing the answers with those predicted by

the function we had computed.

This procedure can also be modified to utilize the model in a more principled

way. We can view the utilities elicited for different outcomes as evidence in the

distribution defined by the model. We can then use standard probabilistic inference

to compute the distribution over the user’s subutility functions. The more utilities we

elicit, the more evidence we have, the more certain we are about the actual value of

the user’s subutility functions. We can apply techniques such as conditional mutual

information or variance reduction to decide, at each point in time, which utility

elicitation question is likely to be the most informative about the subutility variables.

We can also make principled decisions on when to stop the elicitation process by

considering our uncertainty about these variables.

Finally, we can use probabilistic models of the utility function as the basis for a

more targeted process of utility elicitation. In a given decision making task, the util-

ities of different outcomes typically influence the decision, and the resulting expected

utility, to radically different extents. Most simply, some outcomes may have very

low probability in the current setting, so their utility is largely irrelevant. Having a

distribution over the utility functions in the population, we can compute the value of

information of every elicitation question; we can then focus our efforts on those that

have the highest impact on our actual decision (see Chapter 7).

4.5.4 Choosing Optimal Decisions given Utility Uncertainty

Even with a lot of information about the user’s utility function, some uncertainty is

likely to remain. Therefore, an important question we must address is how to make
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optimal decisions given uncertainty over a utility function U.

Consider a given strategy π and a PDF p(U). The expected utility of π for a fixed

utility function u is:

EUπ(u) =
∑

o∈O

P (o | π)uo.

The expected utility under p(U) can easily be shown to be

EUπ(p) =
∫

p(u)EUπ(u)du

=
∑

o∈O

∫

P (o | π)p(uo)uoduo

=
∑

o

P (o | π)
∫

p(uo)uoduo

=
∑

o

P (o | π)Ep[uo].

That is, the expected utility of any strategy π, with uncertainty p(U) over the user’s

utility function, is equal to its expected utility using the mean of U under p.

Hence, we can find the best strategy given p(U) by running the expectimax al-

gorithm (see Section 2.1.2) on our decision tree using the mean of Uo under p as

the utility value for outcome o. In general, we can compute the mean of Uo under

p by Monte Carlo sampling. However, under the assumption that p is a mixture of

Gaussians, we can compute it much more efficiently (see Section 6.4).

This ability to determine the optimal decision given our current beliefs about a

user’s utility function will be useful both in the context of a decision support system

(Chapter 7) and in the context of a game (Chapter 8).

4.5.5 Predicting Another Agent’s Actions

The population model of utilities can also be used to predict future actions of one’s

opponent in a competitive setting, such as described in our bookseller example in

Section 1.5. Such a model, conditioned on any information we may have gathered

about our specific opponent (e.g., his past decisions) allows us to compute not only

his expected course of action in a future situation, but also a distribution over possible
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courses of action. This information is particularly useful when we try to optimize our

own behavior in subsequent interactions with this opponent. The use of probabilistic

modeling of utilities in non-cooperative settings is discussed in detail in Chapter 8.



Chapter 5

Learning the Distribution

In Chapter 4, we defined a statistical model of utilities in a population of users, and

showed how it can be used to compute a factorization of an elicited utility function.

We also discussed various benefits of having such a model at our disposal (Section 4.5).

A utility model can be learned from data in the same way we can learn probabilistic

models involving state variables. In this chapter, we define a learning framework for

acquiring such a statistical model.

We assume that we have a database of fully or partially elicited utility functions

at our disposal. These utility functions should come from persons randomly selected

from our target population. Our goal is to estimate the density function over utilities

and discover the structural properties of the utility functions in the population at the

same time.

Even if the utility function is factored, the utility elicitation process is typically

done in terms of utilities of full outcomes. This is certainly the case if, as we assumed,

the factorization of the utility function is unknown in advance. Thus, we assume that

the training data we are given is a set of utility vectors u[j], one for each individual.

We allow for cases where some of the components of the utility vectors may be miss-

ing. The type variable T and the corresponding decomposed utility vector Wt are

unobserved in the training data.

72
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5.1 Parameter Learning

Our key subroutine is the parameter estimation task for a given model. While we

cannot use full Bayesian estimation in the presence of partially observable data, it

will nevertheless be useful to view the model parameters as having a prior and a

posterior. This perspective will be useful both for smoothing our numerical estimates

and to provide the appropriate bias for the structure selection task.

Suppose that, for every value t of the variable T , we have an mt dimensional

multivariate Gaussian with an unknown mean vector µt and an unknown covariance

matrix Σt. We need to find an appropriate conjugate prior over µt and Σt.

Definition 5.1.1: Consider a parametric model P (X | ψ) which defines a distribution

for data instances given some set of parameters ψ. Let P (ψ | α) be a parametric form

for a prior over ψ, parameterized by hyperparameters α. We say that P (X | ψ) and
P (ψ | α) are a conjugate family if the posterior parameter distribution P (ψ | α,x) ∝
P (x | ψ)P (ψ | α) has the same parametric form as our parameter prior P (ψ | α),
albeit with different hyperparameters. We also say that P (ψ | α) is the conjugate

prior for P (X | ψ).

An appropriate conjugate prior over µt and Σt is the Normal-Wishart (DeGroot

1970). We use a Normal-Wishart prior for the parameters of each of the type-specific

Gaussian distributions over Wt (one for each type t) and for the parameters of the

conditional Gaussian over the Uo given U ∗(o) = At(o)Wt. We assume that the

parameters θt representing the prior probability P (T = t) are distributed with a

Dirichlet distribution.

The main problem is that our data is only partially observable, rendering full

Bayesian estimation infeasible. We therefore resort to finding the MAP parameter

estimate using the expectation-maximization (EM) algorithm (Dempster, Laird, and

Rubin 1977). The algorithm begins by choosing some (possibly random) initial con-

figuration of the parameters. It then proceeds to iterate the following two steps:

• E step: We use our parameter prior to define a Gaussian prior distribution

over Wt,U. For each instance j and each type t, we condition this dis-

tribution on u[j], and obtain a Gaussian posterior over the hidden variables
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P (Wt[j] | t,u[j]). In hard assignment EM, each variable whose value is miss-

ing is completed using its most likely value in the posterior distribution. In

soft assignment EM, it is completed by “splitting up” its contribution among

its possible values, each of which gets a fraction of the weight of the sample.

We use these Gaussian posterior distributions to compute expected sufficient

statistics: the expected empirical means and expected empirical covariances.

• M step: The expected sufficient statistics are used to update the Wishart

priors, which then generate a new Gaussian prior distribution over Wt,U. A

similar update is done to the Dirichlet distribution over the types.

The process iterates until convergence. EM is guaranteed to converge to a point

where the gradient of the log-likelihood function is zero. (Recall that the likelihood

function is the probability of the data given the model.) In theory, this can occur at

local maxima, local minima, or saddlepoints. In practice, convergence only happens

at local maxima.

The procedure for the maximum likelihood variant of EM is identical, except that

the prior is not used. We provide a precise description of the EM computation below.

5.1.1 Parameter Prior

When applying EM to our model, the parameters to be estimated are θt,µt,Σt and

σ2t for every t. The hidden variables are T and Wt.

In our setting, we assume that the parameters µt,Σt of P (Wt | t) are distributed

Normal-Wishart with parameters (R0t , β
0
t , λ

0
t , ν

0
t ). We also assume that the variance

σ2t associated with all of the variables Uo is distributed one-dimensional Wishart with

parameters ρ0t , γ
0
t and η0t . ρt, γt and ηt correspond to Rt, βt and νt in the distribution

over Wt.

A Normal-Wishart prior defines a distribution over the mean µt and covariance

matrix Σt of a Normal distribution. It is parameterized by: a precision matrix Rt;

a number βt > mt − 1; a mean vector λt; and a number νt > 0. Essentially, Rt and

βt define a Wishart distribution w(Rt, βt) over mt×mt matrices Qt. The conditional

distribution of µt given Qt is a Gaussian with mean λt and covariance νtQ
−1
t . The
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conditional distribution of vectors y given µt and Qt sampled from this distribution

is a Gaussian with mean µt and covariance νtQ
−1
t .

The Normal-Wishart distribution is conjugate to the Gaussian distribution. In

other words, if we have a Normal-Wishart prior (R0t , β
0
t , λ

0
t , ν

0
t ), and we observe vectors

y[1], . . . ,y[`] sampled from the associated Gaussian N(µt, νtQ
−1
t ), then the posterior

distribution over the parameters is also Normal-Wishart, with the following update

rule:

ȳ =
1

`

∑̀

j=1

y[j] (5.1)

λt =
ν0t λ

0
t + `ȳ

ν0t + `
(5.2)

νt = ν0t + ` (5.3)

St =
∑̀

j=1

(y[j]− ȳ)(y[j]− ȳ)T (5.4)

Rt = R0t + St +
ν0t `

ν0t + `
(λ0t − ȳ)(λ0t − ȳ)T (5.5)

βt = β0t + ` (5.6)

The update rules for ρt, γt and ηt correspond to those for Rt(5.5), βt (5.6) and

νt (5.3), respectively.

5.1.2 Data Completion

In order to complete the data, we must compute P (T [j],Wt[j] | u[j], params). First
we need to marginalize the parameter prior and obtain a distribution over the do-

main variables only. Given a Normal-Wishart parameter distribution (Rt, βt, λt, νt),

the distribution over Wt given t is an n dimensional t distribution, which can be

approximated using a multivariate Gaussian (DeGroot 1970). For the type-specific

distributions, we get:

µt = λt

Σt =
νt + 1

νt · (βt −mt − 1)
Rt
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For the variance σ2t we set

σ2t =
η̄t + 1

η̄t · (γ̄t − 2)
ρt.

The marginalization for a Dirichlet distribution over the type, with hyperparameters

αt, is the standard one:

θt =
αt

∑

t′ αt′
.

The result is a Gaussian distribution P (Wt,U | t). For each t, we compute P (Wt |
t,u[j]) and the marginal P (u[j] | t). We also compute the posterior probability of

the different types as P (t | u[j]) ∝ P (t) · P (u[j] | t).

5.1.3 Expected Sufficient Statistics

Using these probabilities, we can easily compute the (expected) sufficient statistics

required for the update of our various parameter priors. For the Dirichlet, we merely

need the expected count N̄(t) =
∑

j P (t | u[j]). For the various type specific Gaus-

sians, we must compute the expected value of λt and St. Instead of finding the most

likely values for our hidden variables, we take into account the entire posterior distri-

bution. Each possible value gets a fraction of the weight of the sample. Intuitively,

it amounts to computing the expectation over uncountably many “completed” data

cases — a continuum of possible completions for each j. Fortunately, this turns out

to be easy. The key is that the posterior distribution over Wt[j] given t and u[j]

is a multivariate Gaussian with mean µt[j] and covariance Σt[j]. (P (Wt[j] | t,u[j])
is computed by standard probabilistic inference.) Let πt[j] denote P (t | u[j]); intu-
itively πt[j] is the extent to which the jth sample belongs to type t, and therefore the

extent to which it influences the estimate of its parameters. It is straightforward to

verify that

¯̀
t =

∑̀

j=1

πt[j]

ȳt =
1
¯̀
t

∑̀

j=1

πt[j]µt[j]
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Similarly, we can derive a new update rule for the expected empirical variance S̄t,

S̄t=
∑̀

j=1

πt[j] E
[

(wt[j]− ȳt)(wt[j]− ȳt)
T
]

=
∑̀

j=1

πt[j]
∫

(wt[j]− ȳt)(wt[j]− ȳt)
TP (wt[j] | t,u[j])dwt[j]

=
∑̀

j=1

πt[j]
∫

((wt[j]− µt[j]) + (µt[j]− ȳt))((wt[j]− µt[j]) + (µt[j]− ȳt))
T

P (wt[j] | t,u[j])dwt[j]

=
∑̀

j=1

πt[j]
( ∫

(µt[j]− ȳt)(µt[j]− ȳt)
TP (wt[j] | t,u[j])dwt[j]

+
∫

(wt[j]− µt[j])(wt[j]− µt[j])
TP (wt[j] | t,u[j])dwt[j]

+
∫

(µt[j]− ȳt)(wt[j]− µt[j])
TP (wt[j] | t,u[j])dwt[j]

+
∫

(wt[j]− µt[j])(µt[j]− ȳt)
TP (wt[j] | t,u[j])dwt[j]

)

=
∑̀

j=1

πt[j]
(

(µt[j]− ȳt)(µt[j]− ȳt)
T
∫

P (wt[j] | t,u[j])dwt[j] + Σt[j]

+ (µt[j]− ȳt)E
[

(wt[j]− µt[j])
T
]

+ E [(wt[j]− µt[j])] (µt[j]− ȳt)
T
)

=
∑̀

j=1

πt[j]
(

(µt[j]− ȳt)(µt[j]− ȳt)
T + Σt[j]

)

Finally, we must compute the expected empirical variance s̄t needed to update ρt

and in turn σ2t . Simple linear algebra shows that, if Wt is distributed Gaussian with

mean µt[j] and variance Σt[j], then U
∗ = AtWt is distributed Gaussian with mean

Atµt[j] and variance Υt[j] = AtΣt[j]A
T
t . Thus, we get that

s̄t =
∑̀

j=1

πt[j]
∑

o

(Υt(o, o)[j] + ((Atµt[j])o − uo)
2)

and

ρt = ρ0t + s̄t +
η0t n`

η0t + n`
·
∑

o

∑̀

j=1

πt[j]((Atµt[j])o − ūo)
2.
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Essentially, the empirical variance has components for different data cases j (which

determines P (Wt[j] | t)), and outcomes o. The contribution for a type t is weighted

by its probability. For each j and o, there is a contribution for the difference between

the mean of U ∗o and the observed utility for outcome o, and a contribution for the

inherent variance of U ∗o .

We can now use these expected sufficient statistics in place of the exact sufficient

statistics in Equations (5.2), (5.3), (5.5) and (5.6). This gives us new estimates of the

posterior over the parameters relative to the completed data. We then marginalize

the posterior to induce a new Gaussian prior distribution over Wt,U, and continue.

5.2 Model Selection

Now, we consider the problem of finding a good structure. We focus on the problem of

discovering the structure of the subutility functions within the clusters, and assume

the number of clusters is given.1 We apply Bayesian model selection to this task.

More precisely, we define a discrete variable S whose states s correspond to possible

models, i.e., possible decompositions of the subutilities in the different clusters; we

encode our uncertainty about S with the probability distribution P (s). For each

model s, we define a continuous vector-valued variable Ψs, whose instantiations ψs

correspond to the possible parameters of the model. We encode our uncertainty about

Ψs with a probability density function P (ψs | s), as described above.

5.2.1 Model Score

We score the candidate models by evaluating the marginal likelihood of the data set

D given the model s (Heckerman 1996). That is, we want to compute the

P (D | s) =
∫

P (D | ψs, s)P (ψs | s)P (s)dψs.

1Our techniques easily extend to the more standard problem of discovering the number of clusters
(Cheeseman and Stutz 1996). Assuming that the number of clusters k can range from 1 to some
fixed K, we simply run a separate search procedure for each k. Then, we compare the best models
in each run and pick the best one overall.
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The exact computation of the marginal likelihood is intractable for models with hid-

den variables. We approximate it using a scheme introduced by Cheeseman and

Stutz (1996). This approximation is based on the fact that P (D | s) can be com-

puted efficiently for complete data. If Dc is any completion of the data set D, we

have

P (D | s) = P (Dc | s)
∫

P (D,ψs | s)dψs
∫

P (Dc, ψs | s)dψs
.

Letting ψ̃s be either an MAP or an ML estimate for ψs, we can apply the BIC/MDL

approximation2 to the numerator and denominator, and get

logP (D | s) ≈ logP (Dc | s) + logP (D | ψ̃s, s)− logP (Dc | ψ̃s, s).

(In our case, the model s and its parameterization ψ̃s are the same for the complete

data and the actual data, so the model complexity term cancels out.) We can esti-

mate the last two terms in this expression by running our EM algorithm from the

previous section. Chickering and Heckerman (1996) showed that this approximation

is surprisingly accurate, much more so than a direct use of BIC/MDL.

The first term, P (Dc | s), is the probability of a complete data set, where the

distribution of the continuous variables in the network, conditioned on each instanti-

ation of the discrete variable Type, is a multivariate normal distribution. Geiger and

Heckerman (1994) show that, in the case of complete data, the marginal likelihood

has a closed form that decomposes (as usual) as a product over separate families

in the model (the superscript denotes the part of the sample corresponding to the

appropriate variable(s)):

P (Dc|s) = P (DT
c |s) ·

∏

t

P (DWt
c |t, s)P (DU

c |t,Wt, s)

2BIC, or Bayesian information criterion (Schwarz 1978) is defined as

logP (D | s) ≈ logP (D | ψ̃s, s)−
d

2
log `

where d is the number of parameters in ψ̃s and ` is the number of samples in D. The BIC approx-
imation is exactly minus the minimum description length (MDL) criterion described by (Rissanen
1987).
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=
Γ(
∑

t αt)

Γ(
∑

t αt + `)

∏

t

Γ(αt + N̄(t))

Γ(αt)
·

∏

t

(2π)−
mt`

2

(

ν0t
ν0t + `

)

mt
2

· c(mt, β
0
t )

c(mt, β0t + `)
|R0t |

β0
t
2 |Rt|−

β0
t +`

2 ·

∏

t

(2π)−
n`
2

(

η0t
η0t + n`

)
1
2

· c(1, γ0t )

c(1, γ0t + n`)
|ρ0t |

γ0
t
2 |ρt|−

γ0
t +n`

2

where c(i, α) =
(

2αi/2πi(i−1)/4
∏i
j=1 Γ

(

α+1−j
2

))−1
.

5.2.2 Search over Models

Given a scoring function, we can apply standard techniques for finding a high-scoring

structure. We use a greedy hill-climbing search with random restarts. Our search

space operators modify the subutility structure of each type separately. An operator

can add a variable to an existing subutility function, delete a variable from a function,

or introduce a new subutility function with a single variable. We evaluate each

candidate successor structure by running EM on it, and then scoring it using the

Cheeseman-Stutz approximation to the Bayesian score.

Unfortunately, our algorithm has a high computational cost. In each search step,

we evaluate all successor models to our current model s. Given a set of utility at-

tributes V, there are O(|V|2) such models. For each successor model s′, we run EM

to find an appropriate parameterization ψ̃s′ . Note that each iteration of EM requires

that we run full Bayesian network inference on each data case.

This problem is common to all Bayesian network learning with partially observable

data. An alternative approach called structural EM (Friedman 1997) can be used

in some cases to speed up the search, but we cannot apply it here. In structural

EM, the completion of the data computed in the context of the current model s is

used to parameterize and score successor models. However, our successor models

contain different subutility variables than the current network s, so we cannot use

the completion computed in the context of s to parameterize them.

The algorithm is tractable only for very small domains. Fortunately, the size of
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model type avg best worst

1 cluster
additive 1.15 1 2
conditionally additive 530 100 750
fully connected 463 200 500

2 clusters
additive/additive 463 350 500
additive/conditionally additive 500 500 500
conditionally additive/conditionally additive 550 500 750
conditionally additive/fully connected 3750 2500 5000
fully connected/fully connected 4000 3000 5000

Table 5.1: Number of samples needed to recover the structure

the attribute set for a utility function (unlike the size of the outcome space) cannot be

very large. In our prenatal diagnosis domain (Section 1.4), we have 5 utility attributes.

This domain is considered to be unusually complex. It is rare to encounter a domain

with a much larger number of attributes.

5.3 Experiments

We tested our approach on both real and synthetically generated data.

5.3.1 Synthetic Data Results

In our artificial domain, we had 3 utility attributes, one ternary and two binary,

and 12 outcomes. We had three basic structures: fully additive; structured, in which

u(o) = u1(V1, V2)+u2(V2, V3); and fully connected (no independencies). We generated

10–20 distributions for each structure, using different parameters.

In one cluster tests, we were always able to recover the structure of the original

distribution. For the additive model, the correct structure was chosen after seeing at

most 2 data points. (This result was to be expected given the well-known bias towards

simpler structures in Bayesian learning.) For the structured model, the number of

samples needed ranged from 100 to 750. For the fully connected model, we needed
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Figure 5.1: Learning curves for several models

200-500 samples.

In two-cluster tests, small amounts of data (10–100 samples) always resulted in

a model with one fully connected and one fully additive structure, regardless of the

underlying distribution. Given more data (350–5000), we were able to learn either

the correct structure or one differing by only one variable’s presence or absence in a

subutility function. We obtained these results for models with the same as well as

with differing decompositions in the different clusters. Table 5.1 summarizes these

results.

We also tested our algorithm as a density estimator. For these tests, we used a

domain with 4 attributes, one ternary and three binary. We had two structures: one

fully additive and one structured in which u(o) = u1(V1, V2) + u2(V2, V3) + u3(V2, V4).

We created several 1- and 2-cluster models, with the same decomposition in different

clusters in some models and different decompositions in other models. The learning

curve tests are presented in Figure 5.1. As the number of samples grows, the learned

parameters generally seem to converge to the generating distribution.

Finally, we tested the smoothing effect of using parameter priors in our algorithm.

We randomly selected parameters for several 1- and 2-cluster structured (conditionally

additive) models with 4 utility attributes. From each model, we sampled a large
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Figure 5.2: Least-squares projection vs. MAP projection

number of the utility functions. We divided our data into a training set and a test

set. We varied the size of the training set to examine the dependence of the error on

the number of samples. Instead of searching over possible models, we used the correct

number of clusters and the correct utility function structure (i.e., the structure our

data was generated from) in our learning procedure. After learning the parameters of

the model based on the training set, we computed the values of the weight vector w

using least-squares projection and MAP projection (as described in Section 4.4) for

the samples in our test set. We compared these values to the true weights w used

to generate these samples. Figure 5.2 shows the results on 1- and 2-cluster models.

The upper curve in both cases corresponds to the least-squares projection, the lower

to MAP projection. The error for MAP projection is not only lower, it also decreases

more rapidly.

5.3.2 Utility Data for the Prenatal Diagnosis Domain

Our dataset consists of utility functions elicited in a prenatal diagnosis study per-

formed by (Kuppermann, Shiboski, Feeny, Elkin, and Washington 1997). All study
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Figure 5.3: Best decomposition for (a) Visual Analog Scale and (b) Standard Gamble

subjects were recruited at the University of California at San Francisco (UCSF) Pre-

natal Diagnosis Center. Study subjects were recruited from a counseling session for

women who had not yet decided which prenatal diagnostic test to undergo, or, in

some cases, whether to undergo prenatal diagnosis at all. The decision problem for

prenatal diagnosis is described in Section 1.4.

Out of 70 subjects, we selected 51 who completed the entire interview, which

involved assessing utilities for 22 outcomes using two elicitation methods: standard

gamble (SG) and visual analog scale (VAS). These two methods are known to produce

very different utility values (see Section 3.4), so we treated the two sets of utilities as

two distinct databases. We treated the values of all the outcomes the women were

not asked about as missing.

5.3.3 Real Data Results

We searched the space of 1-, 2- and 3-cluster models. The best models we learned for

our two databases were in both cases 3-cluster models. They are presented in Fig-

ure 5.3. The nodes correspond to utility attributes in our domain: testing (T ), Down’s

status (D), pregnancy loss (L), knowledge (K) and future pregnancy (F ). Additive

and conditional additive independence correspond to vertex separation. While the

size of the database does not allow us to treat our models as representing the true

structure of the utility functions in the population, some of the correlations found

are very interesting. For example, the correlation between the utilities for pregnancy

loss and utilities for Down’s status and future pregnancy are highly intuitive. Losing
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a pregnancy may be considered by many women to be less undesirable if another,

successful pregnancy is to follow than in the case when it is known that there are no

chances of future conception. Similarly, losing a Down’s baby may be less difficult

than losing a healthy one — many women decide to abort a planned pregnancy upon

learning about the presence of chromosomal abnormalities in the fetus.

We note that, in both cases, structures having multiple clusters received substan-

tially higher scores than structures having a single cluster. At the first glance, this

may suggest the danger of overfitting. However, our utility models were highly struc-

tured. The best model for the SG database had 3 clusters with the sizes of the weight

vectors 11, 13 and 19 respectively. The best model for the VAS database also had 3

clusters albeit with slightly different decompositions. The sizes of the weight vectors

were 9, 11 and 31. Note that the total number of parameters needed in both cases is

smaller than the number of parameters required for a 1-cluster fully connected model.

Most likely, the danger of overfitting is mitigated by the use of the Bayesian score.

Finally, structures where the different clusters had different decompositions scored

more highly than structures where all clusters used the same decomposition. This

supports our hypothesis that different subpopulations exist, and have different de-

compositions.



Chapter 6

Conditioning on New Information

A distribution over utility functions in the population provides us with insight into

the utility function structure and can help in the analysis of the decision problem for

which the utilities were elicited. There are many contexts, however, in which it is

insufficient. For example, consider the situation in which we want to make decision

recommendations. In that case, we need to have a model representing our beliefs

about an individual user’s preferences.

In some cases, we can use the population model as a starting point. It is justi-

fied if we can regard the individual user as a randomly selected instance from the

same population from which we acquired the training data used to learn the pop-

ulation model. In other words, the population model can be an appropriate prior

distribution. We can use it to reason about users about whose preferences we have

no additional information. As soon as such information becomes available, we have

to adjust the model by conditioning it on the new information to obtain a more in-

formed posterior distribution. In this chapter we consider the problem of computing

the posterior distribution over an individual user’s utilities given various kinds of

information. Unfortunately, this distribution often does not have a simple paramet-

ric form. We discuss two major approaches to estimating the posterior distribution:

Gaussian approximation (Section 6.4) and Markov Chain Monte Carlo techniques

(Section 6.5).

86
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6.1 Sources of Information about Users’ Utilities

A point value for a specific utility parameter would be the easiest type of new infor-

mation to incorporate into our utility model. Unfortunately, most utility elicitation

methods, such as standard gamble (Section 3.4.1) or time trade-off (Section 3.4.2)

do not provide the utility values directly. They work by incrementally constraining

each utility parameter until the remaining range is negligibly small. Consider a stan-

dard gamble question of the form: “Which is more preferable: a lottery [o>, s, o⊥] or

outcome o for sure?” The information contained in the answer to such a question

translates to evaluating the truth value of a constraint Uo < s (Section 3.4.1). Thus,

each step of the elicitation process using either standard gamble or time trade-off

provides us with a constraint involving the utility of one outcome.

The only elicitation method that provides point values for utility parameters di-

rectly, visual analog scale (Section 3.4.3), suffers from a number of problems ranging

from the lack of theoretical justification and its known cognitive biases to the lack of

precision. Thus, we can never completely trust point values we obtain in this manner.

We can treat them as approximations with some margin of error (in other words, as

data obtained through a noisy sensor), which translates to a set of constraints of the

same form as above.

There are other types of information we can obtain about a given user’s utilities.

Preference questions are questions of the form: “Is outcome oi preferred to outcome

oj?” These questions establish the preference structure (ordinal ranking) among

outcomes. Obviously, preference questions are much easier for the users to answer.

There are no lotteries, which cause so many cognitive difficulties. We don’t need to

worry about the choice of anchor outcomes; both outcomes in any preference question

refer to the same decision problem. The knowledge of such ranking is sufficient

for rational decision making without uncertainty. A straightforward application of

decision-theoretic principles cannot, however, use this type of information in the

uncertainty case. In contrast, we can easily incorporate such information into our

probabilistic framework. Each preference question translates to a constraint of the

form Uoi > Uoj . We can condition our utility model on such constraints.
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Finally, in some situations, the new information about users’ utilities may come

in the form of behavior observations. We explain in Section 8.2 how we can translate

these observations into constraints of the form
∑

i αiUoi > 0 for some coefficients αi.

Thus, all new information we obtain in the course of our interactions with a given

user comes in the form of constraints involving one or more utility parameters. In some

cases, we can condition our model directly on such information. In others, we have to

approximate the posterior distribution. The most general solution to this problem,

which uses Monte Carlo sampling, is presented in Section 6.5. It applies to the case of

arbitrary constraints over utility parameters. However, if the constraints involve only

one outcome (as is typical for standard gamble and time trade-off methods), we can

take advantage of the properties of the distribution and use more efficient solutions.

6.2 Utility Space

Our probability density function (PDF) over utility functions in the population p(u)

is defined over the [0, 1]n hypercube, where n is the number of outcomes, or utility

variables. This hypercube defines the space U of possible utility functions. Initially,

the PDF assigns a non-zero probability to every point within the hypercube. The

utility space is constrained only by the normalization assumption.

As we collect new constraints in the course of our interactions with a given user,

parts of the utility space are eliminated. Let C be the set of constraints we have over

the utility space at a given time. The feasible region UC is the part of the utility space

consistent with these constraints. Our posterior distribution q(u) (p(u) conditioned

on C) should assign non-zero probability only to utility functions in UC.
Information about the utility of a single outcome introduces axis-parallel con-

straints. If we restrict ourselves to this type of information, our feasible region remains

a hypercube. Preference ordering among outcomes translates to diagonal constraints.

Some behavior observations correspond to arbitrary linear constraints in the utility

space. These two latter kinds of information reduce the feasible region to an arbitrary

convex polytope.1

1A subset P of IRd is called a convex polyhedron if it is the set of solutions to a finite system of
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As we will see in Section 8.2.2, some observations of an agent’s actions may also

lead to more complex, non-linear constraints. We will not, however, attempt to condi-

tion our distribution on these constraints. Rather, we will resort to an approximation

through linear relaxation of these constraints.

6.3 Framework

Recall from Section 4.3 that we chose to represent the distribution over utility func-

tions in the population as a mixture of multivariate Gaussian distributions, one for

each subpopulation t. This population model will serve as our prior distribution p(u).

When we collect constraints over the utility space during the interaction with

a specific user, we need to condition our prior distribution p(u) on the constraint

set in order to compute a more informed posterior distribution q(u). It would be

desirable for q(u) to have the same parametric form as p(u). However, conditioning

a multivariate Gaussian on utility constraints does not, in general, result in a new

multivariate Gaussian.

In case of simple constraints of the form Uo < s, we can efficiently approximate

the posterior distribution over U given the constraint set as a Gaussian distribution

of the same form as p(u). We discuss Gaussian approximation in Section 6.4.

If our utility information is of a more complex form, such as constraints
∑

i αiUoi >

0 for some coefficients αi, we have to resort to Markov Chain Monte Carlo techniques

to create a set of samples from the posterior distribution q(u). MCMC methods are

discussed in detail in Section 6.5.

6.4 Constraints Involving One Outcome

The computation is simplest in the case when we can assume that the different utility

variables Uo are independent in p. We present this case first. A more realistic case,

for an arbitrary distribution p, follows.

linear inequalities. P is called a convex polytope if it is a convex polyhedron and bounded. When
a convex polyhedron (or polytope) has dimension k, it is called a k-polyhedron (k-polytope).
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Figure 6.1: Conditioning the distribution over one outcome

6.4.1 Independent Outcomes

If we can assume that utility variables Uo are independent in p, we can deal with the

distribution over each one of them separately. Thus, for every outcome Uo, we have a

univariate Gaussian distribution restricted to the [0, 1] range. Clearly, this restriction

means that the distribution is not truly Gaussian. Nevertheless, a Gaussian can

be a reasonable approximation since the probability mass that lies outside of the

normalized utility range will generally be negligibly small. Therefore, we assume that

our distribution over Uo is

p(uo) = −
1√
2πσ

exp

(

−(uo − µ)2

2σ2

)

.

However, once we hear the user’s answer to a utility elicitation question, asserting

Uo < s (or its negation), we can no longer assume that the probability mass outside

the further restricted range for Uo is small enough to ignore. Thus, we need to

reestimate the moments of the distribution.

The expectation for Uo over the restricted range [l, h] is

E [Uo] =
∫ h

l
uop(uo)duo
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=
1√
2πσ

∫ h

l
uo exp

(

−(uo − µ)2

2σ2

)

duo

=
σ√
2π

[

− exp

(

−(uo − µ)2

2σ2

)]h

l

+ µ
∫ h

l
p(uo)duo.

The second term in the expression can be found easily in the normal distribution

tables.

The variance of the posterior distribution restricted to [l, h] range is of course

E2[Uo]− E [(Uo)
2] where

E [(Uo)
2] =

∫ h

l
(uo)

2p(uo)duo

=
σ√
2π

[

(−uo − µ) exp

(

−(uo − µ)2

2σ2

)]h

l

+ (µ2 + σ2)
∫ h

l
p(uo)duo.

Thus, we can easily compute the moments of the posterior distribution by using

a combination of closed form integration and the normal distribution tables.

6.4.2 Correlated Outcomes

In the previous section, we assumed that the different utility variables Uo are inde-

pendent in p(u). Unfortunately, this assumption is too strong in many cases. Taking

as an example our prenatal diagnosis domain from Section 1.4, we can easily see that

it is quite likely that a woman’s utility for one outcome involving a Down’s baby will

be correlated with her utility for another outcome involving the same event. In this

section, we consider the more general case of an arbitrary distribution p, which will

allow us to model the framework described in Section 4.3, where a distribution over

subutility functions induces a distribution over utilities.

We begin by assuming that our prior p(u) is a multivariate Gaussian with an

arbitrary covariance matrix, constrained to lie within the [0, 1] hypercube. Again,

our utility function distribution cannot be truly Gaussian because of the restriction on

the parameters’ range. Nevertheless, we assume, just as in the independent outcomes

case, that we can ignore the probability mass that lies outside of the normalized

utility range.
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Figure 6.2: Decomposition of a multivariate Gaussian

Any multivariate Gaussian p(X1, X2, . . . , Xn) can be decomposed as a univariate

Gaussian over X1 and a linear Gaussian (LG) p(X2, . . . , Xn | X1) that defines a mul-

tivariate Gaussian over X2, . . . , Xn with mean µ(x), which is a vector linear function

of x1, and a fixed covariance matrix, which does not depend on x1 (Shachter and

Kenley 1989). If we condition X1 on some evidence, the parameterization of the LG

p(X2, . . . , Xn | X1) does not change.

The process of decomposing and reassembling the multivariate Gaussian is partic-

ularly simple in our case, since we are conditioning on a single variable (see (Shachter

and Kenley 1989) for the general case).

• From a conditional distribution to a joint distribution.

We start with a univariate Gaussian X1 = µX1 + V (where V ∼ N(0, σ2)) and

an LG p(X2, . . . , Xn | X1) parameterized by µLG, ΣLG and a weight vector b.

We want to find the mean µ and the covariance matrix Σ for the multivariate

Gaussian p(X1, X2, . . . , Xn). It is easy to verify that

µ1 = µX1

Σ1,1 = σ2

For all i = 2, . . . , n we have

µi = µLG(Xi) + b(Xi)µ
X1

Σ1,i = Σi,1 = b(Xi)σ
2



6.4. CONSTRAINTS INVOLVING ONE OUTCOME 93

Σi,j = Σj,i = ΣLG(Xi, Xj) + b(Xi)b(Xj)σ
2

for all j = 2, . . . , i− 1.

• From a joint distribution to a conditional distribution.

We are given a multivariate Gaussian p(X1, X2, . . . , Xn) with a mean vector

µ and a covariance matrix Σ. We want to decompose it into a univariate

Gaussian Xi = µi + V and an LG p(X1, X2, . . . , Xi−1, Xi+1, . . . , Xn | Xi). Let

us assume, for the simplicity of exposition, that i = 1 (we can always rearrange

the mean and the covariance matrix to put ith variable in the first place). We

can immediately find the parameters of the univariate Gaussian over X1:

µX1 = µ1

σ2 = Σ1,1

We can find the weight vector b by solving n−1 equations with n−1 unknowns:

Σ1,i = b(Xi)σ
2,

where i = 2, . . . , n. Knowing b, we can easily find µLG:

µLG(Xi) = µi − b(Xi)µ
X1 .

Finally,

ΣLG(Xi, Xj) = ΣLG(Xj, Xi) = Σi,j − b(Xi)b(Xj)σ
2

for all i = 2, . . . , n and j < i.

This suggests that we could decompose our multivariate Gaussian over Uo1 , . . . , Uon

as a univariate Gaussian over Uo′ , the utility parameter about which we have just

acquired some information, and an LG over remaining variables given Uo′ . After

conditioning the univariate Gaussian on new information, we could reassemble the

multivariate Gaussian by multiplying the posterior over Uo′ and the LG.
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Unfortunately, this analysis is insufficient for our purposes. Even if our prior

distribution is a multivariate Gaussian, once we condition our distribution on some

information Uo′ > s, the resulting posterior is no longer a multivariate Gaussian, but

rather a “strip” of one. It can be verified that the conditional mean for this distribu-

tion is not a linear function. We address this difficulty using a simple approximation.

Let q be the desired distribution, conditioned on all of the relevant information. We

approximate q using a distribution q̂ which is a multivariate Gaussian.

An approximation to the joint PDF as a multivariate Gaussian, given evidence

on Uo′ , can be obtained by finding the best approximation to q(Uo′) as a univariate

Gaussian q̂(Uo) (just as in Section 6.4) and leaving the conditional linear Gaussian

over the remaining utility variables given Uo′ unchanged. We can then regenerate a

new approximate multivariate Gaussian q̂ by multiplying q̂(Uo′) and the LG.

We can extend this approach to the case of a mixture of Gaussians. First, we

use our information about Uo′ (such as, e.g., Uo′ > s) to update the mixture weights.

This can be done by a standard application of Bayes rule:

p(t | Uo′ > s) ∝ p(Uo′ > s | t)p(t),

for all mixture elements t. Next, we update every element of the mixture separately,

by approximating the distribution as a multivariate Gaussian in the same way as

described above.

6.5 Constraints Involving Multiple Outcomes

The constraints generated by preference questions (Section 6.1) and behavior obser-

vations (see Section 8.2) involve more than one outcome. If all of these constraints

are linear, the feasible utility region they specify is a convex polytope.

New information, such as answers to preference questions and our observations of

the agent’s actions, are evidence regarding u. Certain utility functions in the original

utility space U are consistent with the agent’s actions and answers, whereas others

are not. We would like to condition our prior p(u) on this evidence, to derive a more
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Figure 6.3: Conditioning the distribution on linear constraints in 2-dimensional utility
space
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informed posterior q(u). This process is illustrated in Figure 6.3.

Unfortunately, even if p(u) is a “nice” distribution with a compact closed form

representation, the posterior q(u) can be quite complex. The problem is that irreg-

ular polytopes (even convex ones) are computationally difficult to deal with. For

example, even estimating the volume of a polytope (i.e., its probability under the

uniform distribution) is a hard computational problem (Bárány and Füredy 1986).

Fortunately, we can use Markov Chain Monte Carlo (MCMC) techniques to generate

a set of samples from the posterior distribution q(u) in an efficient fashion.

Our approach is based on the MCMC algorithms of (Applegate and Kannan 1991)

for estimating the volume of a polytope on the one hand, and for generating samples

from a log-concave density function on the other. Applegate and Kannan show that

both of these algorithms are rapidly mixing, so that the number of sampling steps

required for convergence to a stationary distribution is polynomial in the dimension of

the polytope. It seems likely that a similar analysis can be applied to our algorithm,

which simply combines the two algorithms into one.

Let C be the set of constraints on U and UC the feasible region, that is, the region
where all utility functions are consistent with these constraints. We use a Metropolis-

Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953;

Hastings 1970), which traverses the convex set UC based on the distribution p. We

first construct a regular grid in the n-dimensional hypercube [0, 1]n with side-length

β. This grid defines a partition of [0, 1]n into cubes. The set X of cube centers in

the feasible region UC constitutes the state space for our Markov chain M. Then,

starting from some arbitrary starting point x(0) in UC, we carry out a sequence of

MCMC steps:

1. Starting from the current grid location x(t−1), choose a candidate successor

state y as follows. With probability 1/2, y = x(t−1). With probability 1/2, y

is chosen uniformly from among x(t−1)’s 2n neighbors, so that for each possible

neighbor z, the probability that y = z is 1
4n
.

2. If y is located outside UC, stay at the current position, i.e., set x(t) = x(t−1) .

Otherwise, accept the new location with probability min
{

1, p(y)

p(x(t−1))

}

.
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This algorithm defines transition probabilities T (x,y) for any two states x,y ∈ X
in our Markov chain M as follows:

• T (x,y) = 1
4n
·min

{

1, p(y)
p(x)

}

if y is a neighbor of x and 0 otherwise (x 6= y);

• T (x,x) = 1−∑y∈N(x) T (x,y) where N(x) is the set of neighbors of x in UC.

Let us examine the properties of this Markov chain. Note thatM is homogeneous,

that is, the transition probabilities do not depend on the time step.

We would like to show that the chain M converges to the desired distribution,

namely our posterior q(u). First, we need to define the concept of a stationary

distribution. A stationary (or invariant) distribution over the states of a Markov

chain is one that persists forever once it is reached. Note that a Markov chain may

have more than one invariant distribution.

Definition 6.5.1: The distribution given by probabilities r(x) is invariant with re-

spect to the Markov chain with transition probabilities T (x,y) if

r(x) =
∑

y

r(y)T (y,x).

Proposition 6.5.2: The distribution {q̂(x) : x ∈ X} such that, for all x ∈ X,

q̂(x) =
p(x)

∑

y∈X p(y)

is invariant with respect toM.

Proof: We need to show that

q̂(x) =
∑

y

q̂(y)T (y,x).

Note that the only states with non-zero transitions into x are x itself and its neighbors.
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Therefore,

∑

y

q̂(y)T (y,x)

=
∑

y∈N(x)

q̂(y)T (y,x) + q̂(x)T (x,x)

=
∑

y∈N(x)

q̂(y)T (y,x) + q̂(x)



1−
∑

y∈N(x)

T (x,y)





= q̂(x) +
∑

y∈N(x)

(q̂(y)T (y,x)− q̂(x)T (x,y))

The summation over the neighbors in the expression above is clearly equal to 0 if, for

each y ∈ N(x),

q̂(y)T (y,x)− q̂(x)T (x,y) = 0.

This follows from the fact that M is reversible.

Lemma 6.5.3: The Markov chainM is reversible. That is, it satisfies the condition

of detailed balance

q̂(x)T (x,y) = q̂(y)T (y,x).

Proof: If x and y are not neighbors, T (x,y) = T (y,x) = 0 and the condition is

trivially satisfied. Otherwise, we need to show that

q̂(x)
1

4n
·min

{

1,
p(y)

p(x)

}

= q̂(y)
1

4n
·min

{

1,
p(x)

p(y)

}

.

There are three cases to consider:

1. p(x) = p(y)

In this case, q̂(x) = q̂(y) and p(x)
p(y)

= p(x)
p(y)

= 1.

2. p(x) < p(y)
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The expression above reduces to

q̂(x)
1

4n
· 1 = q̂(y)

1

4n
· p(x)
p(y)

.

Since q̂(y) = cp(y) and q̂(x) = cp(x) (where c is a normalizing constant), we

get

cp(x)
1

4n
= cp(y)

1

4n

p(x)

p(y)
= cp(x)

1

4n
.

3. p(x) > p(y)

The argument is analogous to the previous case.

Proposition 6.5.4: The Markov chain M is ergodic. That is, the probability dis-

tribution over the state space converges asymptotically to the stationary distribution

q̂(x) regardless of the initial state.

Proof: First note that M is irreducible. That is, for any two states x,y ∈ UC, y is

reachable from x in a finite number of steps (T k(x,y) > 0 for some k). All self-loop

probabilities are non-zero. (In fact, for all x, T (x,x) ≥ 1/2.) Hence, it is ergodic

(Neal 1993).

After an initial “mixing phase,” we store samples u(t) from the Markov chain

at regular intervals. We can also store all of the samples after the mixing phase,

but the computational cost of using all of them is often too large. We choose u(t)

uniformly from the cube corresponding to x(t).2 Since the stationary distribution

of our Markov chain M is p(u) constrained to UC, which is exactly the (discretized)

posterior q̂(u), after some number of steps, we will start collecting samples from the

desired distribution.

2We can discretize this choice by defining a second subgrid for each subcube with side-length
γ ¿ β.
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Figure 6.4: Conditioning a Gaussian on a single constraint. The parameters of the
original PDF are: (a) mean 0.6, st. dev. 0.2; (b) mean 0.3, st. dev. 0.1; (c) mean 0.5,
st. dev. 0.3

6.6 Experimental Results

First, we present experiments directly related to the behavior of our conditioning

algorithms. Figure 6.4 shows the results of the Gaussian approximation in the inde-

pendent outcomes case. As can easily be seen, the approximation produces very good

results in some cases. In others, especially where the probability mass in the feasible

interval (as indicated by the new constraint) is small, the resulting Gaussian has a

large variance.
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Figure 6.5: Projection of the MCMC samples onto the u1 − u2 plane (“enjoy” and
“hate” attributes in the bookseller example) collected before any observations were
made — (a) first 100 samples; (b) first 500 samples; (c) first 1000 samples; (d) first
2000 samples; (e) first 5000 samples; (f) all 10000 samples
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Figure 6.6: Projection of the MCMC samples onto the u1 − u2 plane (“enjoy” and
“hate” attributes in the bookseller example) — (a) after 1 observation; (b) after 17
observations

We also investigated the behavior of our MCMC algorithm. First, we experi-

mented with sampling parameters. We determined that a burn-in phase of 10,000

steps was sufficient to assure convergence to the stationary distribution. After the

burn-in phase, we ran the Markov chain for another 100,000 steps, selecting samples

at intervals of 10. Figure 6.5 shows the visualization of the sampling process. It

displays the projection of MCMC samples onto the u1–u2 plane. The samples are

taken according to the prior distribution p(u), i.e., before any information about the

utility function of a specific user was obtained. For this run, the mean of u1 was set

at 0.5 and the mean of u2 at 0.4. Figure 6.5 shows the first k samples collected in a

MCMC run for various values of k. As we can see, by the end of the run, the utility

space is covered adequately.

Figure 6.6 illustrates the admissible utility region UC at different stages of the

observation collecting process. We show the samples generated by the MCMC algo-

rithm, projected again onto the u1–u2 plane: (a) shows the samples in a relatively

early stage, after one behavioral observation, when only few constraints are present

(one behavioral observation corresponds to several utility constraints, see Section 8.2),

whereas (b) shows the samples after many observations (and many constraints) have
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Figure 6.7: Euclidean distance from the mean of the posterior distribution to the
true utility function: (a) conditioning by Gaussian approximation based on the user’s
answers to utility elicitation questions (prenatal diagnosis domain); (b) conditioning
by the MCMC technique based on behavior observations (bookseller example)

been collected. Note that the utility region is narrowly constrained and densely sam-

pled at this stage.

In each of our conditioning algorithms, we are interested in narrowing our uncer-

tainty about the agent’s utility only as much as necessary to be able to recommend

a nearly optimal course of action or to predict an agent’s future behavior. In our

experiments, we were able to accomplish that goal fairly quickly. Not surprisingly,

the process required fewer steps in the case of utility elicitation, where the algorithm

chose the information it wanted to acquire about a given user’s utilities rather than

passively observing the user’s behavior.

Figure 6.7 shows the distance from the mean of the posterior distribution to the

user’s true utility function as a function of the amount of information we have been

able to acquire about the user. In Figure 6.7(a), we present results for utility elici-

tation in the prenatal diagnosis domain (Section 1.4). Using 5-fold cross-validation,

we estimate the distribution based on 4/5 of the database and test on the remaining

1/5.3 At each step, we ask the user a random utility elicitation question and condition

3The utility database we use in the experiments is described in Section 5.3.2.
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the distribution on the response. Due to the small size of our utility database, we

have to use the simplest possible model; therefore we assume that the outcomes are

(probabilistically) independent and use the Gaussian approximation algorithm from

Section 6.4.1 to incorporate new information. The graph shows the average Euclidean

distance from the mean of the posterior to the true utility function. As can easily

be seen, the distance drops dramatically over the first 15 questions. The error bars

indicate the variance: it is quite large in this example, possibly due to the fact that

we make unrealistic assumptions about the utility function structure in our prior es-

timation. The small size of the training set may also contribute to the error in the

learned parameters.

Figure 6.7(b) presents analogous results for behavior observations. In this case

we use the bookseller domain (Section 1.5) with simulated utility data. We assume a

fixed distribution and sample our test data from this distribution. At each step, we

randomly generate a new game instance, observe the user’s behavior, and condition

our distribution on the constraints resulting from this observation using the MCMC

technique from Section 6.5. The average distance from the mean of the posterior to

the true utility function does not decrease as quickly as in the utility elicitation case

(note the difference in scale between the two graphs). Clearly, observing the user’s

behavior does not result in a precise estimation of the user’s utility function. This

is not surprising — we cannot distinguish between utility functions causing the same

behavior in the observed game instances. The region occupied by these functions

can be quite large. However, the precise estimation of the utility function is not

necessarily important. In some cases, it is enough to approximate it only as closely as

needed to compute a nearly optimal course of action or predict the user’s behavior.

In the next two chapters, we describe further experiments with both conditioning

algorithms. The Gaussian approximation algorithm for one-outcome constraints is

used in the context of a decision recommendation system for the prenatal diagnosis

domain; the results of these experiments are presented in Section 7.5. The MCMC

algorithm is applied in the context of predicting future actions of an agent based on

observations of his past behavior. The domain we used for these experiments was the

bookseller example; the results are described in detail in Section 8.5.



Chapter 7

Adaptive Utility Elicitation

As we demonstrated in Chapter 3, full utility elicitation in many real-life domains

is infeasible. Apart from the problems with theoretical justification and cognitive

difficulties inherent in many utility elicitation methods, in many domains we cannot

assess the utilities of all outcomes, because the number of outcomes is just too large.

In order to apply decision-theoretic tools to such situations, we have to address

two issues. First, we need to find a way to make optimal or nearly-optimal decisions

based on incomplete utility information. As we have shown in Section 4.5.4, we can

do this if we represent our beliefs over a given user’s utility function as a probability

distribution. Second, in order to use the time and attention that our users are willing

to give us effectively, we should also carefully choose the questions we ask to elicit

utilities. (In other words, a utility elicitation question is only useful insofar as it

helps us reach the optimal decision for a given user in the particular decision task at

hand.) In this chapter we explore the benefits of using our probabilistic framework

in choosing the best utility elicitation questions to ask.

Our key idea is that utility elicitation and decision analysis should not be con-

sidered to be two separate tasks, but rather two parts of one process. Each of these

parts can influence and inform the other and together they make the decision making

process more accurate and more efficient.

105
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7.1 Algorithm Overview

Our goal is to recommend an optimal or nearly optimal course of actions. At the

same time, we would like to minimize the number of utility elicitation questions

whose answers are needed to arrive at such a recommendation. We also need to

quantify our confidence that the decisions we recommend are indeed close to optimal.

Our approach is based on an integrated algorithm for decision making and utility

elicitation. The answers to our utility elicitation questions inform the decision making

procedure, the results of which help us select the most informative utility elicitation

question to ask next.

When the system encounters a new user, the only information available about his

utility function u is the prior probability density function (PDF) p(U). The algorithm

then cycles through the following steps:

1. It computes the optimal strategy π∗ relative to the current PDF p(U).

2. If this optimal strategy meets the stopping criterion, it stops and outputs π∗.

3. Otherwise, it selects a utility elicitation question to ask the user, and asks it.

4. It conditions p(U) on the response.

We consider questions that follow the standard gamble (Section 3.4.1) pattern:

“Given the choice between outcome o for sure and a lottery which gives o> with

probability s and o⊥ with probability 1 − s, which will you choose?” We translate

the response to this question to a constraint of the form Uo < s or Uo > s, depending

on the response. We call the value of s a split point. Each answer reduces the range

of values allowed for one of the outcomes.

Consider a cycle of this process. Initially, we have a PDF p over the user’s utilities.

Let µ be the mean of U under p, and π∗ the strategy that is optimal relative to µ.

Now, consider a question regarding an outcome o and a split point s. If the user

responds that Uo < s, we condition our PDF p, resulting in a new PDF p<s; this will

give us a new mean µ<s, and as a result, a new optimal strategy π∗<s. Similarly, if he

responds that Uo > s, we obtain a PDF p>s with µ>s and associated optimal strategy
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Figure 7.1: Expected utility of different strategies as a function of one outcome

π∗>s. The usefulness of the question can be measured by its value of information: the

improvement in expected utility that the user can expect by following either π∗<s or

π∗>s (weighted by the probabilities of the two responses) instead of π∗. As further

questions are asked and more information is obtained, our probability distribution p

is updated, and the choice of optimal strategy changes to better fit the user’s true

preferences.

Note that our questioning pattern differs from standard gamble in a significant

way: we do not ask about the same outcome for different values of s until the in-

difference point is reached (see Section 3.4.1). Rather, we choose questions so as to

reduce the total number of questions we need to ask the user. A given question will

often be for a different outcome than the previous one.

Since the questions we use induce only single-outcome constraints, we condition

our prior PDF p using the Gaussian approximation algorithm presented in Section 6.4.

Note that we could expand the range of questions also to include preference questions

(direct comparisons between two outcomes), which induce diagonal constraints in

the utility space. In that case, we would use the MCMC algorithm (Section 6.5) to

condition our model on these constraints.
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7.2 Decisions under Utility Uncertainty

The first step in our algorithm is to compute the optimal policy given uncertainty

over the user’s utility function U. As we showed in Section 4.5.4, the answer to this

question is easy: the expected utility of any policy π with uncertainty p(U) over the

user’s utility function is equal to its expected utility using the mean of U under p:

EUπ(u) = EUπ(µ).

Thus, the optimal policy for a fixed utility function equal to the mean of the distri-

bution p is also the optimal policy with respect to the entire distribution.

7.3 Stopping Criterion

After a sequence of utility elicitation questions, we will have a posterior distribution

q(U) over the user’s utility function, and an associated candidate optimal policy π̂.

We would like to estimate the regret associated with stopping the utility elicitation

and recommending π̂. In other words, we need to know how much better off the user

would be if we elicited his full utility function. Assume that the user’s true utility

function is u, and that the associated optimal strategy is π∗u. Then the user’s utility

loss UL is the difference between his expected utility, under u, of π∗u, and his expected

utility under the recommended strategy π̂:

UL(u) = EUπ∗u(u)− EUπ̂(u).

The regret, or expected utility loss is the expectation of the loss under q(u):

E [UL] =
∫

UL(u)q(u)du.

While computing this integral exactly is impractical — we would need to compute

the regions in which every strategy is optimal — we can approximate it quite easily

using Monte Carlo methods. We simply sample utility functions u from q, use the
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Figure 7.2: Utility Loss

decision tree representing our decision problem to compute the optimal strategy π∗u,

and compute the utility loss for u.

We can bound the number of samples N needed to estimate the regret using the

upper bound on the worst case loss x, the desired threshold for expected utility loss

ε, and the confidence parameter δ, with Chebyshev’s inequality:

N >
x2

2ε2δ
.

ε is the utility loss we are willing to tolerate. It may be different for different appli-

cation domains and different people. δ indicates the required degree of confidence in

our estimate of the expected loss. Thus, N specifies the minimum number of samples

we need to be able to verify (with confidence 1− δ) whether the expected utility loss

does fall below the threshold ε.

It is difficult to find a tight upper bound on the worst case loss x. Fortunately, a

loose bound is often sufficient. Consider the utility function corresponding to the point

ul at the low end of the utility range. (As we start the elicitation process with the

utility space being the [0, 1]n hypercube, this point is at the origin.) As the expected

utility monotonically increases with each utility parameter, we can guarantee that
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the expected utility resulting from following the recommended strategy π̂ will be at

least EUπ̂(ul). The upper bound on the expected utility is the utility of the best

strategy in case our utility function lies at the very high end of the utility range uh,

EUπ∗uh
. Thus, we can easily compute a bound on the worst case loss as the difference

between these two: EUπ∗uh
(uh)− EUπ̂(ul).

The choice of values for the desired threshold for expected utility loss ε and the

confidence parameter δ is very important. The lower the threshold and higher the

confidence parameter, the more questions we can expect to ask on average. On

the other hand, we will also have better guarantees that the final utility loss of our

recommendations really does fall below the desired threshold.

Our definition of regret, or utility loss, UL, bears some similarities to those of

Savage (1951) and Bell (1982) (see Section 3.3.3). In both cases, regret is used to

evaluate a given policy by comparing its utility to another policy that is optimal by

some standard. The difference is that our comparison is done before we observe the

choices made by nature about the event variables in the system. Of course, in our

case, the user’s exact utility function is not known, so we have to rely on estimating

the expected utility loss rather than computing it exactly.

7.4 Choosing the Next Question

One of the important advantages of explicitly modeling our uncertainty over the user’s

utility is that we obtain a simple metric for evaluating possible new utility information,

such as an answer to a utility elicitation question. The value of information measures

the expected improvement in our decision quality derived from incorporating such

new information.

7.4.1 Value of Information

Initially, we have a PDF p over the user’s utilities. Let µ be the mean of U under p,

and π∗ the strategy that is optimal relative to µ.

Consider a standard gamble question of the form: “Which is more preferable: a
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lottery [o>, s, o⊥] or outcome o for sure?”. The information contained in the answer

to such a question translates to evaluating the truth value of a constraint Uo < s (see

Section 3.4.1).

If the user responds that Uo < s, we condition our PDF p, resulting in a new PDF

p<s; this will give us a new mean µ<s, and as a result, a new optimal strategy π∗<s.

Similarly, if he responds that Uo > s, we obtain a PDF p>s with µ>s and associated

optimal strategy π∗>s.

We define the posterior expected utility after asking this question as:

PEU(o, s) = EUπ∗<s
(µ<s)P (Uo < s) + EUπ∗>s

(µ>s)P (Uo > s) (7.1)

This is an average of the expected utilities arising from the two possible answers to

the question, weighted by how likely these two answers are. The value of information

is this expression minus the current expected utility:

VOI(o, s) = PEU(o, s)− EUπ∗(µ) (7.2)

Ideally, we would like to evaluate the value of information of a sequence of utility

questions and minimize the length of the sequence while at the same time maximizing

its value of information. Due to the apparent intractability of this type of fully

general value of information computation, we make the standard approximation and

restrict attention to the myopic value of information — the immediate improvement

in decision quality — as shown in the formula.

We will start our analysis for the case in which the utilities of different outcomes

are probabilistically independent, i.e., the different variables Uo are marginally inde-

pendent in p. We then relax this assumption in Section 7.4.5.

7.4.2 Discretizing the Problem

The first problem we encounter in our search for the optimal split point is that the

utility variables range over a continuous space, so that there are infinitely many

potential split points for each outcome. Fortunately, it turns out that we can restrict

our attention only to a finite number of them.
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Let π be some strategy, and consider EUπ(U) as a function of a single utility

variable Uo′ :

EUπ(uo′) = p(uo′)uo′ +
∑

o6=o′

∫

P (o|π)p(uo|uo′)uoduo (7.3)

= p(uo′)uo′ +
∑

o6=o′

∫

P (o|π)p(uo)uoduo

= p(uo′)uo′ +
∑

o6=o′

P (o|π)Ep[Uo],

where the second equality is due to our independence assumption about utility vari-

ables.

Hence, the expected utility of a given strategy π is a linear function of Uo′ . The

value for the optimal strategy for this problem is, for each value of Uo′ , the maximum

over all strategies π. Thus, it is a piecewise-linear, convex function of Uo′ . We say

that a strategy is viable for o′ if it is optimal for some value of Uo′ . We say that a

particular value s is an intersection point if there are two viable strategies π1 and π2

that achieve the same expected utility at s, i.e., EUπ1(s) = EUπ2(s).

Proposition 7.4.1: The split point with the highest value of information will occur

at one of the intersection points.

Proof: Consider a potential split point s, and let π∗L be the optimal strategy for

the distribution p<s and π∗R be the optimal strategy for the distribution p>s. Let s∗

be the strategy intersection point where EU(π∗L) = EU(π∗R). Let us further assume,

without loss of generality, that s∗ < s. This situation is shown in Figure 7.3.

We want to show that PEU(o, s) ≤ PEU(o, s∗).

First, note that for any a < b < c and any strategy π

EUπ(µ[a,c])P ([a, c])

= P (o | π) · µ[a,c] ·
∫ c

a
p(uo)duo

= P (o | π) ·
∫ c
a p(uo)uoduo
∫ c
a p(uo)duo

·
∫ c

a
p(uo)duo

= P (o | π) ·
∫ c

a
p(uo)uoduo
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= P (o | π) ·
(

∫ b

a
p(uo)uoduo +

∫ c

b
p(uo)uoduo

)

= P (o | π) ·
(
∫ b
a p(uo)uoduo
∫ b
a p(uo)duo

·
∫ b

a
p(uo)duo +

∫ c
b p(uo)uoduo
∫ c
b p(uo)duo

·
∫ c

b
p(uo)duo

)

= P (o | π) ·
(

µ[a,b]P ([a, b]) + µ[b,c]P ([b, c])
)

= EUπ(µ[a,b])P ([a, b]) + EUπ(µ[b,c])P ([b, c])

We therefore have that

EUπ∗
L
(µ<s)P (Uo < s) + EUπ∗

R
(µ>s)P (Uo > s)

= EUπ∗
L
(µ<s∗)P (Uo < s∗) + EUπ∗

L
(µ[s∗,s])P (Uo ∈ [s∗, s])

+ EUπ∗
R
(µ>s)P (Uo > s)

≤ EUπ∗
L
(µ<s∗)P (Uo < s∗) + EUπ∗

R
(µ[s∗,s])P (Uo ∈ [s∗, s])

+ EUπ∗
R
(µ>s)P (Uo > s)

= EUπ∗
L
(µ<s∗)P (Uo < s∗) + EUπ∗

R
(µ>s∗)P (Uo > s∗)

where the inequality is due to the fact that π∗R dominates π∗L for every uo > s∗, and

therefore also for µ[s∗,s].

Now, consider the two strategies π∗<s∗ and π∗>s∗ that are optimal for the distribu-

tions p<s∗ and p>s∗ respectively. These are not necessarily π∗L and π∗R, because the
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mean of p<s∗ , say, might not fall in the part of the region where π∗L is optimal. How-

ever, it is easy to show that π∗<s∗ and π∗>s∗ can only improve the posterior expected

utility. We know that

EUπ∗
L
(µ<s∗) ≤ EUπ∗

<s∗
(µ<s∗)

EUπ∗
R
(µ>s∗) ≤ EUπ∗

>s∗
(µ>s∗)

From this, it follows that:

EUπ∗
L
(µ<s)P (Uo < s) + EUπ∗>s

(µ>s)P (Uo > s)

≤ EUπ∗
<s∗

(µ<s∗)P (Uo < s∗) + EUπ∗
>s∗

(µ>s∗)P (Uo > s∗)

which, when we subtract the term common to all VOI expressions, gives precisely

that VOI(o, s∗) ≥ VOI(o, s).

Thus, we only need to consider those strategy intersection points where the viable

strategies π∗<s∗ and π∗>s∗ intersect at s∗; otherwise, as the proof shows, the strategy

intersection point of these two strategies would have higher value of information.

7.4.3 Finding Strategy Intersection Points

How many strategy intersection points do we have to examine? Suppose we have

N optimal strategies. Let us imagine moving the potential split point s from left to

right over the range of Uo. We can mark an interval boundary whenever the optimal

strategy for the area to the left or the optimal strategy for the area to the right of

our split point changes. Note that once a strategy on the left side changes, it cannot

change back: the mean µ<s of Uo increases monotonically as we widen the region on

the left, and the expected utility for any strategy is a linear function of this mean.

Hence, the linear functions for any pair of strategies can cross at most once. Similarly,

once a strategy on the right side changes, it cannot change back. As each strategy is

optimal on each side at most once, we have at most 2N intervals, and at most 2N −1

candidate split points. Thus, we need to consider only 2N − 1 split points, rather
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Figure 7.4: Finding strategy intersection points

than N 2. Each of these is only feasible, of course, if it is also a strategy intersection

point of the two corresponding strategies.

We can execute this process efficiently using a simple binary search procedure,

which utilizes the fact that we can find intersection points analytically.

First, we need to find the set of viable strategies. We can do this by propagating

optimal strategy segments up the decision tree (Section 7.4.4). The endpoints of the

segments in the piecewise-linear optimal strategy can be found by sorting the viable

strategies by their slopes and computing the intersection points between each pair

of neighbors in the sorted list. We will refer to the set of these segment endpoints

(strategy intersection points on the optimal strategy surface) as T .

Next, we need to find the boundaries of 2N intervals where optimal strategies of

the areas to the left and to the right do not change. Let I be the set of these intervals.

For every optimal strategy segment endpoint t ∈ T , we want to find a point sL(t) > t

such that µ<sL(t) = t and a point sR(t) < t such that µ>sR(t) = t. Assume the point

t is the intersection point between strategies i and j lying on the optimal strategy

surface. Then, the point sL(t) is the boundary point of one of our intervals in I. All
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points s′ between sL(t) and the next boundary point to the left have strategy i as the

optimal strategy for the area [0, s′]; all points s′′ between sL(t) and the next boundary

point to the right have strategy j as the optimal strategy for the area [0, s′′].

We are not guaranteed to find both sL(t) and sR(t) for every t ∈ T ; in fact, a

point sL(t) ∈ [0, 1] such that µ<sL(t) = t does not exist for any t > µ[0,1]. The mean of

a subinterval sharing the left endpoint with its parent interval must be to the left of

the mean of the parent interval. Similarly, a point sR(t) ∈ [0, 1] such that µ>sR(t) = t

does not exist for any t < µ[0,1]. Also, for the two endpoints of the utility function

range we will not be able to find neither sL nor sR, since no interval in [0, 1] of non-

zero length will have either 0 or 1 as its mean. The total number of intervals may be

therefore much smaller than 2N − 1.

Figure 7.4 illustrates this process. We have three viable strategies: π1, π2, and

π3. The set of segment endpoints includes two points: T = {t1, t2}. We need to

find the interval boundary points corresponding to t1 and t2: sL(t1) and sR(t2). Note

that we need not compute the points sL(t2) or sR(t1), since t2 > µ[0,1] and t1 < µ[0,1].

There are three intervals where optimal strategies for the areas to the left and right

do not change: I = {[0, sR(t2)], [sR(t2), sL(t1)], [sL(t1), 1]}. The strategies optimal to

the left and right for all the points in [0, sR(t2)] are π1 and π2; for all the points in

[sR(t2), sL(t1)], π1 and π3; and for all the points in [sL(t1), 1], π2 and π3.

Unfortunately, we cannot compute the positions of the interval boundary points

(our sL’s and sR’s) in closed form. Instead, we use binary search. Each of these points

needs to be approximated only loosely — as long as the ordering of the boundary

points is established, we do not have to know their precise location. First, we compute

the location of each of the boundary points stopping as soon as the we have narrowed

the error margin to a prespecified length. Then, we sort the interval boundary points

by their lower bounds and check if any of the pairs of neighbors in the ordered list

have overlapping error margins. We reduce the binary search threshold and repeat the

search for each of the interval boundary points in the pair until the overlap disappears.

With each of the boundary points, we store the information whether it is the

strategy for the area to the left or right that changes and the numbers of the strategies

optimal in each of the bordering intervals. Thus, we know for every interval which
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two strategies are optimal for the areas to the right and left of every point in the

interval. Then, we can check if the intersection point s∗ between these two strategies

satisfies the condition that π∗<s∗ and π∗>s∗ intersect at s∗. If it does, we add this point

to the list of potential split points.

7.4.4 Number of Optimal Strategies

The result above suggests that the number of VOI computations required is linear

in the number of viable strategies. At first glance, this result might not be very

reassuring. After all, there is an enormous number of strategies: exponential in the

size of the decision tree. Any computation which requires us to consider all of them

is much too expensive in all but the most trivial of decision problems. Fortunately,

the number of viable strategies is exponentially smaller than the total number of

strategies. Indeed, we show that it is linear in the size of the decision tree. Given

that we need to traverse the decision tree every time we use the decision model for

finding an optimal strategy, this cost is very reasonable.

Proposition 7.4.2: The number of strategies that are viable for o is at most the

number of nodes in the decision tree.

Proof: We prove this result by induction on the depth of the tree. For the base case,

a tree of depth 0 consists of a single leaf, where we have only a single strategy. In

this case, the number of nodes is 1, and the number of viable strategies is also 1. For

the inductive case, consider a tree of depth d + 1. Let k be the number of children

of the root, and let `i be the number of nodes in the subtree corresponding to the

ith child. By the inductive hypothesis, the number of viable strategies for the ith

child is at most `i. We will refer to the set of viable strategies at ith child node as Πi

and the optimal strategy at this node as π∗i . Note that the expected utility of π∗i is a

piece-wise linear function for all i.

There are now two cases. Either the root is a max node or an expectation node. In

the first case, the expected utility function EU(Uo) is the maximum of the functions

of the children. In the second case, it is a weighted average of the functions of the

children, where the weights are the probabilities annotating the edges going out of
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the root. In both cases, the function at the root is a piece-wise linear function, with

a number of segments which is at most the total number of segments in the combined

functions. The reason is that the combined function can change from one linear

function to another only at a point where one of the constituent functions changes

from one linear function to another.

In case of a decision node, to compute the expected utility function of the optimal

strategy at the root, we take the max of all viable strategies present at the children

nodes

EUπ∗(Uo) = max{∪iΠi}

where i ranges over the children of the root node. Clearly, the maximum of a set of

linear functions is a piece-wise linear function. The number of segments in such a

function is equal to the number of strategies optimal over some part of the space. If all

functions viable at children nodes are still viable at the root, the number of segments

in the expected utility function at the root will be equal to the total number of

strategies present at the children nodes,
∑k

i=1 |Πi|. Otherwise (i.e., if some of the

functions viable at children nodes are dominated by other functions present at their

“sibling” nodes), this number will be even smaller.

In case of an event node, we take the weighted average of the functions present

at the children nodes. A weighted average of linear functions is itself a linear func-

tion. We can mark a segment boundary every time one of the constituent func-

tions EUπ∗
i
(Uo), 1 ≥ i ≥ k, changes from one linear function to another. For each

i, the number of such changes in EUπ∗
i
(Uo) will be |Πi| − 1. We will encounter

∑k
i=1(|Πi| − 1) such changes (or fewer, if some of the change points coincide) for the

total of
∑k

i=1(|Πi| − 1) + 1 segments. Thus, the number of segments in the combined

function is at most the total number of viable strategies present at the children nodes.

Therefore, the total number of strategies is linear in the size of the decision tree.

Example 7.4.3: Consider the decision tree in Figure 7.5. At each leaf, we have

only one strategy. Its expected utility is a linear function of the utility for the given

outcome. When we move one step up, to the decision node labeled “Abort”, we take
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the max of the expected utilities of strategies present at the children. The resulting

function has at most 2 segments, since every “Abort” node has exactly two children.

At the node labeled “Result”, we take the weighted average of the expected utilities

of the children’s optimal strategies. For the two “Result” nodes in the left subtree,

this results in a piece-wise linear function with at most 3 segments. For the “Result”

node on the right, which has only one child, the number of segments must be equal

to the number of segments at its only child, at most 2. Finally, at the root node

(“Test”), we take the max of the strategies viable at its 2 children. The number of

segments in the resulting function is at most 2+ 3 = 5. (In the example presented in

Figure 7.5 one of the strategies viable at the “Result” node on the right is dominated

by other strategies, so the actual number of segments is 4.) The number of viable

strategies in this entire tree consisting of 12 nodes can be at most 5.

7.4.5 Correlated Outcomes

The assumption that the different utility variables Uo are independent in p(U) is too

strong in many cases. In this section, we consider the more general case of a prior p(U)

which is a multivariate Gaussian with an arbitrary covariance matrix, constrained to

lie within the [0, 1] hypercube.

We use a convenient property of multivariate Gaussians to apply the algorithm

of the previous section with almost no modifications: given any variable Uo′ , the

conditional means of the remaining variables are linear functions of Uo′ . In other

words, in Equation (7.3), although we no longer have that

p(uo | uo′) = p(uo),

we do have that
∫

p(uo | uo′)uoduo = g(uo′)

for some linear function g. Thus, when we are enumerating the viable strategies

for outcome o′, as described in Section 7.4.2, we replace the means of the other Uo

variables with their (linear) conditional means. The resulting function EUπ(Uo′) is
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still a linear function of Uo′ , so that the rest of the analysis remains unchanged.

Unfortunately, there are two problems with this formulation. First, it does not

apply to the case of a mixture of Gaussians, where the mean of one variable is not

a linear function of the other. Second, even if our prior distribution is a multivari-

ate Gaussian, once we condition our distribution on some information Uo′ > s, the

resulting posterior is no longer a multivariate Gaussian.

As we have shown in Section 6.4.2, we can address both these difficulties by ap-

proximating our desired distribution p (conditioned on all of the relevant information)

using a distribution p̂ which is a multivariate Gaussian. Once we have p̂, we compute

the value of information of all possible queries relative to p̂, and pick the best one. We

then condition p (not p̂) on the newly obtained information (see Section 6.4.2), and

continue. We believe that, in many cases, this approximation will give reasonable

estimates of the true value of information. We note that our stopping criterion is

always computed relative to the correct conditional distribution p.

We can extend this approach to the case of a mixture of Gaussians. We use the

same idea of approximating each mixture component as a multivariate Gaussian, and

then using our algorithm above for finding the optimal split point relative to the

approximation.

7.5 Experimental Results

In our experiments we used the dataset described in Section 5.3.2. We ran the tests

separately for every possible value of mother’s age. Due to the small size of the

database, we assumed that the utility function does not change with age and used all

functions in the database to run tests for all ages.

The utility functions in the database were elicited in two different ways: by us-

ing standard gamble (SG, see Section 3.4.1) and visual analog scale (VAS, see Sec-

tion 3.4.3) methods. Due to reported discrepancies between results of these two

methods, we ran all our experiments separately for each of the two sets of utilities.

We used five-fold cross-validation for experiments. Every experiment (one for each

possible value of mother’s age), consisted of 5 runs. Reported results are averages over
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Figure 7.6: Expected and actual utility loss (age 20, SG database)
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Figure 7.7: Expected and actual utility loss (age 25, SG database)
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Figure 7.8: Expected and actual utility loss (age 30, SG database)
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Figure 7.9: Expected and actual utility loss (age 35, SG database)
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Figure 7.10: Expected and actual utility loss (age 40, SG database)
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Figure 7.11: Expected and actual utility loss (age 45, SG database)
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SG avg best worst std. dev.
ε = 0.02 2.0–2.9 1 9 0.8–1.6
ε = 0.01 2.7–4.8 1 24 2.3–4.3

VAS avg best worst std. dev.
ε = 0.02 1.2–3.6 1 13 0.5–1.7
ε = 0.01 1.3–7.6 1 13 0.5–2.6

Table 7.1: Number of questions asked

all runs. The database was divided into 5 subsets. We used four subsets for training

and one for testing. In each run, a different subset served as the test set. Training

consisted of learning the distribution over the utility functions in the training set.

For every utility function in the test set, we simulated adaptive utility elicitation.

It consisted of a sequence of questions. After each question, we recorded the actual

utility loss (i.e., computed with respect to the true utility function) resulting from

following the strategy considered best at this point. We also recorded our estimate of

the utility loss resulting from following this strategy. For every question, we computed

the distance from the chosen split point to the indifference point. Finally, for every

utility function, we kept track of the number of utility elicitation questions considered

to be sufficient by our algorithm, the actual utility loss at the end of the elicitation

process and our loss estimate at that point. We repeated the experiment for two

values of the predicted utility loss parameter ε: 0.01 and 0.02. δ was set to 0.95.

We present the results for an uncorrelated Gaussian; our current database is too

small to allow reliable learning of more complex densities. Figures 7.6, 7.7, 7.8,

7.9, 7.10 and 7.11 show the evolution of predicted and actual utility loss as more

questions are asked. We see that the predicted utility loss starts out quite large, as the

distribution is very broad. It gradually converges to the correct utility loss, and both

gradually converge to zero. The predicted utility loss is usually an overestimate to the

actual utility loss, implying that our algorithm is “safe” in not stopping prematurely.

Interestingly, the actual utility loss for ages 18 through 35 followed an almost identical

curve; the predicted utility loss for all ages was similar. The overall results are

summarized in Tables 7.1, 7.2 and 7.3. The ranges indicate behavior for different

ages.
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SG avg best worst std. dev.
ε = 0.02 0.002–0.009 0 0.19 0.01–0.03
ε = 0.01 0.003–0.005 0 0.05 0.01

VAS avg best worst std. dev.
ε = 0.02 0.0002–0.016 0 0.13 0.001–0.033
ε = 0.01 0.0001–0.006 0 0.12 0.001–0.018

Table 7.2: Utility loss after last question

Q1 Q2 Q3 average over first 15 questions
0.15–0.20 0.09–0.22 0.07–0.26 0.11–0.20

Table 7.3: Distance from indifference point (SG database)

As we can see, the number of questions asked is surprisingly small given the

fact that we have 108 outcomes in the model. It increases slightly as we lower the

threshold, but stays well within the bounds of what is possible in clinical practice. By

comparison, the approach of (Chajewska, Getoor, Norman, and Shahar 1998) applied

to the same decision problem and the same data achieves an average of 7.6 questions

with an average utility loss of 0.016 on the SG database and an average of 5.2 questions

with an average utility loss of 0.034 on the VAS database. With a smaller number of

questions, we achieve a utility loss which is substantially lower. Furthermore, their

approach provides no guarantees about the utility loss of the final recommendation.

Finally, note that the split points our algorithm chooses are usually quite far from

the indifference point (see Section 3.4.1), making the questions cognitively easy.



Chapter 8

Non-cooperative Settings

Consider the problem of trying to predict the future actions of an agent A. In a com-

petitive setting, the ability to predict the opponent’s actions would be very valuable

in the effort to optimize our own decisions.

If A is a rational decision maker, he chooses his actions according to the principle

of maximizing the expected utility. To follow his reasoning, we need to know the

probabilistic model of the domain A uses in his calculations and A’s utility function.

In many cases, the domain model is shared among all players of the game. In some

others, the history of interactions with A will allow us to estimate this model. A’s

utility function is typically much more difficult to acquire. In competitive situations,

the knowledge of the opponent’s utilities may constitute a strategic advantage, so A

may not be willing to disclose such information.

The only information we have about A’s utility function comes from observing his

behavior over time. Using behavioral observations to estimate an agent’s utility func-

tion was proposed by Ng and Russell (2000) in the context of inverse reinforcement

learning in Markov Decision Processes (MDPs). As they show, the agent’s decisions

can be viewed as a set of linear constraints on the space of possible utility (reward)

functions. The set of utility functions consistent with the constraints is infinite. Ng

and Russell propose a set of heuristics that attempt to select one utility function from

within the consistent set.

In our approach, we make use of the notion of the utility function as a random

127
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quantity that is governed by a prior probability distribution. The observations of A’s

actions provide us with additional information, which we can use to condition our

distribution and obtain a more informed posterior (see Chapter 6). Based on that

posterior we can predict future actions of agent A and optimize our own actions to

increase our payoff.

8.1 Asymmetric Games

Recall the bookseller example from Section 1.5. The game is presented in Figure 1.3.

An online bookseller B considers whether to offer a discount to one of his frequent

customers A on a newly published title. If A is willing to buy the book at the full

price, the discount offer would be a mistake. However, if the high price is the only

thing preventing A from buying, it would be better to sell the book at a discount.

We assume that A and B had a chance to interact in the past. Whenever A visits

B’s website, he looks at several books, checks their prices, sometimes reads a review.

Sometimes he buys one or more books. From his choices and browsing patterns, B

acquires some important information. On the one hand, he learns which books A

expects to enjoy (a probabilistic model for a choice made by nature). On the other,

he gains information about A’s utility function.

Learning A’s utility function is one of B’s goals. If he knew it exactly, he would be

able to compute easily the optimal course of action for himself. However, it is rarely

possible or necessary to learn A’s utility function exactly. The observer typically

needs to deal with A in the context of a particular interaction, and learning A’s

utility function is only useful inasmuch as it helps predict A’s actions in that context.

To provide a formal framework for this type of interaction, we consider a particular

type of two-agent decision problem, where the two agents have very different “levels

of awareness.” There is one informed or strategic player B, who is aware of the nature

of the strategic interaction, and one oblivious player A, who does not perceive the

interaction as a game — he assumes that the strategic player follows a predetermined,

randomized strategy (i.e., A treats the other agent’s actions the same way as the

random moves by nature). For example, in the bookseller game, the customer may
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assume that the discount offer is extended to some (randomly selected) percentage

of the website visitors or that it is presented to everybody on a certain percentage of

randomly selected titles. We note that the asymmetry is important in this setting;

if both players attempt to learn, then their anticipation of their mutual learning

strategies might lead to infinite cycles (Fudenberg and Levine 1998; Selten 1991).

We assume that the strategic player B knows exactly the probabilistic model that

A uses. This includes the probabilities of the events governed by nature (such as

A’s enjoyment of a particular book) and the probabilities that the oblivious player A

assigns to B’s moves (such as the chances of getting a discount offer). We also assume

that A treats the game as a one person decision problem and uses the expectimax

algorithm (Section 2.1.2) to compute the strategy he should follow. B is aware of A’s

inaccurate perception of the interaction.

The strategic player can observe the oblivious player’s actions and hopefully learn

something about his opponent’s utility function. He can later use that knowledge

in choosing the optimal actions for himself. This asymmetric type of interaction,

although fairly restricted, arises in a variety of situations.

This framework generalizes the decision problem presented in Chapter 7. There,

the informed player B is a benevolent one, whose goal is to elicit enough information

about the utility function of the oblivious player A so that he can make decisions

for A that are close to optimal. In this case, B sets up a series of questions (or

other tests), to which A responds. A’s utility for the different responses corresponds

to his true utility function. B’s utility does not depend on A’s decisions directly;

A’s responses only provide him with information. After some number of questions, B

makes a decision on A’s behalf; the utility he gets for the various outcomes correspond

exactly to A’s utility function, which he does not know. Thus, the more informed

B is about A’s utility, the better the decisions he can make on A’s behalf, and the

better his own utility.

Our goal is to reach conclusions about the agent’s utility function U based on

observing his actions. This problem is of limited interest if the agent’s utility func-

tion is specific to one particular decision task. Thus, we often assume that the utility

function is derived from more general components that reflect the agent’s general
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preferences regarding various aspects of the situation (Section 3.2). In our bookseller

example, the customer’s overall utility might be a combination of subutility compo-

nents, corresponding to such aspects as: the price he paid, his enjoyment of the book,

or an additional satisfaction from obtaining a bargain. We can acquire information

about the agent’s subutilities in one decision problem, and then apply it in another.

In this case, we assume that the agent’s utility function is linearly additive (see Sec-

tion 3.2.5). In other words, there exists some set of subutility functions, each defined

over the set of values of a single utility attribute, such that for any outcome, the

agent’s utility value is a weighted sum of subutilities of that outcome’s attributes’

values.

More formally, we assume that there exists some set of subutilities u = (u1, . . . , un) ∈
[0, 1]n such that for any leaf L in a decision tree,

U(L) =
n
∑

j=1

αL,juj.

An agent may encounter multiple decision problems, but his utility function is always

composed of the same set of subutilities.

8.2 Learning Utilities by Observing Behavior

As we discussed above, the goal of the informed agent is to learn about the utility

function of the oblivious agent A. In other words, we assume that the values of

parameters u = (u1, . . . , un) which define A’s utility function are unknown. If we

assume that A is an expected utility maximizer, we can derive constraints on A’s

utilities by observing his actions. In this section, we show that A’s decisions can

be used to derive linear constraints on u. Our result is similar to that of Ng and

Russell (2000), but differs in two important ways. First, our linear constraints apply

not only to an MDP, but to a general decision problem represented as a tree. Second,

and more importantly, we provide an alternative solution to the problem of deriving

constraints in cases where we do not observe A’s full strategy (see Section 8.2.2).
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8.2.1 Full Strategy Case

What can we conclude about u by passively observing a utility maximizing player

whose utility function is defined by u? The answer to this question is straightforward

in principle if the optimal strategy π∗ can be observed entirely. In this case, given

the optimality of π∗, we obtain the set of optimality conditions:

∀π∈ΠEU(π∗) ≥ EU(π) (8.1)

where Π is the space of pure strategies for A. Note that Equation (8.1) translates

into a set of linear constraints C on the utility vector u due to the linearity of the

expectation operator. Hence Equation (8.1) defines a polytope U ∗ ⊆ [0, 1]n which

contains all of the possible utility values u consistent with the observed behavior

(Section 6.2).

The problem with using Equation (8.1) in the context of any algorithm is that the

number of strategies π and hence the number of constraints implied by Equation (8.1)

may be extremely large in practice. However, there exists a set of equivalent con-

straints that is exponentially smaller. Recall our discussion of viable strategies in

Section 7.4.2. A strategy is viable if it is optimal over some part of the utility space.

The equivalent set of constraints consists of those that state that the expected util-

ity of the optimal strategy is greater than the expected utility of any other viable

strategy:

∀π∈Π′EU(π∗) ≥ EU(π) (8.2)

where Π′ is the set of all viable strategies. The number of viable strategies is linear

in the size of the decision tree (Section 7.4.4).

We can use the structure of the decision tree to obtain this smaller set constraints.

The basic idea is quite simple: we simulate the backward induction in the decision tree

(Section 2.2.3), deriving the constraints along the way. We define a set of variables

VN representing A’s expected utility at each node N , assuming he acts optimally from

then on. We then define constraints in terms of these VN .
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We start with an empty constraint set C. Working backwards from the leaves,

consider a node N .

• If N is a leaf L, we are given the linear expression VN [u] =
∑n

j=1 αL,juj involving

the utility parameters u1, . . . , un.

• If A perceives N to be a chance node (whether truly a chance node or a deci-

sion node of the informed player), we are given fixed probabilities pN ′ for each

immediate successor (child) N ′ ∈ Ch(N). We can then define VN in terms of

the VN ′ : VN [u] =
∑

N ′∈Ch(N) pN ′VN ′ [u].

• If N is a decision node for A, the observed strategy π∗ tells us which child σ(N)

of N is chosen by the agent. We define VN [u] = Vσ(N)[u], and then add to C
a set of constraints that implies consistency with the observed behavior at N :

VN [u] ≥ VN ′ [u] for all N ′ ∈ Ch(N).

The number of constraints generated in this fashion is linear in the size of the decision

tree — exponentially less than the number of possible deterministic strategies over

the tree, which is the number of inequalities implied by Equation (8.1). Nonetheless,

both formulations describe the same region of the utility space U ∗.

8.2.2 Partial Strategy Case

In most cases, it is unrealistic to assume that π∗ can be observed entirely. Some

parts of the decision tree will never be visited, because some decision leading there

is dominated by another. For example, in the bookseller scenario of Section 1.5, if

A signs up for email notification, B will never learn what would have happened in

the other branch of the decision tree. Even if we have multiple observations of the

agent in the same decision problem, some parts of the decision tree may never be

reached. Therefore, it is critical to have an approach that allows us to deal with

partial strategy observations.

To understand the difficulty from a technical perspective, consider again the back-

ward induction algorithm of Section 8.2.1. In A’s decision nodes we may not know

which of N ’s children was chosen by A. Hence, we cannot determine the expression
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VN [u], nor the associated set of constraints. When the strategy is unobserved, we can

only use the fact that A is rational to conclude that:

VN [u] = max
N ′∈Ch(N)

VN ′ [u]. (8.3)

The difficulty is that Equation (8.3) is non-linear in the subutility variables, leading

to a non-convex region U ∗ of feasible utilities.1 Thus, U∗ can no longer be expressed

using a set of linear inequalities, and in fact, can get exponentially complex. For our

algorithm (below), as well as in the work of (Ng and Russell 2000), it is critical that

our feasible region be described compactly as a set of linear inequalities.

One simple approach is to relax the constraints implied by Equation (8.3) in a

way that is consistent with it yet gives rise to linear constraints. In detail, we derive

(linear) upper and lower bounds on the expression in Equation (8.3), and use these

bounds to specify the induced constraints on u. Recall that each expression VN [u] is

a linear function of the form
∑n

j=1 αN,juj. As the uj’s are non-negative, one possible

relaxation of Equation (8.3) is by replacing it with the two expressions

V N [u] =
n
∑

j=1

max
N ′∈Ch(N)

{αN ′,j} · uj, (8.4)

V N [u] =
n
∑

j=1

min
N ′∈Ch(N)

{αN ′,j} · uj, (8.5)

which are linear in the uj’s. Formally, Equation (8.4) and Equation (8.5) satisfy the

conditions

V N [u] ≤ VN [u] ≤ V N [u], (8.6)

and can hence be used to define relaxed constraints in a modified algorithm.

Our tree propagation algorithm stores two different expressions — one lower and

1In fact, the induced constraints are disjunctive. To see that, assume N has two children N1 and
N2. In the part of the utility space where N1 is preferred to N2, we have that VN1

[u] ≥ VN2
[u] is in

C, but the constraints further up the tree involve VN1
; in the other part of the space, we have the

converse. In either case, the set U∗ of feasible utilities is a non-convex region.
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one upper bound — at each node of the tree. The propagation of these expressions

is similar to the backward induction algorithm of Section 8.2.1, replacing VN [u] with

its upper or lower bound, as follows.

• At each leaf L, we define V N [u] = V N [u] =
∑n

j=1 αL,juj.

• For the node that A perceives to be a chance node, we take expectation for

both V and V , in the obvious way.

V N [u] =
∑

N ′∈Ch(N)

pN ′V N ′ [u]

V N [u] =
∑

N ′∈Ch(N)

pN ′V N ′ [u].

• At each observed decision node with choice σ(N), we define

V N [u] = V σ(N)[u]; V N [u] = V σ(N)[u]

and then add to the constraint set C the constraints:

∀N ′ ∈ Ch(N) : V N [u] ≥ V N ′ [u].

• At each unobserved decision node, we define V j[u] and V j[u] using Equa-

tion (8.4) and Equation (8.5).

After traversing the entire tree, the constraints in C define a convex region UC
which is a superset of the true region of feasible utilities, U ∗.

8.3 Representing the Posterior Distribution

The constraints generated by behavior observations (Section 8.2) specify a region of

feasible utility functions. We can use this region to derive an estimate of the true

utility function, e.g., by finding the centroid of the region, or using the heuristics

of (Ng and Russell 2000). However, any particular choice is, by force, somewhat
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arbitrary, and is unlikely to be the agent’s actual utility function. Indeed, in the case

where we are using the relaxed constraints as the basis for our estimate, we are only

guaranteed that our estimate will be contained in UC, not in U∗; in other words, our

estimate may not even be consistent with the observed behavior of A.

A more robust approach is to explicitly represent our uncertainty about A’s utility

function, by maintaining a probability distribution over this space as described in

Chapter 4 and Chapter 6. In other words, we view the subutilities u as a continuous-

valued random vector, and use a probability density function (PDF) p(u) to represent

our subjective beliefs about its possible values. As shown in Chapter 5, we can

obtain p by applying density estimation techniques to a database of utility functions

of many agents. The resulting distribution is an estimate of the utility functions in

the population, and can be used as a prior distribution over the utility function of a

newly encountered agent.

Our observations of the agent’s actions are evidence regarding u. Certain utility

functions u are consistent with the agent’s actions, whereas others are not. We can

condition our prior p(u) on this evidence, to derive a more informed posterior q(u)

(see Section 6.5). We can use the posterior distribution as the basis for reasoning

about the future behavior of A, e.g., by using the posterior mean of the distribution,

as an alternative to the utility estimate proposed by Ng and Russell. We can also

generate samples u(t) from the posterior distribution q(u). As we discuss in the next

section, a set of samples from q(u) is substantially more useful than the constraints

specifying the feasible set, and also more useful than a single point estimate of the

agent’s utility.

Note that these samples come from the distribution p(u) constrained to UC. In

the case where we have fully observed strategies, and UC = U∗, this distribution is

q(u). In the case where we observe only partial trajectories, our points u(t) are in

UC but may not be in U∗. However, we can test each sample utility function u(t), to

see whether it is compatible with A’s observed behavior, and reject the ones that are

not. This elimination can be realized by explicitly solving the decision problem for

the sample utility values and checking their consistency with the observed behavior.

Note that we are using the convex set UC merely as a computational tool to construct
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a Markov chain (Section 6.5). However, we have no guarantees about the fraction of

points that will be rejected in the subsequent selection process. (See Section 8.5 for

some empirical results.)

8.4 Acting Optimally

The set of samples generated from the posterior density q(u) may be useful for several

purposes. First, it could be used to approximate the posterior mean u∗, simply by

averaging the sample points u(t). The mean is a point estimate of agent A’s utility. It

can be used as an alternative to the point estimate provided by the approach of Ng and

Russell. Rather than using heuristics to select among the otherwise indistinguishable

elements of U∗, it uses the prior density p(u).

It is important to emphasize the difference between partial and full strategy ob-

servations in the context of selecting a point estimate. As we mentioned above, the

region U∗ is typically non-convex for partial observations. There is no guarantee that

the mean of the distribution over this region is itself in the region. Thus, the posterior

mean we compute might not itself be consistent with A’s observed behavior.

Moreover, a single point u∗ loses the information concerning our certainty about

the estimate. This information might be critical in a situation where the agent B

needs to act based on his estimate of A’s future behavior. An action that might be

optimal with respect to A’s behavior if his utility is u∗ might be highly suboptimal

relative to slightly different utilities. Therefore B’s response should be very different

is he is fairly confident that A’s utility is around u∗, than if there is high potential

variability.

A more robust approach for B is to try and plan his actions, explicitly taking

into consideration his uncertainty about A’s utility function. While this approach is

infeasible relative to the entire distribution q(u), we can use the samples from the

distribution as a computationally convenient approximation of the posterior q(u). We

now show how these samples can be used effectively to optimize B’s behavior, in the

context of the asymmetric games discussed in Section 8.1.

An appropriate formal framework for representing B’s decision problem is similar
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to a game with imperfect information described in Section 2.2.4 (the difference is that

A perceives the interaction as a one-player decision problem), where an initial move of

“nature” determines the utility function of A according to the probability distribution

q(u). To avoid dealing with infinite trees, we use our samples u(1), . . . ,u(K) as a

discrete set of initial states, representing our approximation to q(u). Nature therefore

selects each of our K samples with probability 1/K. Each choice u(k) is associated

with a first-level subtree Tk, which is precisely our original game tree, but using u(k)

to specify the subutility variables for A.

The informed agent B does not observe the choice of nature, and hence does not

know his position in the game tree. Formally, there is a collection of information

sets, representing B’s uncertainty in this case. Recall that an information set is a

collection of nodes such that the same player makes a decision at each of these nodes

and the same moves are available to him at each of these nodes (Section 2.2.4). Each

information set contains a set of nodes among which the player cannot distinguish.

In this case, each information set will contain K nodes — one from each first-level

subtree Tk — the set of nodes whose path (aside from the initial nature move) is the

same.

Figure 8.4 shows the expanded tree for the bookseller example of Section 1.5. At

the root, nature makes a choice about A’s utility function. First level subtrees are

identical except for the utility values at the leaves. B’s decision nodes are filled in

different colors to distinguish between the two information sets. The nodes filled

in grey belong to the information set B finds himself in when he discovers that A

signed up for the e-mail service. The black ones belong to the other information set,

corresponding to the situation when A refused the service.

8.4.1 Oblivious Agent’s Strategy Computation

Given the asymmetric information, players A and B have different perspectives on

the resulting game. The oblivious agent A thinks he is playing a single-player game.

He assumes that the actions of B are, like nature moves, chosen according to some

known distribution. The agent A also knows his own utility function. Hence, from A’s
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A’s move               B’s move A’s move nature’s movenature’s move

OPPONENT’S UTILITY FUNCTION
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no
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Figure 8.1: Information sets for B in the bookseller example
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perspective, the game reduces to a set of single-player decision trees, each of which

can be solved in isolation by the backward induction (expectimax) algorithm.

More precisely, at each leaf L, we are given the utility values vAL for the oblivious

player. The utility values will depend on the choice of u(k), where Tk is the subtree in

which L is found. At each node N that A perceives to be a chance node (including

B’s decision nodes), we define

vAN =
∑

N ′∈Ch(N)

pN ′vN ′ .

At each decision node N for A, he maximizes his benefit given his complete knowledge

of the position in the tree by choosing the best successor node σ(N):

σ(N) = arg max
N ′∈Ch(N)

(vAN ′); vAN = vAσ(N).

8.4.2 Informed Agent’s Strategy Computation

The situation for the informed agent is more complex. Since B is aware of the

structure of the game tree and of the utility function u(k) in each subtree Tk, he can

predict A’s actions in each subtree; however, he does not know which subtree he is

actually in. As B cannot distinguish between the nodes in an information set, he

must choose the same action in each of them. To optimize his strategy, he must

compute the expected utility of each of his actions at each information set, where the

expectation is taken relative to the possible utility values for A.

Moreover, B, being able to predict A’s behavior in each subtree Tk, can conclude

that certain actions are incompatible with u(k). In this case, by the time he gets

to an information set, he might be able to eliminate nodes inconsistent with the

assumption of rationality for A. His choice of action should be optimal relative only

to the remaining consistent nodes.

Formally, the optimal strategy for agent B can be computed using the following

algorithm. The treatment for leaves and chance nodes is obvious. At each leaf L, we
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are given the utility value vBL for player B. At each chance node N , we define

vBN =
∑

N ′∈Ch(N)

pN ′vBN .

Now, let N be a decision node for the oblivious agent A, and let σ(N) be the successor

chosen by A at this node, in the optimal strategy for A. B can predict A’s action at

each node; hence, he knows that vBN = vBσ(N) (even though he may not know that he

is at N).

The most complex case is a decision node N for the informed agent B. He has

to select an action that maximizes his expected utility given his uncertainty about

his exact location in the tree. We define I = {N1, . . . , NK} to be the set of nodes in

N ’s information set. Consider each node Nk ∈ I. If the path from the root to Nk

contains a node N ′ of agent A for which σ(N ′) is not on the path to Nk, eliminate

Nk from I. We will call the updated information set I ′. Now, consider each decision

d available at the nodes in N ’s information set, and let ρ(Nk, d) be the node reached

from Nk by taking the decision d. We define the expected value of decision d

EV(d) =
1

|I ′|
∑

Nk∈I′
vBρ(Nk,d)

.

B chooses the action d∗ = argmaxEV(d), so that we define

vBNk
= vBρ(Nk,d∗)

for every Nk ∈ I ′.
The algorithm for computing the optimal strategy for agent B is shown in Fig-

ure 8.2.

At the end of each game in our repeated interaction, A’s observed behavior in

that game is used to define new constraints, which are added to the constraint set C
guiding the selection of sampled utility functions for the next interaction.

The strategic player should apply the strategy optimization algorithm described

above at the beginning of each particular instance of a repeated game. The dynamic
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Traverse the tree bottom-up computing each node’s N value vBN
for the strategic player B:

Leaf node: vBN is given
Chance node: vBN =

∑

N ′∈Ch(N) p(N
′)vBN ′

A’s decision node: vBN = vBσ(N) (σ(N) = argmaxN ′∈Ch(N)(v
A
N ′))

B’s decision node:
for all nodes Nk in B’s information set I

check consistency of u(k) with A’s behavior on path to Nk

if not consistent, eliminate Nk from I forming I ′

for each decision d available for nodes in I ′

EV(d) = 1
|I′|

∑

Nk∈I′ v
B
ρ(Nk,d)

where ρ(Nk, d) is the node reached from Nk by taking d
choose d∗ = argmaxEV(d)
vBNk

= vBρ(Nk,d∗)
for all Nk ∈ I ′

Figure 8.2: B’s strategy computation

strategy update at an intermediate step of a game instance is not necessary, since the

subtrees with utility functions incompatible with A’s behavior in the current game

are eliminated at each step.

Maintaining an Adequate Number of Samples

We note that B is gaining information about A’s utility function in two places. At

the end of each game in our repeated interaction, A’s observed behavior in that game

is used to define constraints, which guide the selection of sampled utility functions

for the next interaction. And during the course of each interaction, sampled points

that were generated based on the previously observed constraints are eliminated, as

being incompatible with A’s observed behavior in this game.

In effect, these two procedures are performing the same operation. The only dif-

ference, in the algorithm as we presented it, is that we only generate new candidate

samples between interactions. However, even this difference is merely a design deci-

sion; if, during the course of a game, B ends up eliminating a large number of his

candidate utility functions for A, it is advisable to generate additional ones (otherwise
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B can make decisions based on overly restrictive assumptions about A’s utilities). In

this case, we can simply apply the same approach at this intermediate point. We add

to our previous constraint set the constraints derived from A’s behavior in the game

so far, assuming that no actions were observed at any of the nodes not yet reached in

the game; we then use the MCMC algorithm of Section 6.5 with this more restricted

constraint set to generate a new set of candidate utility functions for A, with which

we can continue the game.

8.5 Experimental Results

To test the described approach in practice, we implemented a simulation of the book-

seller example described above. This game has 5 subutility variables, shown in Fig-

ure 1.3, so u is a five-dimensional vector. The game is played repeatedly, with each

repetition having different parameters: item price (full and discounted), and proba-

bility that the user will enjoy the book. This scenario reflects a situation where the

user enters the web-site of the bookseller repeatedly; each time he is confronted with

a different book at a different price. A practical advantage of this experimental design

is that the constraints on the utilities change slightly during each repetition of the

game, providing additional information about the set U ∗.
We experimented both with fully observed and partially observed strategies. In

both cases, we simulated a sequence of randomly generated instances of the bookseller

game. For each instance we formulated an incremental set of linear constraints derived

from the play of the game. In the fully observed case, we used A’s true full strategy.

In the partially observed case, we used the “trajectory” observed in the actual play

of the game. After adding each new set of constraints for the observed instances, we

ran the MCMC algorithm of Section 6.5 to produce a posterior mean estimate u∗ of

the customer’s utility function. We used a burn-in phase of 10,000 steps, to allow

convergence to the stationary distribution; afterwards, we ran the Markov chain for

100,000 steps, selecting samples at intervals of 10. (These parameters were selected

after we experimentally determined they are sufficient to adequately cover the space.)
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Figure 8.3: Fraction of MCMC samples within U ∗

First, we considered the behavior of our MCMC algorithm.2 In the partially

observable case, the MCMC samples are generated from the relaxation UC. These

samples are not necessarily consistent with A’s behavior, so we tested each generated

sample for consistency with observed behavior, ensuring that our actual sample set

contains only samples from U ∗. In Figure 8.3, we show the fraction of the generated

samples in UC that are also in U ∗. As can be seen, the fraction of sample points that

are preserved is relatively large, and approaches one as the number of steps increases.

We suspect that this improvement is due to the fact that observations later in the

learning process help compensate for over-relaxation in the early periods.

Next, we tested the performance of our overall learning framework. We simulated

the bookseller’s interactions with 30 customers. The results we present here are av-

eraged over all customers. For each customer, we sampled a utility function from

our prior p(u) and generated 20 game instances to serve as test cases. The book-

seller never observed the customers’ behavior in test games — they were used only to

measure the accuracy of our predictions. Each customer’s interaction with the book-

seller consisted of a sequence of randomly generated game instances. At each step

(consisting of two game instances), we collected the bookseller’s observations of the

customer’s behavior in the form of constraints. After adding these new constraints

2Some of the results specific to that algorithm are presented in Section 6.6.
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Figure 8.4: Estimation error for fully observed strategies
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Figure 8.6: Realized utility for B as a function of the number of observations

to the constraint set, we used the MCMC algorithm to produce a new set of samples

and a posterior mean estimate u∗ of the customer’s utility function. We compared

this mean estimate with A’s true utility function u. We also computed B’s prediction

(based on the entire set of samples) of the customer’s behavior on the test cases and

compared it with A’s true behavior. Finally, we computed the best strategy for B

in test games and recorded the utility he would receive if these games were actually

played. We also recorded the utility resulting from behaving optimally (i.e., given the

complete knowledge of A’s utility function).

Figure 8.4 and Figure 8.5 show the error as the number of observed game instances

increases, for the fully and partially observable case. In both plots, the x axis is the

number of observed game instances. The solid curve represents the average Euclidean

distance between the true utility function u and the posterior mean estimate u∗. The

dotted curve is the strategy difference: the average number of states with deviating

decisions between the strategy we predicted based on u∗ (applied to 20 game instances

we did not observe) and π∗ — the best strategy for u. We also show the variance as

error bars.

We can see that the errors decrease drastically over time. In both cases, the error

in the utilities remains bounded away from zero (at about 0.22) whereas the error in

the strategies goes to zero. This can be explained by the fact that there will always
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be some residual uncertainty about the utilities that cannot be resolved by strategy

observations. Insofar as these ambiguities lead to different behavior, however, we will

eventually detect them and hence identify the optimal strategy π∗ asymptotically. In

the partially observable case the strategy prediction error takes considerably longer

(requires more observations) to converge to zero.

Finally, Figure 8.6 shows the results for the optimized game play from the per-

spective of the informed player B. The graph shows the average utility B derives

from playing a set of 20 games as a function of the number of games observed up to

that point. We can see that B’s performance improves over time. The dotted line

indicates the optimal realizable utility if the true utility of A were known and is used

as a benchmark. The fact that the actual utility approaches the benchmark indicates

that the strategy of A is eventually predicted with high accuracy.



Chapter 9

Conclusions

9.1 Summary

This thesis extends the traditional framework of decision theory to the case in which

we have some uncertainty over utility information. Using probability density functions

to represent our beliefs about an agent’s utilities allows us to deal in a principled way

with the lack of completeness and precision inherent in utility assessments.

The probabilistic framework has many advantages. It helps us utilize any prior

knowledge we may have. It provides us with many tools, such as expectation and

value of information. We can learn a model of utility functions in a population of

agents and use it as a starting point in our interactions with a new agent about whose

utility we have no information. We can update our current belief about an agent’s

utilities by conditioning that model on new information we acquire in the course of

the interaction. We can compute the optimal course of actions in both cooperative

and competitive situations with respect to our current utility information, no matter

how incomplete and imprecise.

We have shown the usefulness of our probabilistic representation in two specific

contexts: in utility elicitation for a decision support system and in a two-player game

in which one agent has very fragmentary information about the other’s utilities.

147
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9.1.1 Density Estimation and Structure Discovery

In Chapter 4 we presented a probabilistic model of the utility functions in a popula-

tion of users. This model is designed to encode the structure of the utility functions

in different subgroups of our target population. It accommodates a wide range of

possible factorizations, including those corresponding to additive, conditionally addi-

tive, and generalized additive independence. At the same time, the model encodes a

density function over utility values.

In Chapter 5 we presented an algorithm for learning such a probabilistic model.

Our approach uses Bayesian learning techniques, and utilizes some of the same prin-

ciples that have been used successfully in structure search for probabilistic models.

This approach allows us to discover the factorization structure of the utility functions

appropriate for a given domain.

Our approach is significantly more expressive than the naive linear-regression ap-

proach commonly used in the literature. First, it allows more general notions than

simple additive independence; these are far more realistic assumption in many do-

mains. Second, it explicitly accounts for different clusters of users that may use

different decompositions. Indeed, our approach discovers interesting structure in the

prenatal diagnosis domain of (Kuppermann, Shiboski, Feeny, Elkin, and Washington

1997), where the traditional linear regression model failed to do so.

The statistical learning perspective also has other benefits. By learning a statis-

tical model of utilities in the population, we are able to associate a “confidence” in

our assessment of an individual’s utility: if it is extremely unlikely given our model,

perhaps fatigue or some other source of noise interfered with the elicitation process.

We can also use the model to “smooth” our estimates in a user’s utility function,

reducing the effects of noise. Finally and most importantly, we can use this statistical

model as a starting point in our interactions with individual users.

9.1.2 Adaptive Utility Elicitation

In Chapter 7 we presented a new approach for making decisions based on limited

utility information, and for targeting our utility elicitation process so as to lead to



9.1. SUMMARY 149

a good decision using a small number of questions. Our approach is based on main-

taining a probability distribution over possible utility values of the user, and using

value of information for deciding which utility elicitation question will best help us

in making rational decisions. The algorithm we described allows us to perform these

computations efficiently.

Our results suggest that our approach can make utility elicitation substantially

easier for users of the decision model. In our simulated utility elicitation process, in

most cases the questions our algorithm has chosen to ask were not in the immediate

vicinity of the user’s indifference point, thus making the task much easier cognitively.

Furthermore, we have seen that our method substantially reduces the overall number

of questions we have to ask before a good decision can be made; often, the number

is as small as two or three, with a very small utility loss. Indeed, one might expect

that the overall decision quality will be better, because our method allows us to avoid

errors resulting from the fatigue caused by the utility elicitation process.

9.1.3 Non-cooperative Settings

In Chapter 8, we presented a new algorithm to learn the utility function of an agent A

who acts in a sequential decision problem. This inference allows us to solicit utilities

simply by observation. It may be used in an asymmetric two-agent setting, with the

informed agent optimizing his actions relative to his uncertainty about the utility of

the oblivious agent A.

Our approach consists of two parts: first, we use the observations to formulate

a set of linear constraints on the utility space. Second, we use these constraints to

transform a given prior distribution over utilities into a more informative posterior.

We can then obtain “candidate” utility functions for A by generating samples from

this posterior distribution. These samples can be used to compute the mean of the

posterior, to obtain a point estimate of the agent’s utility function. They can also be

used as an estimate of the posterior distribution as a whole, capturing our uncertainty

about A’s utility. As we have shown, these samples are particularly useful in providing

a feasible algorithm for the two-agent asymmetric game.
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9.2 Related Work

Utility modeling originated as a part of the field of decision theory and was developed

mainly by economists (Chapter 3). The relevance of their results for Artificial Intel-

ligence was a largely unexplored topic for a long time. In the last few years, however,

as the field of probabilistic reasoning began finding applications in real-world do-

mains, it became apparent that utility modeling is a necessary component of modern

decision-theoretic expert systems. The interest in utility modeling, utility elicitation

and their relevance for decision making began to grow. Several researchers’ ideas are

particularly relevant to the work presented in this thesis.

In this section we review the related work in the areas of utility modeling, utility

elicitation and acquiring utility information by observing an agent’s behavior. We

contrast this work with our own approach described in Chapters 4, 7, and 8, respec-

tively.

9.2.1 Utility Modeling

Representing Structure

The role of structure in the utility function representation was recently analyzed by

Bacchus and Grove (1995). They discuss the reduction in the size of the utility repre-

sentation due to various independence properties between utility attributes and note

that the properties offering the largest gains in representation size (additive indepen-

dence, mutual utility independence) are rarely present in real world domains. They

suggest that conditional additive independence (CAI) is likely to be a more realis-

tic assumption in many situations while still offering a useful decomposition. They

prove that conditional additive independence satisfies the graphoid axioms defined

by Pearl (1988) for probabilistic independence properties. Thus, utility functions

exhibiting CAI can be represented using undirected graphical models with vertex

separation corresponding to additive independence. Bacchus and Grove also define a

new property, a generalized additive independence (Section 3.2.5), which generalizes

the notion of conditional additive independence to the case of overlapping subsets of
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utility attributes.

A different view of utility function structure was presented by Shoham (1997a,

1997b). His work attempts to change the concepts of a utility function, utility inde-

pendence and conditional utility to match the properties of their probabilistic coun-

terparts in the hope of exploiting existing techniques which allow us to represent and

reason about probabilities efficiently.

He concentrates on a special subset of purely additive utility functions which he

calls TIOLI. TIOLI utility functions are defined over binary attributes (each with

domain {0, 1}) V = V1, V2, . . . , Vm. By definition, a utility function is TIOLI if it

decomposes as U(V) =
∑m

i=1 kiVi for some constants k1, k2, . . . , km. If the constants

are scaled to lie in the interval [0, 1] and sum up to 1, the utility function acquires

properties of a probability distribution, albeit applied to utility attributes rather

than to events. He shows that any utility function U can be converted to TIOLI

form U ′. Assuming the set of outcomes (states) O in the original space is ordered

according to U and U is normalized, we simply create a new set of utility attributes

W, such that U ′(W1) = U(o1), U
′(W2) = U(o2) − U(o1), . . . , U

′(Wm) = U(om) −
U(om−1), U

′(Wm+1) = 1−U(om). It can be easily seen that in this simple conversion

the number of new utility attributes is the same as the number of outcomes. Some

structured utility functions can be converted to TIOLI form using a smaller number

of attributes.

This new formulation allows us to redefine some of the old notions of utility theory.

Note that the new set of attributesW allows marginalization — it becomes meaning-

ful to ask for a utility of a single attribute or (some) subsets of attributes. The notion

of conditional utility can now be defined analogously to conditional probability and

utility independence analogously to probabilistic independence. Thus, we can create

utility networks, similar to Bayesian networks, where state variables are replaced by

utility attributes.

It is unclear, however, how often we can take advantage of TIOLI representation

while keeping the number of utility attributes to a reasonable number. As we have

argued repeatedly in this thesis, the representation size of the utility function is

critical in many real-world domains. It would be useful to be able to determine what
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is the smallest number of attributes W required to represent a given utility function

in TIOLI form.

This work was further extended by La Mura and Shoham (1999). Their goal is

to find a representation of a probability function and a utility function for a given

decision problem which would allow them to decompose the expected utility func-

tion. The form of the utility function they focus on is a multiplicative version of

TIOLI, in which the contributions of different attributes to the utility of an outcome

are multiplied rather than added. This new type of utility independence (called u-

independence) gives rise to a graphical representation, an expected utility network and

an associated inference mechanism, which is modular in probabilities, utilities and

expected utilities.

A different approach to representing structured utility functions was taken by

Boutilier and his collaborators (Boutilier, Brafman, Geib, and Poole 1997; Boutilier,

Brafman, Hoos, and Poole 1999; Boutilier, Bacchus, and Brafman 2001). They started

by creating a graphical representation for preference structures (ordinal rankings of

outcomes). Recall that in the case of full certainty about the state variables, we do

not need utility functions — all that is required for reaching optimal decisions is a

preference ordering a given user has over problem outcomes. Preference modeling

is somewhat simpler than utility modeling, since no numerical values are involved.

Preferences are also easier to elicit, since people find direct comparisons involving

two outcomes relatively easy. However, some of the issues making utility modeling

challenging remain, among them the need for structure to reduce the size of the

representation.

Boutilier et al. (1999) suggest a new graphical representation called conditional

preference networks, or CP-networks for preference structures. The network structure

is based on preference independence and conditional preference independence prop-

erties among preference attributes (Section 3.2.3). Specifically, for all nodes in this

directed graph, an attribute Vi corresponding to a given node is conditionally prefer-

entially independent of all other attributes except its parent attributes Pa(Vi) given

the set of parent attributes Pa(Vi). Unfortunately, such a structure is not always

sufficient to recreate a total ordering among preference attributes — there are cases
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in which we cannot determine whether one outcome is preferred to another by doing

inference in the CP-network. Thus, it is not always possible to determine the optimal

course of action based on the information contained in the network. The authors

specify an algorithm to determine dominance in cases where it is possible.

In a recent paper Boutilier et al. (2001) propose a new formalism, UCP-networks,

which can be viewed as an extension of the CP-network model that allows one to

represent quantitative utility information along with the simple preference ordering.

A UCP-network is a CP-network annotated with utility factors. A utility factor for

a set of utility attributes X is a function assigning a numerical value to every instan-

tiation x of the attributes in X. Every node in a UCP-network has an associated

utility factor over the attribute Vi corresponding to that node and its parent attributes

Pa(Vi). Utility factors in a UCP-network over attributes Vi, V2, . . . , Vm satisfy the

following property: U(V) =
∑

i fi(Vi, Pa(Vi)). Note that this property implies that

every UCP-network specifies a generalized additive decomposition of the underlying

utility function U . However, the acyclicity of the underlying directed network means

that not every generalized additive structure can be represented by a UCP-network.

Among those that can, not every structure satisfies the conditional preference inde-

pendence properties required by the underlying CP-network. The main benefits of

this representation lie in the efficiency of the algorithms it supports: all dominance

queries are guaranteed to produce an answer and this answer can be found in time

linear in the size of the network. Similarly, finding the outcome with the highest

utility value requires only one pass through the network.

The representation of structured utility functions presented in this thesis follows

that of Bacchus and Grove (1995) by concentrating on conditional additive and gen-

eralized additive utility functions. Our empirical results support (albeit on a sin-

gle domain) their hypothesis that these independence assumptions, less strict than

pure additive or mutual utility independence, are in fact applicable to real-world

domains. The sets of utility function structures that can be represented by utility

networks (Shoham 1997a) or UCP-networks (Boutilier, Bacchus, and Brafman 2001)

are proper subsets of generalized additive structures that we can handle in our frame-

work. None of the alternative formalisms have associated learning algorithms that
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allow discovering the appropriate structure from data.

Distribution over Utilities

The idea of representing the uncertainty over utility information in a probabilis-

tic form is not commonly used in the literature. It was introduced by Jimison et

al. (1992). Their motivation was similar to ours. The idea was introduced in the con-

text of a medical decision support system, similar to the setting in which we defined

our adaptive utility elicitation algorithm. Surprisingly, this simple yet powerful idea

was not much further developed until now.

The main goal of the work of Jimison and her collaborators was to automate

the process of producing explanations of patient-specific recommendations generated

by a decision support system. They suggested treating utilities as random variables

and explicitly representing the uncertainty over utility information. In their model,

the distribution over utilities is assumed to depend on several environmental variables

such as the patient’s occupation and age. The authors’ intuition is that utility depends

on lifestyle and experience. For example, they assume that an older patient with

largely sedentary lifestyle will not mind a decrease in his or her physical capabilities

as much as a young, physically active one. The authors point out that the distribution

over utility functions should be based on data from large patient databases, but do

not give a learning algorithm they would use to acquire such a distribution. As

the information regarding the patient’s age, occupation and lifestyle is acquired, the

utility values are conditioned on it. The authors do not provide the details of the

conditioning procedure or the assumptions made about the type of the distribution

over the utility function. The assessment questions (most of them regarding event

variables; utility elicitation is considered very costly and rarely used) are ranked by

their value of information. The questioning ends when there are no more questions

whose values exceed their costs. The mean of the posterior distribution is used to

compute the optimal sequence of decisions.

Similarly, Jameson et al. (1995) assumed a probability distribution over a system’s

belief about user’s preferences in the context of the software system called Pracma,

which was designed to advise users on the purchase of a used car. They represented
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this distribution in a Bayesian network with state variables corresponding to util-

ity attributes. The conditional probability independence properties encoded in the

network represent the (probabilistic) correlations between beliefs about utilities of

different attributes. The utility attributes in their system form a hierarchical struc-

ture with lower-level attributes contributing to the utilities of attributes at higher

levels of the hierarchy. The functional form of these contributions (usually additive)

is assumed to be known, although the exact parameters are not known precisely; the

beliefs about the values of these parameters are encoded by the Bayesian network to-

gether with the beliefs about the utility values of individual attributes. The authors

do not discuss the process of acquiring the probabilistic model of utilities.

As far as we are aware, no work other than ours attempts to integrate the repre-

sentation of the uncertainty over utility values with uncertainty over utility function

structure.

Model Refinement

In our work, we have assumed that the decision model for a given domain and the

choice of the utility function attributes modeled are fixed ahead of time. In some

cases, however, the difficulty of utility elicitation may be caused by the use of a

model which is too simple to represent the application domain adequately. It may

be difficult, for example, to assess the utility of an outcome involving pregnancy loss

if the attribute “future pregnancy” is not modeled. In such cases, it is possible to

reason about the value of extending (or refining) the model by introducing additional

variables which will help in the elicitation process. We have not explored model

refinement in this thesis; however, the subject is closely related to our work and the

tools used are similar to the ones we apply to utility modeling in our framework.

Heckerman and Jimison (1989) suggest using value of information to decide whether

or not a given probability or utility value should be reassessed by introducing new

conditioning variables. The decision maker from whom the values are elicited is will-

ing to provide a point estimate for the given variable, but is not confident that this

value precisely reflects his beliefs or preferences. According to the proposed method,

he is asked to specify a probability distribution over the variable in question. He also
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needs to assess the cost of refining the model, including specifying new correlated vari-

ables, assessing conditional probabilities (or conditional utility functions) for every

instantiation of these variables and, in some cases, the cost of a procedure designed

to find the values of these variables. The authors point out that, in simple decision

problems, the decision whether or not to refine the model is usually intuitively ob-

vious. They assume that their method will be useful when the number of variables

is large and the resolution of assessment trade-offs more complicated. However, it is

hard to imagine the decision maker to be able to estimate to any reasonable precision

either the distribution over possible values of the given variable or the cost associated

with the further assessment.

Estimating the value of refining a decision model was further explored by Poh

and Horvitz (1993). One of the refinement types they consider is a preference refine-

ment. They assume that in some cases we will only know that the values of utility

parameters fall within a specific interval. Assuming a given distribution (uniform in

their example) the value of utility refinement (i.e., of finding a precise value for the

parameter) is the expected utility of the best decision given that knowledge minus the

expected utility of the best decision computed for the means of every utility interval.

It is not discussed how we can acquire the precise utility values. The refinements are

carried out in the order of decreasing value (the value of refinement is its value of

information minus the cost).

9.2.2 Utility Elicitation

Certainty Case

Jameson et al. (1995) and Linden et al. (1997) investigated the problem of eliciting

partial utility models and reasoning with such models in case of certainty. They are

interested in developing software agents which could function as personal assistants in

tasks such as shopping and making airline reservations on the Web. They argue that

the behavior of such agents should resemble that of a human assistant: in the course

of the interaction, different options should be suggested to the user for evaluation,
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even before the agent is confident about his knowledge of the user’s preference struc-

ture. As the user evaluates suggested options, the agent’s knowledge of the user’s

preferences develops and the subsequent options will more closely match the user’s

wishes. Thus, the preference elicitation process is interleaved with the presentation

of specific options. Note that assessment is not always conducted in a straightfor-

ward manner: it may include both direct elicitation questions and indirect evaluation

questions related to a specific option which had been presented to the user. This

framework is called evaluation-oriented information provision in (Jameson, Schäfer,

Simons, and Weis 1995) and candidate/critique model in (Linden, Hanks, and Lesh

1997).

In Pracma (Jameson, Schäfer, Simons, and Weis 1995), the system attempts

to help the user in choosing a used car to buy. The utility model assumes additive

decomposition among top level attributes, such as “Reliability” and “Safety.” In

addition, several lower-level attributes are modeled. It is assumed that the subutility

of a higher-level attribute can be decomposed additively into subutility functions

defined over lower-level attributes. The system has a prior distribution over the

user’s utility function. In addition, the user’s potential reactions in the course of the

interaction are modeled probabilistically, dependent on his utility function and the

option under discussion. The options are presented in an incremental manner, a few

attributes at a time. Whenever a new option (a new car instance) is introduced, the

system augments its beliefs with a representation for the user’s expectations with

respect to this option given the information he has been given so far. For example,

if the car under discussion has low mileage for its age and the user was only told of

the mileage, the system may expect a surprise at the news of car’s age.

The system acquires a more accurate model of the user’s preference structure

using a variety of elicitation actions:

• by prompting the user with a general question and registering the information

volunteered,

• by asking a direct preference elicitation question and incorporating the infor-

mation contained in the answer,
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• by presenting new information about a given car and observing the user’s reac-

tion.

The goal of the system is to elicit enough preference information to be able to rec-

ommend a satisfactory car for the user without making the interaction unnecessarily

long. The best elicitation action is chosen based on the extent to which it reduces the

system’s uncertainty about the important variables. This amounts to the reduction

in the variance of the distribution over a given variable. It is not the only criterion,

however. In the effort to make the interaction more natural, Pracma uses a planning

algorithm to divide the conversation into phases and maintain some coherence within

each phase.

A candidate/critique agent (CCA) (Linden, Hanks, and Lesh 1997) also assumes

the additive decomposition of the utility function, but represents its belief about the

user’s utilities in a slightly different form. The user model in their framework consists

of a set of (soft) constraints over the attributes’ domains and a set of attributes’

weights. A constraint is a function from the domain of an attribute to [0, 1]. Such a

user model provides a partial ordering over all options (solutions).

The interaction proceeds as follows. On each iteration, the CCA presents several

possible solutions to the user. The user can accept one of the solutions and end the

interaction, add a constraint, modify an existing constraint, or adjust the importance

weights for one or more attributes. This can be done either directly or through the use

of a natural language or graphical user interface. The user’s action provides the CCA

with new information, which is used to update the model. Note that the CCA does

not perform any direct elicitation actions, it only collects the preference information

given by the user as a part of an evaluation of a specific option.

The most straightforward approach would be to present at each step several best

options (best according to the partial user model available at the time). However,

it is not possible to compute a total ordering among solutions based on a partial

preference model. The authors suggest augmenting the model with default prefer-

ences. For example, if monetary considerations are involved, we can add a default

preference for cheaper options; if there are no clear indications to the contrary, we
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can assume indifference, etc. Combining the default assumptions with partial in-

formation about a preference structure of a specific user allows us to compute the

ordering among all solutions. The authors believe, however, that always presenting

the best solutions would not provide them with enough preference information and

would therefore cause the interaction to be unnecessarily long. They refine the choice

of the solutions by using two heuristics: preferring significantly different solutions

and preferring extrema — solutions optimizing one attribute. They argue that their

choice of solutions prompts the user to volunteer more preference information and

speeds up the elicitation process.

Both of these algorithms differ significantly from our utility elicitation algorithm

(Chapter 7) in many aspects: the assumptions about the user’s utility function, the

choice of default or prior over the utility space, the set of elicitation actions, and

the criteria for choosing the best next action/question. Some of these differences

are simply a matter of design decisions: assuming an additive decomposition of a

utility function simplifies both Pracma’s and CCA’s design, but is not necessary.

Both systems could easily be modified to consider a larger set of utility function

structures (in particular, conditionally additive and generalized additive functions).

Similarly, both systems could use a learning algorithm similar to ours to acquire a

prior distribution over the utility functions rather then resort to “intuitive” default

assumptions. On the other hand, such effort may not be justified in low-risk domains

such as shopping. Our framework was motivated by situations where the user has a

lot to lose.

Some differences, however, are more fundamental. One of these is the criterion

used to choose the next question. Both Pracma and CCA use reduction in the

system’s uncertainty over the important variables. Pracma does this directly, CCA

by preferring extremal solutions, which is supposed to motivate the user to correct

inaccurate assumptions. In contrast, our utility elicitation algorithm uses value of

information.

The candidate/critique framework is, of course, impossible to use in a decision

problem with uncertainty, where we not only need to find a preference ordering among

outcomes, but also the risks the user is willing to take to achieve a better outcome
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— in short, the utility values.

A more principled approach to choosing default assumptions was proposed by Ha

and Haddawy (1998). Instead of assuming a single set of defaults appropriate for ev-

erybody, they suggest finding a preference function in a database of previously elicited

preferences that most closely matches the preference function of the given user. This

closely matching function can be used as a default. They define a distance measure

on partially elicited preferences (partial orders over outcomes). Each partial order

defines a set of complete orders which are consistent with it. Such consistent complete

orders are called linear extensions of a given partial order. The distance between two

partial preference orders Â1 and Â2 is defined as the average of the distances be-

tween pairs of complete orders that are consistent with Â1 and Â2 respectively. The
distance measure between complete orders is defined in turn as the probability that

the two orders will disagree in their preference over two uniformly randomly selected

outcomes. This measure can be approximated by the use of a Markov chain Monte

Carlo technique. The measure has high variance when the information about the

new user’s preferences is limited (i.e., in the beginning of the elicitation process). In

addition, it is not clear which defaults to use if the most closely matching function is

itself partially specified.

Ha and Haddawy’s framework does not assume any specific preference structure,

which makes it very general. It is not clear, however, how their system could take

advantage of a specific structure to reduce the size of the representation and the length

of the elicitation process if some appropriate structural assumptions were warranted.

The authors do not provide an algorithm to select elicitation questions.

Uncertainty Case

Eliciting utilities in the case of decision making with uncertainty was the focus of

further work by Ha and Haddawy (1997, 1999).

In their first paper on this subject (1997) Ha and Haddawy present an algorithm

for incremental utility elicitation. It differs from ours (Chapter 7) in the assumptions

they make regarding the user’s abilities to reason about the decision problem and

the utility function structure. In their formulation, the main problem is the number
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of potential strategies. They assume the user can make a choice as soon as the size

of the set of strategies is suitably small. In contrast, we attempt to remedy the

situation in which the user cannot even decide between two possible courses of action

due to the complexity of the decision problem. In addition, they assume that the

utility function is purely additive, while we allow all possible additive, conditionally

additive and generalized additive decompositions. Furthermore, they assume that all

the subutility functions have been fully elicited — a task we deem both cognitively

difficult (see Section 3.2.2) and unnecessarily time consuming.

Let V = {V1, V2, . . . , Vm} be a fixed set of m attributes. Each attribute Vi

has a domain DomVi of two or more elements. For each continuous attribute Vi,

DomVi = [vi⊥, v
i
>]. For each discrete attribute Vj, DomVj = {vj⊥, . . . , vj>}. The form

of the utility function is U(V) =
∑m

i=1 kifi(Vi). Since all fi(Vi) have been elicited,

all that remains to be assessed are the scaling constants k1, k2, . . . , km, one for each

attribute.

Ha and Haddawy consider two types of elicitation questions:

• The classical standard gamble question in which the user must choose between

a lottery resulting in the best outcome v> with probability p and the worst

outcome v⊥ with probability 1−p on the one hand and the outcome in which a

selected attribute Vi is set to its least preferred value vi⊥ and all other attributes

to their most preferred values on the other. Note that this is equivalent to a

series of questions for various values of p. Once the indifference point is found,

we can easily compute the scaling constant for the subutility function of the

selected attribute Vi.

• A new type of question which does not involve uncertainty. Suppose that vjr ∈
DomVj . The question asks the user for a specific value of attribute Vi, v

i
s, for

which the user would be indifferent between outcomes that yield vi⊥, v
j
r and

vis, v
j
⊥ respectively, and that agree on all other attributes at some fixed level.

Note that this question is only applicable to continuous-valued attributes. The

answer to this question gives us the ratio between the scaling coefficients of the

two outcomes: ki/kj.
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After every elicitation question, the algorithm incorporates the new information

and reviews the set of strategies to eliminate any strategies that can be determined

to be suboptimal at this point. As soon as the set is small enough to be presented

to the user, the elicitation stops. Since the second type of question is more efficient

in eliminating strategies, it is preferred wherever applicable. The two attributes are

chosen according to their rank correlation coefficient (RCC), which measures their

disagreement on the set of possible strategies.

In subsequent work (1999), Ha and Haddawy relax some of the assumptions placed

on the utility function structure. They require only that all utility attributes are util-

ity independent of the rest, which results in a multilinear decomposition of the utility

function (Section 3.2.4).1 However, they maintain the assumption that all subutil-

ity functions are elicited in advance. The algorithm presented eliminates suboptimal

strategies based on the partially specified utility functions and the user’s answers to

preference questions over pairs of outcomes.

Utility elicitation was also considered by Boutilier et al. (2001) in the context

of UCP-networks (see Section 9.2.1). Similarly to Ha and Haddawy, they assume

that the utility factors (subutility functions) are already elicited and only the scal-

ing constants remain unspecified. They further assume that the structure of the

UCP-network is fixed, which means that every individual in the target population

must have the same utility function structure. Note that this is in sharp contrast to

our framework where we allow the utility function to have different (and unknown)

decompositions for different subgroups in the target population.

The structure of the elicitation process that Boutilier et al. propose closely matches

the one we presented in Chapter 7. At every step, the best strategy π∗ is chosen given

current (partial) utility information for a given user. If this strategy satisfies a fixed

stopping rule (evaluating our confidence in its optimality), the algorithm stops and

outputs π∗. If not, we choose a preference elicitation question and incorporate the

user’s answer into our representation of his utility function. Armed with this new

1Note that the conditionally additive and generalized additive utility functions we consider in
our framework do not necessarily exhibit utility independence for every utility attribute. Therefore,
we can represent some functions that Ha and Haddawy cannot. On the other hand, we cannot take
advantage of the multilinear decomposition even if it is present.
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information, we recompute the best strategy and continue.

In their elicitation procedure, Boutilier et al. suggest the minimax criterion (called

minimax regret level or MMR) for choosing the strategy to recommend. That is, the

strategy chosen is the strategy that has the lowest worst case utility loss over the space

of possible utility functions. The minimax criterion can also be used to establish the

stopping rule: we can terminate the assessment process as soon as MMR falls below a

pre-specified threshold. The questions are chosen to maximally reduce the worst case

loss. Specifically, the score for each question is computed by choosing the minimum

improvement (over the possible responses to the question), where the improvement

is defined as the reduction in MMR. Then, the question with the highest score is

selected.

While it can be argued that the worst case loss constitutes an appropriate stopping

rule, especially in medical domains where the decisions concern very important issues,

the use of MMR in choosing the next question seems poorly justified. It automatically

eliminates all questions with even a single answer that does not improve MMR, even

if other answers improve it greatly.

9.2.3 Learning from Observations

The need to learn about an agent’s goals and preferences without questioning the

agent directly has long been recognized.

The assumption of rationality allows us to treat a player’s preference ordering as

revealed by his behavior. According to the theory of revealed preference, first intro-

duced by Samuelson (1938), preference ordering of a given player can be reconstructed

from observation of his actions in the world. Consider an agent faced with a choice

between move di resulting (deterministically) in outcome oi and move dj resulting in

outcome oj. If the agent is observed to choose di, we conclude that outcome oi is

preferred to outcome oj. Given enough observations, we can reconstruct the agent’s

entire preference structure.

Following this early work, many researchers have attempted to create models of

human behavior. In this section, we will focus on the work which is closest to ours,



164 CHAPTER 9. CONCLUSIONS

particularly the work using probabilistic models.

Discovering Goals and Intentions

A large body of work in probabilistic user modeling concerns discovering users’ goals,

needs, beliefs, and intentions. In most cases, these goals are treated as state variables.

There is a direct probabilistic dependence between goals and actions, so users’ actions

provide direct evidence about their goals. This approach is very different from ours.

We want to learn the underlying utility function of a given user. If the user is rational,

he will choose the goals to pursue according to his utility function. Once we know

the utility function, we are able to predict the user’s future actions not only in the

context of another instance of a decision problem we have observed, but also in the

context of new decision problems. Such an extrapolation from one decision problem

to another is impossible within the framework of a direct probabilistic dependence.

The area of probabilistic user modeling is very large; its full description is beyond

the scope of this dissertation. Here, we briefly mention two recent projects, which

are both interesting and representative. They also provide many references for the

interested reader to follow.

In a recent work, Horvitz et al. (1998) discuss the task of predicting goals and

needs of software users in order to provide them with assistance. Their application,

Lumière, uses a probabilistic model of the user’s background, competency profile,

and history of software use. Based on these user characteristics and observed actions

it attempts to guess what task the user is trying to accomplish and whether he

needs assistance. A Lumière prototype served as the basis for the Office Assistant in

Microsoft Office ’97.

Goals in Lumière are target tasks at the focus of the user’s attention. Needs are

understood as information or automated actions that will reduce the time or effort

required to achieve goals. Goals depend (probabilistically) on the context and the task

history. Needs depend on goals and the user’s competence. Needs directly influence

patterns of activity that the system is able to observe. Once we have evidence about

the patterns of activity, we can compute the probability that the user is engaged in

a given task using standard inference. A fully specified utility model allows us to
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compute whether providing assistance is indeed helpful.

As a part of the same project, Heckerman and Horvitz (1998) study the use of

words people employ in querying a help system. Querying the system is one of the

activities observed by Lumière. The authors construct a simple probabilistic model

to represent the dependence of word use on the task at hand. Using this model, we

can infer the user’s goal given the choice of words in the query.

Discovering a user’s intentions based on his utterances in a conversation is the

subject of work by Paek and Horvitz (Paek and Horvitz 2000; Horvitz and Paek

2000). In the Quartet and DeepListener systems, they model conversation as action

under uncertainty. In human conversations, the participants typically make sure that

what they say is attended to, heard and understood by the others. Quartet models

all of these aspects of the conversation using a probabilistic framework. One of the

modules of the system, the intention module, deals directly with the recognition of the

intentions of the speaker. Again, the system assumes a direct dependence between

the intentions and utterances: thus, evidence about users’ actions is propagated via

probabilistic inference to update the system’s beliefs about the user’s goals.

Modeling another agent’s beliefs and their impact on his decision making process

was studied by Milch and Koller (2000). They introduce a probabilistic epistemic

logic (PEL) that uses Bayesian networks as a compact representation for an agent’s

beliefs. The basic Bayesian network model of the domain can be augmented with

nodes corresponding to indicator variables for more complex formulas, including those

with modal operators. Using this framework, it is possible to evaluate arbitrary PEL

formulas.

If it can be assumed that the agent is rational, Milch and Koller propose an

extension of this framework which allows us to model the agent’s decision process and

derive conditional probability distributions over possible actions the agent may take.

Then, having observed some of his actions, we can reach conclusions about events

in the domain we were not able to observe. The framework can also be extended

to allow for some uncertainty about the agent’s preferences, represented by discrete-

valued nodes modifying the way utility depends on other variables. In such cases,

observing the agent’s actions leads us to conclusions about his utilities.
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Inverse Reinforcement Learning

More closely related to our framework is the problem of inferring an agent’s utility

(reward) function based on behavioral observations in Markov Decision Processes

(MDPs). The problem was described and analyzed by Ng and Russell (2000). They

refer to it as the inverse reinforcement learning problem.

They characterize the reward function space which is consistent with the observed

behavior assuming that the agent is following the optimal strategy. Our derivation

of constraints in the utility space for fully observed strategies (Equation (8.1) in

Section 8.2.1) is a direct analogue of their formulation. Ng and Russell note that the

space of possible reward functions is infinite and includes many degenerate functions,

such as all functions that assign the same value to all states.

They propose a set of heuristics to choose a reward function π from the feasible

region. First, they favor solutions that make any single-step deviation from π as

costly as possible. Second, they prefer strategies which assign small rewards to most

states. Such strategies are considered “simpler.” An adjustable parameter balances

the influence of these two heuristics. They consider both the simple case of observ-

ing the optimal policy directly and the more realistic case of observing only partial

strategies, or “trajectories” in the MDP.

The main difference between our approach and that of Ng and Russell lies in the

selection of the reward function from the feasible region. We assume a probability

density function over the utility space, which can be conditioned on the observed

behavior to derive a more informed posterior over the feasible region. Having this

posterior density allows us easily to compute the mean of the distribution which can

be used as a representative utility (reward) function. We can also sample from the

posterior using the MCMC algorithm described in Section 6.5 and use the set of

samples as an approximation of the posterior distribution.
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9.3 Future Directions

There are several interesting extensions of this line of work that we would like to

pursue.

9.3.1 Utility Modeling

We have restricted our attention to utility functions exhibiting various kinds of addi-

tive independence. While we believe that factorizations based on generalized additive

independence apply to a broad range of functions in many real-life domains, we would

like to extend our work to utility functions in multiplicative or multilinear form.

So far, most work (including ours) has focused on notions of independence at

the level of variables. In probabilistic settings, this notion has been refined to that

of context-specific independence (Boutilier, Friedman, Goldszmidt, and Koller 1996),

which allows independence of two variables X and Y in the context of a particular

value z of a third variable Z, but not in the context of a value z ′ for Z. An analogous

notion can also be defined for utilities. We hope to extend our approach to handle

these more refined factorizations of utility functions.

In another extension, we hope to capture relations between utility variables and

other (environmental) variables. For example, it has been observed that people who

have experienced an outcome tend to assign it a higher utility value than those for

whom the outcome is imaginary (Lenert, Treadwell, and Schwartz 1999). This type

of correlation can be represented very naturally as a dependence in our probabilistic

model; we hope to extend our approach to handle this type of situation.

A less obvious application is to represent the probability that a user’s preferences

will change over time. We believe that the tools provided by probabilistic models —

value of information, statistical learning, and others, will turn out to be extremely

useful in this new type of modeling.

Finally, we have assumed that the prior over utility functions was learned in

advance, and then applied as is to each new user. It could prove to be valuable to

use information gained during the use of the system — the very partial data obtained

by asking a handful of questions or viewing the behavior of the different agents —
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as additional training data to improve our prior distribution over utility functions in

the population.

9.3.2 Applications

In our adaptive elicitation algorithm, we select questions with the highest value of

information, assuming that the cost of asking a question is constant. However, some

questions are cognitively more difficult than others. Questions near the indifference

point are hard, a second consecutive question about the same outcome is “cheaper”

(i.e., easier to answer) than a question about an outcome discussed a few questions

back, etc. It would be easy to incorporate the cognitive cost of questions into the

value of information computation. A somewhat more subtle extension is to expand

the range of questions that we allow to incorporate more general lotteries.

Note that the explicit modeling of our uncertainty over the utility function allows

us to reason about the value of various kinds of information at the same time. We can

evaluate the value of information of answers to specific utility questions and compare

it to the value of information of other findings in the system, such as discovering the

value of a state variable. For example, in some cases it may be more valuable (bring

us closer to making the optimal decision) to conduct a medical test rather than a

utility elicitation procedure.

In our game-playing application, we can think of the interaction between the in-

formed and oblivious player as a repeated game, with each interaction giving the

informed agent more information about the utility function of the oblivious agent.

This view immediately leads to an exploration/exploitation tradeoff. If the informed

agent can choose the parameters of each new game instance, he must decide at ev-

ery step whether to select a parameter setting giving him a large payoff with high

probability (thus exploiting his knowledge about his opponent’s utility function) or

a setting for which he cannot predict his opponent’s actions with high accuracy (to

explore the utility space further). This tradeoff would be interesting to analyze.

While in many domains it is reasonable to assume that the oblivious agent is
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completely unaware of (or simply chooses to ignore) the nature of the strategic inter-

action, there are situations where such an assumption would clearly be inappropriate.

We would like to explore the possibility of extending the strategic capabilities of the

oblivious agent. Assuming that both agents are perfect reasoners would, of course,

lead to infinite cycles of mutual anticipation of each other’s moves. However, the as-

sumption of full rationality is not realistic either. We can, perhaps, find some middle

ground between perfect reasoning capabilities and complete oblivion which would be

appropriate from the modeling perspective and still computationally tractable.
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