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Abstract

Cells respond to environmental perturbations with changes in their
gene expression that are coordinated in magnitude and time. Timing in-
formation about individual genes, rather than clusters, provides a refined
way to view and analyze responses, but is hard to estimate accurately.

To analyze response timing of individual genes, we developed a para-
metric model that captures the typical temporal responses: an abrupt
early response followed by a second transition to a steady state. This im-
pulse model explicitly represents natural temporal properties such as the
onset and the offset time, and can be estimated robustly, as demonstrated
by its superior ability to impute missing values in gene expression data.

Using response time of individual genes, we identify relations between
gene function and their response timing, showing, for example, how cy-
tosolic ribosomal genes are only repressed after mitochondrial ribosom is
activated. We further demonstrate a strong relation between the binding
affinity of a transcription factor and the activation timing of its targets,
suggesting that graded binding affinities could be a widely used mecha-
nism for controlling expression timing.
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Introduction

Over the past few years, significant progress has been made in mapping different
components of the cellular architecture: protein complexes, functional modules,
and even more complex pathways and cellular networks. However, the static set
of components and their interactions tells only part of the story. In reality, cells
continuously reconfigure their activity to adapt to their fluctuating environment,
and activate different parts of their pathways in a dynamic way. Obtaining
insight into the cellular dynamics is a significant challenge, primarily because
data measuring aspects of the cell’s activity over different points in time is hard
to obtain, especially at a genome-wide scale.

Arguably, the main data so far that have provided a genome-wide view into
the cell’s dynamics are measurement of gene expression profiles taken over a
time course, following a perturbation to the cell’s environment. Although these
measurements probe only a single level of the cellular control hierarchy, the
availability of transcription data under multiple conditions could provide sig-
nificant insights into dynamics of cellular control. With these data, we might
hope to study how the transcriptional program changes to cope with an environ-
mental perturbation. We can try to understand the role that expression timing
plays in cellular responses, to map those genes and modules that are expressed
in a timely manner and to identify molecular mechanisms that control timing.

Unfortunately, gene expression time courses are hard to interpret: they are
notoriously noisy, often measured at irregular intervals, and these intervals differ
from one experiment to the other. Thus, with the exception of cell cycle data,
much of the analysis of gene expression profiles has ignored their temporal as-
pects, using these data primarily to identify genes that share common responses
across experiments, and to associate genes with various cellular processes based
on their response profiles.

Some papers do attempt to model the dynamics of expression time courses
(see Androulakis et al., 2007, for a recent survey). Several approaches (Zhao
et al., 2001; Alter et al., 2000; Shedden and Cooper, 2002; Wichert et al., 2004)
have focused on capturing the dynamics of cell cycle time courses; these meth-
ods are tailored to the sinusoidal transcriptional patterns in the cell cycle, and
do not generalize to other types of time series. In the more general setting,
Bar-Joseph and other researchers (Bar-Joseph et al., 2003; Luan and Li, 2003;
Simon et al., 2005; Storey et al., 2005; Ma et al., 2006) showed how splines can
be used to encode continuous gene expression profiles, and successfully impute
missing values and align “similar” expression profiles that exhibit different tem-
poral properties. Some methods (Qian et al., 2001; Balasubramaniyan et al.,
2005; Ernst et al., 2005) have defined “shape-based” similarity metrics for gene
expression time courses, for the purpose of gene clustering, but without attempt-
ing to extract or evaluate specific timing properties. Other approaches (Holter
et al., 2001; Ramoni et al., 2002; Schliep et al., 2003; Perrin et al., 2003; Zou and
Conzen, 2005) use a probabilistic or regression-based time series model to cap-
ture the temporal dynamics of gene expression data. These approaches all use
generic function representation, capable of capturing a broad family of response
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profiles, and hence tend to over-fit the data more easily. As a consequence, the
parameters of the model are typically estimated using clusters of genes, possi-
bly obscuring finer-grained signal. Most importantly, however, these methods
do not easily provide an approach for extracting biologically meaningful timing
aspects of the responses in individual time courses, and compare these timing
aspects across different conditions.

In this paper we propose a parametric approach that identifies interpretable
timing properties of mRNA profiles, and use them to characterize the timing
of cellular responses. The idea is to fit any given time course with a function
that is parametrized with biologically meaningful and easily interpretable pa-
rameters. Specifically, we describe a phenomenological model for encoding a
gene’s continuous transcriptional profile over time. The model is designed to
capture the typical impulse-like response to an environmental perturbation such
as changing media or stress condition: transition to a temporary level followed
by a second transition to a new steady state. Thus, we define the model in terms
of meaningful aspects of the response: its onset and offset times, the slope of
the response, and the short term and long term response magnitudes.

We evaluate the model on a broad compendium of 481 measurements in
Saccharomyces cerevisiae, comprising 76 different gene expression time courses
following diverse environmental perturbations. We find that the impulse model
is rich enough to capture a wide variety of expression behaviors and at the same
time robust enough to be learned from sparse data. We demonstrate this ro-
bustness by providing estimates of missing measurements that are significantly
more accurate than other approaches. We then show how we can use the bio-
logically meaningful parameters that we extract from the impulse form to shed
light on the cell’s transcriptional response to environmental changes.

Results

An impulse model of responses to changes

When subjected to an abrupt change in the environmental condition, a cell
typically responds by increasing the activity level of certain sets of genes and
decreasing the activity level of others. For example, when exposed to a heat
shock, genes involved in growth related processes are repressed, then shortly
followed by repression of ribosomal proteins coding genes. In many cases, the
expression level changes temporarily, exhibiting a sharp increase or decrease,
and later changes again, reaching a new steady state which is often different
from the original “resting” state (Fig. 1). This two-step behavior is widely ob-
served in multiple systems, from yeast (Holter et al., 2000; Ernst et al., 2005)
to human (Ramoni et al., 2002). The reason is that an abrupt environmental
change requires two types of adaptive responses. First, the cell actively reconfig-
ures some processes, typically involving both generic emergency responses and
specialized processes that the cell recruits. At a second phase, the cell achieves
a new homeostasis in its new environment.
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We propose an impulse model designed to encode a two-transition behavior,
allowing us to compactly represent the relevant aspects of expression responses
to environmental changes. The impulse model encodes this behavior as a prod-
uct of two sigmoid functions, one that captures the onset response, and another
that models the offset (see Methods). Importantly, this model allows for a sus-
tained expression level different from the resting state. The model function has
six free parameters (shown in Fig. 1(A)). Three amplitude (height) parameters
determine the initial amplitude (h0), the peak amplitude (h1), and the steady
state amplitude (h2). The onset time t1 is the time of first transition (where rise
or fall is maximal) and the offset t2 is the time of second transition. Finally, the
slope parameter β is the slope of both first and second transitions. Formally,
the model has the following parametric form:

fθ(x) =
1

h1
· s1(x) · s2(x) (1)

s1(x) = h0 + (h1 − h0)S(+β, t1)

s2(x) = h2 + (h1 − h2)S(−β, t2)

S(β, t) =
1

1 + e−β(x−t)

θ = [h0, h1, h2, t1, t2, β] .

What type of profiles can the impulse model capture? It is designed for mod-
eling temporal profiles that have at most two significant changes in expression
levels. Examples of such profiles are depicted in Fig. 1(B), where the impulse
model was fit to actual expression measurements of yeast genes. The impulse
model is not appropriate for encoding periodic behavior with multiple peaks,
such as the characteristic behavior of the cell cycle (like the well-studied data of
Spellman et al. (1998)). Thus, the impulse model is best-suited for capturing a
one-time response to some external signal such as an environmental disturbance.

The parameters of the model are learned by minimizing a squared error to
fit measured data. Given a set of expression measurements {e1, . . . , en} at time
points {t1, ..., tn}, we search for the set of impulse parameters θ that minimize
the squared prediction error minθ

∑

i(fθ(ti)−ei)
2. We find the (locally) optimal

parameters using a conjugate gradient ascent procedure, repeated 100 times with
different starting points (see Methods).

Gene expression measurements are notoriously noisy and hard to model,
especially on the level of individual genes. We systematically evaluated the
properties of the impulse model using a diverse set of 76 conditions. First, we
found the model to be remarkably robust to both timing noise and to expression
level noise (see Methods). Furthermore, we estimated the model’s coverage —
the fraction of genes that can be well-fit with the model — showing that up to
95% of the genes are well described by the impulse model , depending on the
condition (see Methods). Finally, we estimated the extent to which genes had a
particularly impulse-like response, showing that, on average, 35% of the genes
have an impulse-like response profile (see Methods).
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Imputing missing values

The impulse model is a continuous function that provides an estimate for a
gene’s expression measurement at each point in time. We show that the impulse
model can accurately predict the value of missing expression measurements.
Imputing missing values is an important problem in gene expression data, hence
the success of our impulse model at this task is both a validation of the model,
and one of its applications.

We applied the impulse model to a compendium of 76 gene expression time
courses in Saccharomyces cerevisiae, which measure the response of yeast to
different environment stress conditions and changing media (DeRisi et al., 1997;
Gasch et al., 2000, 2001; Causton et al., 2001; Zakrzewska et al., 2004; Lai
et al., 2005; Kitagawa et al., 2005; Mercier et al., 2005). Time courses had
between 5 and 10 measurements (see a full list of data sets and time courses in
Supplemental Table 1).

We evaluated the performance of the model on the imputation task in two
ways: using information only at the level of individual genes; and incorporating
information from other, similar genes.

Using individual genes

First, we considered the ability of an impulse model to estimate the value of
an unmeasured expression value for a gene, given the other expression measure-
ments for that gene alone. For a given gene, we held out one of the expression
measurements, fit an impulse model to the remaining measurements, and used
the resulting function to estimate the expression value at the held out time
point. We compared this value to the measured held-out value, and computed
the error. We repeated this experiment for all 6209 genes in our compendium
and all measurements, and computed the mean prediction error. For compari-
son, we applied the same procedure using other methods for function estimation,
including both interpolation methods such as interpolating splines and cubic-
Hermite polynomials, and fitting methods using polynomials of degrees two to
five, and smoothing splines. All of these methods used information at the level
of single genes only, using measurements taken at all available time point to
predict the value in a single hidden time point. The results of this comparison
are shown in Fig. 2(A). The prediction of the impulse model are significantly
superior to all the other methods.

Fig. 2(B) shows a scatter plot of average prediction error for each of the 76
conditions, as obtained with the impulse model and the cubic-Hermite (CH, the
second best predictor). It shows that the impulse model is particularly better
at fitting time courses with a small number of points, suggesting that it avoids
over-fitting more effectively.

Interestingly, a comparison to a third order polynomial yields similar re-
sults. This similarity suggests that even though the impulse model has 6 free
parameters, it avoids over-fitting better than a model with 4 free parameters.
The reason is that polynomials are generic function approximators, capable of
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fitting any function, hence could predict fits that are highly unlikely for gene ex-
pression timecourses. In comparison, the impulse model focuses on a restricted
set of behaviors, and hence uses the domain-specific knowledge to avoid large
mistakes.

This effect can be understood by comparing the actual functions learned by
the different fitting procedures. Fig. 2(C)-(E) compares the fits to a particular
gene expression profile for three methods: polynomials of degree 2 and 3, and
the impulse model. The descriptive power of the 2nd order polynomial is too
limited, leading to a “flat” curve that changes little in time. On the other
hand, the 3rd degree polynomial is too expressive, and over-fits for several time-
points. Conversely, the impulse model, despite having a larger number of free
parameters, successfully avoids over-fitting the measurements.

Using whole genome information

When imputing missing values, a valuable source of information is the similarity
in expression profiles between different genes. Two approaches are commonly
used for taking this information into account. First, missing values can be
inferred from neighboring genes, where the neighborhood is based on the ob-
served measurements. Second, genes can be clustered and the cluster profiles
are then used for imputing the missing values. We compare the performance of
the impulse model with two standard methods that take these two approaches.

For the first evaluation, we follow the approach of Troyanskaya et al. (Troy-
anskaya et al., 2001) and use profiles of similar genes to complete missing mea-
surements. Troyanskaya et al., in their KNN-impute procedure, propose a
k-nearest neighbor procedure, estimating the value of a time t measurement for
gene g as the average of the time t expression values measured for the k genes
most similar to g. KNN-impute uses a Euclidean distance over the vector of
expression measurements to find the nearest neighbors. To evaluate the gain in
using the impulse model we applied the same procedure, but using the values
predicted by the impulse model fit, rather than the raw original measurements.

Specifically, we hid a randomly selected single time point in the expression
profile of each gene, and used the remaining measurements to estimate the
left-out values (see Methods); overall, this process resulted in a level of about
10–20% missing values, depending on the number of measurements in each time
course. For each gene, we estimated the curve fit to the remaining measurements
of that gene. We then estimated the value of a missing time t measurement for
gene g by selecting the k genes nearest to g, using Euclidean distance over the
predicted values, and averaging the predicted expression values at time t. Note
that the predicted values were used both for selecting the neighbors and as
a basis for estimating the time t value. For comparison, we also applied the
standard KNN-impute procedure to the same data.

Fig. 3(A) compares the median error obtained with the two distance mea-
sures across 76 conditions. Using the impulse model reduced the error in 64 out
of 76 conditions, yielding an average error reduction of 20% of the KNN-impute.
This difference was highly significant (paired t-test: p < 3×10−6). The analysis
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was repeated for k = 10 and k = 20, with almost identical results (data not
shown).

Bar-Joseph et al. (Bar-Joseph et al., 2003) used another approach for utiliz-
ing similarity of expression profiles across genes. They cluster genes and train
a model based on approximating splines for cluster profiles. We compared this
method with the Impulse-KNN method described above, over the same data
set described above, We used code supplied to us by Bar-Joseph, and selected
values of the parameters that performed well in the experiments described by
Bar-Joseph et al. We used 10 clusters, since we found that this number of clus-
ters captures well most of the structure in the data. The results, shown in
Fig. 3(B) show that the Impulse-KNN model outperformed spline-based clus-
tering by 35% on average.

Temporal patterns of response to changes

The impulse form directly provides meaningful parameters that characterize
the shape of the response profile, including the response onset, offset and profile
peak. We chose to focus on the onset response time, since it directly captures
the timing at which the cell initiates the production of a gene’s mRNA, and this
timing could be critical to the survival of the organism upon an environmental
change. We therefore extracted the onset of every response profile, and used
these timing data to explore the relationship between response onset and gene
function.

To illustrate the insights arising from this type of analysis, we can consider
the timing patterns arising when the cell is exposed to diamide (Gasch et al.,
2000). Here, we can see that genes involved in gene expression respond at a
wide range of delays (Fig. 4(A)). Looking at three main subsets of this group,
we find that genes that are involved in RNA processing typically respond earlier
than the other genes; transcription genes also respond early, and translation
is last. Interestingly, translation occurs in two peaks, one observed early (∼7
minutes) and a second occurring much later (∼18) minutes.

To understand this phenomenon better, we look into the distribution of on-
set times and peak responses of all ribosomal genes under diamide exposure. A
finer breakdown of the set of ribosomoal genes reveals that the vast majority of
the early onset events correspond to induction of the mitochondrial ribosome,
whereas the later events represent the repression of the cytosolic ribosome (see
Fig. 5). We note that previous studies of these data (Gasch et al., 2000; Simon
et al., 2005) have noted the differential expression of the ribosomal genes: while
most cytosolic translation is repressed, the mitochondrial ribosome is induced
in order to handle the oxidative stress caused by diamide. However, our on-
set timing analysis provides an additional dimension to this standard result,
demonstrating that there is also a difference in the timing of these two events.
We hypothesize that the reason for this delay is that upregulation and transla-
tion of mitochondrial genes is required to deal with the stress. Hence, cytosolic
ribosomal genes can only be repressed after translation of mitochondrial genes
is completed.
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The data in Fig. 5 also reveals a fairly large group of cytosolic ribosomal
genes that are repressed considerably earlier than the bulk of the genes in this
category (see Supplemental Table B). An in-depth investigation of these two
groups of genes shows two interesting trends. First, in the early group, many
of the genes (10 out of 33) are not ribosomal components but are more likely
required for creation of ribosomes and for RNA processing or translational fi-
delity; by comparison, such genes are a small proportion of the late group (3
out of 115, p < 10−6). One hypothesis is that the cell first represses accessory
proteins, whereas the structural components are only shut off at the end, giving
enough time for translation of the mitochondrial ribosome, as well as any other
proteins necessary for the cell’s immediate response. As a second trend, for the
large ribosomal subunit, we see nine genes in the early group that code for the
same component as a gene in the later group (for example, RPL13A shuts down
early, whereas RPL13B shuts down later). The only case where both copies are
shut down early is RPL41A and RPL41B, which code for a non-essential com-
ponent of the ribosome. An interesting hypothesis is that, to conserve resources,
the cell begins by shutting off one copy of each component, and only then shuts
down the other. The situation is a little less clear with the small subunit, where
three components have both copies shut down early; however, these are not in
the central part of the ribosome. It would be interesting to understand whether
and why these components are not required during the transition phase.

To generalize this type of analysis and identify other functions whose RNA
levels are carefully timed, we looked at the distribution of onsets across genes
grouped by their GO associations. In each condition, we then searched for GO
categories whose onsets are significantly different from a baseline distribution of
onsets. A relevant baseline should contain genes of similar (but not identical)
functions. We therefore defined a separate baseline for each category using all
genes from sibling categories in the GO hierarchy (other children of its parent
category). For each GO category and each condition, we calculated a Wilcoxon
score to quantify how significantly its gene onsets appear earlier or later than the
baseline onsets. This comparison provides a tool for identifying sub-functions
that are controlled in time. We found 151 sub-categories that exhibited highly
significant (Wilcoxon test, p < 10−5, Bonferroni corrected) onset differences at
least in one condition (see Supplemental Table IV for a full list).

Fig. 4(B) shows another example, for the main sub categories of intracellular

organelle part, under exposure to Acid (Causton et al., 2001). Mitochondrial
genes are again regulated significantly earlier, and so are cytoskeletal genes,
while a larger fraction of chromosomal respond late. Ribosomal genes again
have two peaks, and these correspond again to mitochondrial and cytosolic
ribosome; indeed, as we discuss below, this distinction is found across a variety
of conditions. Here, vacuolar genes also appear to have two distinct peaks,
with 53 genes responding before t = 12 minutes and 20 genes responding after.
Relative to the late vacuolar genes, we find that the early vacuolar genes are
enriched for vacuolar membrane (hypergeometric p < 10−15).

We can also utilize our timing analysis to construct a system-level “response
timeline”, by looking at how multiple functional categories are ordered in time.
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Under each condition, we calculated the ordering score for every pair of GO
categories, and used these ordering scores to identify sets of categories that are
regulated in a timing-distinct manner (see Methods). As one example, we con-
sider the onset timing extracted from the responses to DNA-damaging gamma
irradiation (Gasch et al., 2001). Fig. 6 plots the median peak and median onset
time for each of the top four timed categories in the cellular-component hier-
archy. First, genes of the nucleolus (a sub-organelle of the cell nucleus) are re-
pressed, followed by repression of ribonucleoproteins, then cytoplasmic proteins.
Finally, membrane proteins are activated. A similar analysis on annotations in
the molecular function and biological processes hierarchies in the same condition
(Supplementary Figures 10 and 11), is consistent with this view: The biolog-
ical processes of ribosome biogenesis and assembly (which takes place at the
nucleolus) are repressed first, followed by the activation of the localization and
transport genes (processes that take place at cytoplasm and membranes). Simi-
larly, the molecular function structural constituent of the ribosome are repressed
first, while multiple functions related to transport are activated later.

Another interesting perspective on this finding is the observation that the
stronger the repression of the genes in these timed categories, the earlier the
onset of the repression. This phenomenon holds not only for the medians of the
groups in Fig. 6, but in fact the onset time is correlated with the peak response
across all genes in these categories (Pearson correlation, p < 10−10); this phe-
nomenon holds only for genes in timed categories (the background correlation
across all genes in this condition is p-value = 0.04). As one hypothesis, if a
group of genes is highly detrimental to the cell (leading to a strong repression),
it may be desirable to shut them off as soon as possible. In particular, if mRNA
degradation mechanisms are used to decrease mRNA abundance in this condi-
tion (Keene, 2007), this finding may also suggest a sequential targeting of the
RNA degradation machinery, ordered by the cell’s current priorities.

Finally, we looked at functional differences in timing across multiple condi-
tions. We counted the number of conditions in which each pair of categories is
significantly timed (p-value < 0.001, Wilcoxon test, Bonferroni corrected). In
general, nuclear and mitochondrial components respond earlier than cytosolic
and ribosomal components. For instance, for the cellular component hierarchy,
the mitochondrion, shown above to be activated early under exposure to di-
amide (Fig. 5), and acid (Fig. 4, responds significantly earlier (with p < 10−3)
than the cytosolic ribosome in 16 out of the 76 conditions tested (yielding an
overall p < 10−40, Binomial distribution with p = 10−3,N = 76). These con-
ditions were mostly stress conditions (rather than media changes), including
exposure to diamide, dtt, KCL and heat shock. Many of these stress conditions
create oxidative stress which elicit differential mitochondrial response. These
results show that these mitochondrial genes typically respond early. Mitochon-
drial responses in the remaining conditions were more scattered in time and
never significantly late.

For the biological processes hierarchy, translation often responds significantly
later than other various metabolic and transcription processes. For instance, in
12 out 76 conditions translation response occurs significantly after transcription.
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Also, biosynthesis processes tend to follow metabolic processes. For instance,
in 11 conditions, biosynthetic process responds significantly after biopolymer

metabolic process. For the molecular function hierarchy, almost all significant
pairs were due to late response of structural constituent of ribosome and struc-

tural molecule activity. Supplemental Table IV lists all category pairs and con-
ditions that exhibited significant timing relationships.

Graded binding affinity: A mechanism for controlling tran-

scription timing

The above findings suggest that cells control the timing of transcription acti-
vation to shape their responses to environmental changes. What mechanisms
could achieve fine timing control?

One possible mechanism is that sequential activation of genes is achieved by
cooperative binding by several transcription factors (TFs), each activated in its
turn. This hypothesis requires that TF’s are themselves sequentially activated
by some mechanism. A different (albeit not exclusive) mechanism is that a
single transcription factor binds to multiple target genes, but with different
binding affinities. Indeed, the recent work of Tanay (Tanay, 2006) shows that
binding affinities, as measured in ChIP-chip data (Harbison et al., 2004), have
functional consequences even in weak affinities that were previously considered
insignificant. This work demonstrates that transcription binding is not an all-
or-none phenomenon, and graded binding is achieved through graded sequence
affinity. The reason and purpose for having a wide range of binding affinities is
still unknown, but it was recently shown that gene expression in the phosphate
response (PHO) pathway is tuned to different environmental phosphate levels
using both binding-site affinities and chromatin structure (Lam et al., 2008).

If graded binding affinities are used for regulating the timing of gene ex-
pression, we expect the shape of a gene expression profile to depend on the
strength of binding to its regulating TFs. Since binding operates as a stochastic
equilibrium, the stronger the binding affinity of an activating TF to a binding
site, the higher the probability of the TF to remain bound to the corresponding
promoter and recruit the transcriptional machinery, and hence the earlier the
gene would be expressed on average.

To test this single-TF hypothesis, we measured how binding affinities are
related to the onset time of transcription activation. Specifically, we combined
whole genome binding affinity measurements (Harbison et al., 2004) with gene
expression measurements as described above. We selected a subset of affinity
and expression measurements that were taken in matching conditions. We col-
lected a total of 48 affinity-expression experiment pairs (see Supplemental Table
B2), including amino acid starvation (34 TFs), exposure to acid (2 TFs), and
to heat shock (12 TFs).

For each affinity-expression experiment pair, we restricted attention to genes
that were differentially expressed (absolute peak response > R), and measured
the Spearman correlation between their onset time and the binding affinity of
the measured TF, using the p-value as the quantitative measure of affinity. Of
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course, not all genes are bound by a particular TF; we therefore wanted to
restrict attention only to those genes where TF binding plausibly occurs. As
discussed above, Tanay (Tanay, 2006) showed that measured binding affinity p-
values are correlated with binding prediction based on sequence models, even for
very weak binding, suggesting that measured weak binding may reflect actual
binding rather than noise. We therefore considered the whole range of possible
p-value thresholds for treating a binding event as valid (where the chance level
is p-value = 0.5). Specifically, for a range of different affinity thresholds C, we
computed the Spearman correlation between onset time and binding affinity,
restricting the analysis to all genes that are both differentially expressed (cross-
ing a threshold R) and have a binding affinity stronger than a cutoff value C.
Fig. 7 shows the number of pairs that obtained significant Spearman correlation
as a function of the affinity cutoff value C; here, we used a gene expression
response threshold R = 0.7, chosen to maximize the number of significant pairs.
The number of significant pairs peaks near p-value = 0.50, where 38 of 48
TF-condition pairs have a significant correlation (FDR q-value≤ 10−3) (the op-
timum is actually obtained at 0.52, which is larger than the chance level 0.5,
but this is likley to be due to noise, . Typically, the correlations became even
stronger when limiting the analysis to more strongly expressed genes (larger
values of R), but the p-values decrease due to the smaller sample size.

Fig. 8 visualizes the relation between binding affinity and expression onset;
here, to more clearly illustrate the pattern, we used an expression cutoff of R =
1. We aggregated the genes in our set into four groups according to their binding
affinities, and calculated the mean onset time of each group. The left panel
shows the results of this analysis for the targets of MET32, a transcription factor
involved in methionine biosynthesis; here, the binding affinities were measured
under amino acid starvation, and the transcription onset extracted from a time
course following adenine starvation (Gasch et al., 2000). A clear trend can be
observed in the mean onset time as a function of MET32 binding affinity, across
the whole range of relevant affinity strengths. This effect is highly significant
(Spearman correlation r = 0.14 across 943 samples, p < 1.9 × 10−7, Bonferroni
corrected for 48 hypotheses). Other such trends were observed under amino
acid starvation, including MET31 (Fig. 8b) (Spearman r = 0.14, Bonferroni
p < 2.5 × 10−8), CBF1 (p < 9.7 × 10−8) and SFP1 (p < 6 × 10−9).

We also found pairs that exhibited significant negative correlations (for in-
stance YAP1 and HSF1 under a heat shock), where higher binding affinity was
associated with delayed onset time. The mechanism for such associations is
unclear at this point, and could be related to competition between TFs.

This finding has two implications. First, it shows that graded binding affini-
ties are very commonly correlated with expression timing, and could be a com-
monly used mechanism for controlling the timing of response onsets. Second, it
suggests that even (very) weak binding affinities have a functional effect on the
concerted profile of cellular expression responses.
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Discussion

Environmental changes may threaten the survival of cells and force them to
respond quickly and reconfigure their gene expression profiles. To respond ef-
ficiently to changing conditions, cells have to control not only the magnitude
of their responses, but also their timing. Indeed, it was shown that expression
timing in E. Coli is tightly controlled, even to the level where sequences of indi-
vidual proteins are expressed in an ordered manner (Zaslaver et al., 2004; Kalir
et al., 2001). It is unknown, however, if such controlled timing is to be found
across multiple biological processes, and if responses are similarly timed in Eu-
karyotes, which have more complex hierarchy of pre- and post-transcriptional
control mechanisms. Our work suggests that fine-grained control of transcrip-
tional timing exists also in Eukaryotes.

The time course of gene expression responses often follows a typical impulse

curve: starting with an initial abrupt response that saturates and is then fol-
lowed by a relaxation to a new steady state. In this paper, we used this common
behavior to build a parametric model that can be robustly fit to a single ex-
pression profile, while capturing the essential timing aspects of the response: its
onset time, peak response and offset time.

Since the impulse model is tuned to typical cellular responses, it provides
robust estimates of response characteristics, even when given very few samples
per time course. We found that it provides superior prediction for imputing
missing or corrupted measurements, both using single gene and using whole
genome information. We believe that this model has other valuable uses, such
as the alignment and comparison of time courses taken at different time points,
or as the basis for determining a set of differentially expressed genes (Storey
et al., 2005).

Perhaps most important, the impulse model allows us to study response tim-
ings directly. Using the distribution of onsets across functional categories, we
found multiple functions that are timed differently from closely related func-
tions. We also observed a global response pattern, roughly moving outwards
from the nucleus towards the cytoplasm and membranes. Finally, we found
strong correlations between the onset of responses and the binding affinity to
specific transcription factors. This last finding suggests a hypothesis in which
gradual binding affinities are widely used by cells to tune the timing of expression
responses, extending on recent findings in the context of specific pathways (Lam
et al., 2008).

Transcriptional regulation is one mechanism in a series of hierarchical con-
trols including regulation of mRNA, translation, and protein activation. Impor-
tantly, we note that our finding relates to overall mRNA levels, which encompass
effects from both transcriptional changes and mRNA degradation. Our analysis
is done purely on the timing in the change in mRNA levels, and we make no
attempt to identify the cause(s) for the change. Indeed, it seems quite likely
that many of the timing changes we observe result from a combination of these
two regulatory mechanisms. Regardless of the mechanism, our findings suggest
that the timing in fluctuations of gene expression levels is regulated in a way
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that optimizes for the role of the resulting protein product. For instance, the
distribution of timing in Fig. 5 suggests a bifurcated response in the cytosolic ri-
bosome: those components that are not required for translation of other protein
products are repressed early, whereas the necessary components are repressed
later, after fulfilling their role. Therefore, even though several regulatory phases
separate mRNA levels from active protein levels, our findings support a model
in which response onsets of mRNA are tuned with respect to the corresponding
protein function.

The impulse model has its limitations. Since it is designed to capture typical
two-transition responses, it could provide a poor fit to expression profiles that
have more than two transitions, which we observe both in certain environmen-
tal response profiles (see Methods) and in the cyclic behavior of cell cycle. In
addition, the impulse model is currently fit to noisy expression measurements
without taking into account the physical mechanisms that lead to the observed
expression levels. It would be interesting to explore ways in which prior knowl-
edge regarding transcriptional or degradation dynamics can be integrated into
the impulse model.

The impulse model captures one kind of typical response profiles, but other
typical behavior may exist, such as the periodic behavior observed due to cell
cycle. Such typical behaviors can be identified by unsupervised clustering of time
courses, as in (Ernst et al., 2005). As in our analysis, one can then construct a
specialized model that utilizes biologically relevant parameters that characterize
that type of response, allowing these parameters to be extracted and used in
further analysis.

Impulse-shaped responses are not limited to mRNA responses to stress. Sim-
ilar patterns are observed in gene expression profiles along early development
(Wen et al., 1998) or in protein profiles. The modeling and visualizations tech-
niques discussed in this paper could be usefully applied in these cases as well.
Analysis of gene expression data can be used to analyze the dynamics of cellular
networks, seeing how they adapt in response to changes in the cell condition.
Recent work uses these data to obtain important insights into the dynamics of
complex formation during the cell cycle (de Lichtenberg et al., 2005). We hope
that the fine-grained timing information provided by our work will allow us to
understand the reconfiguration of cellular complexes and pathways in response
to environmental perturbations.
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Materials and Methods

Learning an impulse model

The impulse model is a product of two sigmoids

fθ(x) =
1

h1
· s1(x) · s2(x) (2)

s1(x) = h0 + (h1 − h0)S(+β, t1)

s2(x) = h2 + (h1 − h2)S(−β, t2)

S(β, t) =
1

1 + e−β(x−t)

θ = [h0, h1, h2, t1, t2, β] .

Clearly, other variants can be defined, such as using different slopes for the
two sigmoids. With the data discussed in this paper, we found that such a
model did not improve overall fit to data.

Fitting a single gene profile

We first consider the task of estimating the impulse model for the response
profile of an individual gene. We assume that a gene’s expression profile is
given as a set of measurement (xi, yi), where xi is a particular time point, and
yi the expression value observed at that point. To estimate the parameters
that best fit the gene’s observed expression measurements, we search for the
maximum likelihood parameter values, under an assumption of additive and
independent Gaussian noise. Equivalently, we define an error function that we
aim to minimize, which equals the negative of the log likelihood:

E = − log P (D | θ) =
1

2

∑

i

[fθ(xi) − yi]
2 + const. (3)

This impulse function is differentiable with respect to all of the parameters

of the model, and its derivatives ∂f(xi)
∂θ

are given below. We therefore have the
gradient of the error function

∂E

∂θ
=

∑

i

[f(xi) − yi]
∂f(xi)

∂θ
(4)

which we use with a conjugate gradient procedure to search for the optimal
parameter set that minimizes the error function. Due to the form of the sigmoid
and impulse function, the error function may have multiple local minima; 100
random restarts were used to find a good local minimum. Typically, many of
the restarts converged to the same minimum which was also the best one found,
suggesting that the error function tends to have a strong basin of attraction,
which is likely the global optimum.
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The gradient

We use the fact that the derivative of the sigmoid function S(β, x) = 1/(1 +

exp(−βx)), is ∂S(β,x)
∂x

= (−β)S(β, x)[1−S(β, x)]. Using the auxiliary functions
s1(x), s2(x) as defined above, we obtain the gradient of the impulse function
fθ(x) with respect to θ at x:

∂f

∂h0
= −

1

h1
[1 − S(+β, t1)] s2 (5)

∂f

∂h1
= −

1

h2
1

s1s2 +
1

h1
[S(+β, t1)s2 + s1S(−β, t2)]

∂f

∂h2
= −

1

h1

[

1 − S(−β, t2)
]

s1

∂f

∂t1
=

1

h1

[

− β(h1 − h0)S(+β, t1)(1 − S(+β, t1)
]

s2

∂f

∂t2
=

1

h1

[

− β(h1 − h2)S(−β, t2)(1 − S(−β, t2)
]

s1

∂f

∂β
= +

s2

h1
(h1 − h0)(t1 − x)S(+β, t1)[1 − S(+β, t1)]

+
s1

h1
(h1 − h2)(t2 − x)S(−β, t2)[1 − S(−β, t2)].

Extracting response onset

We defined the onset of the response as the time-to-half-peak — the time at
which the cell first reached half of its peak response, according to the fitted
impulse model). More precisely, we first compute the peak of the profile (the
maximum or the minimum, depending if the gene was activated or repressed);
then we find the first time where the profile reaches half of this peak level. This
measure is widely used in analysis of sigmoidal functions and was found in our
case to be robust to noise, as discussed in detail below.

We also experimented with other measures, and found the time-to-half-peak
to be numerically more stable than other onset measures including: (1) half-

time-to-peak — half the time it takes the curve to reach its peak; (2) the param-
eter t1 of the impulse model; (3) fastest-change-time — the time with steepest
curve (zero second derivative). The superior stability of the time-to-half-peak

estimate is largely because it is numerically more stable to estimate the level of
the peak than its time.

Importantly, the time-to-half-peak definition of the onset time is independent
of the measurement scale, since rescaling a curve does not change the time it
reaches its peak. As a result, the onset provides orthogonal information to the
peak level.
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Gene Expression Data

We collected 63 gene expression time courses from multiple published experi-
ments, including responses to changing media and various types of environmen-
tal stress (DeRisi et al., 1997; Gasch et al., 2000, 2001; Causton et al., 2001;
Zakrzewska et al., 2004; Lai et al., 2005; Kitagawa et al., 2005; Mercier et al.,
2005). We also included 13 new experiments with various media conditions.
These experiments are detailed in another paper that is currently under review
(Chechik et al., 2008). For completeness, we describe the experimental proce-
dure below, and will remove this section in the final version of this manuscript.

We generated a set of 13 time courses by measuring gene expression following
a metabolic change. Yeast strain KCN118 (MATalpha ade2) was grown at 28 C
in 400 mL of synthetic complete media with 2% dextrose (SCD) to an OD600
of 0.6. Synthetic complete was prepared using the standard recipe, except 75
uM inositol was included. At OD600 of 0.6, 100 mL of cells were collected
by centrifugation and frozen as a reference sample, and remaining cells were
rapidly collected by filtration, washed with distilled water, and resuspended in
300 mL of one of the following media: SCE (SC+ 2% ethanol), SCG (SC + 2%
galactose), SM1 (SCD lacking amino acids A, R, N, C, Q, G, K, P, S, F, and
T), SM2 (SCD lacking amino acids L, I, V, W, H, and M), 14 S0 (SCD lacking
all amino acids), S0G (no amino acids, 2% galactose), or S0E (no amino acids,
2% ethanol). To measure response profiles, 50 mL aliquots of resuspended yeast
were added to 500 mL flasks shaking in a 28 degree water bath for 15, 30, 60, 120,
or 240 minutes. At the indicated times, cells were collected by centrifugation
for 2 minutes at 3700 rpm, and were flash frozen in liquid nitrogen. Poly-
A RNA extraction, mRNA labeling, and cDNA microarray hybridization were
performed as previously described 30.

For a detailed list of conditions see supplemental Table 1.

Model properties: Robustness, coverage, impulse-ness

The impulse-shape of expression responses is prevalent, suggesting that it could
be used as a meaningful characterization of response profiles. But could an
impulse function be accurately estimated from sparse and noisy samples?

To answer this question, we evaluate three aspects of the impulse model:
How robustly it can be estimated from scarce data; what fraction of cellular
responses it fits well; and how “impulse”-like are cellular responses to environ-
mental changes.

Robustness

Microarray measurements of mRNA levels are notoriously noisy, often causing
individual expression measurements to be unreliable. Importantly however, the
variability in the estimate of the response onset from a time course is consider-
ably lower than the variability of each individual measurement. This robustness
results from two complementing effects: robustness to expression level noise, and
robustness to timing noise.
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Recall that we defined the onset-time as the time it takes to reach half-peak
level. This definition of the onset is invariant to linear transformations of the
data like rescaling and shift. Furthermore, since the onset is largely determined
by the lowest and highest measurements, additive noise often has small effect
on the estimate of onset time. To demonstrate this effect, we calculated the
correlation between two sets of onset times: one extracted from timecourses
measured in response to Peroxide exposure (Gasch et al., 2000), and another
extracted from a corrupted version of the same timecourses, achieved by adding
Gaussian noise with zero mean and standard deviation of 0.1. The magnitude of
the noise was chosen to reflect experimental noise observed between replicates
(Hughes et al., 2000).

Fig. 13(A) shows that the two estimates of the onsets are strongly repeatable
(correlation coefficient is ρ = 0.89). Adding simulated noise to the measured
expression levels can also be used as a procedure for estimating reliability of
onset estimates from an individual expression profile: if adding noise results in
large variation of the onset estimate, the estimate can be viewed as unreliable.

Second, onset time estimates are robust to timing noise, a crucial property
for analyzing dynamical responses. Timing noise has multiple sources, both bi-
ological and experimental. For the current discussion, we consider timing noise
that originates from variability in experimental conditions, and study the sen-
sitivity of our onset estimates in face of such timing noise. In particular, we
tested the effects of timing noise on onset estimates, using a simple noise model.
We consider the (unobserved) impulse curve that underlies the mRNA measure-
ments, and added noise to it, in the form of convolution with a Gaussian curve
that had a 2-minute standard deviation and a magnitude that was 20% of the
impulse peak. When a sigmoid function is convolved with a Gaussian (or any
symmetric function), the onset time of the original sigmoid and the convolved
ones are the same. This fact is a simple consequence of the properties of a convo-
lution of two symmetric functions. The result is that noise added to the timing
of the mRNA transcription has little effect on the estimate of the onset from
the mRNA time course. Fig. 13(B) illustrates this point, showing the convolu-
tion of an impulse curve (blue) with a 2-minute standard deviation Gaussian
(red), and demonstrating that their resulting convolution Fig. 13(C)preserves
the onset time.

Coverage

The impulse model is designed to capture a restricted set of expression response
types. What is the fraction of the genome that is adequately described by the
model?

To address this question we looked into the distribution of the normalized
errors across genes. The normalized error is the L2 prediction error, normalized
by the standard deviation of the expression measurements. This measure yields
a measure of error that is invariant to the scale of the expression levels.

We found that the impulse model was able to fit up to 95% of the genes in
some conditions with an error as low as half a standard deviation of the profile
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variability (adenine starvation Fig. 14(A)). In a typical condition, the impulse
model achieved this low error on 75% of the genes (Fig. 14(B)). The distribution
of errors across all conditions is given in Fig. 14(C). Those conditions that had
larger errors typically had more samples (hence are harder to fit), or were from
irradiation experiments (Mercier et al., 2005).

We complete the study of coverage by looking at the functional annotation
of genes that are well described by an impulse behavior. We defined a set of
K impulse genes to be the top K genes with lowest relative error, and tested
for functional enrichment of this group using GO. We chose K = 750 since the
number of significant categories peaked at this value.

In some conditions, impulse genes were enriched for GO categories relevant to
the condition. For instance, under nitrogen depletion, the impulse genes were en-
riched for amine metabolic process p < 5× 10−8 and nitrogen compound biosyn-

thetic process p < 2.5 × 10−5. In other cases, environmental changes elicited
generic responses, most notably the ribosome and its subunits (p < 10−6, ob-
served in multiple stress conditions including DTT, diamide, and hypo-osmotic
stress). Another category that repeated significantly was non-membrane-bound
organelle (p < 10−15, DTT, p < 10−6 heat shock), and genes whose product
are located in the cytosol (p < 10−15 in DTT, heat shock, and gamma irradia-
tion). A similar GO enrichment analysis for non-impulse genes (genes with bad
impulse fits), did not reveal significantly enriched GO categories.

As could be expected, some genes do not follow a two-transition impulse
response, and fitting their profiles with an impulse model may miss important
components of the response. One family of such responses was observed in
responses to KCl. Fig. 15 shows three examples, where response starts with
an activation (repression in panel (C)), and later rebounds with a stronger
repression (activation in panel (C)). The impulse model can be generalized to
capture such three-transition profiles, in cases were the number of samples is
sufficiently large to allow fitting a model with additional parameters.

Impulse-ness

The above experiments estimate the fraction of the genome that can be described
by the model with a low error, but some of these genes may have profiles that
are easy to fit by any model. We therefore used a Monte Carlo approach to
estimate the fraction of the genes that are characteristically impulse-shaped,
that is, they can be described considerably better with an impulse profile.

Our intuition is that some temporal profiles are easy to fit with small error.
For example, genes that remain non-responsive to the induced stress, exhibit
near constant expression profile, which is very easy to fit, but also easy to fit
when measurements are shuffled in time. We therefore estimated the Impulse-
ness of a gene, by measuring the extent to which it is easier to fit the original
profile with an impulse model, as compared to time-shuffled timecourses with
the same measurements.

In particular, we first fit an impulse model to each gene profile and calculated
its error. We then randomly shuffled the expression measurements in time, fit an
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impulse model to the shuffled data, and calculated the fit error. We repeated the
shuffling 100 times, yielding an estimate of the error distribution under the null
hypothesis. We finally used this distribution to calculate a p-value for each gene.
For the case of a non-responsive gene, both the original profile and its shuffled
versions are easy to fit, hence in this case, the p-value assigned to this profile
will be non-significant. On the other hand, in genes where the stress induces a
pronounced impulse response (like those observed in Fig. 1), the impulse model
can achieve low error, but many of the shuffled version will have multi-peak
profiles, which cannot be fitted well with a single impulse. These genes will
therefore achieve a significant p-value.

The distribution of p-values across all 6209 genes under exposure to diamide
(Gasch et al., 2000) is shown in Fig. 16(A). We use this distribution to estimate
model coverage, by calculating the excess in the fraction of genes observed for
each p-value as compared to the expected random level. Under the null hypoth-
esis of random errors, the expected distribution of p-values is flat (Fig. 16(A),
black horizontal line), simply following the definition of a p-value as the prob-
ability of observing result under the null hypothesis. Many more genes in our
model show smaller p-values than expected (red zone above the black line).
Fig. 16(B) plots the cumulative distribution function (CDF) of the distribution
in Fig. 16(A). The area of that zone provides the fraction of genes that are well
described by the impulse model beyond what is expected at random, yielding
that 54% of the genes exhibit behavior well captured by the model in diamide.
Comparing this result to a similar analysis for other parametric families (esti-
mated using the same procedure), we find that the impulse model provides a
significantly better fit. In particular, 2nd order polynomials achieve no excess
over the expected random level, and 3rd and 4th order polynomials achieve only
a 15% level (data not shown). Under the same definition, Fig. 16(C) shows the
distribution of excess coverage across the 76 conditions in our data, showing
that on average 35% of the genes are above the baseline.

Comparisons with other modeling methods

Single gene profiles were fit (Fig. 2) using the impulse model, and compared
with the following methods. (1) Polynomials fit of degree 2,3 and 4. The fitting
procedure finds a polynomial of degree d that fits the data best in a least-
squares sense. (2) Piecewise cubic Hermite interpolation, as calculated by the
matlab function interp1. (3) Piecewise cubic spline interpolation, as calculated
by the matlab function interp1. (4) Approximating splines calculated using code
supplied by Bar-Joseph.

K Nearest Neighbors procedure

For K-nearest neighbor imputation (KNN-impute), we followed the approach
of Troyanskaya et al. (Troyanskaya et al., 2001). The known measurements are
used to calculate distances between gene profiles, and the k nearest neighbors
of each gene are identified. The missing measurement at a time t for gene g
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is estimated as the average of the time t expression values measured for the k
genes most similar to g. KNN-impute uses a Euclidean distance over the vector
of expression measurements to find the nearest neighbors.

To evaluate the impulse model in this context, we hid a randomly selected
single time point in the expression profile of each gene, and used the remaining
measurements to estimate the left-out values. Overall, this process resulted in a
level of about 10–20% missing values, depending on the number of measurements
in each time course. For each gene, we estimated the curve fit to the remaining
measurements of that gene. We then estimated the value of a missing time t
measurement for gene g by selecting the k genes nearest to g, using Euclidean
distance over the predicted values, and averaging the predicted expression values
at time t. Note that the predicted values were used both for selecting the
neighbors and as a basis for estimating the time t value.

For comparison, we also applied the standard KNN-impute procedure to the
same data. We used the on-line version of KNN-impute, available for download
at http://smi-web.stanford.edu/projects/helix/pubs/impute/. We used k = 15,
which is in the middle of the range of optimal values for k in the analysis of
Troyanskaya et al..

Identifying timed functions

To study the timeline of cellular responses, we identified GO categories that
are timed distinctly earlier or later than other categories, using the following
procedure. First, we defined a list of gene-sets pairs. The first set in each
pair consisted of all genes in a GO category. We only considered medium size
categories, and therefore ignored categories whose size was not between 1%–20%
of the genome (60–1200 assigned genes). The second set in a pair, consisted of
all genes in sibling categories (other children of the parent category). This set
of genes provide a baseline to which the GO category can be compared.

Second, We collected the set of onset times for each gene set, based on all
genes with relevant functional annotation. Finally, we used a Wilcoxon test to
the timing difference between every pair of categories.

To produce our functional time lines, we needed to identify a subset of k
categories that are strongly ordered. We chose to select the subset whose sum
of pairwise scores is maximal. However, finding such an optimal set is computa-
tionally very costly, since it requires to go over all subset of size k (in fact, this
is a case of the NP-Hard problem max weighted clique, that is believed to be
impossible to solve efficiently for large instances). Instead, we followed a greedy
procedure. We initialized the set with the two most distant categories (high-
est pairwise score), and repeatedly added a category whose sum of scores with
the current set was maximal. We collected N categories with this procedures,
and then manually pruned away categories that had high overlap (50%) with
other categories in term of the number of genes, removing the category with
lower score. N was chosen to show many categories while avoiding clutter. This
procedure yields interpretable results, as demonstrated in Fig. 6.
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Correction for multiple hypotheses

We used false discovery rate (FDR) as originally described by Benjamini and
Hochberg (Benjamini and Hochberg, 1995) to correct for multiple hypotheses.
In some cases noted in the text, we used the more conservative Bonferroni
correction for simplicity. In these cases, the reported upper bounds on the
p-values were simply multiplied by the number of hypotheses.
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1 FIGURE LEGENDS

1 Figure Legends

Figure 1: The impulse model. (A) The six parameters of the impulse model. (B)
Examples of impulse model fit (solid line) to gene expression (squares) in response to
1M sorbitol, as described in (Gasch et al., 2000).

Figure 2: Imputing missing values. (A) Mean squared error for imputing missing
values with the leave-one-out procedure described in the text. Methods compared are:
impulse model, cubic Hermite (CH), 2nd and 3rd order polynomials, approximating
splines and smoothing splines. Error is the average over 6209 genes in 76 conditions.
Error bars denote the standard error of the mean (s.e.m.) across the 76 conditions. (B)
Scatter plot of the mean error for the impulse model and cubic-Hermite
(CH, the second best predictor). Each point corresponds to a different condition,
and its shape shows the number of time point measurements in that condition. The
impulse model provides superior fits, especially in conditions with a small number of
time points. Note that the figure is in log-log scale, demonstrating that the impulse
model is superior across the full range of errors, providing better fit both for easy-to-fit
and hard-to-fit profiles. (C)–(E) Comparison of leave-one-out fits to a gene
expression profile. Squares denote measurements, which are the same for all three
panels. For each method, 5 curves are shown, each corresponding to a fit performed
with a different single measurement that was left out during the fit. The color of
each curve corresponds to the color of the hidden value (square marker). Curves
for the rightmost and leftmost measurements are not shown, because polynomials
perform very poorly in this extrapolation task. (C) Impulse model. (D) 2nd order
polynomial. (E) 3rd order polynomial. A fit for cubic hermit is given as supplemental
figure.

Figure 3: Whole genome comparisons. Median squared prediction error obtained
with Impulse-KNN compared with two other methods. Both figures are in log-log
scale, demonstrating that impulse NN is superior across a large range of error values.
(A) Comparison with KNN-impute, where missing values are filled using near-
est neighbors (according to a Euclidean distance between experimental measures).
Impulse-model errors are on average 20% lower than those of KNN-impute with a
Euclidean distance. (B) Comparison with spline clustering (Bar-Joseph et al.,
2003), where expression profiles are simultaneously clustered and modeled as a time
course. Impulse-KNN errors are on average 35% lower than with spline clustering.

Figure 4: Distribution of onset time and peak responses. Upper panels: Dis-
tribution of onset time in sibling GO categories. Bottom panels: Distribution of onset
time and peak response level per gene. (A) Subclasses of the gene expression GO
category, under exposure to diamide (Gasch et al., 2000). (B) Subclasses of intracel-
lular organelle part; Exposure to acid (Causton et al., 2001). To reduce clutter, Not
all subclasses are shown.

25



1 FIGURE LEGENDS

Figure 5: The timing of of ribosomal gene responses under exposure to
diamide (Gasch et al., 2000). The figure shows the timing and peak level for
two subclasses of ribosomal genes: mitochondrial (blue squares) and cytosolic (red
crosses). These two groups exhibit response profiles that are distinct both in their
expression level and their timing, demonstrating that the timing of the ribosome to
this condition is finely controlled.

Figure 6: A timeline of functional responses following gamma irradiation..
Each cross denotes the median peak and median onset time of all genes in the corre-
sponding GO category (Gasch et al., 2001). Length of bars denote the standard error
of the mean (s.e.m.) of each group (see Methods).

Figure 7: Number of significant TF+condition pairs as a function of binding
strength considered. The peak is achieved at p-value = 0.52, with 38 significant
pairs out of 48. A p-value of 0.5 corresponds to by-chance binding.

Figure 8: Mean onset time across genes grouped by their binding affinity.
(A) Binding of MET31 measured under amino acid starvation and expression mea-
sured under adenine starvation, Spearman correlation r = 0.14 p < 2.5 × 10−10. (B)
MET32 measured under amino acid starvation and expression measured under ade-
nine starvation. Spearman correlation r = 0.13, p < 1.9 × 10−9. Error bars denote
standard deviations, numbers above error bars denote group sizes.

26



2 FIGURES

2 Figures

Figure 1

(A) (B)

time

ex
pr

es
si

on

t
1

t
2

h
0

h
1

h
2

β
0 50 100 150 200

−1.5

−1

−0.5

0

YAL048C

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

YBL071C

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

ex
pr

es
si

on
 le

ve
l

time (min)

YBR097W

0 50 100 150 200
0

0.5

1

1.5

2

YGR028W

Figure 2

(A) (B)

impulse CH Poly 2 Poly 3 AP−Sp   SM−Sp
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ea

n 
sq

ua
re

d 
er

ro
r

interpolation method
10

−2
10

−1
10

0

10
−2

10
−1

10
0

mean error using impulse

m
ea

n 
er

ro
r 

us
in

g 
C

H

 

 

5
6
7
8
9
10
11

(C) (D) (E)

0 90
−0.4

0

0.3
Impulse

time (min)

lo
g 

ex
pr

es
si

on

0 90
−0.4

0

0.3
2nd order polynomial

time (min)

lo
g 

ex
pr

es
si

on

0 90
−0.4

0

0.3
3rd order polynomial

time (min)

lo
g 

ex
pr

es
si

on

27



2 FIGURES

Figure 3
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Figure 5
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A SUPPLEMENTAL FIGURES

A Supplemental Figures

supplementary figure 9
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Figure 9: (A) Scatter plot of the mean error for each condition using the impulse
model and polynomials. (A) 2nd . (B) 3rd order Polynomial.

supplementary figure 10
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  8.   8.3 min   M phase

  7.   8.0 min   transcription from RNA polymerase II promoter

  6.   7.8 min   chromosome organization & biogenesis

  5.   7.5 min   establishment of localization

  4.   7.0 min   regulation of biological process

  3.   4.6 min   protein metabolic process

  2.   3.4 min   RNA processing

  1.   2.2 min   ribonucleoprotein complex assembly

Figure 10: A timeline of responses to gamma irradiation, biological processes.
Each cross denotes the median peak and onset time of all genes in the relevant GO
category (Gasch et al., 2001). Length of bars denote the standard error of the mean
(s.e.m.) across genes associated with the category. (see Methods).
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supplementary figure 11
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  5.   7.4 min   transmembrane transporter activity

  4.   6.5 min   DNA binding

  3.   4.7 min   catalytic activity

  2.   3.4 min   RNA binding

  1.   3.2 min   structural constituent of ribosome

Figure 11: A timeline of responses to gamma irradiation, molecular function.
Each cross denotes the median peak and onset time of all genes in the relevant GO
category (Gasch et al., 2001). Length of bars denote the standard error of the mean
(s.e.m.) (see Methods).

supplementary figure 12
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Figure 12: Comparison of leave-one-out fits to a gene expression profile. Same
analysis as in Fig. 2 but for cubic Hermite interpolation (CH). CH interpolation is often
heavily local: in this example, it is close to a piece-wise linear interpolation. Fig. 2(A)
shows that, on average, this type of fit yields poor approximations in comparison with
the impulse model. Each curve corresponds to a fit performed with a different single
measurement that was left out during the fit. The color of each curve corresponds to
the color of the hidden value (square marker).
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supplementary figure 13
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Figure 13: (A) Robustness to expression level noise: Onset extracted from cor-
rupted time courses is highly correlated with the original onset (correlation coefficient
is ρ = 0.89). Time courses were corrupted by additive Gaussian noise N(0, 0.1). Each
point corresponds to a gene; shown are differentially expressed genes (log expression
> 1) under exposure to peroxide (Gasch et al., 2000).(B) Robustness to timing
noise: Convolution of an impulse model (blue curve) that has an onset at 5 minutes
(black square), with a Gaussian (red curve, 2 minutes standard deviation). The result-
ing convolution (purple curve), has essentially the same onset as the original impulse
blue curve.
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supplementary figure 14
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Figure 14: Distribution of normalized error across all genes. (A) The con-
dition with largest number of genes with low error, adenine starvation (Gasch et al.,
2000); more than 95% of the genes (5934) have a normalized error below half a stan-
dard deviation of the expression. (B) A condition with typical error profile (synthetic
complete media with Ethanol and inositol). Condition was chosen as the median across
conditions; 4705 genes (78%) had normalized variance below half a standard devia-
tion. (C) Distribution of coverage (fraction of genes with error below cutoff) across
conditions.
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Figure 15: Non-impulse responses to exposure to 1M KCl (O’Rourke and
Herskowitz, 2002). These genes follow at least three transitions.
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supplementary figure 16
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Figure 16: Impulseness. (A) Distribution of p-values for impulse model fitting for
responses of yeast genes to diamide. The expected distribution of p-values (flat) is
plotted as a black line, and the excess of significant genes over random is colored in
red. (B) Cumulative distribution of the p-values (red) vs the expected in random
(blue). (C) Distribution of the excess of significant genes across 76 stress conditions.
It shows that the impulse model fits on average about 35% of the yeast genome above
the baseline level.
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B Supplemental Tables

Time course samples Time course samples

Gasch et al. (2000) O’Rourke and Herskowitz (2002)
sorbitol 1M 7 WT 0.125M KCl 5
diamide 1.5mM 9 WT 0.25M KCl 5
menadione 1mM 10 WT 0.5M KCl 10
25 oC 6 WT 1M KCl 9
DTT 2.5mM 9 WT 1M Sorbitol 10
adenine starvation 6 WT alpha 5
hypo osmotic shock 6 hog1 0.125M KCl 5
nitrogen depletion 10 hog1 0.5M KCl 10
H2O2 0.32mM 11 pbs2 0.5M KCl 5
DTT 8 sho1 0.5M KCl 5
heat shock 8 ssk1 0.0625M KCl 5

Gasch et al. (2001) ste11 0.0625M KCl 5
MMS DES459 mec1 0.02 8 ssk1 0.125M KCl 5
MMS DES460 0.02 7 ssk1 0.5M KCl 5
mec1 plus gamma 9 ssk1sho1 0.5M KCl 5
wt plus gamma 9 ssk1ste11 0.0625M KCl 5

DeRisi et al. (1997) ste11 0.5M KCl 5
diauxic shift 6 ssk1ste11 0.125M KCl 5

New Data ste11 0.125M KCl 5
SD 6 ssk1ste11 0.25M KCl 5
SD+aa 6 ssk1ste11 0.5M KCl 5
SD+aaAR+ino 6 ssk1ste11 1M KCl 5
SD+aaLI+ino 6 Lai et al. (2005)
SD+ino 6 WT Gal N2 rep1 5
SEtOH 6 WT Gal N2 rep2 5
SEtOH+aa 6 WT Gal N2 rep3 5
SEtOH+aa+ino 6 WT Glu N2 rep1 5
SEtOH+ino 6 WT Glu N2 rep2 5
Sgal 6 WT Glu N2 rep3 5
Sgal+aa 6 msn2/4 Galactose rep1 5
Sgal+aa+ino 6 msn2/4 Galactose rep2 5
Sgal+ino 6 msn2/4 Galactose rep3 5

Causton et al. (2001) WT Gal N2 mean 5
Acid 7 WT Glu N2 mean 5
Alkali 7 msn2/4 Galactose mean 5
Heat 6 Mercier et al. (2005)
NaCl 6 18733 200GY 7
Peroxide 6 18734 200Gy 7
Sorbitol 6 18735 200Gy 7

Zakrzewska et al. (2004) 6053 200Gy 7
Chitosan 6 hdf1 LM79 200Gy 7

Table I: List of time courses that were analyzed. conditions are grouped by publication.
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Adenine starvation ADR1 SM, ARG80 SM, ARG81 SM, ARO80 SM,
(Gasch 2000) BAS1 SM, CAD1 SM, CBF1 SM, CHA4 SM,

DAL81 SM, DAL82 SM, FHL1 SM, GAT1 SM,
GCN4 SM, GCR2 SM, GLN3 SM, HAP4 SM,
HAP5 SM, LEU3 SM, MET28 SM, MET31 SM,
MET32 SM, UGA3 SM, MET4 SM, MOT3 SM,
PHO2 SM, PUT3 SM, RAP1 SM, STP1 SM,
RCS1 SM, RPH1 SM, RTG1 SM, RTG3 SM,
SFP1 SM, SIP4 SM,

Heat shock ADR1 HEAT, GAT1 HEAT, HSF1 HEAT, MSN2 HEAT,
(Gasch 2000) SKN7 HEAT, YAP1 HEAT,

Heat ADR1 HEAT, GAT1 HEAT, HSF1 HEAT, MSN2 HEAT,
(Causton 2001) SKN7 HEAT, YAP1 HEAT

Acid MSN2 Acid, MSN4 Acid
(Causton 2001)

Table II: List of matching TF-condition pairs. The left column gives the gene expres-
sion condition. The right column gives the name of the name of the TF the conditions
at which it was tested.
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Early repressed ribosomal gene in Fig. 5 (onset before 13 min)

ARD1, CAM1, EGD1, FUN12, GCN1, GCN20, HEF3, MAP1,
NAT1, NIP7, NMD3, PAT1, RLI1, RPL10, RPL13B,
RPL31B, RPL35A, RPL37B, RPL39, RPL40A, RPL41A,
RPP1B, RPS19B, RPS20, RPS25A, RPS25B, RPS28A,
RPS28B, RPS30B, RPS31, SIS1, SQT1, YGR054W

Late repressed ribosomal gene in Figure Fig. 5 (onset after 13 min)

BTT1, GCN2, RPL11A, RPL11B, RPL12A, RPL12B,
RPL13A, RPL14A, RPL14B, RPL15A, RPL15B, RPL16A,
RPL16B, RPL17A, RPL17B, RPL18A, RPL18B, RPL19B,
RPL1A, RPL1B, RPL20A, RPL20B, RPL21A, RPL21B,
RPL22A, RPL23A, RPL23B, RPL24A, RPL24B, RPL25,
RPL26A, RPL26B, RPL27A, RPL27B, RPL28, RPL2B,
RPL3, RPL30, RPL31A, RPL32, RPL33A, RPL33B,
RPL34B, RPL35B, RPL36A, RPL37A, RPL38, RPL40B,
RPL42A, RPL42B, RPL43A, RPL4A, RPL4B, RPL5,
RPL6A, RPL6B, RPL7A, RPL7B, RPL8A, RPL8B,
RPL9A, RPL9B, RPP0, RPP1A, RPP2A, RPP2B,
RPS0A, RPS0B, RPS10A, RPS10B, RPS11A, RPS11B,
RPS12, RPS13, RPS14A, RPS14B, RPS15, RPS16A,
RPS16B, RPS17A, RPS17B, RPS18A, RPS18B, RPS19A,
RPS1A, RPS1B, RPS2, RPS21A, RPS21B, RPS22A,
RPS22B, RPS23A, RPS23B, RPS24A, RPS24B, RPS26A,
RPS26B, RPS27A, RPS27B, RPS29A, RPS29B, RPS3,
RPS4A, RPS4B, RPS5, RPS6A, RPS6B, RPS7A,
RPS7B, RPS8A, RPS8B, RPS9A, RPS9B, STM1, TIF5

Table III: Early repressed genes (onset before 13 minutes) and late ones in figure Fig. 5.
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Condition GO category (median time) parent (median time )

Gasch sorbitol translation (10.00) gene expression (9.40)

Gasch diamide translation (10.75) gene expression (6.50)
rib. (16.30) intracellular non-mb. org. (6.60)
translation (10.75) macromolecule bios. p. (7.40)
intracellular mb. org. (6.10) intracellular org. (6.30)
mb. org. (6.10) org. (6.30)
biopolymer bios. p. (5.80) macromolecule bios. p. (7.40)
cytosolic rib. (19.10) rib. (16.30)
organellar rib. (6.15) rib. (16.30)
translation (10.75) cellular protein metabolic p. (7.50)
cellular bios. p. (8.90) bios. p. (7.45)
rib. (16.30) rib.nuc.prot complex (8.90)
ribosomal subunit (17.65) rib.nuc.prot complex (8.90)
structural constituent of rib. (18.10) structural molecule activity (8.25)
translation (10.75) cellular bios. p. (8.90)

Gasch dtt intracellular mb. org. (31.35) intracellular org. (32.85)
mb. org. (31.35) org. (32.85)
translation (54.55) cellular protein metabolic p. (36.65)
translation (54.55) macromolecule bios. p. (36.50)
rib. (59.90) intracellular non-mb. org. (44.30)
translation (54.55) gene expression (37.60)
rib.nuc.prot complex (51.10) macromolecular complex (33.50)
ribosomal subunit (61.30) rib.nuc.prot complex (51.10)
translation (54.55) cellular bios. p. (45.00)
biopolymer bios. p. (28.40) macromolecule bios. p. (36.50)
cytosolic part (61.60) cytosol (55.60)
rib. biog. and assembly (53.50) org. organization and biog. (32.70)
biopolymer metabolic p. (31.60) macromolecule metabolic p. (33.70)
rib. (59.90) rib.nuc.prot complex (51.10)
cytosolic rib. (62.00) rib. (59.90)
cellular bios. p. (45.00) bios. p. (36.65)

Gasch intracellular mb. org. (7.10) intracellular org. (7.40)
heat shock mb. org. (7.10) org. (7.40)

translation (10.00) cellular bios. p. (8.50)
cytosolic rib. (11.15) rib. (10.20)

Gasch MMS macromolecule metabolic p. (7.60) metabolic p. (10.00)

Gasch rib. biog. and assembly (2.00) org. organization and biog. (5.70)
wt+gamma rRNA metabolic p. (1.80) RNA metabolic p. (6.20)

Rando SD ribosomal subunit (11.25) rib.nuc.prot complex (10.00)

Rando intracellular mb. org. (9.60) intracellular org. (9.90)
SD+AR+I mb. org. (9.60) org. (9.90)

biopolymer metabolic p. (9.20) macromolecule metabolic p. (10.00)
rib. (12.60) intracellular non-mb. org. (10.70)
nucleolus (7.65) intracellular non-mb. org. (10.70)
ribosomal subunit (13.10) rib.nuc.prot complex (11.80)
rib. (12.60) rib.nuc.prot complex (11.80)
translation (12.15) macromolecule bios. p. (11.10)
translation (12.15) cellular protein metabolic p. (11.20)

Rando SD+I nucleolus (7.10) intracellular non-mb. org. (10.05)
translation (11.60) gene expression (9.60)
rib. (11.70) intracellular non-mb. org. (10.05)
intracellular mb. org. (9.00) intracellular org. (9.20)
mb. org. (9.00) org. (9.20)
ribosomal subunit (12.40) rib.nuc.prot complex (10.70)
translation (11.60) cellular protein metabolic p. (9.95)

Causton Heat nuclear lumen (15.00) org. lumen (14.40)
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Condition GO category (median time) parent (median time )

Gasch sorbitol translation (10.00) gene expression (9.40)

Causton intracellular mb. org. (9.60) intracellular org. (9.80)
Peroxide mb. org. (9.60) org. (9.80)

ribosomal subunit (18.95) rib.nuc.prot complex (14.10)
structural constituent of rib. (19.10) structural molecule activity (14.80)
rib. (17.45) rib.nuc.prot complex (14.10)
cytosolic part (19.10) cytosol (15.70)
nucleolus (12.05) nuclear lumen (10.20)
cytosolic rib. (19.90) rib. (17.45)
translation (15.60) cellular bios. p. (12.90)
nucleoplasm (9.35) nuclear lumen (10.20)

ORourke nucleolus (1.60) intracellular non-mb. org. (2.10)
0.0625MKCl nucleolus (1.60) nuclear part (1.70)

ORourke rib. (4.75) intracellular non-mb. org. (2.90)
0.125MKCL translation (4.50) gene expression (3.10)

biopolymer metabolic p. (2.60) macromolecule metabolic p. (2.90)
intracellular mb. org. (2.80) intracellular org. (2.90)
mb. org. (2.80) org. (2.90)
nucleolus (2.45) intracellular non-mb. org. (2.90)
RNA p.ing (2.50) gene expression (3.10)
nuclear part (2.10) intracellular org. part (2.80)
protein metabolic p. (3.40) macromolecule metabolic p. (2.90)

ORourke organellar rib. (4.30) rib. (9.90)
0.5MKCl cytosolic rib. (10.45) rib. (9.90)

translation (9.65) macromolecule bios. p. (5.90)
intracellular mb. org. (6.10) intracellular org. (6.45)
mb. org. (6.10) org. (6.45)
structural constituent of rib. (10.20) structural molecule activity (9.00)

ORourke cytosolic rib. (12.10) rib. (11.40)
1Msorb organellar rib. (6.75) rib. (11.40)

intracellular mb. org. (8.70) intracellular org. (8.90)
mb. org. (8.70) org. (8.90)
translation (10.75) macromolecule bios. p. (8.80)
cellular bios. p. (10.00) bios. p. (9.10)
rib. (11.40) intracellular non-mb. org. (9.70)

ORourke intracellular mb. org. (6.80) intracellular org. (7.10)
hog1 0.5MKCl mb. org. (6.80) org. (7.10)

translation (11.10) macromolecule bios. p. (7.30)
rib. (13.50) intracellular non-mb. org. (8.50)
organellar rib. (3.00) rib. (13.50)
cytosolic rib. (14.60) rib. (13.50)
cellular bios. p. (9.70) bios. p. (7.80)
translation (11.10) cellular protein metabolic p. (8.40)
rib. (13.50) rib.nuc.prot complex (10.30)

ORourke intracellular mb. org. (7.20) intracellular org. (7.40)
pbs2 0.5MKCl mb. org. (7.20) org. (7.40)

rib. (10.20) intracellular non-mb. org. (8.40)
translation (9.85) gene expression (7.80)
translation (9.85) macromolecule bios. p. (7.85)
translation (9.85) cellular protein metabolic p. (7.80)
rib. (10.20) rib.nuc.prot complex (9.30)
ribosomal subunit (10.30) rib.nuc.prot complex (9.30)
cellular bios. p. (9.10) bios. p. (7.90)
translation (9.85) cellular bios. p. (9.10)
biopolymer bios. p. (6.20) macromolecule bios. p. (7.85)
biopolymer metabolic p. (7.10) macromolecule metabolic p. (7.40)
protein modification p. (6.80) cellular protein metabolic p. (7.80)

40



B SUPPLEMENTAL TABLES

Condition GO category (median time) parent (median time )

ORourke translation (9.70) cellular protein metabolic p. (8.00)
sho1 translation (9.70) macromolecule bios. p. (7.40)
0.5MKCl rib. (9.90) intracellular non-mb. org. (8.35)

intracellular mb. org. (7.10) intracellular org. (7.40)
mb. org. (7.10) org. (7.40)
organellar rib. (5.75) rib. (9.90)
cellular bios. p. (9.20) bios. p. (7.70)
cytosolic rib. (10.10) rib. (9.90)
rib. (9.90) rib.nuc.prot complex (9.10)

ORourke translation (9.80) macromolecule bios. p. (7.90)
ssk1sho1 translation (9.80) gene expression (8.10)
0.5MKCl cytosolic rib. (10.45) rib. (10.00)

rib. (10.00) intracellular non-mb. org. (8.15)
intracellular mb. org. (7.10) intracellular org. (7.40)
mb. org. (7.10) org. (7.40)
cellular bios. p. (9.00) bios. p. (8.10)
translation (9.80) cellular protein metabolic p. (8.20)
biopolymer bios. p. (6.55) macromolecule bios. p. (7.90)

ORourke rib. (9.15) intracellular non-mb. org. (6.85)
ssk1ste11 translation (9.00) gene expression (6.60)
0.5MKCl intracellular mb. org. (6.10) intracellular org. (6.40)

mb. org. (6.10) org. (6.40)
nucleolus (4.55) intracellular non-mb. org. (6.85)
translation (9.00) macromolecule bios. p. (7.20)
translation (9.00) cellular protein metabolic p. (7.60)
RNA p.ing (5.40) gene expression (6.60)

ORourke rib. (39.20) intracellular non-mb. org. (31.10)
ssk1ste11 biopolymer bios. p. (27.70) macromolecule bios. p. (30.40)
1MKCL cellular bios. p. (35.00) bios. p. (31.60)

translation (35.85) macromolecule bios. p. (30.40)

ORourke cytosolic rib. (10.40) rib. (10.05)
ste11 organellar rib. (5.85) rib. (10.05)
0.5MKCl intracellular mb. org. (7.80) intracellular org. (8.00)

mb. org. (7.80) org. (8.00)

Lai Gal R2 organellar rib. (4.50) rib. (9.90)
cytosolic rib. (10.50) rib. (9.90)

Lai Gal R3 organellar rib. (4.65) rib. (9.50)

Lai Mean organellar rib. (5.15) rib. (9.15)
cytosolic rib. (9.75) rib. (9.15)

Table IV: Differentially-timed sibling GO categories. List of GO categories
whose timing is significantly different than sibling categories (Wilcoxon test, p < 10−5,
Bonferroni corrected) . Only categories with 30–300 genes were considered. Notations:
‘p.’ for ‘process; ‘bios’ for ‘biosynthetic’, ‘biog’ for ‘biogenesis, ‘org.’ for ‘organelle’,
‘i.c.’ for ‘intracellular’, ‘rib’ for ’ribosome’, ‘m.b.’ for ‘membrane-bound’.
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