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Abstract

Markerless tracking of human pose is a hard yet rele-

vant problem. In this paper, we derive an efficient filtering

algorithm for tracking human pose at 4-10 frames per sec-

ond using a stream of monocular depth images. The key

idea is to combine an accurate generative model—which

is achievable in this setting using programmable graph-

ics hardware—with a discriminative model that feeds data-

driven evidence about body part locations. In each filter

iteration, we apply a form of local model-based search that

exploits the nature of the kinematic chain. As fast move-

ments and occlusion can disrupt the local search, we utilize

a set of discriminatively trained patch classifiers to detect

body parts. We describe a novel algorithm for propagating

this noisy evidence about body part locations up the kine-

matic chain using the unscented transform. The resulting

distribution of body configurations allows us to reinitialize

the model-based search, which in turn allows our system to

robustly recover from temporary tracking drift. We provide

extensive experimental results on 28 real-world sequences

using automatic ground-truth annotations from a commer-

cial motion capture system.

1. Introduction

If motion capture technology were to become conve-

nient, cheap, and applicable in natural environments, then

a whole range of applications would become possible, such

as intuitive human-machine interaction, smart surveillance,

character animation, virtual reality and motion analysis. It

is likely that many such applications will become apparent

once the technology is available.

The only viable solution today, that is, marker-based hu-

man motion capture, has so far mainly been used in the en-

tertainment industry, largely because the need for special-

purpose cameras and inconvenient markers or suits requir-

ing high operation costs. As a result, there has been much

interest in the area of markerless motion capture, and such

systems are becoming more popular [12].

In recent years, algorithms have been proposed that cap-

ture full skeletal motion at near real-time frame rates; how-

ever, they mostly rely on multi-view camera systems and

special controlled recording conditions that limit their ap-

plicability. Less expensive systems that use a narrow base-

line camera system have not yet reached a similar level of

maturity. Most monocular approaches so far aim at solv-

ing simplified versions of the full articulated motion cap-

ture problem, such as gesture disambiguation, or capture of

restricted motion for certain parts of the body.

Time-of-flight sensors are a technology that offers rich

sensory information about a large part of the scene and, at

the same time, enables a convenient, non-invasive system

setup. These sensors provide dense depth measurements

at every point in the scene at high frame rates. The range

data provided allows easy segmentation of the human body

and can also disambiguate poses that would otherwise have

similar appearance and therefore confuse most monocular

systems. Range sensors, in general, lend themselves to a

faithful generative model (as the robotics literature shows),

because they are not sensitive to changes in lighting, shad-

ows, and the variety of the problems that make it nearly

impossible to generatively model intensity images. In the

future, these sensors are likely to be as cheap as webcams

are today. Thus, we approach the human motion capture

task using time-of-flight sensors. Despite the advantages of

depth sensors, however, several hard problems have to be

dealt with, including the high dimensionality of the state-

space (48 degree-of-freedom in our case) and the nonlinear,

highly peaked likelihood function.

We propose in this paper a probabilistic filtering frame-

work that employs a highly accurate generative model—

which is achievable in this setting using an efficient GPU

implementation—with a discriminative model. Our algo-

rithm was developed specifically for fast operation at video

frame rates, since natural communication requires a low-

latency action-reaction cycle. The presented system re-
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quires 100 − 250ms per camera frame to estimate the joint

angles of a 48 degree-of-freedom human model.

Our primary contribution is a novel algorithm for

combining discriminative part detections with local hill-

climbing for this task. Our secondary contribution is the

definition of a smooth likelihood function and a means

of implementing it on readily available graphics hardware

(GPUs) efficiently in order to obtain near real-time perfor-

mance. In addition to this, we constructed an extensive set

of real-world test sequences with annotated ground truth,

which are published openly [6] for future benchmarks.

2. Related Work

The automatic analysis of human shape and motion from

sensor data has been researched considerably as Moes-

lund et al. [9] illustrate in their survey covering more than

than 350 papers.

Several learning based approaches [1, 17, 14] attempt to

directly map image structures, silhouettes or features com-

puted from them directly to poses. While this is an inter-

esting approach in general, it is not clear yet how to scale

it robustly to the general problem setting in unconstrained

environments due to the high dimensionality of the human

pose space. Related to our approach, this line of research

would fit well into the data-driven component of our algo-

rithm described in Sec. 4.2. Similarly, several papers try to

detect parts of the body which they assemble into a com-

plete form, termed pictorial structures. Although operating

on high quality point clouds obtained from laser scans in-

stead of video, Rodgers et al. [13] take a similar approach

that uses discriminative methods to populate the domains of

discrete variables in a Bayesian network. In the multi-view

vision setting, Sigal et al. [15] apply a similar strategy, but

use Nonparameteric Belief Propagation for their inference

method. Our approach differs in that we perform inference

in the continuous domain and that we are working on tem-

poral data with a noisier sensor. Our approach to body part

detection employed in this work is described in [11].

Much work has also focused on sampling-based methods

[5, 3, 16], including partitioned sampling, which updates

subsets of parameters, and hierarchical sampling, which

starts at the top of the kinematic chain and proceeds down-

wards. In our approach, we adopt the idea of hierarchical

search along the kinematic chain, but replace random sam-

pling with deterministic sampling because it is allows in-

creased efficiency through precomputation.

Recently there have been several attempts to track people

using a time-of-flight (TOF) camera. Grest et al. [7] apply

non-linear least squares to edge maps, that are associated

from frame to frame. Knoop et al. [8] use a stereo camera

and a TOF camera to fit a cylindrical 3D body model to the

data via the iterative closest point (ICP) algorithm. Both pa-

pers focus on tracking of the upper body only. Due to their

Figure 1. Left: The human body is modeled by a kinematic chain

and a 3D surface mesh. Right: The dynamic Bayesian network

modeling the poses Xt of the tracked person and the recorded

range measurements zt.

local nature, both algorithms are susceptible to losing track

when the motion is too fast. Recently, Zhu et al. [18] have

proposed an algorithm for upper-body tracking from one

TOF camera. Their algorithm is based on hand-engineered

heuristics for detecting joints of the upper body and is opti-

mized for upper front-facing poses. These algorithms do not

include any reinitialization component and operate through

local optimization initialized from the previous frame.

The related problem of tracking using one or many video

cameras has also received much attention. The classic

work by Bregler et al. [4] tracks a person from a single

camera using optical flow to obtain frame-to-frame cor-

respondences, which are used to calculate motion deriva-

tives, which are propagated up the kinematic chain. By as-

sumption, their approach is limited to motions parallel to

the image plane, and it is also susceptible to losing track.

However, the central idea of propagating information from

the image up the kinematic chain is one that we exploit in

our algorithm, although we use the unscented transform to

achieve higher quality linearization.

There is a growing trend in papers that use pro-

grammable graphics hardware (GPUs) to implement com-

puter vision algorithms [10]. The parallel nature of compu-

tation on a GPU as well as their optimization for operating

on images leads us to believe, that they are an ideal platform

for computer vision algorithms, especially when real-time

performance is paramount. We exploit GPUs to perform

large numbers of likelihood evaluations efficiently.

3. Probabilistic Model

The objective is to track an articulated body over time

using a stream of monocular depth images. We first define

a probabilistic model for the variables of interest in this sec-

tion and then describe how to efficiently perform inference

in Sec. 4.

We model the body as a collection of 15 rigid body

parts, which are constrained in space according to a tree-

shaped kinematic chain (skeleton), see the left diagram in

Fig. 1. A kinematic chain is a directed acyclic graph (DAG)
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with well-defined parent-child relations. The surface ge-

ometry of the model is represented via a closed triangle

mesh, which deforms with the underlying kinematic chain

by means of a vertex skinning approach [10]. We de-

note the configuration of the body by Xt = {Xi
t}

N
i=1 ,

where each i indexes a uniquely defined body part in the

chain. The transformations Xi can be represented in vari-

ous ways, such as using homogeneous matrices or in vec-

tor/quaternion form. Independent from the choice of rep-

resentation, Xi denotes the position and orientation of a

specific body part relative to its parent part. The chain is

“anchored” to the world at the pelvis X1
t (which does not

have a parent in the kinematic tree). In our model, we allow

the pelvis to freely rotate and translate. The remaining body

parts are connected to the their parent via a ball joint, which

allows them to rotate in any direction, but not to translate.

We obtain the absolute orientation W i(X) of a body part

i by multiplying the transformations of its ancestors in the

kinematic chain, W i(X) = X1 · · ·Xparent(i)Xi.

In order to determine the most likely state at any time,

we must define a probabilistic model. The state at time t

is the pose Xt and its first discrete-time derivative Vt. The

measurement is the range scan zt. We model our system

as a dynamic Bayesian network (DBN), see the right dia-

gram in Fig. 1, which encodes the Markov independence

assumption that Xt and Vt are independent of z1, . . . , zt−1

given Xt−1 and Vt−1.

This DBN requires the specification of the conditional

probabilities P (Vt|Vt−1), P (Xt|Xt−1, Vt) and the mea-

surement model P (zt|Xt). We make the assumption that

the accelerations in our system are drawn from a Gaussian

distribution with zero mean1. Thus, Vt|Vt−1 ∼ N (Vt−1,Σ)
with the covariance matrix Σ being diagonal. We note that

since X is a list of relative transformations, the velocities

are also defined relatively. That is, if k is the index of the

knee, V k
t encodes the change in the angle between the shin

and thigh at frame t. The covariance Σ was specified by

hand following bio-mechanical principles and the known

video frame rate, although it could easily be set by an au-

tomated procedure using the many available human motion

data sets.

We define P (Xt|Vt, Xt−1) to be a deterministic CPD

(conditional probability distribution), that applies the trans-

formations in Vt to those in Xt−1. Formally, Xi
t = V i

t X
i
t−1

with probability 1.

The measurement model defines the distribution on the

measured range data given the state of the system. The mea-

sured range scan is denoted by z = {zk}Mk=1 where zk gives

the measured depth of the pixel at coordinate k. An example

scan is shown in Fig. 6. We assume the conditional indepen-

1Note that it is common in the tracking literature to assume random

accelerations rather than random velocities
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Figure 2. Our sensor model for individual range measurements ap-

proximates the mixture of a Gaussian (measurement noise) and a

uniform distribution (outliers and mis-associations).

dence of each pixel given the state and scene geometry m,

P (zt|Xt,m) =
∏

k

P (zkt |Xt,m) .

To generate the zk for a specific body configuration X and

model m, we transform the vertices corresponding to each

part i by its corresponding transformation matrix W i(X).
We then cast a ray from the focal point through pixel k and

calculate the distance to the first surface it hits, which we

denote zk∗. Note, that this is basically a ray-tracing op-

eration common place in the computer graphics rendering

literature.

Given the ideal depth value, we can then apply a noise

model for the given sensor. Noise models for time-of-flight

sensors have been heavily explored in the robotics litera-

ture. The standard approach is to explicitly model the dif-

ferent types of noise that are can occur. In principle, one

can enumerate the effects, such as Gaussian noise of the

sensor, the probability of a max range reading, outliers,

and others. We approximate such a CPD using the func-

tion shown in Fig. 2. Let us define smoothstep(x) =
(min(x, 1))2(3− 2min(x, 1)). We define

p(|zk − zk∗|) ∝ exp(−smoothstep(|zk − zk∗|)) . (1)

We chose this function because it approximates a Gaussian

mixed with a uniform distribution and it is a built-in func-

tion in the GPU shading language.

Our goal is to determine the most likely states X̂t and V̂t

at time t given the MAP assignments of the previous frame,

that is, X̂t−1 and V̂t−1. At each frame, we face the difficult,

high dimensional optimization problem 〈X̂t, V̂t〉 =

argmaxXt,Vt
logP (zt|Xt, Vt)+logP (Xt, Vt|X̂t−1, V̂t−1) ,

for which we describe an efficient solution in Sec. 4.

As a central component of our optimization problem, the

previously described measurement model P (zt|Xt, Vt) is

inadequate due to its sensitivity to incorrect models m and

to slight changes in the state X . Parts of the model that vio-

late their silhouette in the measured image will be penalized

heavily. For instance, slightly translating an object will re-

sult in all pixels at the edges evaluating an incorrect depth

3



value, which would be penalized heavily. The sensor model

partially accounts for this over-sensitivity through the use

of a heavy-tailed distribution.

In the literature, it has frequently been observed that the

true likelihood is often ill-suited for optimization, and sur-

rogate likelihoods are often used [5]. We develop a func-

tion that is more robust to the mis-association that occurs

during optimization. Let us rewrite this likelihood l(X)
in terms of z(X), the depth image obtained through ray-

casting applied to X . l(X) =
∑

k logP (zk|z(X)) =∑
k logP (zk|zk(X)). We construct an alternate smoother

likelihood

lsmooth(X) =
∑

k

max
j

logP (zk|zj(X)) + λ(j, k)

parametrized by a penalty function λ. Here, λ(j, k) rep-

resents a cost for choosing a different pixel index than

the one predicted by ray casting. In our case we define

λ(j, k) = −∞, if j is not an immediate pixel neighbor of

k, λ(j, k) = 0, if j = k and set λ(j, k) to a constant in all

other cases. We chose the constant −0.05 according to on

the following reasoning: Given our sensor’s field of view,

the subject will be approximately two meters away in order

to fit completely. At that distance, moving to a neighboring

pixel results in a Euclidean distance of a approximately 0.05

meters perpendicular to the direction the camera is facing.

Near the minimum, the log likelihood of the noise model

is approximately quadratic. λ can be chosen to smooth the

likelihood further though this could reduce accuracy. Thus,

the total penalty function approximates Euclidean distance

for close matches.

This section defined the probabilistic state space and

measurement model. Inference in this model is non-trivial

due to the high-dimensional nature of the space of the kine-

matic configuration space X and the associated velocity

space V . This is particularly challenging for our real-time

tracking objective, where exhaustive inference is infeasible.

4. Inference

We now describe how to perform efficient MAP infer-

ence at each frame. We attack this problem in two ways:

(1) A model-based component locally optimizes the like-

lihood function by hill-climbing and (2), a data-driven part

processes the measurement z to reinitialize parts of the filter

state when possible. For the latter component, we derive an

approximate inference procedure termed evidence propaga-

tion to generate likely states which are then used to initialize

the model-based algorithm.

4.1. Model­Based Hill Climbing Search (HC)

To locally optimize the likelihood, we apply a coarse-

to-fine hill-climbing procedure. We start from the base of

kinematic chain which includes the largest body parts, and

proceed toward the limbs. For a single dimension i of the

state space, we sample a grid of values about the mean of

p(V i
t |V

i
t−1). For each sample of Vt, we deterministically

generate the state Xt from X̂t−1. The likelihood of this

state is evaluated, and the best one of the grid chosen. The

procedure can then potentially be applied to a smaller inter-

val about the value chosen at the coarser level. For example,

to optimize the X axis of the pelvis, we might sample values

between -0.5 to 0.5 at intervals of 0.05 meters. The bene-

fit of such a procedure is that it is inherently parallel. We

can send a batch of candidates to the GPU, which evalu-

ates all of them and returns their costs. We chose a deter-

ministic sampling strategy over stochastic sampling because

it allows more precomputation and therefore increases the

speed of likelihood evaluation.

4.2. Evidence Propagation (EP)

A variety of effects can cause the model-based search to

fail. One problem is that fast motion causes significant mo-

tion blur. Additionally, occlusion can cause the estimate of

the state of hidden parts to drift. Additionally, the likelihood

function has ridges that are difficult to navigate. We there-

fore propose a data-driven procedure that identifies promis-

ing locations for body parts in order to find likely poses.

The three steps in this procedure are (I) to identify possi-

ble body part locations from the current range image, (II) to

update the body configuration X given possible correspon-

dences between mesh vertices and part detections and (III)

to determine the best subset of such correspondences.

4.2.1 Body Part Detection

We consider the five body parts head, left hand, right hand,

left foot and right foot. The 3D world locations of these

parts according to the current configuration X of the body

are denoted as pi, i ∈ {1, . . . , 5}. Note that we represent

these parts by single vertices on the surface mesh of the

body, such that all pi are deterministic functions of X . The

data-driven detections of body parts—which we describe in

the following—are denoted as p̃j , j ∈ {1, . . . , J}, where

J ∈ N can be an arbitrary number depending on the part

detector. Actual body parts as well as the detections have a

class assignment ci, c̃j to {head, hand, foot}.

We obtain the body part detections using the algorithm

described in [11]. These detections are produced by a two

step procedure. In the first step extremal points on the

recorded surface mesh are determined from the range mea-

surement zt to form a set of distinct interest points. Dis-

criminatively trained classifiers are applied to patches cen-

tered on the points to determine to what body part class they

belong to. If the classifier is sufficiently confident, the fea-

ture is reported as a detection (see [11] for details).
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4.2.2 Probabilistic Inverse Kinematics

We now define a probabilistic model, visualized in Fig. 3,

consisting of the variables Vt, Xt, Vt−1, Xt−1 and p̃j . As-

suming a correspondence between body part i and detection

j, we apply the observation model

p̃j ∼ N (pi(X),Σo) . (2)

We would now like to calculate a MAP estimate of Xt and

Vt conditioned on X̂t−1 and p̃j . This is difficult because the

intermediate variable pi is a heavily non-linear function of

X . In order to compute pi(X) we must determine the world

coordinates W (X), which includes the absolute orientation

of each body part. Then we transform pi from its location

in the mesh to its final location in the world.

To tackle this problem, we observe that Xt is a determin-

istic function of Vt and X̂t−1. Therefore, we can rewrite pi

as a non-linear function pi(Vt, X̂t−1, V̂t−1). Our approach

will be to linearize the function pi. Because the distribution

P (Vt|V̂t−1) is a linear Gaussian, linearizing pi results in

a linear Gaussian network approximation. MAP inference

on this model is easy, so we can determine an estimate of

argmaxP (Vt|X̂t−1, V̂t−1, p̃j). We linearize about this esti-

mate and repeat the procedure until convergence.

There are many ways to linearize pi. We apply the un-

scented transform which is used in the unscented Kalman

filter in a similar situation. The basic approach is to com-

pute sigma points from the prior distribution on Vt, apply

the non-linear function to them, and then approximate the

result with a linear Gaussian. We omit the mathematical

details, but it can be shown that this method provides an

estimate of the distribution that is more accurate than lin-

earization through calculating an analytic Jacobian.

To summarize, given a known correspondence between a

point in the image and a point in the mesh, we can perform

approximate MAP inference using the algorithm just de-

scribed. The algorithm is related to existing methods for in-

verse kinematics using non-linear least squares, except that

it performs linearization using the unscented transform, and

it admits prior distributions on the variables.

4.2.3 Data Association and Inference

We now give the entire algorithm for determining X̂t from

X̂t−1 and zt. In this section, we only assume we are given a

set of part detections and their estimated body part classes,

{p̃j , c̃j}. The algorithm begins with an initial guess Xbest
t ,

set to X̂t−1, which is repeatedly improved by integrating

part detections.

The algorithm begins by updating Xbest with the estimate

from produced by hill-climbing as described in Sec. 4.1.

Part detections are then extracted from the measurement zt.

In theory, we have to decide for each detection whether it

Figure 3. Dynamical model for the integration of body part detec-

tions .

is spurious, and if not, which specific body part it is asso-

ciated with, constrained by the body part class of the detec-

tion. This results in a large number of possible combina-

tions. Considering each such combination, which requires

performing hill-climbing, would be far too time consuming

for a real-time system. We therefore prune detections that

are near any part location in Xbest. This perhaps unintuitive

heuristic is based on the observation that discriminative de-

tections are needed most when the hill climbing approach

has lost track. When such a loss has occurred, it is hoped

the the discriminative algorithm will detect a part far from

the location of any part in Xbest. When the hill climbing al-

gorithm is doing well, the part detections will be near their

location in Xbest and therefore can be ignored. We prune

detections near any part in Xbest because the part classifiers

can often confuse classes. The next step is to expand the

detections into a set of concrete correspondences. A can-

didate correspondence {(pi, p̃j)} is created for each body

part to all detections with a matching class, that is ci = c̃j .

For instance, a correspondence is created for the right hand

to all hand detections.

At this point, we have a concrete list of possible corre-

spondences from which we must choose a subset. We ap-

proach this problem in a greedy fashion. We iterate through

each possible correspondence, and apply evidence propa-

gation, initialized from Xbest to find a new posterior mode

1. Update Xbest by local hill-climbing on the likelihood

2. Extract part detections from zt

3. Prune hypotheses that are already explained

4. Produce set of correspondences {(pi, p̃j)} by expanding hy-

potheses

5. Loop i = 1 to N

(a) Let X ′ be the posterior mode of Evidence Propagation

initialized from Xbest conditioned on ci

(b) Update X ′ by local hill-climbing on likelihood

(c) if likelihood of X ′ > Xbest, set Xbest to Xc

Figure 4. Tracking Algorithm. HC + EP
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X ′ which incorporates the current correspondence only. EP

thus allows us to make a big jump in the state space. We

then restart local hill-climbing from X ′ to refine it. If the

final likelihood is better than Xbest, Xbest is replaced with

the pose found. When this occurs, the candidate correspon-

dence is considered to be accepted. The only effect of this

on the subsequent iterations of the algorithm is through its

update of Xbest. The correspondence is not incorporated

during subsequent states of EP, so that subsequent, possi-

bly better, correspondences can override earlier ones. We

have observed that this algorithm succesfully rejects incor-

rect correspondences because the state resulting from their

incorporation will be penalized by the likelihood function.

5. GPU-Accelerated Implementation

Several technical details enable the efficient evaluation

of more than 50 000 candidates per second on the GPU.

The main considerations are to maximize parallelism and

to minimize uploading and downloading large amounts of

data. The mesh is initially simplified using quadratic edge

decimation and uploaded to the GPU along with the part

assignments for each vertex. We use a custom skinning ver-

tex shader that allows us to simply upload the transforma-

tion matrices for the entire configuration in order to render

the entire body, without transferring any other data. An-

other shader calculates the measured ray length (since the

Z-buffer has limited precision) and implements the actual

cost function as described above. Because issuing opera-

tions to the GPU involves a certain latency, we process a

batch of candidates simultaneously. We render a grid of

candidates tiled on a single texture. This texture is then

compared against the observation in parallel for each tile.

By ensuring that the dimensions of the grid are a power of

two, we can exploit the built-in functionality of the GPU to

generate a mip-mapped texture. A mip-mapped texture is

one which contains versions of itself at progressively lower

resolutions, each calculated by averaging pixels at higher

resolutions. By reading a particular mip-map level, we can

directly read out the average costs of each candidate, one

per pixel, which is the minimum amount of data we can

transfer back to the CPU.

6. Experiments

The described algorithm was fully implemented in C++

and evaluated on real sequences. The goal of this experi-

mental evaluation is to show that

• our proposed system is able to estimate the pose and

configuration of a human over time using only a stream

of depth images,

• proposing candidates using EP on detected body parts

significantly improves performance over just doing lo-

cal hill-climbing,

• the smoothed energy function (Eq. 1) outperforms the

typically used pixel-wise energy function, and

• the system runs close to real-time at 6 frames per sec-

ond.

To this end, we have created a sophisticated test data

set, that allows quantitative analysis of the tracking per-

formance. The data set, which is available openly as

a benchmark along with our results [6], consists of 28

real-world depth-image sequences of varying complexity—

ranging from short sequences with single-limb motions

to longer sequences including fast kicks, swings, self-

occlusions and full-body rotations. Our definition of com-

plexity, though subjective, increases with the length of the

sequence, amount of occlusion, speed of motion, number of

body parts moving simultaneously, and rotation about the

vertical axis. The depth image stream is collected using a

Swissranger SR4000 Time-of-Flight camera, which was set

to record full-frame infrared intensity images and depth at

25 fps and a resolution of 176× 144 pixels, which we sub-

sample to 128×128 pixels in order to take advantage of the

GPU more effectively. In addition to the stream of depth im-

6



Frame 11837 Frame 11843 Frame 11843 Frame 11854

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 11820  11862 11887

T
ra

ck
in

g
 E

rr
o

r 
[m

]

Frame ID

Absolute Tracking Error

Average error, HC
Average error, HC+EP

Max error, HC
Max error, HC+EP
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tracker that integrates bottom-up evidence about body parts (bottom row) is able to recapture the fast moving arm. The right diagram shows

the same situation in terms of actual tracking error (see text).

ages, we recorded the locations of 3D markers attached to

the subject’s body using a commercial active marker motion

capture system. These measured marker locations serve as

the ground truth in our error metric. Concretely, we con-

sider the following evaluation metrics

ǫavg =
M∑

i=1

||mi − m̃i||

M
, ǫmax = maxi ||mi − m̃i|| ,

where M is the number of visible motion-capture markers,

mi are the true 3D locations and m̃i are the corresponding

3D locations on the estimated surface mesh of the tracked

person. Through visual inspection, we found that individual

marker errors ||mi − m̃i|| of 0.1m or lower can be inter-

preted as perfectly tracked markers, since this corresponds

to the approximate accuracy of the recorded ground truth

data. On the other hand, marker errors of 0.3m or larger can

be interpreted as tracking failures.

In order to evaluate the effectiveness of the combination

of model-based and data-driven approaches, we show the

results of two algorithms in addition to our proposed algo-

rithm on this extensive dataset. The algorithm labeled EP

consists of our overall algorithm with local hill-climbing

removed. It simply proposes modes determined by EP, and

keeps the one with highest likelihood. The algorithm la-

beled HC consists of just the model-based hill-climbing al-

gorithm alone. We note that the mesh model for all algo-

rithms was provided semi-automatically using a Cyberware

Laser Scanner. The joint locations were determined using

the SCAPE algorithm [2].

Figure 5 shows numerical results on our data set for all

three algorithms. In the top panel, we show the errors of all

algorithms. The results show that the data-driven method

in isolation (EP) performs far worse than the other two ap-

proaches. Because of the high error of the data-driven al-

gorithm alone, in the remaining plots we only consider the

model-based algorithm and the combined algorithm. In the

bottom panel, we visualize the difference in error between

the combined approach (HC+EP) and the model-based ap-

proach (HC). In all the sequences, the combined approach

performs best or equally well.

It is interesting to note that on the harder sequences (left

side), the difference in performance is more pronounced.

To analyze this in more detail, we consider a challenging

excerpt from Sequence 27—a fast, partially occluded ten-
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nis swing as visualized in the left panel in Fig. 6. The right

panel in this figure shows the trace of the error-metrics com-

paring the model-based and combined algorithm on the ex-

cerpt. In the beginning, the swinging arm becomes com-

pletely occluded, followed by moving swiftly forward. The

ǫmax measure (“Max error” in the diagram) reveals that once

the hill-climbing tracker loses track, it never recovers. Our

combined approach is able to again find the mode and con-

tinue. The left panel in Fig.6 illustrates this using three

tracked frames from the sequence. The top row illustrates

that the model-based algorithm completely loses the arms,

whereas our algorithm is able to find the arm after an oc-

clusion and catch the trailing edge of the Tennis serve. The

figure also illustrates through green lines from the detected

body parts the associations that the algorithm considered,

and how this enables it to use Evidence Propagation to pull

itself back on track.

Finally, we also compared the effects of likelihood

smoothing on the performance of the algorithms. We found

that the smooth likelihood improved the performance in

terms of average error across all sequences and frames by

about 10 percent for the model based algorithm and 18 per-

cent for the combined algorithm. The fact that it helped the

combined approach more may be a result of the fact that the

reinitialization is not always close enough to regain track

with the non-smooth likelihood function.

In terms of efficiency, both algorithms are close, though

the hill-climbing approach is more efficient. The model-

based algorithm ran at about 5 frames per second, whereas

the combined algorithm ran at 4 frames per second.

7. Conclusions and Future Work

The ambitious goal of accurate real-time tracking of hu-

mans and other articulated bodies is one that has enticed

researchers for many years due to the large number of use-

ful applications. With the hybrid, GPU-accelerated filtering

approach introduced in this paper, we believe to have made

a large step forward, but there remain more challenges to

overcome. Some examples include cluttered scenes, track-

ing more than one person at a time, improving the speed fur-

ther, and fully automatic model initialization. Moreover, it

would be interesting to integrate traditional imaging modal-

ities such as color cameras or to apply the developed tech-

nology to stereo vision setups.
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