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Abstract


Many real-world tasks require multiple decision makers (agents) to coordinate their actions


in order to achieve common long-term goals. Examples include: manufacturing systems,


where managers of a factory coordinate to maximize profit; rescue robots that, after an


earthquake, must safely find victims as fast as possible; or sensor networks, where multiple


sensors collaborate to perform a large-scale sensing task under strict power constraints. All


of these tasks require the solution of complex long-term multiagent planning problems in


uncertain dynamic environments.


Factored Markov decision processes(MDPs) allow us to represent complex uncertain


dynamic systems very compactly by exploiting problem-specific structure. Specifically,


the state of the system is described by a set of variables that evolve stochastically over time


using a compact representation called adynamic Bayesian network(DBN). A DBN exploits


locality by assuming that the short-term evolution of a particular variable only depends on a


few other variables,e.g., the state of a section of a factory is only directly affected by a few


other sections. In the long-term, all variables in a DBN usually become correlated. Factored


MDPs often allow for an exponential reduction in representation complexity. However, the


complexity of exact solution algorithms for such MDPs grows exponentially in the number


of variables, and in the number of agents.


This thesis builds a formal framework and approximate planning algorithms that exploit


structure in factored MDPs to solve problems with many trillions of states and actions very


efficiently. The main contributions of this thesis include:


Factored linear programs: A novel LP decomposition technique, using ideas from infer-


ence in Bayesian networks, that can exploit problem structure to reduce exponentially-


large LPs to polynomially-sized ones that are provably equivalent.
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Factored approximate planning: A suite of algorithms, building on our factored LP de-


composition technique, that exploit structure in factored MDPs to obtain exponential


reductions in planning time.


Distributed coordination: An efficient distributed multiagent decision making algorithm,


where the coordination structure arises naturally from the factored representation of


the system dynamics.


Coordinated reinforcement learning: A simple, yet effective, framework for designing


algorithms for planning in multiagent environments, where the factored model is not


knowna priori.


Generalization in relational MDPs: A framework for obtaining general solutions from


a small set of environments, allowing agents to act in new environments without


replanning.


Empirical evaluation: A detailed evaluation on a variety of large-scale tasks, including


multiagent coordination in a real strategic computer game, demonstrating that our


formal framework yields effective plans, complex agent coordination, and successful


generalization in some of the largest planning problems in the literature.
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Chapter 1


Introduction


Decision making problems in uncertain dynamic environments arise in many real-world


situations. The efficiency of a factory is optimized by the decisions of a set of managers. A


good manager has “vision” and “communication skills”, that is, she can design long-term


plans in collaboration with other managers. After an earthquake, members of the rescue


team must coordinate their decisions to safely find victims, as fast as possible. Air traffic


control routes hundreds of planes, balancing safety and speed.


All of these problems involve decision makers, oragents, selecting a sequence of ac-


tions in order to maximize multiple long-term goals. Additionally, uncertainty is ubiquitous


in these domains, both in the effects of a decision makers’ actions, and in the evolution of


the actual system. In recent years, advances in technology and algorithms have lead to in-


creased interest in automated methods for solving each of these tasks. Commercial tools are


now available for problems ranging from supply-chain management to matchmaking (an-


other example of a complex decision-making under uncertainty problem). Unfortunately,


these problems usually tend to be very large and complex, and most of the existing auto-


mated solution methods either build on heuristic procedures, or do not fully address the


long-term or the uncertain aspects of these sequential decision problems.


Although such domains are very large, real-world problems usually possess large amounts


of structure. As argued by Herbert Simon [1981] in “Architecture of Complexity”, many


complex systems have a “nearly decomposable, hierarchical structure”, with the subsys-


tems interacting only weakly between themselves. This is the type of structure that a human


1







2 CHAPTER 1. INTRODUCTION


decision maker will probably exploit to solve such large-scale problems.


Briefly, this thesis focuses on building a formal framework and a suite of automated


methods for exploiting problem-specific structure in order to scale up planning under uncer-


tainty to very large, complex systems. Our framework addresses three aspects of decision


making in complex dynamic systems: finding successful strategies for decision-making


agents; obtaining efficient methods for coordinating the actions of multiple agents; and,


generalizing strategies obtained in a set of environments to new ones without replanning.


We also empirically demonstrate that our formally well-founded methods yield effective


plans, complex agent coordination, and successful generalization in some of the largest


planning problems in the literature.


1.1 Sequential decision making in collaborative multia-


gent problems


This section presents a brief, high-level, overview of the type of decision-making problems


we address in this thesis.


States and actions: A sequential decision making problem is often formulated in terms


of one or manyagents, or decision makers, interacting with asystem, and with each other.


The stateof this system is often specified by a set ofstate variablesdescribing the state


of each part of this system. In our factory example, the agents are the managers of each


section of the factory. Each section is described by one or more state variables. The state


of the entire factory is then specified by these variables, in addition to other state variables


defining the demand, the stock levels, etc. At every time step, each agent makes anaction


choice. The dynamics of the system are then influenced by the joint action assignment of


all agents.


Dynamics: We model these system dynamics in discrete time, and assume that the state


at the next time step depends only on the state at the current time step and on the joint


action choice of all agents. Such systems are calledMarkovian. We also formulate the
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dynamics of the system asstochastic, that is, the state evolution is uncertain, but follows


some probability distribution.


Rewards: In addition, each agent has preferences over states of the system and over


action choices. Specifically, the preferences of each agent are defined by areward function


that assigns a real value to each state and joint action of all agents. In a factory, a man-


ager’s reward function may depend positively on the overall throughput of the factory, and


negatively on the maintenance cost of its section, for example.


Multiagent problems: Systems involving multiple decision makers are often called


multiagent problems. Our factory example can be approximated as acollaborativesetting,


where the multiple agents seek to fulfill a common goal, maximizing profit. Formally,


a collaborative multiagent problem is one where every agent possesses the same reward


function. An alternative, more general, formulation occurs when agents have the different


reward functions. This type of domain is usually called acompetitivemultiagent problem.


Games such as chess arefully competitive, as the agents have exactly opposite preferences.


More generally, decision makers in competitive settings may share some aspects of their


reward functions, and choose to collaborate at some points in time. In reality, a factory is


a competitive problem, as managers may have self-interested terms in their reward func-


tion, such as their own salary. The algorithms and methods in this thesis will focus on


collaborative multiagent problems, and on the special case of single agent problems.


Policies: Overall, this thesis will focus on efficiently obtaining strategies, usually re-


ferred to aspolicies, that seek to maximize the long-term reward of an agent, or of many


collaborating agents, interacting with a system that evolves stochastically over time.


Autonomous agents: More specifically, we focus on developing policies forautonomous


agents, where each agent is assumed to repeat three tasks at every time step:


Sensing: the agent observes some aspect of the current state of the system;


Action selection: the agent makes a decision about its action choice for the current


time step, perhaps by communicating with other agents;
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Actuation: the selected action is executed, affecting the evolution of the system.


In a factory, for example, each manager (agent) observes the state of its section, and, per-


haps, that of neighboring sections; the managers then negotiate a course of action; and each


manager implements this action in its own section.


Full and limited observability: We assume that the true state of the system isfully


observable, that is, the agentscollectivelyobserve the true state at each time step. Unfortu-


nately, settings where each agent to needs to observe a large number of state variables are


often impractical in real-world situations. In our factory example, it is infeasible to expect


each manager to know the whole state of the factory before selecting its action. Thus, we


seek to design algorithms that lead tolimited observability, where, at each time step, each


agent only needs to observe a small set of state variables. In our factory, we would like


the manager of one section to observe the state of this section and that of only a few other


sections.


Limited communication: A very complex deliberation process for action selection may


lead agents to spend an unmanageable amount of time negotiating the action choice, as in


many management meetings. An alternative is to use a centralized action selection proce-


dure, where a single agent makes a global decision and transmits the appropriate action to


each one of the other agents. Unfortunately, as with most centralized methods, this proce-


dure may lead both to a communication bottleneck, and to robustness problems. We thus


need efficient methods for multiagent coordination, where agents select the optimal action


while only needing to communicate with a small number of other agents. We call this


propertylimited communication.


MDPs, planning and reinforcement learning: A Markov decision process(MDP) is a


formal mathematical framework, popularized by Bellman [1957], for modelling and solv-


ing dynamic decision-making problems. There are two more specific problem definitions


fitting this MDP formalism: Aplanningproblem is one where a model of the environment,


i.e., representations of the system dynamics and of the reward function, are knowna priori.


The objective here is to find a policy that maximizes long-term reward with respect to this
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model. Alternatively, a model of the environment may not be known, and the agents must


optimize their policy through experimentation. This second setting is calledreinforcement


learning. This thesis will mainly focus on addressing the planning problem in large-scale


environments, though we will also present new algorithms for reinforcement learning in


collaborative multiagent settings.


Generalization: In many real-world settings, agents will face many environments over


their lifetime, and need to obtain good strategies for each one of these environments. Often


their experience with one environment will help them to perform well in another, even


with minimal or no replanning. For example, a management consultant may be called


to optimize the production of many factories. The experience in one factory helps the


consultant design good strategies for other factories. Unfortunately, most planning methods


are designed to optimize the plan of agents in a fixed environment. In this thesis, we would


like to build a framework that will allow us togeneralizesolutions obtained from a set of


environments to a new unseen environment, without replanning.


1.2 Exploiting problem structure to tackle the curse of di-


mensionality


As discussed in the previous section, the state of a system is described by an assignment


to a set of state variables. Therefore the number of possible states is exponential in the


number of state variables,e.g., the state space of a factory is exponential in the number of


sections in this factory. Bellman [1957] coined the termcurse of dimensionalityto describe


this exponential relationship between the number of states and the number of variables that


describe each state. Multiagent problems possess another “curse of dimensionality”: Each


agent’s action can be thought as anaction variable. The set of joint actions is thus the


exponential set of assignments to these action variables. For example, the action space in a


factory grows exponentially with the number of managers.
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The curse of dimensionality makes the representation of the model of an MDP infeasi-


ble in systems described by many state variables, or ones involving many agents. Specifi-


cally, as the reward function assigns a value to each state and joint action, a tabular repre-


sentation of this function is thus infeasible in large systems. Similarly, the transition model


for taking some joint action in some state assigns a probability distribution over states in


the next time step. Again, a tabular representation is infeasible, as it requires an entry for


each joint assignment of a state in the current time step, action, and state in the next time


step.


This problem can be addressed by exploiting structure in the problem to define a com-


pact representation to the reward function and of the transition model. TheBayesian net-


works(BNs) framework [Pearl, 1988] allows the compact representation of exponentially-


large complex probability distributions. Additionally, probabilistic inferences can often be


performed very efficiently in BNs. Dean and Kanazawa [1989] extend the BN framework


to allow for the compact representation of Markovian transition models, such as those used


in MDPs. This compact representation of the transition model is called adynamic Bayesian


network(DBN).


A DBN represents the transition model exactly as a product of local factors representing


the transition probabilities of each variable. Often, by exploiting conditional independence


structure in the system, the factor for each variable can be represented very compactly. In


our factory example, the probability distribution for the state of a particular section in the


next time step may depend on the state of this section, the state of neighboring section, and


the action choice of this section’s manager in the current time step, but not on the state of


any other section or on the action of other managers. Thus, the factor representing the dy-


namics of this section can be represented quite compactly. If the number of state and action


variables involved in each factor are small, we can obtain an exponential reduction in space


complexity. Despite the fact that the transition model represented by a DBN is factored,


influence propagates from variable to variable over time, an a sparsely connected DBN


can still represents complex long-term correlations. In the factory example, a manager’s


action only affects its section in the next time step, but this decision may have long-term


consequences for the entire factory.


The reward function can often be represented compactly with a similar factorization. In
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this thesis, we focus on additive decompositions [Howard & Matheson, 1984]. Specifically,


we assume that the global reward function can be decomposed as the sum of factors, each


depending only on a small number of state and action variables. For example, the reward


function of a factory can be decomposed as the income from sales, minus the sum of the


maintenance costs for each section, and so on. Again, this factored representation can often


be exponentially more compact than the explicit tabular one. An MDP represented using


factored representations for the transition model and for the reward function is called a


factored MDP[Boutilier et al., 1995].


1.3 Approximate solutions for MDPs


Most solution algorithms for MDPs seek to find a policy that assigns an (optimal) action


choice for each agent at each state. There are two typical approaches: the policy can be


represented explicitly, in tabular form, or implicitly by avalue function, which describes,


for each state, the long-term reward that the agents will accumulate by starting from this


state. Unfortunately, both of these representations are exponential in the number of state


variables.


Factored MDPs give us a very compact representation of the MDP model using ex-


tensions of BNs. Inferences in Bayesian networks can be performed very efficiently in


sparsely connected problems [Pearl, 1988; Dechter, 1999]. We may thus be tempted to


believe that sparsely connected factored MDPs will allow us to obtain an optimal policy


or value function efficiently. Unfortunately, even though factored MDPs give us a very


compact representation for large planning problems, computing exact solutions to these


problems is known to be hard [Mundhenket al., 2000; Liberatore, 2002]. Furthermore, as


shown by Allenderet al. [2002], a compact approximate solution with theoretical guaran-


tees generally does not exist.


In order to address the exponential growth, we resort to approximate solutions to the


factored MDP. There are many types of approximation methods for MDPs. Typically, these


methods are divided into two main classes:value function approximation– methods that


search in a parametric space of approximate value functions;policy search– methods that
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search in a parametric space of approximate policies. We refer the reader to books by Bert-


sekas and Tsitsiklis [1996], or Sutton and Barto [1998] for a more in-depth discussion.


This thesis focuses mainly onlinear value function approximation, a form of linear


regression, as first proposed by Bellmanet al. [1963]. Here the value function is ap-


proximated by a linear combination of (potentially non-linear) basis functions, or features.


Unlike many policy search methods and more complex value function approximation archi-


tectures, the parameters of such a linear approximation can often be estimated effectively


by stable global optimization procedures.


In the context of factored MDPs, Koller and Parr [1999] suggest a specific type of basis


function that is particularly compatible with the structure of the factored model. They sug-


gest that, although the value function is typically not structured, there are many cases where


it might be “close” to structured, that is, where the value function is well-approximated us-


ing a linear combination of functions, each of which refers only to a small number of state


variables. They call such approximation architecture afactored (linear) value function.


This representation of the value function is a central element in our efficient approximate


solution algorithms, in our distributed multiagent coordination methods, and in our gener-


alization approach.


1.4 Main contributions


We have now set the basic foundation for the work in this thesis: We seek to find efficient


approximate solutions to large-scale stochastic planning problems that can be represented


compactly by exploiting problem structure in factored MDPs. Specifically, we approximate


the value function of such MDPs using an appropriate linear architecture, the factored value


function representation, where the each basis function is restricted to depend on a small set


of variables.


Efficient planning: We propose a suite of approximate planning algorithms that can


exploit problem structure to optimize the basis function weights efficiently. One of these


algorithms, for example, relies on a linear program (LP) formulation for optimizing the
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basis function weights that was first proposed by Schweitzer and Seidmann [1985]. Un-


fortunately, this LP formulation has one constraint for each state and joint action, a thus


exponentially-large set of constraints. We address this problem by proposing thefactored


LP algorithm, a novel LP decomposition technique, which allows us to exploit structure in


the factored MDP and in the factored value function to represent this exponentially-large


set of constraints by a provably equivalent polynomial formulation. The complexity of our


algorithm will depend explicitly on the sparseness of the interactions between state vari-


ables in the factored MDP, and on the complexity of the structure of our factored value


function. Factored LPs are a core element to all of our efficient solution algorithms, both


in the single agent, and in the multiagent settings.


Multiagent coordination: In collaborative multiagent settings, at every time step, agents


must choose the action that maximizes the value function, among an exponential set of pos-


sible action choices. This action selection problem is generally intractable, and requires a


centralized decision-making procedure. We present a novel distributed algorithm for action


selection in collaborative multiagent settings. This algorithm is able to chose the action that


optimally maximizes our approximate value function by exploiting problem structure. Ad-


ditionally, our approach fulfills two important properties described earlier in this chapter:


limited observability and limited communication. Interestingly, the communication struc-


ture between agents in our algorithm is not imposeda priori, but derived directly from the


structure in the factored MDP and value function.


Coordinated reinforcement learning: Thus far, we have assumed that the system we


are tackling has been modelled by a factored MDP. In many practical problems, this model


is not knowna priori, agents must learn effective policies through their interactions with


the environment. We demonstrate that many existing RL algorithms that have been suc-


cessfully applied to single agent problems can be generalized to collaborative multiagent


settings by applying simple extensions of our factored value function representation, along


with our multiagent coordination algorithm.
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Context-specific structure: Thus far, we have assumed that the factored MDP dynamic


model is composed of state variables whose evolution depends only on few other variables


in the system. Unfortunately, this assumption is often incorrect. A state variable in the


next time step maypotentiallydepend on many other variables in the current time step,


but usually not at the same time. In our factory example, a section may receive parts from


any other section, thus potentially correlating the state of all sections. However, the current


work order defines the specific parts that a section will need, and thus the particular sec-


tions that will influence the state of each section of the factory in the next time step. This


type of structure can exploited in the representation by using the notion ofcontext-specific


independence(CSI) [Boutilier et al., 1995], where the correlation between variables may


depend on the specific context at hand. We extend our factored LP decomposition tech-


nique to allow us to design efficient planning algorithms that can exploit both the additive


structure present in the standard factored MDP formulation, and context-specific structure


to obtain approximate solutions to highly connected, structured problems.


Variable coordination structure: In addition to increasing the efficiency of our plan-


ning algorithm, CSI allows us to address a very important shortcoming of the multiagent


coordination formulation described above. Our standard algorithm allows agents to com-


pute the maximizing action while only communicating with a few other agents, but always


with the same agents. However, if we consider our factory example, we realize that man-


agers usually only need to communicate with the managers of sections involved in the cur-


rent work order. Thus, the communication structure should not be fixed, but rather change


with the state of the system. Interestingly, by exploiting both the additive structure in the


factored MDP and CSI, we are able to design a multiagent coordination algorithm where


the communication structure will no longer be fixed, but varies naturally with the state of


the system. Again, this (varying) structure is not defineda priori, but derived directly from


the structure in the model and in the value function.


Generalization: As discussed above, in many real-world situations, the agents will often


be faced with many environments, and experiences from some environments should allow


these agents to perform well in other ones. Such a generalization allows us to tackle new
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environments with minimal or no replanning, and also gives us a methodology for obtaining


good strategies for extremely large environments that could not be solved even with our


factored techniques. However, it is not clear how policies for one MDP could be mapped to


other ones. Each MDP is different, having a different number of states, actions, a different


reward function, transition model, etc. To address this problem we propose the framework


of relational MDPs, based on theprobabilistic relational model (PRM) framework of


Koller and Pfeffer [1998]. In a relational MDP, an environment is represented by a sets of


related objects of different classes, where the transition model of one objects depends only


on the states of related objects. For example, a modern factory is often organized in terms of


many manufacturing cells. Each cell is of one of a few “types”, or classes in our relational


model,e.g., lathes, painting, etc. The flow plan of parts between these cells defines the


relations between these objects, and specifies the dynamics of the overall factory.


Such a relational representation allows us to represent a whole class of similar environ-


ments very compactly. Specifically, we can instantiate a particular environment by specify-


ing the number of objects of each class, and the relations between them. For each particular


environment we can apply our factored planning algorithms and distributed multiagent co-


ordination approach to perform planning and action selection very efficiently. However, if


we need to replan in every new environment, we have not achieved the any type of gen-


eralization. To address this issue, we propose a relational representation for the factored


value function. Here our basis functions are represented in terms of classes of objects. We


present a new LP formulation that allows us to find the weights of this class-level approx-


imate value function by only considering a small set of sampled environments. We prove


that, by optimizing over a polynomial number of sampled “small” environments, we obtain


a class-level value function that is close to the one we would obtain had we considered all,


possibly unboundedly-large, environments. Once we have obtained these weights, we can


instantiate our class-level value function in any new environment, thus allowing us to gen-


eralize the results from a few sampled environments to new ones without any replanning.
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1.5 Examples


There are many real-world problems that require the solution of sequential decision making


problems. Puterman [1994], Bertsekas and Tsitsiklis [1996], and Sutton and Barto [1998]


present many case studies. In particular, Puterman, [1994, Chapter 1], describes several


problems in industry and science that were solved by automated algorithms, along with


estimates of the large sums of money that were saved in the long-run. In this section, we


present some intuitions about the types of structure we address and about the scope of this


thesis by describing some abstractions of complex practical problems.


Manufacturing system: Optimization procedures have been applied to many areas of


manufacturing. Consider, for example, the problem scheduling maintenance in sections of


a large factory. As described in this chapter, we could model the dynamics of such a factory,


albeit in an abstracted fashion, using a factored representation. Here we would also have


an action variable for each section of the factory indicating whether this section should


undergo maintenance in the next time step. The reward function will be factored additively


according to sections of the factory indicating the production of each section minus its


maintenance cost. The complexity of the representation of the factored value function


depends on the particular problem at hand. We could, for example, include basis functions


over pairs of connected sections in the factory. Using such a model our algorithms will give


us a policy for scheduling maintenance that attempts to maximize the global reward of the


entire factory. As described above, we can also use a relational representation for this type


of problem. This representation would allow us to generalize from a few small factories to


significantly larger ones.


Queueing networks: Queueing problems are a special type of stochastic dynamic sys-


tem, where an agent who manages a set of queues of jobs must decide which one to serve


at every time step. These problems have been widely studied in the literature, as they pro-


vide abstractions of many practical problems in industry. Queueing networks [Bolchet al.,


1998] are an extension of this model to problems involving many agents (servers) simulta-


neously. The network defines a process where jobs that are served in one queue are then


assigned to another one. We can view this process as a factored MDP with a state variable
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to represent the length of each queue, and an action variable representing the action of each


server. The network defines the interactions in the factored MDP, as the state of a particular


queue in the next time step depends only on the queues that feed jobs into this one. The


reward function is also factored, defined, for example, as the number of jobs that termi-


nate in each queue. Given this factored representation, our framework will give us efficient


algorithms for obtaining policies that coordinate the actions of these servers in order to


approximately minimize the overall wait in the system. Again, a relational representation


could be effective in this setting. Here large complex networks can often be composed of


similar subnetworks, where each subnet is chosen from a few classes of subnets.


Computer games: In recent years, there has been a significant increase in interest in


the applications of AI techniques to computer games [Laird & Van Lent, 2001]. In Chap-


ter 13, we present an application of our factored techniques to a strategic war game called


Freecraft [Freecraft, 2003], an open-source version of the popular Warcraftrgame. The


objective of this game is to coordinate the actions of a set of units with different skills in or-


der to defeat an enemy force. Here, we use relational MDPs to represent possible Freecraft


scenarios. Each unit is an instance of one of a few classes, including peasants, footmen,


enemies, etc. Our agents, the units we control, receive a reward for each dead enemy, thus


the reward function is additive, with one term for each enemy. The transition model also


decomposes according to the interactions in the game,e.g., the state of an enemy depends


on the footmen that are attacking it. A relational representation for this domain would


include a class of objects for each type of unit in the game. Our class-level value func-


tion could include terms between objects of class footman and those of class enemy. In


Section 13.5.2, we show that this type of class-level value function allows us to generalize


solutions effectively to very large Freecraft scenarios that could not be solved even by our


factored planning techniques.


Networking: There are many possible applications of planning algorithms in network-


ing tasks (e.g., packet routing [Boyan & Littman, 1993]). An interesting potential appli-


cation is the routing of queries in peer-to-peer systems [Crespo & Garcia-Molina, 2002],


such as the popular music sharing softwareGnutella. We can consider each node as an
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agent that can decide to fulfill a query, or forward it to one of the neighboring nodes. The


state of this system is specified by the information (e.g., songs) stored in each node and


the query. A node cannot observe (or even store) the state of every node in the network,


and should not flood the entire system with queries. Using our approach, we could tackle


such problems effectively, requiring only limited observability and limited communication


between the nodes.


Elevator scheduling: A building with a large number of floors requires an effective ele-


vator scheduling policy to avoid long waits. This optimization problem requires long-term


planning under uncertainty [Crites & Barto, 1996]. We can view the number of passengers


waiting at each floor and in each elevator, along with the current floor of each elevator and


the requested stops, as our state variables. There is one action variable for each elevator in


this model, indicating the elevator’s next destination. One could imagine a formulation of


this problem as a factored MDP, where the state of each elevator only depends on its actions


and the number of passengers in the current floor. The reward function can be represented


additively as the number of people waiting on each floor and in each elevator. In most prac-


tical systems, however, rather than observing the number of people waiting on each floor,


the elevators receive a signal of whether there are any passengers waiting at each floor.


The problem is thus no longer fully observable, breaking the assumptions of our models.


Typically, this partial observability issue is addressed by assuming full observability of the


number of passengers on each floor, or by considering that an “average number” of peo-


ple are waiting every time the elevator is called. Under these assumptions, our algorithms


could also be applied to the elevator scheduling task.


Sensor networks: Estrinet al. [1999] define networked sensors as “those that coordinate


among themselves to achieve a larger sensing task”. We can even extend this definition


to include actuation, leading to large-scale distributed planning problems, such as the ones


addressed in this thesis. Actuation in such systems encompasses not only standard effectors


in the environment, but also decisions over when to communicate information to other


sensors, and when to sense the environment, thus maximizing the amount of information


gathered, while bounding power consumption. We could use the factored MDP framework
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to model such systems, where the interactions between sensors would be fixed in static


environments, and varying in environments where the location of sensors changes over


time. Our relational framework could be particularly useful in such tasks, allowing us


to generalize from environments with a manageable number of sensors, to very complex


environments involving a very large set of devices.


1.6 The Thesis


The remainder of this thesis is organized as follows:


Chapter 2: We first present a brief review of the MDP model, and some exact and ap-


proximate solution algorithms, includingLP-based approximationandapproximate


policy iteration. We also extend approximate policy iteration to utilize projections in


max-norm that are compatible with existing theoretical analyzes.


Chapter 3: We review the factored MDP model, along with the factored value function


approximation architecture and some initial basic operations required by our algo-


rithms.


Chapter 4: We describe our novel factored LP decomposition technique, which allows us


to exploit problem structure to solve LPs with exponentially-large constraint set very


efficiently.


Chapter 5: We present our efficient approximate planning algorithms for single agent


problems. By building on our factored LP algorithm, we design factored versions


of the LP-based approximation algorithm and of approximate policy iteration with


projections in max-norm. We also present an empirical evaluation of the scaling


properties, and of the quality of the policies generated by these two approaches.


Chapter 6: We consider the dual formulation of our LP-based approximation algorithm


for factored MDPs. This new formulation allows us find approximate solutions in


highly connected problems that could not be solved by our factored LP decomposi-


tion technique.
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Chapter 7: We extend our approximate solution algorithms to problems with context-


specific structure, thus allowing us to exploit both additive structure and CSI. The


empirical evaluation in this chapter includes comparisons to existing state-of-the-art


methods of Boutilieret al. [1995] and Hoeyet al. [1999].


Chapter 8: We review the basic extension of factored MDPs to problems involving mul-


tiple collaborating agents. We then present a straightforward extension of the basic


factored value function representation to such problems.


Chapter 9: We present our new distributed multiagent coordination algorithm, which al-


lows agents with limited observability and communication to select a maximizing


joint action for each state. We also extend our basic factored LP-based planning al-


gorithm to the multiagent setting. We present empirical evaluations demonstrating


the polynomial scaling property for problems with fixed induced width, and compar-


ing our algorithms to other state-of-the-art methods.


Chapter 10: We show that, by extending our factored multiagent approach to problems


with context-specific structure, we obtain a new coordination algorithm, where the


coordination structure naturally changes with state of the system. We also empir-


ically verify that this algorithm yields highly dynamic coordination structures and


effective policies.


Chapter 11: We describecoordinated reinforcement learning, a framework that leverages


on our multiagent coordination algorithm to allow us to extend many existing RL


solution methods to collaborative multiagent settings. We present empirical compar-


isons of our coordinated RL method and some existing state-of-the-art approaches.


Chapter 12: We introduce the new framework of relational MDPs, where both the MDP


model and the factored value function of domain are represented in terms of related


objects of various classes.


Chapter 13: We describe a new algorithm for optimizing the weights of the class-level


value function over a set of environments. We also prove that by sampling a poly-


nomial number of “small” environments we obtain a class-based value function that
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is close to the one we would obtain had we considered all worlds in our optimiza-


tion. We present empirical evaluations of our generalization algorithm for relational


MDPs, both on simulated environments, and on a real strategic computer war game.


Chapter 14: We summarize the algorithms and main contributions of this thesis. We


finally conclude a discussion of future directions and open problems.


Our factored LP algorithm was first presented by Guestrin, Koller and Parr in [Guestrin


et al., 2001a], along with the factored approximate iteration algorithm using max-norm pro-


jections. Guestrin, Koller and Parr describe the multiagent coordination algorithm along


with the factored version of the LP-based approximation algorithm for both single and mul-


tiagent problems, in [Guestrinet al., 2001b]. The dual factorization method in Chapter 6


is new, and has not yet been published in the literature. The extension of our algorithm to


exploit both additive and context-specific structure was presented by Guestrin, Venkatara-


man and Koller in [Guestrinet al., 2002d], who also describe the resulting variable co-


ordination structure in multiagent problems. Guestrin, Koller, Parr and Venkataraman de-


scribe all of our single agent methods in an unified presentation, in [Guestrinet al., 2002a].


Guestrin, Lagoudakis, and Parr present the coordinated reinforcement learning framework,


in [Guestrinet al., 2002b]. Finally, the relational MDP representation, the generalization


algorithm to new unseen problems, and the experimental results on the real strategic com-


puter war game were described by Guestrin, Koller, Gearhart and Kanodia in [Guestrin


et al., 2003].
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Part I


Basic models and tools
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Chapter 2


Planning under uncertainty


A Markov decision process (MDP) is a mathematical framework for sequential decision


making problems in stochastic domains. MDPs thus provide underlying semantics for the


task of planning under uncertainty. We present only a concise overview of the MDP frame-


work here, referring the reader to the books by Bertsekas and Tsitsiklis [1996], Puterman


[1994], or Sutton and Barto [1998] for a more in-depth review.


2.1 Markov decision processes


A Markov decision process (MDP)M is defined as a 4-tupleM = (X, A, R, P ) where:


X is a finite set of|X| = N states;A is a finite set of actions;R is a reward function


R : X × A 7→ R, such thatR(x, a) represents the reward obtained by the agent in statex


after taking actiona; andP is aMarkovian transition modelwhereP (x′ | x, a) represents


the probability of going from statex to statex′ after taking actiona. We assume that the


rewards are bounded, that is, there existsRmax such thatRmax ≥ |R(x, a)| , ∀x, a.


Example 2.1.1 Consider the problem of optimizing the behavior of a system administra-


tor (SysAdmin) maintaining a network ofm computers. In this network, each machine is


connected to some subset of the other machines. Various possible network topologies can


be defined in this manner (see Figure 2.1 for some examples). In one simple network, we


might connect the machines in a ring, with machinei connected to machinesi+1 andi−1.


(In this example, we assume addition and subtraction are performed modulom.)


20
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Server
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Star
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Ring of Rings


Figure 2.1: Network topologies tested; the status of a machine is influence by the status of
its parent in the network.


Each machine is associated with a binary random variableXi, representing whether


it is working or has failed. At every time step, the SysAdmin receives a certain amount of


money (reward) for each working machine. The job of the SysAdmin is to decide which


machine to reboot; thus, there arem + 1 possible actions at each time step: reboot one


of them machines or do nothing (only one machine can be rebooted per time step). If a


machine is rebooted, it will be working with high probability at the next time step. Every


machine has a small probability of failing at each time step. However, if a neighboring


machine fails, this probability increases dramatically. These failure probabilities define


the transition modelP (x′ | x, a), wherex is a particular assignment describing which


machines are working or have failed in the current time step,a is the SysAdmin’s choice of


machine to reboot andx′ is the resulting state in the next time step.


A stationary (deterministic) policyπ for an MDP is a mappingπ : X 7→ A, where


π(x) is the action the agent takes at statex. In the SysAdmin problem, for each possible


configuration of working and failing machines, the policy would tell the SysAdmin which


machine to reboot. Astationary randomized policy, also known as a stochastic policy,ρ is


a mapping from a statex to a probability distribution over the actions the agent may take at


this state. We denote the probability of taking actiona at statex by ρ(a | x). For all MDPs,


there exists at least one optimal policy which is stationary and deterministic [Puterman,


1994].
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In this thesis, we assume that the MDP has an infinite horizon and that future rewards


are discounted exponentially with a discount factorγ ∈ [0, 1).1 Each policy is associated


with a value functionVπ ∈ RN , whereVπ(x) is the discounted cumulative value that the


agent gets if it starts at statex and follows policyπ. More precisely, the valueVπ of a state


x under policyπ is given by:


Vπ(x) = Eπ


[ ∞∑
t=0


γtR
(
X(t), π(X(t))


)
∣∣∣∣∣x


(0) = x


]
,


whereX(t) is a random variable representing the state of the system aftert steps. In our


running example, the value function represents how much money the SysAdmin expects to


collect if she starts acting according toπ when the network is at statex.


The value function for a fixed policy is the fixed point of a set of linear equations that


define the value of a state in terms of the value of its possible successor states. More


formally, we define:


Definition 2.1.2 (DP operator) TheDP operator, Tπ, for a stationary policyπ is:


TπV(x) = Rπ(x) + γ
∑


x′
Pπ(x′ | x)V(x′),


whereRπ(x) = R(x, π(x)) andPπ(x′ | x) = P (x′ | x, π(x)). The value function of policy


π, Vπ, is the fixed point of theTπ operator:Vπ = TπVπ.


The optimal value functionV∗ describes the optimal value the agent can achieve for


each starting state.V∗ is defined by a set ofnon-linearequations. In this case, the value of


a state must be the maximal expected value achievable by any policy starting at that state.


More precisely, we define:


Definition 2.1.3 (Bellman operator) TheBellman operator, T ∗, is:


T ∗V(x) = max
a


[R(x, a) + γ
∑


x′
P (x′ | x, a)V(x′)].


1Most of the results and algorithms we present have straightforward generalizations to other optimality
criteria, such as long-term average reward [Puterman, 1994].
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The optimal value functionV∗ is the fixed point ofT ∗: V∗ = T ∗V∗.


For any value functionV, we can define the policy obtained by acting greedily relative


to V. In other words, at each state, the agent takes the action that maximizes the one-step


utility, assuming thatV represents our long-term utility achieved at the next state. More


precisely, we define:


Greedy[V ](x) = arg max
a


[R(x, a) + γ
∑


x′
P (x′ | x, a)V(x′)]. (2.1)


It is useful to define aQ-function,Qa(x), which represents the expected value the agent


obtains after taking actiona at the current time step and receiving a long-term valueV
thereafter. ThisQ function can be computed by:


Qa(x) = R(x, a) + γ
∑


x′
P (x′ | x, a)V(x). (2.2)


That is,Qa(x) is given by the current reward plus the discounted expected future value.


Using this notation, we can express the greedy policy as:Greedy[V ](x) = maxa Qa(x).


The greedy policy relative to the optimal value functionV∗ is the optimal policy:


π∗ = Greedy[V∗]. (2.3)


Often, we can only obtain an approximation̂V of the optimal value functionV∗. In


this case, our policy will be the suboptimalπ̂ = Greedy[V̂ ], rather than the optimal one


π∗. Williams and Baird [1993] present a bound on the loss of acting according toπ̂ from a


bound on the approximation quality of̂V called theBellman error:


Definition 2.1.4 (Bellman error) TheBellman errorof a value functionV is defined as:


BellmanErr(V) = ‖T ∗V − V‖∞ ,


where for any vectorV, the max-norm is given by:‖V‖∞ = maxx |V(x)|.


Using this measure, Williams and Baird obtain the bound:







24 CHAPTER 2. PLANNING UNDER UNCERTAINTY


Theorem 2.1.5 (Williams & Baird, 1993) For any value function estimatêV, with a greedy


policy π̂ = Greedy [V̂ ], the loss of acting according tôπ instead of the optimal policyπ∗


is bounded by:


V∗(x)− Vπ̂(x) ≤ 2γBellmanErr(V̂)


1− γ
, ∀x ,


whereV∗ is the value of the optimal policyπ∗ andVπ̂ is the actual value of acting according


to the suboptimal policŷπ.


2.2 Solving MDPs


There are several algorithms to compute the optimal policy in an MDP. The three most com-


monly used are linear programming, value iteration, and policy iteration. A key component


in all three algorithms is the computation of value functions, as defined in Section 2.1.


Recall that a value function defines a value for each statex in the state space. With an


explicit representation of value functions as a vector of values for the different states, the


solution algorithms all can be implemented as a series of simple algebraic steps. Once the


optimal value functionV∗ is computed, the optimal policyπ∗ is simply the greedy policy


with respect toV∗ as defined in Equation (2.3).


2.2.1 Linear programming


Linear programming (LP) provides a simple and effective solution method for finding the


optimal value function for an MDP. In the formulation first proposed by Manne [1960], the


LP variables areV (x) for each statex, whereV (x) represents the value of starting at state


x, i.e., V(x). The LP is given by:


Variables: V (x) , ∀x ;


Minimize:
∑


x α(x) V (x) ;


Subject to: V (x) ≥ R(x, a) + γ
∑


x′ P (x′ | x, a)V (x′) , ∀x ∈ X, a ∈ A ;


(2.4)


where thestate relevance weightsα are positive (α(x) > 0,∀x), and, usually, normalized


to sum to one (
∑


x α(x) = 1). Interestingly, the optimal solution obtained by this LP is the
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same for any positive weight vector. Intuitively, the constraints enforce thatV (x) is greater


than or equal tomaxa R(x, a) + γ
∑


x′ P (x′ | x, a)V (x′). By minimizing
∑


x α(x) V (x),


the LP forces equality for the maximum value of the righthand side, thus enforcing the


Bellman equations.


It is useful to understand the dual of the LP in (2.4).


Variables: φa(x) , ∀x ∀a ;


Maximize:
∑


a


∑
x φa(x)R(x, a) ;


Subject to:
∑


a φa(x) = α(x) + γ
∑


a


∑
x′ P (x | x′, a)φa(x


′) , ∀x ∈ X ;


φa(x) ≥ 0 , ∀x ∈ X, a ∈ A .
(2.5)


In this dual LP, the variableφa(x), called thevisitation frequencyfor statex and action


a, can be interpreted as the expected number of times thatx will be visited and actiona


executed in this state (discounted so that future visits count less than present ones), where


α is the starting state distribution. The constraints in (2.5) are thus analogous to the def-


inition of a stationary distribution in a Markov chain (except that our frequency is now


discounted).2 Specifically, a constraint for a statex forces the total visitation frequency


for this state,
∑


a φa(x), to be equal to the probability of starting at this state,α(x), plus


the discounted expected flow from all other statesx′ to this statex times the respective


visitation frequencies of the origin states,γ
∑


a


∑
x′ P (x | x′, a)φa(x


′).


There is a one to one correspondence between feasible solutions to this dual LP and


policies in the MDP. Specifically, there is well-defined mapping between every feasible


solution and a (randomized) policy in the underlying MDP. More formally:


Theorem 2.2.1


1. Letρ be any stationary randomized policy, then if:


φρ
a(x) =


∞∑
t=0


∑


x′
γtρ(a | x)Pρ(x


(t) = x | x(0) = x′)α(x′), ∀x, a , (2.6)


2 This relationship becomes very precise if (rather than discounted) the average reward optimality criteria
is used. In this case, the constraints become exactly the stationary distribution constraints [Puterman, 1994].
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wherePρ(x
′ | x) =


∑
a P (x′ | x, a)ρ(a | x), thenφρ


a is a feasible solution to the


dual LP in (2.5).


2. If φa is a feasible solution to the dual LP in (2.5), then for all statesx,
∑


a φa(x) > 0.


Furthermore, define a randomized policyρ by:


ρ(a | x) =
φa(x)∑
a φa(x)


. (2.7)


Then the dual solution defined byφρ
a(x) as in Equation (2.6) is a feasible solution to


the dual LP in (2.5), andφρ
a(x) = φa(x) for all x anda.


3. A deterministic policyπ∗ is optimal if and only ifφπ∗
a is an optimal basic feasible


solution to the dual LP in (2.5).


4. The dual linear program has the same optimal basis for any positive weight vector


α. Thus, bothφπ∗
a andπ∗ do not depend onα.


Proof: see, for example, the book by Puterman [1994].


Now consider the objective function of the dual LP in (2.5). By substituting the result


in Equation (2.6), we obtain:


∑
a


∑
x


φa(x)R(x, a) =
∑


a


∑
x


∞∑
t=0


∑


x′
γtρ(a | x)Pρ(x


(t) = x | x(0) = x′)α(x′)R(x, a);


=
∑


x′
α(x′)Eρ


[ ∞∑
t=0


γtRρ


(
x(t)


)
∣∣∣∣∣x


(0) = x′
]


.


That is, the objective of the dual LP in (2.5) is to maximize total reward for all actions


executed, and the state relevance weightsα represent the starting state distribution. It is


again surprising that the solution does not depend on the value ofα. This property will not


hold for the approximate version of this algorithm.


2.2.2 Value iteration


Value iteration is a commonly used alternative approach for solving MDPs [Bellman,


1957]. This algorithm, shown in Figure 2.2, starts from any initial estimateV(0) of the
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VALUE ITERATION (P , R, γ, V(0), ε, tmax)
// P – transition model.
// R – reward function.
// γ – discount factor.
// V(0) – any initial estimate of the value function.
// ε – Bellman error precision.
// tmax – maximum number of iterations.
// Return near-optimal value function.


L ET t = 0.
REPEAT


L ET :


V(t+1)(x) = T ∗V(t)(x) = max
a


[
R(x, a) + γ


∑


x′
P (x′ | x, a)V(x′)


]
, ∀x .


L ET t = t + 1.
UNTIL BellmanErr(V(t+1)) ≤ ε OR t ≥ tmax.
RETURN V(t+1).


Figure 2.2: Value iteration algorithm.


value function. This estimate is iteratively improved through repeated applications of the


Bellman operator. The convergence of this algorithm relies on the max-normcontraction


property of the Bellman operator:


Definition 2.2.2 (contraction mapping) An operatorT is said to be acontraction map-


ping in norm‖·‖, with factorγ > 0, if for any two vectorsV1 andV2:


‖T V1 − T V2‖ ≤ γ ‖V1 − V2‖∞ .


The Bellman operator is a max-norm contraction:


Theorem 2.2.3 The Bellman operatorT ∗ and the DP operatorTπ are max-norm contrac-


tion mappings with factorγ.


Proof: see, for example, the book by Puterman [1994].


A corollary of this theorem is the convergence of value iteration:


Corollary 2.2.4


1. The Bellman operator has an unique fixed point, i.e.,V∗ = T ∗V∗.
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POLICY ITERATION (P , R, γ, V(0), ε, tmax)
// P – transition model.
// R – reward function.
// γ – discount factor.
// π(0) – any initial policy.
// ε – Bellman error precision.
// tmax – maximum number of iterations.
// Return (near-)optimal policy.


L ET t = 0.
REPEAT


// Value determination step.
COMPUTE VALUE OF POLICY π(t) BY A SOLVING LINEAR SYSTEM OF EQUATIONS:


Vπ(t)(x) = Rπ(t)(x) + γ
∑


x′
Pπ(t)(x′ | x)Vπ(t)(x), ∀x .


// Policy improvement step.
L ET π(t+1) = GREEDY[Vπ(t) ].
L ET t = t + 1.


UNTIL π(t) = π(t+1) OR BellmanErr(V(t+1)) ≤ ε OR t ≥ tmax.
RETURN π(t+1).


Figure 2.3: Policy iteration algorithm.


2. For anyV, (T ∗)∞ V = V∗.
3. Value iteration converges toV∗.


Note that, asTπ is equivalent toT ∗ in an MDP with only one possible policy, these results


also apply to the DP operatorTπ. In this case, value iteration would converge toVπ.


2.2.3 Policy iteration


Policy iteration is a very effective algorithm for solving MDPs [Howard, 1960]. This al-


gorithm, shown in Figure 2.3, iterates over policies, producing an improved policy at each


iteration. Starting with some initial policyπ(0), each iteration consists of two phases.Value


determinationcomputes, for a policyπ(t), the value functionVπ(t). Thepolicy improvement


step defines the next policy asπ(t+1) = Greedy[Vπ(t) ].


Policy iteration is monotonic:


Theorem 2.2.5 Letπ(t) andπ(t+1) be any two successive policies generated by policy iter-


ation, then:
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Vπ(t+1)(x) ≥ Vπ(t)(x), ∀x .


Furthermore, eitherπ(t) is the optimal policyπ∗, or there exists at least one statex′ such


that:


Vπ(t+1)(x′) > Vπ(t)(x′).


Proof: see, for example, the book by Puterman [1994].


A corollary of this theorem is the convergence of policy iteration:


Corollary 2.2.6 Policy iteration converges to the optimal policyπ∗.


Note that the algorithm in Figure 2.3 may terminate with a suboptimal policy if the maxi-


mum number of iterations is reached or the Bellman error tolerance is set to a value greater


than zero.


It is interesting to note that steps of the simplex algorithm when applied to solving


the dual linear programming formulation in Section 2.2.1 correspond to policy changes at


single states. On the other hand, steps of policy iteration can involve policy changes at mul-


tiple states. Thus, in practice, policy iteration tends to be faster than the linear programming


approach [Puterman, 1994].


Policy iteration converges in at most as many iterations as value iteration [Puterman,


1994]. In practice, policy iteration tends to find the optimal policy in many fewer iterations,


though each iteration is more costly computationally. Obtaining a tight bound on the num-


ber of iterations required for policy iteration to converge is still an open problem. However,


in practice, the convergence to the optimal policy is usually very quick.


2.3 Approximate solution algorithms


In the previous section, we presented three algorithms for find optimal solutions to MDPs.


The linear programming approach, for example, is guaranteed to yield a solution in time


polynomial in the number of states and actions. Unfortunately, the number of states in


most practical applications is too large for these methods to be feasible. In theSysAdmin


problem, for example, the statex of the system is an assignment describing which machines


are working or have failed; that is, a statex is an assignment to each random variableXi.
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Thus, the number of states is exponential in the numberm of machines in the network


(|X| = N = 2m). Hence, even representing an explicit value function in problems with


more than about ten machines is infeasible.


In this section, we discuss the use of anapproximatevalue function, which admits a


compact representation. We also describe approximate versions of these exact algorithms


that use approximate value functions. Our description in this section is somewhat abstract,


and does not specify how the basic operations required by the algorithms can be performed


explicitly. In later chapters, we elaborate on these issues, and describe the algorithms in


detail.


2.3.1 Linear Value Functions


A very popular choice for approximating value functions is by usinglinear regression, as


first proposed by Bellmanet al. [1963]. Here, we define our space of allowable value


functionsV ∈ H ⊆ RN via a set ofbasis functions:


Definition 2.3.1 (linear value function) A linear value functionover a set of basis func-


tionsH = {h1, . . . , hk} is a functionV that can be written asV(x) =
∑k


j=1 wj hj(x) for


some coefficientsw = (w1, . . . , wk)
′.


We can now defineH to be the linear subspace ofRN spanned by the basis functionsH.


It is useful to define anN × k matrix H whose columns are thek basis functions viewed


as vectors. Specifically, thejth column ofH corresponds tohj, while theith row of this


column corresponds to the assignment tohj in the ith state,hj(xi). In a more compact


notation, our approximate value function is then represented byHw.


The expressive power of this linear representation is equivalent, for example, to that of


a single layer neural network with features corresponding to the basis functions defining


H. Once the features are defined, we must optimize the coefficientsw in order to obtain a


good approximation for the true value function. We can view this approach as separating


the problem of defining a reasonable space of features and the induced spaceH, from the


problem of searching within the space. The former problem is typically the purview of


domain experts, while the latter is the focus of analysis and algorithmic design. Clearly,
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feature selection is an important issue for essentially all areas of learning and approxima-


tion. We offer some simple methods for selecting good features for MDPs in Section 14.2.1,


but it is not our goal to address this large and important topic in this thesis.


Once we have a chosen a linear value function representation and a set of basis func-


tions, the problem becomes one of finding values for the weightsw such thatHw will


yield a good approximation of the true value function. In this section, we consider two


such approaches: approximate dynamic programming using policy iteration, and linear


programming-based approximation.3 In remainder of this thesis, we show how we can


exploit problem structure to transform these approaches into practical algorithms that can


deal with exponentially-large state spaces.


2.3.2 Linear programming-based approximation


The simplest approximation algorithm is based on the LP-based solution in Section 2.2.1.


The approximate formulation for the LP approach, first proposed by Schweitzer and Sei-


dmann [1985], restricts the space of allowable value functions to the linear space spanned


by our basis functions. In this approximate formulation, the variables arew1, . . . , wk: the


weights for our basis functions. The LP is given by:


Variables: w1, . . . , wk ;


Minimize:
∑


x α(x)
∑


i wi hi(x) ;


Subject to:
∑


i wi hi(x) ≥ R(x, a) + γ
∑


x′ P (x′ | x, a)
∑


i wi hi(x
′) ∀x ∈ X,∀a ∈ A.


(2.8)


In other words, this formulation takes the LP in (2.4) and substitutes the explicit state value


function by a linear value function representation
∑


i wi hi(x), or, in our more compact


notation,V is replaced byHw. This linear program is guaranteed to be feasible if a constant


function — a function with the same constant value for all states — is included in the set


of basis functions. To simplify our presentation, we assume that this basis function is


included:


Assumption 2.3.2 (constant basis function)The constant function is included in our set


of basis function. We will denote this basis function byh0:


3 Our techniques easily extend to approximate versions of value iteration.







32 CHAPTER 2. PLANNING UNDER UNCERTAINTY


h0(x) = 1 , ∀x .


In this linear programming-based approximation, the choice of state relevance weights,


α, becomes important. Intuitively, not all constraints in this LP are binding; that is, the


constraints are tighter for some states than for others. For each statex, the relevance weight


α(x) indicates the relative importance of a tight constraint. Therefore, unlike the exact


case, the solution obtained may differ for different choices of the positive weight vectorα;


de Farias and Van Roy [2001a] provide an example of this effect.


The recent work of de Farias and Van Roy [2001a] provides some analysis of the quality


of the approximation obtained by this approach relative to that of the best possible approx-


imation in the subspace, and some guidance as to selectingα so as to improve the quality


of the approximation. In particular, their analysis shows that this LP provides the best ap-


proximation (in a weightedL1-norm sense)Hw∗ of the optimal value functionV∗ subject


to the constraint thatHw∗ ≥ T ∗Hw∗, where the weights in theL1 norm are the state rel-


evance weightsα. Additionally, de Farias and Van Roy provide an analysis of the quality


of the greedy policy generated from the approximationHw obtained from this LP-based


approach.


The transformation from an exact to an approximate problem formulation has the ef-


fect of reducing the number of free variables in the LP tok (one for each basis function


coefficient), but the number of constraints remainsN × |A|. In our SysAdminproblem,


for example, the number of constraints in the LP in (2.8) is(m + 1) · 2m, wherem is the


number of machines in the network. Thus, the process of generating the constraints and


solving the LP still seems unmanageable for more than a few machines. de Farias and Van


Roy [2001b] analyze the error introduced by an algorithm, where the LP is solved with


a sampled subset of theN × |A|. To obtain these theoretical guarantees, the constraints


must be sampled according to a particular, often unattainable, distribution. In Chapter 5,


we discuss how we can exploit structure in an MDP to provide for a compact closed-form


representation and an efficient solution to this LP.
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2.3.3 Approximate policy iteration


Projections


The steps in the policy iteration algorithm require a manipulation of both value functions


and policies, both of which often cannot be represented explicitly in large MDPs. To define


a version of the policy iteration algorithm that uses approximate value functions, we use


the following basic idea: We restrict the algorithm to using only value functions within


the provided linear subspaceH; whenever the algorithm takes a step that results in a value


functionV that is outside this space, weproject the result back into the space by finding


the value function within the space which is closest toV. More precisely:


Definition 2.3.3 (projection operator) A projection operatorΠ is a mappingΠ : RN →
H. Π is said to be aprojection w.r.t. a norm‖·‖ if ΠV = Hw∗ such thatw∗ ∈
arg minw ‖Hw − V‖.


That is,ΠV is the linear combination of the basis functions that is closest toV with respect


to the chosen norm.


Our approximate policy iteration algorithm performs the policy improvement step ex-


actly. In the value determination step, the value function — the value of acting according to


the current policyπ(t) — is approximated through a linear combination of basis functions.


We now consider the problem of value determination for a policyπ(t) in detail. We can


rewrite the value determination step in terms of matrices and vectors. If we viewVπ(t) and


Rπ(t) asN -vectors, andPπ(t) as anN ×N matrix, we have the equations:


Vπ(t) = Rπ(t) + γPπ(t)Vπ(t) .


This is a system of linear equations with one equation for each state, which can only be


solved exactly for relatively smallN . Our goal is to provide an approximate solution,


within H. More precisely, we want to find:


w(t) = arg min
w
‖Hw − (Rπ(t) + γPπ(t)Hw)‖ ;


= arg min
w


∥∥(H− γPπ(t)H)w(t) −Rπ(t)


∥∥ .
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Thus, ourapproximate policy iterationalgorithm alternates between two steps:


w(t) = arg min
w
‖Hw − (Rπ(t) + γPπ(t)Hw)‖ ; (2.9)


π(t+1) = Greedy[Hw(t)]. (2.10)


Max-norm projection


An approach along these lines has been used in various papers, with several recent theoret-


ical and algorithmic results [Schweitzer & Seidmann, 1985; Tsitsiklis & Van Roy, 1996a;


Van Roy, 1998; Koller & Parr, 1999; Koller & Parr, 2000]. However, these approaches


suffer from a problem that we might call “norm incompatibility.” When computing the


projection, they utilize the standard Euclidean projection operator with respect to theL2


norm or aweightedL2 norm. 4 On the other hand, most of the convergence and error anal-


yses for MDP algorithms utilize max-norm (L∞). This incompatibility has made it difficult


to provide error guarantees.


We can tie the projection operator more closely to the error bounds through the use


of a projection operator inL∞ norm. The problem of minimizing theL∞ norm has been


studied in the optimization literature as the problem of finding the Chebyshev solution5 to


an overdetermined linear system of equations [Cheney, 1982]. The problem is defined as


findingw∗ such that:


w∗ ∈ arg min
w
‖Cw − b‖∞ . (2.11)


We use an algorithm due to Stiefel [1960], that solves this problem by linear program-


ming:


Variables: w1, . . . , wk, φ ;


Minimize: φ ;


Subject to: φ ≥ ∑k
j=1 cijwj − bi , and


φ ≥ bi −
∑k


j=1 cijwj , i = 1...N.


(2.12)


4WeightedL2 norm projections are stable and have meaningful error bounds when the weights correspond
to the stationary distribution of a fixed policy under evaluation (value determination) [Van Roy, 1998], but
they are not stable when combined withT ∗. Averagers [Gordon, 1995] are stable and non-expansive inL∞,
but require that the mixture weights be determineda priori. Thus, they do not, in general, minimizeL∞
error.


5The Chebyshev norm is also referred to as max, supremum andL∞ norms and the minimax solution.
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The constraints in this linear program imply thatφ ≥
∣∣∣∑k


j=1 cijwj − bi


∣∣∣ for eachi, or


equivalently, thatφ ≥ ‖Cw − b‖∞. The objective of the LP is to minimizeφ. Thus, at the


solution(w∗, φ∗) of this linear program,w∗ is the solution of Equation (2.11) andφ is the


L∞ projection error.


We can use theL∞ projection in the context of the approximate policy iteration in the


obvious way. When implementing the projection operation of Equation (2.9), we can use


theL∞ projection (as in Equation (2.11)), whereC = (H− γPπ(t)H) andb = Rπ(t). This


minimization can be solved using the linear program of (2.12).


A key point is that this LP only hask + 1 variables. However, there are2N constraints,


which makes it impractical for large state spaces. In theSysAdminproblem, for example,


the number of constraints in this LP is exponential in the number of machines in the network


(a total of2 · 2m constraints form machines). In future chapters, we show that, infactored


MDPs with linear value functions, all the2N constraints can be represented efficiently,


leading to a tractable algorithm.


Error analysis


We motivated our use of the max-norm projection within the approximate policy iteration


algorithm via its compatibility with standard error analysis techniques for MDP algorithms.


We now provide a careful analysis of the impact of theL∞ error introduced by the projec-


tion step. The analysis provides motivation for the use of a projection step that directly


minimizes this quantity. We acknowledge, however, that the main impact of this analysis


is motivational. In practice, we cannot providea priori guarantees that anL∞ projection


will outperform other methods.


Our goal is to analyze approximate policy iteration in terms of the amount of error


introduced at each step by the projection operation. If the error is zero, then we are per-


forming exact value determination, and no error should accrue. If the error is small, we


should get an approximation that is accurate. This result follows from the analysis below.


More precisely, we define themax-norm projection erroras the error resulting from the


approximate value determination step:


β(t) =
∥∥Hw(t) − (


Rπ(t) + γPπ(t)Hw(t)
)∥∥


∞ .
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Note that, by using our max-norm projection, we are finding the set of weightsw(t) that


exactly minimizes the one-step projection errorβ(t). That is, we are choosing the best


possible weights with respect to this error measure. Furthermore, this is exactly the error


measure that is going to appear in the bounds of our theorem. Thus, we can now make the


bounds for each step as tight as possible.


We first show that the projection error accrued in each step is bounded:


Lemma 2.3.4 The value determination error is bounded: There exists a constantβP ≤
Rmax such thatβP ≥ β(t) for all iterationst of the algorithm.


Proof: See Appendix A.1.1.


Due to the contraction property of the Bellman operator, the overall accumulated error


is a decaying average of the projection error incurred throughout all iterations:


Definition 2.3.5 (discounted value determination error) Thediscounted value determi-


nation errorat iterationt is defined as:β
(t)


= β(t) + γβ
(t−1)


; β
(0)


= 0.


Lemma 2.3.4 implies that the accumulated error remains bounded in approximate policy


iteration: β
(t) ≤ βP (1−γt)


1−γ
. We can now bound the loss incurred when acting according


to the policy generated by our approximate policy iteration algorithm, as opposed to the


optimal policy:


Theorem 2.3.6 In the approximate policy iteration algorithm, letπ(t) be the policy gen-


erated at iterationt. Furthermore, letVπ(t) be theactualvalue of acting according to this


policy. The loss incurred by using policyπ(t) as opposed to the optimal policyπ∗ with value


V∗ is bounded by:


‖V∗ − Vπ(t)‖∞ ≤ γt ‖V∗ − Vπ(0)‖∞ +
2γβ


(t)


(1− γ)2
. (2.13)


Proof: See Appendix A.1.2.


In words, Equation (2.13) shows that the difference between our approximation at iter-


ation t and the optimal value function is bounded by the sum of two terms. The first term


is present in standard policy iteration and goes to zero exponentially fast. The second is
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the discounted accumulated projection error and, as Lemma 2.3.4 shows, is bounded. This


second term can be minimized by choosingw(t) as the one that minimizes:


∥∥Hw(t) − (
Rπ(t) + γPπ(t)Hw(t)


)∥∥
∞ ,


which is exactly the computation performed by the max-norm projection. Therefore, this


theorem motivates the use of max-norm projections to minimize the error term that appears


in our bound.


The bounds we have provided so far may seem fairly trivial, as we have not provided


a stronga priori bound onβ(t). Fortunately, several factors make these bounds interest-


ing despite the lack ofa priori guarantees. If approximate policy iteration converges, as


occurred in all of our experiments, we can obtain a much tighter bound: Ifπ̂ is the policy


after convergence, then


‖V∗ − Vπ̂‖∞ ≤ 2γβπ̂


(1− γ)
,


whereβπ̂ is the one-step max-norm projection error associated with estimating the value


of π̂. Since the max-norm projection operation providesβπ̂, we can easily obtain ana


posteriori bound as part of the policy iteration procedure. More details are provided in


Section 5.3.


If approximate policy iteration gets stuck in a cycle, one could rewrite the bound in


Theorem 2.3.6 in terms of the worst case projection errorβP , or the worst projection error


in a cycle of policies. These formulations would be closer to the analysis of Bertsekas and


Tsitsiklis, [1996, Proposition 6.2, p.276]. However, consider the case where most policies


(or most policies in the final cycle) have a low projection error, but there are a few policies


that cannot be approximated well using the projection operation, so that they have a large


one-step projection error. A worst-case bound would be very loose, because it would be


dictated by the error of the most difficult policy to approximate. On the other hand, using


our discounted accumulated error formulation, errors introduced by policies that are hard to


approximate decay very rapidly. Thus, the error bound represents an “average” case anal-


ysis: a decaying average of the projection errors for policies encountered at the successive


iterations of the algorithm. As in the convergent case, this bound can be computed easily


as part of the policy iteration procedure when max-norm projection is used.
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The practical benefit ofa posterioribounds is that they can give meaningful feedback


on the impact of the choice of the value function approximation architecture. While we are


not explicitly addressing the difficult and general problem of feature selection in this thesis,


our error bounds motivate algorithms that aim to minimize the errorgivenan approximation


architecture and provide feedback that could be useful in future efforts to automatically


discover or improve approximation architectures.


2.4 Discussion and related work


This chapter presents Markov decision processes, the basic mathematical framework for


representing planning problems in the presence of uncertainty. The field of MDPs, as it


is popularly known, was formalized by Bellman [1957] in the 1950’s. The importance of


value function approximation was recognized at an early stage by Bellman himself [1963].


In the early 1990’s, the MDP framework was recognized by AI researchers as a formal


framework that could be used to address the problem of planning under uncertainty [Dean


et al., 1993].


Within the AI community, value function approximation developed concomitantly with


the notion of value function representations for Markov chains. Sutton’s seminal paper


on temporal difference learning [1988], which addressed the use of value functions for


prediction but not planning, assumed a very general representation of the value function and


noted the connection to general function approximators such as neural networks. However,


the stability of this combination was not directly addressed at that time.


Several important developments gave the AI community deeper insight into the rela-


tionship between function approximation and dynamic programming. Tsitsiklis and Van


Roy [1996b] and, independently, Gordon [1995] popularized the analysis of approximate


MDP methods via the contraction properties of the dynamic programming operator and


function approximator. Tsitsiklis and Van Roy [1996a] later established a general conver-


gence result for linear value function approximators andTD(λ). Bertsekas and Tsitsiklis


[1996] unified a large body of work on approximate dynamic programming under the name


of Neuro-dynamic Programming, also providing many novel and general error analyses.


The analysis of the novel max-norm projection version of approximate policy iteration,
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which we present in this chapter, builds on some of these techniques. The max-norm pro-


jection property of our algorithm directly minimizes a bound on the quality of the resulting


policy obtained from this analysis.


Approximate linear programming for MDPs using linear value function approximation


was introduced by Schweitzer and Seidmann [1985], though the approach was somewhat


underappreciated until fairly recently due to the lack of compelling error analyses and the


lack of an effective method for handling the large number of constraints. Recent work by


de Farias and Van Roy [2001a] has started to address some of these concerns with new error


bounds on the quality of the greedy policy with respect to the approximate value function


generated by the linear programming approach.







Chapter 3


Factored Markov decision processes


Factored MDPsare a representation language that allows us to exploit problem structure


to represent exponentially-large MDPs very compactly. In this chapter, we review this


representation as it is a central element for our efficient algorithms. We also present a


structured representation for an approximate value function, which will allow us to design


very efficient approximate solution algorithms for exponentially-large MDPs.


3.1 Representation


In a factored MDP, the set of states is described via a set ofrandom (state) variablesX =


{X1, . . . , Xn}, where eachXi takes on values in some finite domainDom(Xi). A statex


defines a valuexi ∈ Dom(Xi) for each variableXi. In general, we use upper case letters


(e.g., X) to denote random variables, and lower case (e.g., x) to denote their values. We


use boldface to denote vectors of variables (e.g., X) or their values (x). For an instantiation


y ∈ Dom(Y) and a subset of these variablesZ ⊆ Y, we usey[Z] to denote the value of


the variablesZ in the instantiationy.


3.1.1 Factored transition model


In a standard MDP as presented in Section 2.1, the representation of the transition model


is exponentially large in the number of state variables. However, the global state transition


40
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Figure 3.1: Factored MDP example: from a network topology (a) we obtain the factored
MDP representation (b) with the CPDs described in (c).


model τ can often be represented compactly as the product of local factors by using a


dynamic Bayesian network (DBN)[Dean & Kanazawa, 1989]. Such a model is thus called


a factored MDP. The idea of representing a large MDP using a factored model was first


proposed by Boutilieret al. [1995].


Let Xi denote the variableXi at the current time andX ′
i, the same variable at the next


step. Thetransition graphof a DBN is a two-layer directed acyclic graphGτ whose nodes


are{X1, . . . , Xn, X
′
1, . . . , X


′
n}. We denote the parents ofX ′


i in the graph byParentsτ (X
′
i).


For simplicity of exposition, we assume thatParentsτ (X
′
i) ⊆ X; thus, all arcs in the DBN


are between variables in consecutive time slices. (This assumption is used for expository


purposes only; intra-time-slice arcs are handled by a small modification presented in Sec-


tion 3.3.) Each nodeX ′
i is associated with aconditional probability distribution (CPD)


Pτ (X
′
i | Parentsτ (X


′
i)). The transition probabilityPτ (x


′ | x) is then defined to be:


Pτ (x
′ | x) =


∏
i


Pτ (x
′
i | x[Parentsτ (X


′
i)]) ,


wherex[Parentsτ (X
′
i)] is the value inx to the variables inParentsτ (X


′
i). The complexity


of this representation is now linear in the number of state variables (the number of factors in


our DBN), and, in the worst case, only exponential in the number of variables in the largest


factor. In Chapter 7, we present a representation that can further reduce this complexity.
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Example 3.1.1 Consider, for example, an instance of the SysAdmin problem with four


computers,M1, . . . , M4 in an unidirectional ring topology as shown in Figure 3.1(a).


Our first task in modelling this problem as a factored MDP is to define the state space


X. Each machine is associated with a binary random variableXi, representing whether


it is working or has failed. Thus, our state space is represented by four random vari-


ables:{X1, X2, X3, X4}, where the domain of each state variable is given byDom[Xi] =


{Working, Dead}. The next task is to define the transition model, represented as a DBN.


The parents of the next time step variablesX ′
i depend on the network topology. Specifi-


cally, the probability that machinei will fail at the next time step depends on whether it


is working at the current time step and on the status of its direct neighbors (parents in the


topology) in the network at the current time step. As shown in Figure 3.1(b), the parents


of X ′
i in this example areXi andXi−1. The CPD ofX ′


i is such that ifXi = Dead, then


X ′
i = Dead with high probability; that is, failures tend to persist. IfXi = Working, then


the distribution over possible values ofX ′
i is a function of the number of parents that are


dead (in the unidirectional ring topologyX ′
i has only one other parentXi−1); that is, a


failure in any of its neighbors can increase the chance that machinei will fail.


We have described how to represent factored the Markovian transition dynamics arising


from an MDP as a DBN, but we have not directly addressed the representation of actions.


Generally, we can define the transition dynamics of an MDP by defining a separate DBN


modelτa = 〈Ga, Pa〉 for each actiona. In Chapter 8, we introduce an additional factoriza-


tion of the action variables.


Example 3.1.2 In our system administrator example, we have an actionai for rebooting


each one of the machines, and a default actiond for doing nothing. The transition model


described above corresponds to the “do nothing” action. The transition model forai is dif-


ferent fromd only in the transition model for the variableX ′
i, which is nowX ′


i = Working


with probability one, regardless of the status of the neighboring machines. The table in


Figure 3.1(c) shows the actual CPD forP (X ′
i = Working | Xi, Xi−1, A), with one entry


for each assignment to the state variablesXi andXi−1, and to the actionA.
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3.1.2 Factored reward function


To fully specify an MDP, we also need to provide a compact representation of the reward


function. We assume that the reward function is factored additively into a set of localized


reward functions, each of which only depends on a small set of variables. In our example,


we might have a reward function associated with each machinei, which depends onXi.


That is, the SysAdmin is paid on a per-machine basis: at every time step, she receives


money for machinei only if it is working. We can formalize this concept of localized


functions:


Definition 3.1.3 (scope)A functionf has ascopeScope[f ] = C ⊆ X if f : Dom(C) 7→
R.


If f has scopeY andY ⊆ Z, we usef(z) as shorthand forf(z[Y]), wherey is the part of


the instantiationz that corresponds to variables inY.


We can now characterize the concept of local rewards. LetRa
1, . . . , R


a
r be a set of


functions, where the scope of eachRa
i is restricted to variable clusterWa


i ⊂ {X1, . . . , Xn}.
The reward for taking actiona at statex is defined to beRa(x) =


∑r
i=1 Ra


i (W
a
i ) ∈ R. In


our example, we have a reward functionRi associated with each machinei, which depends


only Xi, and does not depend on the action choice. These local rewards are represented


by the diamonds in Figure 3.1(b), in the usual notation for influence diagrams [Howard


& Matheson, 1984]. Although not every problem can be modelled compactly using such


a factored representation of the reward function, we believe that such a representation is


applicable in many large-scale problems, as discussed in Chapter 1.


3.2 Factored value functions


One might be tempted to believe that factored transition dynamics and rewards would result


in a factored value function, which can thereby be represented compactly. Unfortunately,


even in trivial factored MDPs, there is no guarantee that structure in the model is preserved


in the value function [Koller & Parr, 1999], and exact solutions to these problems are


intractable [Mundhenket al., 2000; Liberatore, 2002]. Thus, in general, we must resort to


approximate solutions to these factored MDPs.
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The linear value function approach, and the algorithms described in Section 2.3, apply


to any choice of basis functions. In the context of factored MDPs, Koller and Parr [1999]


suggest a specific type of basis function, which is particularly compatible with the structure


of a factored MDP. They suggest that although the value function is typically not structured,


there are many cases where it might be “close” to structured. That is, it might be well-


approximated using a linear combination of functions each of which refers only to a small


number of variables. More precisely, we define:


Definition 3.2.1 (factored value function) A factored (linear) value functionis a linear


function over the basish1, . . . , hk, where the scope of eachhi is restricted to some subset


of variablesCi.


Value functions of this type have a long history in the area of multi-attribute utility the-


ory [Keeney & Raiffa, 1976]. In our example, we might have a basis functionhi for each


machine, indicating whether it is working or not. Each basis function has scope restricted


to Xi. These are represented as diamonds in the next time step in Figure 3.1(b).


Factored value functions provide the key to performing efficient computations over


the exponential-sized state spaces we have in factored MDPs. The main insight is that


restricted-scope functions (including our basis functions) allow for certain basic operations


to be implemented very efficiently. In the remainder of this chapter, we show how structure


in factored MDPs can be exploited to perform one such crucial operation very efficiently:


one-step lookahead (backprojection). Then, in Chapter 4 we present a novel LP decom-


position technique, which exploits problem structure to represent exponentially many LP


constraints very compactly. These basic building blocks will allow us to formulate very ef-


ficient approximation algorithms for factored MDPs. For example, in Chapter 5, we present


two such algorithms, each in its own self-contained section: the linear programming-based


approximation algorithm for factored MDPs in Section 5.1, and approximate policy itera-


tion with max-norm projection in Section 5.2.
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3.3 One-step lookahead


A key step in all of our planning algorithms is the computation of the one-step lookahead


value of some actiona. This is necessary, for example, when computing the greedy policy,


as in Equation (2.1). Let us consider the computation of aQ function, which is again given


by:


Qa(x) = R(x, a) + γ
∑


x′
P (x′ | x, a)V(x′). (3.1)


That is,Qa(x) is given by the current reward plus the discounted expected future value.


If we compute theQ-function, we obtain the greedy policy simply byGreedy[V ](x) =


maxa Qa(x).


Recall that we are estimating the long-term value of our policy using a set of basis


functions:V(x) =
∑


i wi hi(x). Thus, we can rewrite Equation (3.1) as:


Qa(x) = R(x, a) + γ
∑


x′
P (x′ | x, a)


∑
i


wi hi(x
′). (3.2)


The size of the state space is exponential, so that computing the expectation
∑


x′ P (x′ |
x, a)


∑
i wi hi(x


′) seems infeasible. Fortunately, as discussed by Koller and Parr [1999],


this expectation operation, or backprojection, can be performed efficiently if the transition


model and the value function are both factored appropriately. The linearity of the value


function permits a linear decomposition, where each summand in the expectation can be


viewed as an independent value function and updated in a manner similar to the value


iteration procedure used by Boutilieret al. [2000]. We now recap the construction briefly,


by first defining:


Ga(x) =
∑


x′
P (x′ | x, a)


∑
i


wi hi(x
′) =


∑
i


wi


∑


x′
P (x′ | x, a)hi(x


′).


Thus, we can compute the expectation of each basis function separately:


ga
i (x) =


∑


x′
P (x′ | x, a)hi(x


′),
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Backproja(h) — WHERE BASIS FUNCTIONh HAS SCOPEC.
DEFINE THE SCOPE OF THE BACKPROJECTION: Γa(C′) = ∪X′


i∈C′PARENTSa(X ′
i).


FOR EACH ASSIGNMENTy ∈ Γa(C′):
ga(y) =


∑
c′∈C′


∏
i|X′


i∈C′ Pa(c′[X ′
i] | y)h(c′).


RETURN ga.


Figure 3.2: Backprojection of basis functionh.


and then weight them bywi to obtain the total expectationGa(x) =
∑


i wi ga
i (x). The


intermediate functionga
i is called thebackprojectionof the basis functionhi through the


transition modelPa, which we denote byga
i = Pahi. Note that, in factored MDPs, the


transition modelPa is factored (represented as a DBN) and the basis functionshi have


scope restricted to a small set of variables. These two important properties allow us to


compute the backprojections very efficiently.


We now show how some restricted-scope functionh (such as our basis functions) can


be backprojected through some transition modelPτ represented as a DBNτ . Hereh has


scope restricted toY; our goal is to computeg = Pτh. We define thebackprojected


scope ofY throughτ as the set of parents ofY′ in the transition graphGτ ; Γτ (Y
′) =


∪Y ′i ∈Y′Parentsτ (Y
′
i ). If intra-time-slice arcs are included, so that


Parentsτ (X
′
i) ∈ {X1, . . . , Xn, X


′
1, . . . , X


′
n},


then the only change to our algorithm is in the definition of backprojected scope ofY


throughτ . The definition now includes not only direct parents ofY ′, but also all variables


in {X1, . . . , Xn} that are ancestors ofY ′:


Γτ (Y
′) = {Xj | there exist a directed path fromXj to anyX ′


i ∈ Y′}.


Thus, the backprojected scope may become larger, but the functions are still factored.


We can now show that, ifh has scope restricted toY, then its backprojectiong has


scope restricted to the parents ofY′, i.e., Γτ (Y
′). Furthermore, each backprojection can be


computed by only enumerating settings of variables inΓτ (Y
′), rather than settings of all


variablesX:
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g(x) = (Pτh)(x);


=
∑


x′
Pτ (x


′ | x)h(x′);


=
∑


x′
Pτ (x


′ | x)h(y′);


=
∑


y′
Pτ (y


′ | x)h(y′)
∑


u′∈(x′−y′)


Pτ (u
′ | x);


=
∑


y′
Pτ (y


′ | z)h(y′);


= g(z);


wherez is the value ofΓτ (Y
′) in x and the term


∑
u′∈(x′−y′) Pτ (u


′ | x) = 1 as it is the


sum of a probability distribution over a complete domain. Therefore, we see that(Pτh) is a


function whose scope is restricted toΓτ (Y
′). Note that the cost of the computation depends


linearly on|Dom(Γτ (Y
′))|, which depends onY (the scope ofh) and on the complexity


of the process dynamics. This backprojection procedure is summarized in Figure 3.2.


Returning to our example, consider a basis functionhi that is an indicator of variable


Xi: it takes value1 if the ith machine is working and0 otherwise. Eachhi has scope


restricted toX ′
i, thus, its backprojectiongi has scope restricted toParentsτ (X


′
i): Γτ (X


′
i) =


{Xi−1, Xi}.


3.4 Discussion and related work


This chapter describes the framework of factored MDPs, which allows the representation


of exponentially-large planning problems very compactly. This model builds on a dynamic


Bayesian network (DBN) [Dean & Kanazawa, 1989], which gives a compact representation


for a complex transition model. The idea of applying a DBN to represent a large MDP was


first proposed by Boutilieret al. [1995].


Although factored MDPs give us a very compact representation for large planning prob-


lems, computing exact solutions to these problems is known to be hard [Mundhenket al.,


2000; Liberatore, 2002]. Furthermore, as shown by Allenderet al. [2002], a compact


approximate solution with theoretical guarantees generally does not exist.
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However, as suggested by Koller and Parr [1999], in many practical cases, the value


function may be close to structured, and can be well-approximated by a factored linear


value function. This chapter describes this factored approximate representation of the value


function. We also review an efficient method for performing one-step lookahead planning


using a factored value function and a factored MDP, in a manner similar to the value itera-


tion procedure used by Boutilieret al. [2000].







Chapter 4


Representing exponentially many


constraints


Recall that both of the approximate solution algorithms presented in Chapter 2 use linear


programs to obtain the value function coefficients. The number of constraints in both of


these LPs is proportional to the number of states in the MDP, this number is exponential


in the number of state variables in the factored MDP. In this chapter, we present a novel


LP decomposition technique, which exploits problem structure, such as the one present in


factored MDPs, to represent exponentially many LP constraints very compactly. This de-


composition technique will be a central element in all of our factored planning algorithms.


4.1 Exponentially-large constraint sets


As seen in Section 2.3, both our approximation algorithms require the solution of linear


programs: the LP in (2.8) for the linear programming-based approximation algorithm, and


the LP in (2.12) for approximate policy iteration. These LPs have some common charac-


teristics: they have a small number of free variables (fork basis functions there arek + 1


free variables in approximate policy iteration andk in linear programming-based approxi-


mation), but the number of constraints is still exponential in the number of state variables.


However, in factored MDPs, these LP constraints have another very useful property: the


49
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functionals in the constraints have restricted scope. This key observation allows us to rep-


resent these constraints very compactly.


First, observe that the constraints in the linear programs are all of the form:


φ ≥
∑


i


wi ci(x)− b(x),∀x, (4.1)


where onlyφ andw1, . . . , wk are free variables in the LP andx ranges over all states. This


general form represents both the type of constraint in the max-norm projection LP in (2.12)


and the linear programming-based approximation formulation in (2.8).1


The first insight in our construction is that we can replace the entire set of constraints


in Equation (4.1) by one equivalent non-linear constraint:


φ ≥ max
x


∑
i


wi ci(x)− b(x). (4.2)


The second insight is that this new non-linear constraint can be implemented by a set of


linear constraints using a construction that follows the structure of variable elimination in


cost networks [Bertele & Brioschi, 1972]. This insight allows us to exploit structure in


factored MDPs to represent this constraint compactly.


We tackle the problem of representing the constraint in Equation (4.2) in two steps:


first, computing the maximum assignment for a fixed set of weights; then, representing


the non-linear constraint by small set of linear constraints, using a construction we call the


factored LP.


4.2 Maximizing over the state space


First consider a simpler problem: Given somefixed weightswi, we would like to com-


pute the maximization:φ∗ = maxx


∑
i wi ci(x) − b(x), that is, the statex, such that the


1The complementary constraints in (2.12),φ ≥ b(x) −∑
i wi ci(x), can be formulated using an analo-


gous construction to the one we present in this section by changing the sign ofci(x) andb(x). The linear
programming-based approximation constraints of (2.8) can also be formulated in this form, as we show in
Section 5.1.
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difference between
∑


i wi ci(x) andb(x) is maximal. However, we cannot explicitly enu-


merate the exponential number of states and compute the difference. Fortunately, structure


in factored MDPs allows us to compute this maximum efficiently.


In the case of factored MDPs, our state space is a set of vectorsx which are assign-


ments to the state variablesX = {X1, . . . , Xn}. We can view bothCw andb as functions


of these state variables, and hence also their difference. Thus, we can define a function


Fw(X1, . . . , Xn) such thatFw(x) =
∑


i wi ci(x) − b(x). Note that we have executed


a representation shift; we are viewingFw as a function of the variablesX, which is pa-


rameterized byw. Recall that the size of the state space is exponential in the number of


variables. Hence, our goal in this section is to computemaxx Fw(x) without explicitly


considering each of the exponentially many states. The solution is to use the fact thatFw


has a factored representation. More precisely,Cw has the form
∑


i wi ci(Zi), whereZi is


a subset ofX. For example, we might havec1(X1, X2) which takes value1 in states where


X1 = trueandX2 = falseand0 otherwise. Similarly, the vectorb in our case is also a sum


of restricted-scope functions. Thus, we can expressFw as a sum
∑


j fw
j (Zj), wherefw


j


may or may not depend onw. In the future, we sometimes drop the superscriptw when it


is clear from context.


Using our more compact notation, our goal here is simply to compute


max
x


∑
i


wi ci(x)− b(x) = max
x


Fw(x),


that is, to find the statex over whichFw is maximized. Recall thatFw =
∑m


j=1 fw
j (Zj).


We can maximize such a function,Fw, without enumerating every state usingnon-serial


dynamic programming[Bertele & Brioschi, 1972]. The idea is virtually identical tovari-


able eliminationin a Bayesian network. We review this construction here, as it is a central


component in our solution LP.


Our goal is to compute


max
x1,...,xn


∑
j


fj(x[Zj]).


The main idea is that, rather than summing all functions and then doing the maximization,


we maximize over variables one at a time. When maximizing overxl, only summands
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involving xl participate in the maximization.


Example 4.2.1 Assume


F = f1(x1, x2) + f2(x1, x3) + f3(x2, x4) + f4(x3, x4).


We therefore wish to compute:


max
x1,x2,x3,x4


f1(x1, x2) + f2(x1, x3) + f3(x2, x4) + f4(x3, x4).


We can first compute the maximum overx4; the functionsf1 andf2 are irrelevant, so we


can push them out. We get


max
x1,x2,x3


f1(x1, x2) + f2(x1, x3) + max
x4


[f3(x2, x4) + f4(x3, x4)].


The result of the internal maximization depends on the values ofx2, x3; thus, we can intro-


duce a new functione1(X2, X3) whose value at the pointx2, x3 is the value of the internal


max expression. Our problem now reduces to computing


max
x1,x2,x3


f1(x1, x2) + f2(x1, x3) + e1(x2, x3),


having one fewer variable. Next, we eliminate another variable, sayX3, with the resulting


expression reducing to:


max
x1,x2


f1(x1, x2) + e2(x1, x2),


where e2(x1, x2) = max
x3


[f2(x1, x3) + e1(x2, x3)].


Finally, we define


e3 = max
x1,x2


f1(x1, x2) + e2(x1, x2).


The result at this point is a number, which is the desired maximum overx1, . . . , x4. While


the naive approach of enumerating all states requires63 arithmetic operations if all vari-


ables are binary, using variable elimination we only need to perform23 operations.


The general variable elimination algorithm is described in Figure 4.1. The inputs
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to the algorithm are the functions to be maximizedF = {f1, . . . , fm}, an elimination


orderingO on the variables, whereO(i) returns theith variable to be eliminated, and


ELIM OPERATOR(E , Xl) is the operation that will be performed on the set of functions


E when variableXl is eliminated. If we are maximizing over the state space we use the


operator MAX OUT defined in Figure 4.2. As in the example above, for each variable


Xl to be eliminated, we select the relevant functionse1, . . . , eL, those whose scope con-


tainsXl. These functions are removed from the setF and we introduce a new function


e = maxxl


∑L
j=1 ej. At this point, the scope of the functions inF no longer depends on


Xl, that is,Xl has been ‘eliminated’. This procedure is repeated until all variables have


been eliminated. The remaining functions inF thus have empty scope. The desired maxi-


mum is therefore given by the sum of these remaining functions.


The computational cost of this algorithm is linear in the number of new “function val-


ues” introduced in the elimination process. More precisely, consider the computation of a


new functione whose scope isZ. To compute this function, we need to compute|Dom[Z]|
different values. The cost of the algorithm is linear in the overall number of these values,


introduced throughout the execution. As shown by Dechter [1999], this cost is exponential


in the induced width of thecost network, the undirected graph defined over the variables


X1, . . . , Xn, with an edge betweenXl andXm if they appear together in one of the original


functionsfj. The complexity of this algorithm is, of course, dependent on the variable


elimination order and the problem structure. Computing the optimal elimination order is


an NP-hard problem [Arnborget al., 1987] and elimination orders yielding low induced


tree width do not exist for some problems. These issues have been confronted successfully


for a large variety of practical problems in the Bayesian network community, which has


benefited from a large variety of good heuristics which have been developed for the vari-


able elimination ordering problem [Bertele & Brioschi, 1972; Kjaerulff, 1990; Reed, 1992;


Becker & Geiger, 2001].


4.3 Factored LP


In this section, we present the centerpiece of our planning algorithms: a new, general ap-


proach for compactly representing exponentially-large sets of LP constraints in problems
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VARIABLE ELIMINATION (F , O, ELIM OPERATOR)
// F = {f1, . . . , fm} is the set of functions.
// O stores the elimination order.
// ELIM OPERATORis the operation used when eliminating variables.


FOR i = 1 TO NUMBER OF VARIABLES:
// Select the next variable to be eliminated.
L ET l = O(i) .
// Select the relevant functions.
L ET E = {e1, . . . , eL} BE THE FUNCTIONS INF WHOSE SCOPE CONTAINSXl.
// Eliminate current variableXl.
L ET e = ELIM OPERATOR(E , Xl).
// Update set of functions.
UPDATE THE SET OF FUNCTIONSF = F ∪ {e} \ {e1, . . . , eL}.


// Now, all functions have empty scopes, and the last step eliminates the empty set.
RETURN ELIM OPERATOR(F , ∅).


Figure 4.1: Variable elimination procedure, whereELIM OPERATOR is used when a vari-
able is eliminated. To compute the maximum value off1 + · · · + fm, where eachfi is a
restricted-scope function, we must substituteELIM OPERATORwith MAX OUT.


MAX OUT (E , Xl)
// E = {e1, . . . , em} is the set of functions to be maximized.
// Xl variable to be maximized.


L ET f =
∑L


j=1 ej .
I F Xl = ∅:


L ET e = f .
ELSE:


DEFINE A NEW FUNCTION e = maxxl
f ; NOTE THAT


SCOPE[e] = ∪L
j=1SCOPE[ej ]− {Xl}.


RETURN e.


Figure 4.2: MAX OUT operator for variable elimination, procedure that maximizes variable
Xl from functionse1 + · · ·+ em.
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with factored structure — those where the functions in the constraints can be decomposed


as the sum of restricted-scope functions. Consider our original problem of representing


the non-linear constraint in Equation (4.2) compactly. Recall that we wish to represent the


non-linear constraintφ ≥ maxx


∑
i wi ci(x) − b(x), or equivalently,φ ≥ maxx Fw(x),


without generating one constraint for each state as in Equation (4.1). The new, key insight


is that this non-linear constraint can be implemented using a construction that follows the


structure of variable elimination in cost networks.


Consider any functione used withinF (including the originalfi’s), and letZ be its


scope. For any assignmentz to Z, we introduce a variableue
z, whose value represents


ez, into the linear program. For the initial functionsfw
i , we include the constraint that


ufi
z = fw


i (z). As fw
i is linear inw, this constraint is linear in the LP variables. Now,


consider a new functione introduced intoF by eliminating a variableXl. Let e1, . . . , eL be


the functions extracted fromF , where eachej has scope restricted toZj, and letZ =
⋃


j Zj


be the scope of the resultinge. We introduce a set of constraints:


ue
z ≥


L∑
j=1


u
ej


(z,xl)[Zj ]
∀xl. (4.3)


Let en be the last (empty scope) function generated in the elimination, and recall that its


scope is empty. Hence, we have only a single variableuen . We introduce the additional


constraintφ ≥ uen .


The complete algorithm, presented in Figure 4.3, is divided into three parts: First, we


generate equality constraints for functions that depend on the weightswi (basis functions).


In the second part, we add the equality constraints for functions that do not depend on the


weights (target functions). These equality constraints let us abstract away the differences


between these two types of functions and manage them in a unified fashion in the third


part of the algorithm. This third part follows a procedure similar to variable elimination


described in Figure 4.1. However, unlike standard variable elimination where we would


introduce a new functione, such thate = maxxl


∑L
j=1 ej, in our factored LP procedure we


introduce new LP variablesue
z. To enforce the definition ofe as the maximum overXl of∑L


j=1 ej, we introduce the new LP constraints in Equation (4.3).
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FACTOREDLP (C , b,O)
// C = {c1, . . . , ck} is the set of basis functions.
// b = {b1, . . . , bm} is the set of target functions.
// O stores the elimination order.
// Return a (polynomial) set of constraintsΩ equivalent toφ ≥ ∑


i wici(x) +
∑


j bj(x), ∀x .
// Data structure for the constraints in factored LP.
L ET Ω = {} .
// Data structure for the intermediate functions generated in variable elimination.
L ET F = {} .
// Generate equality constraint to abstract away basis functions.
FOR EACH ci ∈ C :


L ET Z = SCOPE[ci].
FOR EACH ASSIGNMENTz ∈ Z, CREATE A NEW LP VARIABLE ufi


z AND ADD A CON-
STRAINT TO Ω:


ufi
z = wici(z).


STORE NEW FUNCTION fi TO USE IN VARIABLE ELIMINATION STEP: F = F ∪ {fi}.
// Generate equality constraint to abstract away target functions.
FOR EACH bj ∈ b:


L ET Z = SCOPE[bj ].
FOR EACH ASSIGNMENTz ∈ Z, CREATE A NEW LP VARIABLE u


fj
z AND ADD A CON-


STRAINT TO Ω:
u


fj
z = bj(z).


STORE NEW FUNCTION fj TO USE IN VARIABLE ELIMINATION STEP: F = F ∪ {fj}.
// Now, F contains all of the functions involved in the LP, our constraints become:φ ≥∑


ei∈F ei(x),∀x , which we represent compactly using a variable elimination procedure.
FOR i = 1 TO NUMBER OF VARIABLES:


// Select the next variable to be eliminated.
L ET l = O(i) .
// Select the relevant functions.
L ET e1, . . . , eL BE THE FUNCTIONS INF WHOSE SCOPE CONTAINSXl, AND LET Zj =
SCOPE[ej ].


// Introduce linear constraints for the maximum over current variableXl.
DEFINE A NEW FUNCTION e WITH SCOPE Z = ∪L


j=1Zj − {Xl} TO REPRESENT


maxxl


∑L
j=1 ej .


ADD CONSTRAINTS TOΩ TO ENFORCE MAXIMUM: FOR EACH ASSIGNMENTz ∈ Z:


ue
z ≥


L∑


j=1


u
ej


(z,xl)[Zj ]
∀xl.


// Update set of functions.
UPDATE THE SET OF FUNCTIONSF = F ∪ {e} \ {e1, . . . , eL}.


// Now, all variables have been eliminated and all functions have empty scope.
ADD LAST CONSTRAINT TOΩ: φ ≥ ∑


ei∈F ei.
RETURN Ω.


Figure 4.3: Factored LP algorithm for the compact representation of the exponential set of
constraintsφ ≥ ∑


i wici(x) +
∑


j bj(x), ∀x.







4.3. FACTORED LP 57


Example 4.3.1 To understand this construction, consider the LP formed when using the


simple functions in Example 4.2.1 above, and assume we want to express the fact that


φ ≥ maxx Fw(x). We first introduce a set of variablesuf1
x1,x2


for every instantiation of


valuesx1, x2 to the variablesX1, X2. Thus, ifX1 andX2 are both binary, we have four such


variables. We then introduce equality constraints defining the value ofuf1
x1,x2


appropriately.


For example, iff1 is an indicator weighted byw1 that takes value1 if X1 = t andX2 = f ,


and0 otherwise, we haveuf1
t,t = 0, uf1


t,f = w1, and so on. We have similar variables and


constraints for eachfj and each valuez in Zj. Note that each of the constraints is a simple


equality constraint involving numerical constants and perhaps the weight variablesw.


Next, we introduce variables for each of the intermediate expressions generated by


variable elimination. For example, when eliminatingX4, we introduce a set of LP variables


ue1
x2,x3


; for each of them, we have a set of constraints


ue1
x2,x3


≥ uf3
x2,x4


+ uf4
x3,x4


one for each valuex4 of X4. We have a similar set of constraint forue2
x1,x2


in terms ofuf2
x1,x3


andue1
x2,x3


. Note that each constraint is a simple linear inequality.


We can now prove that our factored LP construction represents the same constraint as


the non-linear constraint in Equation (4.2):


Theorem 4.3.2 The constraints generated by the factored LP construction are equivalent


to the non-linear constraint in Equation (4.2). That is, an assignment to(φ,w) satisfies the


factored LP constraints if and only if it satisfies the constraint in Equation (4.2).


Proof: See Appendix A.2.


Returning to our original formulation, we have that
∑


j fw
j is Cw − b in the original


set of constraints. Hence our new set of constraints is equivalent to the original set:φ ≥
maxx


∑
i wi ci(x) − b(x) in Equation (4.2), which in turn is equivalent to the exponential


set of constraintsφ ≥ ∑
i wi ci(x) − b(x),∀x in Equation (4.1). Thus, we can represent


this exponential set of constraints by a new set of constraints and LP variables. The size of


this new set, as in variable elimination, is exponential only in the induced width of the cost


network, rather than in the total number of variables.
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4.4 Factored max-norm projection


We can now use our procedure for representing the exponential number of constraints in


Equation (4.1) compactly to compute efficient max-norm projections, as in Equation (2.11):


w∗ ∈ arg min
w
‖Cw − b‖∞ .


The max-norm projection is computed by the linear program in (2.12). There are two


sets of constraints in this LP:φ ≥ ∑k
j=1 cijwj−bi,∀i andφ ≥ bi−


∑k
j=1 cijwj,∀i. Each of


these sets is an instance of the constraints in Equation (4.1), which we have just addressed


in the previous section. Thus, if each of thek basis functions inC is a restricted-scope


function and the target functionb is the sum of restricted-scope functions, then we can


use our factored LP technique to represent the constraints in the max-norm projection LP


compactly. The correctness of our algorithm is a corollary of Theorem 4.3.2:


Corollary 4.4.1 The solution(φ∗,w∗) of a linear program that minimizesφ subject to the


constraints inFACTOREDLP(C,−b,O) andFACTOREDLP(−C, b,O), for any elimination


orderO satisfies:


w∗ ∈ arg min
w
‖Cw − b‖∞ , and φ∗ = min


w
‖Cw − b‖∞ .


The original max-norm projection LP hadk + 1 variables and two constraints for each


statex; thus, the number of constraints is exponential in the number of state variables. On


the other hand, our new factored max-norm projection LP has more variables, but exponen-


tially fewer constraints. The number of variables and constraints in the new factored LP is


exponential only in the number of state variables in the largest factor in the cost network,


rather than exponential in the total number of state variables. As we show in Section 5.4.1,


this exponential gain allows us to compute max-norm projections efficiently when solving


very large factored MDPs.
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4.5 Discussion and related work


Both of the approximate solution algorithms presented in Chapter 2 use linear programs


to obtain the value function coefficients. These LPs contain one constraint for each joint


assignment of the state variables. In this chapter, we present factored LPs, a novel LP


decomposition technique, which allows us to represent an LP with an exponentially-large


set of constraints by a provably equivalent, polynomially-sized LP. This decomposition


relies on the assumption that each constraint is defined by the sum of functions whose


scope is restricted to a subset of the state variables. The complexity of our decomposition


technique is exponential only in the induced width of a cost network defined by the local


functions in the constraints.


Many algorithms have been proposed for tackling exponentially-large constraint sets.


The book by Bertsimas and Tsitsiklis [1997] presents many typical approaches. An in-


teresting option is the use of the delayed constraint generation, or cutting planes, method.


Schuurmans and Patrascu [2001], building on our factored LP approach, propose one such


algorithm, where variable elimination cost network is used to find violated constraints. As


they use this approach in the context of the SIMPLEX algorithm, their method does not


offer our polynomial complexity guarantees. However, in light of the extension of Schu-


urmans and Patrascu [2001], we can view variable elimination as a polynomial timesepa-


ration oraclefor finding violated constraints. Such an oracle guarantees polynomial time


complexity of the ellipsoid method for solving LPs [Bertsimas & Tsitsiklis, 1997, Theorem


8.5]. Thus, such cutting planes method can also yield a polynomial implementation of our


exponentially-large LPs. We present further discussion in Section 7.8.


The closest approach to our factored LP is the LP transformation method of Yan-


nakakis [1991]. He tackles the problem of optimizing a linear function over a polytope


that may contain exponentially many facets. Yannakakis shows that, for some examples,


this exponentially-large polytope can be described as a reduced, polynomially-sized, LP by


adding a new set of variables and constraints, as we do in our approach. He also proves


that if the underlying polytope represents a travelling salesman problem, then the reduced


LP requires exponentially many constraints, unless P=NP. Maximization in a cost network
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is obviously an NP-complete problem, thus, the reduced polytope will also require an ex-


ponential description, in general. Our factored LP method focuses on exploiting local


structure in the constraints to generate an analogous decomposition with a polynomial de-


scription, in problems that have fixed induced width.


We believe that the LP decomposition technique presented in this chapter allows the


compact representation of many practical optimization problems. In the next part of this


thesis, we will apply this technique to optimize the weights of our factored value function


approximation very efficiently.







Part II


Approximate planning for structured


single-agent systems
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Chapter 5


Efficient planning algorithms


Recall that, as described in Chapter 3, we seek to find linear approximations to the value


function of the form:


Vw(x) =
∑


i


wihi(x),


where eachhi is a restricted scope function. Once these weightsw are obtained (by any


approach), the agent can select its action in some statex by simply computing the greedy


action with respect to this approximate value function, which is again given by:


Greedy[Vw](x) = arg max
a


Qw
a (x) = arg max


a
R(x, a) + γ


∑


x′
P (x′ | x, a)


∑
i


wihi(x
′).


TheQa function for each action can be computed efficiently, in single agent problems with


factored value functions, as described in Section 3.3. Thus, the greedy policy can always be


represent implicitly by the Q-function, givenw. Therefore, this part of the thesis focuses


on designing efficient planning algorithms for optimizing such weightsw.


In this chapter, we present two planning algorithms, which exploit structure in a fac-


tored MDP to compute approximate solutions very efficiently: factored linear programming-


based approximation, and factored approximate policy iteration with max-norm projection.


Each algorithm is presented in a self-contained section, which can thus be read indepen-


dently. Finally, we present an efficient algorithm for computing a bound on the quality of


the greedy policies obtained from factored value functions.
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5.1 Factored linear programming-based approximation


We begin with the simplest of our approximate MDP solution algorithms, based on the


linear programming-based approximation formulation in Section 2.3.2. Using the LP de-


composition technique in Chapter 4, we can formulate an algorithm, which is both simple


and efficient.


5.1.1 The algorithm


As discussed in Section 2.3.2, the linear programming-based approximation formulation


is based on the exact linear programming approach to solving MDPs presented in Sec-


tion 2.2.1. However, in this approximate version, we restrict the space of value functions


to the linear space defined by our basis functions. More precisely, in this approximate LP


formulation, the variables arew1, . . . , wk — the weights for our basis functions. The LP is


given by:


Variables: w1, . . . , wk ;


Minimize:
∑


x α(x)
∑


i wi hi(x) ;


Subject to:
∑


i wi hi(x) ≥ R(x, a) + γ
∑


x′ P (x′ | x, a)
∑


i wi hi(x
′) ∀x ∈ X, a ∈ A.


(5.1)


In other words, this formulation takes the LP in (2.4) and substitutes the explicit state


value function with a linear value function representation
∑


i wi hi(x). This transforma-


tion from an exact to an approximate problem formulation has the effect of reducing the


number of free variables in the LP tok (one for each basis function coefficient), but the


number of constraints remains|X| × |A|. In our SysAdminproblem in Example 2.1.1,


for example, the number of constraints in the LP in (5.1) is(m + 1) · 2m, wherem is


the number of machines in the network. However, using our algorithm for representing


exponentially-large constraint sets compactly we are able to compute the solution to this


linear programming-based approximation algorithm inclosed formwith an exponentially


smaller LP, as in Chapter 4.


First, consider the objective function
∑


x α(x)
∑


i wi hi(x) of the LP (5.1). Naively


representing this objective function requires a summation over an exponentially-large state
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FACTOREDLPA (P , R, γ, H , O, α)
// P is the factored transition model.
// R is the set of factored reward functions.
// γ is the discount factor.
// H is the set of basis functionsH = {h1, . . . , hk}.
// O stores the elimination order.
// α are the state relevance weights.
// Return the basis function weightsw computed by linear programming-based approximation.


// Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONhi ∈ H ; FOR EACH ACTIONa:


L ET ga
i = Backproja(hi).


// Compute factored state relevance weights.
FOR EACH BASIS FUNCTIONhi, COMPUTE THE FACTORED STATE RELEVANCE WEIGHTSαi


AS IN EQUATION (5.2) .
// Generate linear programming-based approximation constraints.
L ET Ω = {}.
FOR EACH ACTION a:


L ET Ω = Ω ∪ FACTOREDLP({γga
1 − h1, . . . , γga


k − hk}, Ra,O).
// So far, our constraints guarantee thatφ ≥ R(x, a) + γ


∑
x′ P (x′ | x, a)


∑
i wi hi(x′) −∑


i wi hi(x); to satisfy the linear programming-approximation solution in (5.1) we must add
a final constraint.


L ET Ω = Ω ∪ {φ = 0}.
// We can now obtain the solution weights by solving an LP.
L ET w BE THE SOLUTION OF THE LINEAR PROGRAM: MINIMIZE


∑
i αiwi, SUBJECT TO THE


CONSTRAINTSΩ.
RETURN w.


Figure 5.1: Factored linear programming-based approximation algorithm.
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space. However, we can rewrite the objective and obtain a compact representation. We first


reorder the terms:


∑
x


α(x)
∑


i


wi hi(x) =
∑


i


wi


∑
x


α(x) hi(x).


Now, consider the state relevance weightsα(x) as a distribution over states, so thatα(x) >


0 and
∑


x α(x) = 1. As with the backprojections in Section 3.3, we can now write:


αi =
∑
x


α(x) hi(x) =
∑
ci∈Ci


α(ci) hi(ci), (5.2)


whereα(ci) represents the marginal of the state relevance weightsα over the domain


Dom[Ci] of the basis functionhi. For example, if we use uniform state relevance weights


as in our experiments —α(x) = 1
|X| — then the marginals becomeα(ci) = 1


|Ci| . Thus,


we can rewrite the objective function as
∑


i wi αi, where each basis weightαi is computed


as shown in Equation (5.2). If the state relevance weights are represented by marginals,


then the cost of computing eachαi depends exponentially on the size of the scope ofCi


only, rather than exponentially on the number of state variables. On the other hand, if the


state relevance weights are represented by arbitrary distributions, we need to obtain the


marginals over theCi’s, which may not be an efficient computation. Thus, best results


are achieved by using a compact representation, such as a Bayesian network, for the state


relevance weights.


Second, note that the right side of the constraints in the LP (5.1) correspond to theQa


functions:


Qa(x) = Ra(x) + γ
∑


x′
P (x′ | x, a)


∑
i


wi hi(x
′).


Using the efficient backprojection operation in factored MDPs described in Section 3.3 we


can rewrite theQa functions as:


Qa(x) = Ra(x) + γ
∑


i


wi ga
i (x) ,


wherega
i is the backprojection of basis functionhi through the transition modelPa. As we
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discussed, ifhi has scope restricted toCi, thenga
i is a restricted scope function ofΓa(C


′
i).


We can precompute the backprojectionsga
i and the basis relevance weightsαi. The


linear programming-based approximation LP of (5.1) can then be written as:


Variables: w1, . . . , wk ;


Minimize:
∑


i αi wi ;


Subject to:
∑


i wi hi(x) ≥ Ra(x) + γ
∑


i wi ga
i (x) ∀x ∈ X,∀a ∈ A.


(5.3)


Finally, we can rewrite this LP to use constraints of the same form as the one in Equa-


tion (4.2):


Variables: w1, . . . , wk ;


Minimize:
∑


i αi wi ;


Subject to: 0 ≥ maxx {Ra(x) +
∑


i wi [γga
i (x)− hi(x)]} ∀a ∈ A.


(5.4)


We can now use our factored LP construction in Chapter 4 to represent these non-linear


constraints compactly. Basically, there is one set of factored LP constraints for each ac-


tion a. Specifically, we can write the non-linear constraint in the same form as those in


Equation (4.2) by expressing the functionsC as:ci(x) = hi(x) − γga
i (x). Eachci(x) is a


restricted-scope function; that is, ifhi(x) has scope restricted toCi, thenga
i (x) has scope


restricted toΓa(C
′
i), which means thatci(x) has scope restricted toCi ∪Γa(C


′
i). Next, the


target functionb becomes the reward functionRa(x) which, by assumption, is factored.


Finally, in the constraint in Equation (4.2),φ is a free variable. On the other hand, in the LP


in (5.4) the maximum in the right hand side must be less than zero. This final condition can


be achieved by adding a constraintφ = 0. Thus, our algorithm generates a set of factored


LP constraints, one for each action. The total number of constraints and variables in this


new LP is linear in the number of actions|A| and only exponential in the induced width


of each cost network, rather than in the total number of variables. The complete factored


linear programming-based approximation algorithm is outlined in Figure 5.1.
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5.1.2 An example


We now present a complete example of the operations required by the approximate LP al-


gorithm to solve the factored MDP shown in Figure 3.1(a). Our presentation follows four


steps: problem representation, basis function selection, backprojections and LP construc-


tion.


Problem representation: First, we must fully specify the factored MDP model for the


problem. The structure of the DBN is shown in Figure 3.1(b). This structure is maintained


for all action choices. Next, we must define the transition probabilities for each action.


There are 5 actions in this problem: do nothing, or reboot one of the 4 machines in the


network. The CPDs for these actions are shown in Figure 3.1(c). Finally, we must define the


reward function. We decompose the global reward as the sum of 4 local reward functions,


one for each machine, such that there is a reward if the machine is working. Specifically,


Ri(Xi = W) = 1 andRi(Xi = D) = 0, breaking symmetry by settingR4(X4 = true) = 2.


We use a discount factor ofγ = 0.9.


Basis function selection: In this simple example, we use five simple basis functions.


First, we include the constant functionh0 = 1. Next, we add indicators for each machine


which take value 1 if the machine is working:hi(Xi = W) = 1 andhi(Xi = D) = 0.


Backprojections: The first algorithmic step is computing the backprojection of the basis


functions, as defined in Section 3.3. The backprojection of the constant basis is simple:


ga
0 =


∑


x′
Pa(x


′ | x)h0 ;


=
∑


x′
Pa(x


′ | x) 1 ;


= 1 .


Next, we must backproject of each indicator basis functionshi. We repeat the derivation of


this computation for completeness:
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ga
i =


∑


x′
Pa(x


′ | x)hi(x
′
i) ;


=
∑


x′1,x′2,x′3,x′4


∏
j


Pa(x
′
j | xj−1, xj)hi(x


′
i) ;


=
∑


x′i


Pa(x
′
i | xi−1, xi)hi(x


′
i)


∑


x′[X′−{X′
i}]


∏


j 6=i


Pa(x
′
j | xj−1, xj) ;


=
∑


x′i


Pa(x
′
i | xi−1, xi)hi(x


′
i) ;


= Pa(X
′
i = W | xi−1, xi) 1 + Pa(X


′
i = D | xi−1, xi) 0 ;


= Pa(X
′
i = W | xi−1, xi) .


Thus,ga
i is a restricted-scope function of{Xi−1, Xi}. We can now use the CPDs in Fig-


ure 3.1(c) to specifyga
i :


greboot= i
i (Xi−1, Xi) =


Xi = W Xi = D


Xi−1 = W 1 1


Xi−1 = D 1 1


;


g
reboot 6= i
i (Xi−1, Xi) =


Xi = W Xi = D


Xi−1 = W 0.9 0.09


Xi−1 = D 0.5 0.05


.


LP construction: To illustrate the factored LPs constructed by our algorithms, we define


the constraints for the linear programming-based approximation approach presented above.


First, we define the functionsca
i = γga


i − hi, as shown in Equation (5.4). In our example,


these functions areca
0 = γ − 1 = −0.1 for the constant basis, and for the indicator bases:
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creboot= i
i (Xi−1, Xi) =


Xi = W Xi = D


Xi−1 = W −0.1 0.9


Xi−1 = D −0.1 0.9


;


c
reboot 6= i
i (Xi−1, Xi) =


Xi = W Xi = D


Xi−1 = W −0.19 0.081


Xi−1 = D −0.55 0.045


.


Using this definition ofca
i , the linear programming-based approximation constraints are


given by:


0 ≥ max
x


∑
i


Ri +
∑


j


wjc
a
j , ∀a . (5.5)


We present the LP construction for one of the 5 actions:reboot= 1. Analogous construc-


tions can be made for the other actions.


In the first set of constraints, we abstract away the difference between rewards and basis


functions by introducing LP variablesu and equality constraints. We begin with the reward


functions:


uR1
x1


= 1 , uR1
x̄1


= 0 ; uR2
x2


= 1 , uR2
x̄2


= 0 ;


uR3
x3


= 1 , uR3
x̄3


= 0 ; uR4
x4


= 2 , uR4
x̄4


= 0 .


We now represent the equality constraints for theca
j functions for thereboot= 1 action.


Note that the appropriate basis function weight from Equation (5.5) appears in these con-
straints:


uc0 = −0.1 w0 ;


uc1
x1,x4


= −0.1 w1 ,


uc2
x1,x2


= −0.19 w2 ,


uc3
x2,x3


= −0.19 w3 ,


uc4
x3,x4


= −0.19 w4 ,


uc1
x̄1,x4


= 0.9 w1 ,


uc2
x̄1,x2


= −0.55 w2 ,


uc3
x̄2,x3


= −0.55 w3 ,


uc4
x̄3,x4


= −0.55 w4 ,


uc1
x1,x̄4


= −0.1 w1 ,


uc2
x1,x̄2


= 0.081 w2 ,


uc3
x2,x̄3


= 0.081 w3 ,


uc4
x3,x̄4


= 0.081 w4 ,


uc1
x̄1,x̄4


= 0.9 w1 ;


uc2
x̄1,x̄2


= 0.045 w2 ;


uc3
x̄2,x̄3


= 0.045 w3 ;


uc4
x̄3,x̄4


= 0.045 w4 .


Using these new LP variables, our LP constraint from Equation (5.5) for thereboot= 1


action becomes:
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0 ≥ max
x1,x2,x3,x4


4∑
i=1


uRi
Xi


+ uc0 +
4∑


j=1


u
cj


Xj−1,Xj
.


We are now ready for the variable elimination process. We illustrate the elimination of


variableX4:


0 ≥ max
x1,x2,x3


3∑
i=1


uRi
Xi


+ uc0 +
3∑


j=2


u
cj


Xj−1,Xj
+ max


x4


[
uR4


X4
+ uc1


X1,X4
+ uc4


X3,X4


]
.


We can represent the termmaxX4


[
uR4


X4
+ uc1


X1,X4
+ uc4


X3,X4


]
by a set of linear constraints,


one for each assignment ofX1 andX3, using the new LP variablesue1
X1,X3


to represent this


maximum:


ue1
x1,x3


≥ uR4
x4


+ uc1
x1,x4


+ uc4
x3,x4


;


ue1
x1,x3


≥ uR4
x̄4


+ uc1
x1,x̄4


+ uc4
x3,x̄4


;


ue1
x̄1,x3


≥ uR4
x4


+ uc1
x̄1,x4


+ uc4
x3,x4


;


ue1
x̄1,x3


≥ uR4
x̄4


+ uc1
x̄1,x̄4


+ uc4
x3,x̄4


;


ue1
x1,x̄3


≥ uR4
x4


+ uc1
x1,x4


+ uc4
x̄3,x4


;


ue1
x1,x̄3


≥ uR4
x̄4


+ uc1
x1,x̄4


+ uc4
x̄3,x̄4


;


ue1
x̄1,x̄3


≥ uR4
x4


+ uc1
x̄1,x4


+ uc4
x̄3,x4


;


ue1
x̄1,x̄3


≥ uR4
x̄4


+ uc1
x̄1,x̄4


+ uc4
x̄3,x̄4


.


We have now eliminated variableX4 and our global non-linear constraint becomes:


0 ≥ max
X1,X2,X3


3∑
i=1


uRi
Xi


+ uc0 +
3∑


j=2


u
cj


Xj−1,Xj
+ ue1


X1,X3
.


Next, we eliminate variableX3. The new LP constraints and variables have the form:


ue2
X1,X2


≥ uR3
X3


+ uc3
X2,X3


+ ue1
X1,X3


, ∀ X1, X2, X3 ;
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thus removingX3 from the global non-linear constraint:


0 ≥ max
X1,X2


2∑
i=1


uRi
Xi


+ uc0 + uc2
X1,X2


+ ue2
X1,X2


.


We can now eliminateX2, generating the linear constraints:


ue3
X1
≥ uR2


X2
+ uc2


X1,X2
+ ue2


X1,X2
, ∀ X1, X2 .


Now, our global non-linear constraint involves onlyX1:


0 ≥ max
X1


uR1
X1


+ uc0 + ue3
X1


.


As X1 is the last variable to be eliminated, the scope of the new LP variable is empty and


the linear constraints are given by:


ue4 ≥ uR1
X1


+ ue3
X1


, ∀ X1 .


All of the state variables have now been eliminated, turning our global non-linear constraint


into a simple linear constraint:


0 ≥ uc0 + ue4 ,


which completes the LP description for the linear programming-based approximation so-


lution to the problem in Figure 3.1.


In this small example with only four state variables, our factored LP technique generates


a total of 89 equality constraints, 115 inequality constraints and 149 LP variables, while the


explicit state representation in Equation (2.8) generates only 80 inequality constraints and


5 LP variables. However, as the problem size increases, the number of constraints and


LP variables in our factored LP approach grow asO(n2), while the explicit state approach


grows exponentially, atO(n2n). This scaling effect is illustrated in Figure 5.2.
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Figure 5.2: Number of constraints in the LP generated by the explicit state representation
versus the factored LP-based approximation algorithm.


5.2 Factored approximate policy iteration with max-norm


projection


The factored LP-based approximation approach described in the previous section is both


elegant and easy to implement. However, we cannot, in general, provide strong guaran-


tees about the error it achieves. An alternative is to use the approximate policy iteration


described in Section 2.3.3, which does offer certain bounds on the error. However, as we


shall see, this algorithm is significantly more complicated, and requires that we place addi-


tional restrictions on the factored MDP.


In particular, approximate policy iteration requires a representation of the policy at each


iteration. In order to obtain a compact policy representation, we must make an additional


assumption: each action only affects a small number of state variables. We first state this


assumption formally. Then, we show how to obtain a compact representation of the greedy


policy with respect to a factored value function, under this assumption. Finally, we describe


our factored approximate policy iteration algorithm using max-norm projections.


5.2.1 Default action model


In Chapter 3, we presented the factored MDP model, where each action is associated with


its own factored transition model represented as a DBN and with its own factored reward
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function. However, different actions often have very similar transition dynamics, only dif-


fering in their effect on some small set of variables. In particular, in many cases a variable


has a default evolution model, which only changes if an action affects it directly [Boutilier


et al., 2000].


This type of structure turns out to be useful for compactly representing policies, a prop-


erty which is important in our approximate policy iteration algorithm. Thus, in this section


of the thesis, we restrict attention to factored MDPs that are defined using adefault transi-


tion modelτd = 〈Gd, Pd〉 [Koller & Parr, 2000]. For each actiona, we defineEffects [a] ⊆
X′ to be the variables in the next state whose local probability model is different fromτd,


i.e., those variablesX ′
i such thatPa(X


′
i | Parentsa(X


′
i)) 6= Pd(X


′
i | Parentsd(X


′
i)).


Example 5.2.1 In our system administrator example, we have an actionai for rebooting


each one of the machines, and a default actiond for doing nothing. The transition model


described above corresponds to the “do nothing” action, which is also the default transi-


tion model. The transition model forai is different fromd only in the transition model for


the variableX ′
i, which is nowX ′


i = W with probability one, regardless of the status of the


neighboring machines. Thus, in this example,Effects [ai] = X ′
i.


As in the transition dynamics, we can also define the notion ofdefault reward model.


In this case, there is a set of reward functions
∑r


i=1 Ri(Wi) associated with the default


actiond. In addition, each actiona can have a reward functionRa(Wa). Here, the extra


reward of actiona has scope restricted toRewards [a] = Wa
i ⊂ {X1, . . . , Xn}. Thus, the


total reward associated with actiona is given byRa +
∑r


i=1 Ri. Note thatRa can also be


factored as a linear combination of smaller terms for an even more compact representation.


5.2.2 Computing greedy policies


We can now build on this additional assumption to define the complete algorithm. Recall


that the approximate policy iteration algorithm iterates through two steps: policy improve-


ment and approximate value determination. We now discuss each of these steps.


The policy improvement step computes the greedy policy relative to a value function


V(t−1): π(t) = Greedy[V(t−1)]. Recall that our value function estimates have the linear
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form Hw. As we described in Section 3.3, the greedy policy for this type of value function


is given by:


Greedy[Hw](x) = arg max
a


Qa(x),


where eachQa can be represented by:


Qa(x) = R(x, a) +
∑


i


wi ga
i (x).


If we attempt to represent this policy naively, we are again faced with the problem of


exponentially-large state spaces. Fortunately, as shown by Koller and Parr [2000], the


greedy policy relative to a factored value function has the form of adecision list. More


precisely, the policy can be written in the form〈t1, a1〉, 〈t2, a2〉, . . . , 〈tL, aL〉, where each


ti is an assignment of values to some small subsetTi of variables, and eachai is an action.


The greedy action to take in statex is the actionaj corresponding to the first eventtj in the


list with which x is consistent. For completeness, we now review the construction of this


decision-list policy.


The critical assumption that allows us to represent the policy as a compact decision list


is the default action assumption described in Section 5.2.1. Under this assumption, theQa


functions can be written as:


Qa(x) = Ra(x) +
r∑


i=1


Ri(x) +
∑


i


wi ga
i (x),


whereRa has scope restricted toWa. The Q function for the default actiond is just:


Qd(x) =
∑r


i=1 Ri(x) +
∑


i wi gd
i (x).


We now have a set of linearQ-functions which implicitly describes a policyπ. It is not


immediately obvious that theseQ functions result in a compactly expressible policy. An


important insight is that most of the components in the weighted combination are identical,


so thatga
i is equal togd


i for most i. Intuitively, a componentga
i corresponding to the


backprojection of basis functionhi(Ci) is only different if the actiona influences one


of the variables inCi. More formally, assume thatEffects [a] ∩ Ci = ∅. In this case,


all of the variables inCi have the same transition model inτa and τd. Thus, we have
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that ga
i (x) = gd


i (x); in other words, theith component of theQa function is irrelevant


when deciding whether actiona is better than the default actiond. We can define which


components are actually relevant: letIa be the set of indicesi such thatEffects [a]∩Ci 6= ∅.
These are the indices of those basis functions whose backprojection differs inPa andPd.


In our example SysAdmin DBN of Figure 3.1, actionai reboots machinei, thusai only


affects the CPD ofX ′
i. As only the basis functionhi depends onXi, we have thatIai


= i.


Let us now consider the impact of taking actiona over the default actiond. We can


define the impact — the difference in value — as:


δa(x) = Qa(x)−Qd(x);


= Ra(x) +
∑
i∈Ia


wi


[
ga


i (x)− gd
i (x)


]
. (5.6)


This analysis shows thatδa(x) is a function whose scope is restricted to


Ta = Wa ∪ [∪i∈IaΓa(C
′
i)] . (5.7)


In our example DBN,Ta2 = {X1, X2}.
Intuitively, we now have a situation where we have a “baseline” value functionQd(x)


which defines a value for each statex. Each actiona changes that baseline by adding or


subtracting an amount from each state. The point is that this amount depends only onTa,


so that it is the same for all states in which the variables inTa take the same values.


We can now define the greedy policy relative to ourQ functions. For each actiona,


define a set ofconditionals〈t, a, δ〉, where eacht is some assignment of values to the


variablesTa, andδ is δa(t). Now, sort all of the conditionals for all of the actions by order


of decreasingδ:


〈t1, a1, δ1〉, 〈t2, a2, δ2〉, . . . , 〈tL, aL, δL〉


Consider our optimal action in a statex. We would like to get the largest possible “bonus”


over the default value. Ifx is consistent witht1, we should clearly take actiona1, as it


gives us bonusδ1. If not, then we should try to getδ2; thus, we should check ifx is


consistent witht2, and if so, takea2. Using this procedure, we can compute the decision-


list policy associated with our linear estimate of the value function. The complete algorithm
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DECISIONL ISTPOLICY (Qa)
// Qa is the set of Q-functions, one for each action;
// Return the decision-list policy∆.


L ET ∆ = {}.
// Compute the bonus functions.
FOR EACH ACTION a, OTHER THAN THE DEFAULT ACTIONd:


COMPUTE THE BONUS FOR TAKING ACTIONa,


δa(x) = Qa(x)−Qd(x);


AS IN EQUATION (5.6). NOTE THAT δa HAS SCOPE RESTRICTED TOTa, AS IN EQUA-
TION (5.7).


// Add states with positive bonuses to the (unsorted) decision list.
FOR EACH ASSIGNMENTt ∈ Ta:


I F δa(t) > 0, ADD BRANCH TO DECISION LIST:


∆ = ∆ ∪ {〈t, a, δa(t)〉}.


// Add the default action to the (unsorted) decision list.
L ET ∆ = ∆ ∪ {〈∅, d, 0〉}.
// Sort decision list to obtain final policy.
SORT THE DECISION LIST∆ IN DECREASING ORDER ON THEδ ELEMENT OF 〈t, a, δ〉.
RETURN ∆.


Figure 5.3: Method for computing the decision-list policy∆ from the factored representa-
tion of theQa functions.


for computing the decision-list policy is summarized in Figure 5.3.


Note that the number of conditionals in the list is
∑


a |Dom(Ta)|; Ta, in turn, depends


on the set of basis function clusters that intersect with the effects ofa. Thus, the size of


the policy depends in a natural way on the interaction between the structure of our process


description and the structure of our basis functions. In problems where the actions modify


a large number of variables, the policy representation could become unwieldy. The linear


programming-based approximation approach in Section 5.1 is more appropriate in such


cases, as requires an independent factored LP construction for the DBN of each action, and


not for a particular policy. Thus, no explicit representation of the policy is necessary.


5.2.3 Value determination


In the approximate value determination step our algorithm computes:
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FACTOREDAPI (P , R, γ, H , O, ε, tmax)
// P is the factored transition model.
// R is the set of factored reward functions.
// γ is the discount factor.
// H is the set of basis functionsH = {h1, . . . , hk}.
// O stores the elimination order.
// ε is the Bellman error precision.
// tmax is the maximum number of iterations.
// Return the basis function weightsw computed by approximate policy iteration.


// Initialize weights
L ET w(0) = 0.
// Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONhi ∈ H ; FOR EACH ACTIONa:


L ET ga
i = Backproja(hi).


// Main approximate policy iteration loop.
L ET t = 0.
REPEAT


// Policy improvement part of the loop.
// Compute decision list policy for iterationt weights.
L ET ∆(t) = DECISIONL ISTPOLICY(Ra + γ


∑
i w


(t)
i ga


i ).
// Value determination part of the loop.


// Initialize constraints for max-norm projection LP, and indicators.
L ET Ω+ = {}, Ω− = {}, AND I = {}.
// For every branch of the decision list policy, generate the relevant set of constraints, and


update the indicators to constraint the state space for future branches.
FOR EACH BRANCH 〈tj , aj〉 IN THE DECISION LIST POLICY∆(t):


// Instantiate the variables inTj to the assignment given intj .
I NSTANTIATE THE SET OF FUNCTIONS{h1 − γg


aj


1 , . . . , hk − γg
aj


k } WITH THE


PARTIAL STATE ASSIGNMENTtj AND STORE INC .
I NSTANTIATE THE TARGET FUNCTIONSRaj WITH THE PARTIAL STATE ASSIGN-


MENT tj AND STORE INb.
I NSTANTIATE THE INDICATOR FUNCTIONSI WITH THE PARTIAL STATE ASSIGN-


MENT tj AND STORE INI ′.
// Generate the factored LP constraints for the current decision list branch.
L ET Ω+ = Ω+ ∪ FACTOREDLP(C,−b + I ′,O).
L ET Ω− = Ω− ∪ FACTOREDLP(−C,b + I ′,O).
// Update the indicator functions.
L ET Ij(x) = −∞1(x = tj) AND UPDATE THE INDICATORSI = I ∪ Ij .


// We can now obtain the new set of weights by solving an LP, which corresponds to the
max-norm projection.


L ET w(t+1) BE THE SOLUTION OF THE LINEAR PROGRAM: MINIMIZE φ, SUBJECT TO


THE CONSTRAINTS{Ω+, Ω−}.
L ET t = t + 1.


UNTIL BellmanErr(Hw(t)) ≤ ε OR t ≥ tmax OR w(t−1) = w(t).
RETURN w(t).


Figure 5.4: Factored approximate policy iteration with max-norm projection algorithm.
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w(t) = arg min
w
‖Hw − (Rπ(t) + γPπ(t)Hw)‖∞ .


By rearranging the expression, we get:


w(t) = arg min
w
‖(H− γPπ(t)H)w −Rπ(t)‖∞ .


This equation is an instance of the optimization in Equation (2.11). IfPπ(t) is factored,


we can conclude thatC = (H − γPπ(t)H) is also a matrix whose columns correspond to


restricted-scope functions. More specifically:


ci(x) = hi(x)− γgπ(t)


i (x);


wheregπ(t)


i is the backprojection of the basis functionhi through the transition modelPπ(t),


as described in Section 3.3. The targetb = Rπ(t) corresponds to the reward function, which


for the moment is assumed to be factored. Thus, we can again apply our factored LP in


Section 4.4 to estimate the value of the policyπ(t).


Unfortunately, the transition modelPπ(t) is not factored, as a decision list represen-


tation for the policyπ(t) will, in general, induce a transition modelPπ(t) which cannot


be represented by a compact DBN. Nonetheless, we can still generate a compact LP by


exploiting the decision list structure of the policy. The basic idea is to introduce cost net-


works corresponding to each branch in the decision list, ensuring, additionally, that only


states consistent with this branch are considered in the cost network maximization. Specif-


ically, we have a factored LP construction for each branch〈ti, ai〉. The ith cost network


only considers a subset of the states that is consistent with theith branch of the decision


list. Let Si be the set of statesx such thatti is the first event in the decision list for which


x is consistent. That is, for each statex ∈ Si, x is consistent withti, but it isnot consistent


with anytj with j < i.


Recall that, as in Equation (4.1), our LP construction defines a set of constraints, which


imply that φ ≥ ∑
i wi ci(x) − b(x) for each statex. Instead, we have a separate set of


constraints for the states in each subsetSi. For each state inSi, we know that actionai is


taken. Hence, we can apply our construction above usingPai
— a transition model which is


factored by assumption — in place of the non-factoredPπ(t). Similarly, the reward function
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becomesRai(x) +
∑r


i=1 Ri(x) for this subset of states.


The only issue is to guarantee that the cost network constraints derived from this tran-


sition model are applied only to states inSi. Specifically, we must guarantee that they are


applied only to states consistent withti, but not to states that are consistent with sometj


for j < i. To guarantee the first condition, we simply instantiate the variables inTi to


take the values specified inti. That is, our cost network now considers only the variables


in {X1, . . . , Xn} − Ti, and computes the maximum only over the states consistent with


Ti = ti. To guarantee the second condition, we ensure that we do not impose any con-


straints on states associated with previous decisions. This is achieved by adding indicators


Ij for each previous decisiontj, with weight−∞. More specifically,Ij is a function that


takes value−∞ for states consistent withtj and zero for other all assignments ofTj. The


constraints for theith branch will be of the form:


φ ≥ R(x, ai) +
∑


l


wl (γgl(x, ai)− h(x)) +
∑
j<i


−∞1(x = tj), ∀x ∼ [ti], (5.8)


wherex ∼ [ti] defines the assignments ofX consistent withti. The introduction of these


indicators causes the constraints associated withti to be trivially satisfied by states inSj


for j < i. Note that each of these indicators is a restricted-scope function ofTj and can


be handled in the same fashion as all other terms in the factored LP. Thus, for a decision


list of sizeL, our factored LP contains constraints from2L cost networks. The complete


approximate policy iteration with max-norm projection algorithm is outlined in Figure 5.4.


5.3 Computing bounds on policy quality


We have presented two algorithms for computing approximate solutions to factored MDPs.


All these algorithms generate linear value functions which can be denoted byHŵ, where


ŵ are the resulting basis function weights. In practice, the agent will define its behavior by


acting according to the greedy policŷπ = Greedy[Hŵ]. One issue that remains is how


this policy π̂ compares to the true optimal policyπ∗; that is, how theactual valueVπ̂ of


policy π̂ compares toV∗.
In Section 2.3, we showed somea priori bounds for the quality of the policy. Another
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FACTOREDBELLMAN ERR (P , R, γ, H , O, ŵ)
// P is the factored transition model.
// R is the set of factored reward functions.
// γ is the discount factor.
// H is the set of basis functionsH = {h1, . . . , hk}.
// O stores the elimination order.
// ŵ are the weights for the linear value function.
// Return the Bellman error for the value functionHŵ.


// Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONhi ∈ H ; FOR EACH ACTIONa:


L ET ga
i = Backproja(hi).


// Compute decision list policy for value functionHŵ.
L ET ∆̂ = DECISIONL ISTPOLICY(Ra + γ


∑
i ŵig


a
i ).


// Initialize indicators.
L ET I = {}.
// Initialize Bellman error.
L ET ε = 0.
// For every branch of the decision list policy, generate the relevant cost networks, solve it with


variable elimination, and update the indicators to constraint the state space for future branches.
FOR EACH BRANCH 〈tj , aj〉 IN THE DECISION LIST POLICY∆̂:


// Instantiate the variables inTj to the assignment given intj .
I NSTANTIATE THE SET OF FUNCTIONS{ŵ1(h1−γg


aj


1 ), . . . , ŵk(hk−γg
aj


k )} WITH THE


PARTIAL STATE ASSIGNMENTtj AND STORE INC .
I NSTANTIATE THE TARGET FUNCTIONSRaj WITH THE PARTIAL STATE ASSIGNMENT


tj AND STORE INb.
I NSTANTIATE THE INDICATOR FUNCTIONSI WITH THE PARTIAL STATE ASSIGNMENT


tj AND STORE INI ′.
// Use variable elimination to solve first cost network, and update Bellman error, if error for


this branch is larger.
L ET ε = max (ε, VARIABLE ELIMINATION (C − b + I ′,O)).
// Use variable elimination to solve second cost network, and update Bellman error, if error


for this branch is larger.
L ET ε = max (ε, VARIABLE ELIMINATION (−C + b + I ′,O)).
// Update the indicator functions.
L ET Ij(x) = −∞1(x = tj) AND UPDATE THE INDICATORSI = I ∪ Ij .


RETURN ε.


Figure 5.5: Algorithm for computing Bellman error for factored value functionHŵ.
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possible procedure is to compute ana posterioribound. That is, given our resulting weights


ŵ, we compute a bound on the loss of acting according to the greedy policyπ̂ rather than


the optimal policy. This can be achieved by using theBellman erroranalysis of Williams


and Baird [1993].


The Bellman erroris defined asBellmanErr(V) = ‖T ∗V − V‖∞. Given the greedy


policy π̂ = Greedy[V ], their analysis provides the bound of Theorem 2.1.5:


‖V∗ − Vπ̂‖∞ ≤ 2γBellmanErr(V)


1− γ
. (5.9)


Thus, we can use the Bellman errorBellmanErr(Hŵ) to evaluate the quality of our result-


ing greedy policy.


Note that computing the Bellman error involves a maximization over the state space.


Thus, the complexity of this computation grows exponentially with the number of state


variables. Koller and Parr [2000] suggested that structure in the factored MDP can be ex-


ploited to compute the Bellman error efficiently. Here, we show how this error bound can


be computed by a set of cost networks using a similar construction to the one in our max-


norm projection algorithms. This technique can be used for anyπ̂ that can be represented


as a decision list and does not depend on the algorithm used to determine the policy. Thus,


we can apply this technique to solutions determined by the linear programming-based ap-


proximation algorithm if the action descriptions permit a decision list representation of the


policy.


For some set of weightŝw, the Bellman error is given by:


BellmanErr(Hŵ) = ‖T ∗Hŵ −Hŵ‖∞ ;


= max


(
maxx


∑
i wihi(x)−Rπ̂(x)− γ


∑
x′ Pπ̂(x′ | x)


∑
j wjhj(x′) ,


maxx Rπ̂(x) + γ
∑


x′ Pπ̂(x′ | x)
∑


j wjhj(x′)−
∑


i wihi(x)


)
.


If the rewardsRπ̂ and the transition modelPπ̂ are factored appropriately, then we can


compute each one of these two maximizations (maxx) using variable elimination in a cost


network as described in Section 4.2. However,π̂ is a decision list policy and it does not


induce a factored transition model. Fortunately, as in the approximate policy iteration al-


gorithm in Section 5.2, we can exploit the structure in the decision list to perform such a
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maximization efficiently. In particular, as in approximate policy iteration, we will generate


two cost networks for each branch in the decision list. To guarantee that our maximization


is performed only over states where this branch is relevant, we include the same type of


indicator functions, which will force irrelevant states to have a value of−∞, thus guaran-


teeing that at each point of the decision list policy we obtain the corresponding state with


the maximum error. The state with the overall largest Bellman error will be the maximum


over the ones generated for each point the in the decision list policy. The complete factored


algorithm for computing the Bellman error is outlined in Figure 5.5.


One last interesting note concerns our approximate policy iteration algorithm with max-


norm projection of Section 5.2. In all our experiments, this algorithm converged, so that


w(t) = w(t+1) after some iterations. If such convergence occurs, then the objective function


φ(t+1) of the linear program in our last iteration is equal to the Bellman error of the final


policy:


Lemma 5.3.1 If approximate policy iteration with max-norm projection converges, so that


w(t) = w(t+1) for some iterationt, then the max-norm projection errorφ(t+1) of the last


iteration is equal to the Bellman error for the final value function estimateHŵ = Hw(t):


BellmanErr(Hŵ) = φ(t+1).


Proof: See Appendix A.3.


Thus, we can bound the loss of acting according to the final policyπ(t+1) by substituting


φ(t+1) into the Bellman error bound:


Corollary 5.3.2 If approximate policy iteration with max-norm projection converges after


t iterations to a final value function estimateHŵ associated with a greedy policŷπ =


Greedy [Hŵ], then the loss of acting according tôπ instead of the optimal policyπ∗ is


bounded by:


‖V∗ − Vπ̂‖∞ ≤ 2γφ(t+1)


1− γ
,


whereVπ̂ is theactualvalue of the policŷπ.


Therefore, when approximate policy iteration converges we obtain a bound on the quality


of the resulting policy without a special purpose computation of the Bellman error.
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5.4 Empirical evaluation


The factored representation of a value function is most appropriate in certain types of sys-


tems: Systems that involve many variables, but where the strong interactions between the


variables are fairly sparse, so that the decoupling of the influence between variables does


not induce an unacceptable loss in accuracy. As discussed in Chapter 1 and argued by Si-


mon [1981], many complex systems have a nearly decomposable, hierarchical structure,


with the subsystems interacting only weakly between themselves. Throughout this thesis,


to evaluate our algorithms, we selected problems, which we believe to exhibit this type of


structure.


5.4.1 Scaling properties


In order to evaluate the scaling properties of our factored algorithms, we tested our ap-


proaches the SysAdmin problem described in detail in Chapter 7. This problem relates to a


system administrator who has to maintain a network of computers; we experimented with


various network architectures, shown in Figure 2.1. Machines fail randomly, and a faulty


machine increases the probability that its neighboring machines will fail. At every time


step, the SysAdmin can go to one machine and reboot it, causing it to be working in the


next time step with high probability. Recall that the state space in this problem grows ex-


ponentially in the number of machines in the network, that is, a problem withm machines


has2m states. Each machine receives a reward of 1 when working (except in the ring,


where one machine receives a reward of 2, to introduce some asymmetry), a zero reward


is given to faulty machines, and the discount factor isγ = 0.95. The optimal strategy for


rebooting machines will depend upon the topology, the discount factor, and the status of


the machines in the network. If machinei and machinej are both faulty, the benefit of


rebootingi must be weighed against the expected discounted impact of delaying rebooting


j on j’s successors. For many network topologies, this policy may be a function of the


status of every single machine in the network.


The basis functions we used include independent indicators for each machine, with


value 1 if it is working and zero otherwise (i.e., each one is a restricted-scope function


of a single variable), and the constant basis, whose value is 1 for all states. We selected
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straightforward variable elimination orders: for the “Star” and “Three Legs” topologies, we


first eliminated the variables corresponding to computers in the legs, and the center com-


puter (server) was eliminated last; for “Ring”, we started with an arbitrary computer and


followed the ring order; for “Ring and Star”, the ring machines were eliminated first and


then the center one; finally, for the “Ring of Rings” topology, we eliminated the computers


in the outer rings first and then the ones in the inner ring.


We implemented the factored policy iteration and linear programming algorithms in


Matlab, using CPLEX as the LP solver. Experiments were performed on a Sun UltraSPARC-


II, 359 MHz with 256MB of RAM.


We first evaluated the complexity of our algorithms, tests were performed with increas-


ing the number of states, that is, increasing number of machines on the network. Figure 5.6


shows the running time for increasing problem sizes, for various architectures. The simplest


one is the “Star”, where the backprojection of each basis function has scope restricted to


two variables and the largest factor in the cost network has scope restricted to two variables.


The most difficult one was the “Bidirectional Ring”, where factors contain five variables.


Note that the number of states grows exponentially (indicated by the log scale in Fig-


ure 5.6), but running times increase only logarithmically in the number of states, or poly-


nomially in the number of variables. We illustrate this behavior in Figure 5.6(d), where


we fit a 3rd order polynomial to the running times for the “unidirectional ring”, where the


factors generated by variable elimination included up to3 variables at a time. Note that the


size of the problem description grows quadratically with the number of variables: adding a


machine to the network also adds the possible action of fixing that machine. For this prob-


lem, the computation cost of our factored algorithm empirically grows approximately as


O ((n · |A|)1.5), for a problem withn variables, as opposed to the exponential complexity


— poly (2n, |A|) — of the explicit algorithm.


Next, we measured the error in our approximate value function relative to the true op-


timal value functionV∗. Note that it is only possible to computeV∗ for small problems;


in our case, we were only able to go up to 10 machines. Here, we used two types of basis


functions: the same single variable functions, and pairwise basis functions. The pairwise


basis functions contain indicators for neighboring pairs of machines (i.e., functions of two
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Figure 5.6: Results of approximate policy iteration with max-norm projection on variants
of the SysAdmin problem: (a)–(c) Running times; (d) Fitting a polynomial to the running
time for the “Ring” topology.
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Figure 5.7: Quality of the solutions of approximate policy iteration with max-norm projec-
tion: (a) Relative error to optimal value functionV∗ and comparison toL2 projection for
“Ring”; (b) For large models, measuring Bellman error after convergence.


variables). As expected, the use of pairwise basis functions resulted in better approxi-


mations. For comparison, we also evaluated the error in the approximate value function


produced by theL2-projection algorithm of Koller and Parr [2000]. As we discussed in


Section 5.5.1, theL2 projections in factored MDPs by Koller and Parr are difficult and time


consuming; hence, we were only able to compare the two algorithms for smaller problems,


where an equivalentL2-projection can be implemented using an explicit state space for-


mulation. Results for both algorithms are presented in Figure 5.7(a), showing the relative


error of the approximate solutions to the true value function for increasing problem sizes.


The results indicate that, for larger problems, the max-norm formulation generates a better


approximation of the true optimal value functionV∗ than theL2-projection.


For these small problems, we can also compare the actual value of the policy generated


by our algorithm to the value of the optimal policy. Here, the value of the policy generated


by our algorithm is much closer to the value of the optimal policy than the error implied by


the difference between our approximate value function andV∗. For example, for the “Star”


architecture with one server and up to 6 clients, our approximation with single variable


basis functions had relative error of12%, but the policy we generated had the same value


as the optimal policy. In this case, the same was true for the policy generated by theL2
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projection. In a “Unidirectional Ring” with 8 machines and pairwise basis, the relative


error between our approximation andV∗ was about10%, but the resulting policy only had


a6% loss over the optimal policy. For the same problem, theL2 approximation has a value


function error of12%, and a true policy loss was9%. In other words, both methods induce


policies that have lower errors than the errors in the approximate value function (at least for


small problems). However, our algorithm continues to outperform theL2 algorithm, even


with respect to actual policy loss.


For large models, we can no longer compute the correct value function, so we cannot


evaluate our results by computing‖V∗ − Aw‖∞. Fortunately, as discussed in Section 5.3,


the Bellman error can be used to provide a bound on the approximation error and can be


computed efficiently by exploiting problem-specific structure. Figure 5.7(b) shows that the


Bellman error increases very slowly with the number of states.


It is also valuable to look at the actual decision-list policies generated in our experi-


ments. First, we noted that the lists tended to be short, the length of the final decision list


policy grew approximately linearly with the number of machines. Furthermore, the policy


itself is often fairly intuitive. In the “Ring and Star” architecture, for example, the decision


list says: If the server is faulty, fix the server; else, if another machine is faulty, fix it.


5.4.2 LP-based approximation and approximate PI


Thus far, we have presented scaling results for running times and approximation error for


our approximate PI approach. We now compare this algorithm to the simpler approximate


LP approach of Section 5.1. As shown in Figure 5.8(a), the approximate LP algorithm


for factored MDPs is significantly faster than the approximate PI algorithm. In fact, ap-


proximate PI with single-variable basis functions variables is more costly computationally


than the LP approach using basis functions over consecutive triples of variables. As shown


in Figure 5.8(b), for singleton basis functions, the approximate PI policy obtains slightly


better performance for some problem sizes. However, as we increase the number of basis


functions for the approximate LP formulation, the value of the resulting policy is much


better. Thus, in this problem, our factored linear programming-based approximation for-


mulation allows us to use more basis functions and to obtain a resulting policy of higher
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Figure 5.8: Comparing LP-based approximation versus approximate policy iteration on the
SysAdmin problem with a “Ring” topology: (a) running time; (b) value of policy estimated
by 50 monte carlo runs of100 steps.


value, while still maintaining a faster running time. These results, along with the simpler


implementation, suggest that in practice one may first try to apply the linear programming-


based approximation algorithm before deciding to move to the more elaborate approximate


policy iteration approach.


5.5 Discussion and related work


In this chapter, we present new algorithms for approximate linear programming and ap-


proximate dynamic programming (value and policy iteration) for factored MDPs. Both


of these algorithms leverage on the novel LP decomposition technique presented in the


previous chapter.


This chapter also presents an efficient factored algorithm for computing the Bellman


error. This measure can be used to bound the quality of a greedy policy relative to an ap-


proximate value function. Koller and Parr [2000] first suggested that structure in a factored


MDP can be exploited to compute the Bellman error efficiently. In this chapter, we present


a correct and novel algorithm for computing this bound.
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5.5.1 Comparing max-norm andL2 projections


It is instructive to compare our max-norm policy iteration algorithm to theL2-projection


policy iteration algorithm of Koller and Parr [2000] in terms of computational costs per


iteration and implementation complexity. Computing theL2 projection requires (among


other things) a series of dot product operations between basis functions and backprojected


basis functions〈hi•gπ
j 〉. These expressions are easy to compute ifPπ refers to the transition


model of a particular actiona. However, if the policyπ is represented as a decision list,


as is the result of the factored policy improvement step, then this step becomes much more


complicated. In particular, for every branch of the decision list, for every pair of basis func-


tionsi andj, and for each assignment to the variables inScope[hi]∪Scope[ga
j ], it requires


the solution of a counting problem which is]P -complete in general. Although Koller and


Parr show that this computation can be performed using a Bayesian network (BN) infer-


ence, the algorithm still requires a BN inference for each one of those assignments at each


branch of the decision list. This makes the algorithm very difficult to implement efficiently


in practice.


The max-norm projection, on the other hand, relies on solving a linear program at every


iteration. The size of the linear program depends on the cost networks generated. As we


discuss, two cost networks are needed for each point in the decision list. The complexity


of each of these cost networks is approximately the same as only one of the BN inferences


in the counting problem for theL2 projection. Overall, for each branch in the decision


list, we have a total of two of these “inferences”, as opposed to one for each assignment of


Scope[hi]∪Scope[ga
j ] for every pair of basis functionsi andj. Thus, the max-norm policy


iteration algorithm is substantially less complex computationally than the approach based


onL2-projection. Furthermore, the use of linear programming allows us to rely on existing


LP packages (such as CPLEX), which are very highly optimized.


In this chapter, we present empirical evaluations demonstrating that, as expected, the


running time of our factored algorithms grows polynomially with the number of state vari-


ables, for problems with fixed induced width in the underlying cost network. Additionally,


we empirically compare our max-norm projection method to theL2-projection algorithm,


demonstrating that the max-norm projection approach seems to generate better policies, in
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addition to the computational advantages described above.


5.5.2 Comparing linear programming and policy iteration


It is also interesting to compare the approximate policy iteration algorithm and the approx-


imate linear programming algorithm. In the approximate linear programming algorithm,


we never need to compute the decision list policy. The policy can always be represented


implicitly by the Qa functions, as discussed in the beginning of this chapter. Thus, this


algorithm does not require explicit computation or manipulation of the greedy policy. This


difference has two important consequences: one computational and the other in terms of


generality.


First, not having to compute or consider the decision lists makes approximate linear


programming faster and easier to implement. In this algorithm, we generate a single LP


with one cost network for each action and never need to compute a decision list policy. On


the other hand, in each iteration, approximate policy iteration needs to generate two LPs for


every branch of the decision list of sizeL, which is usually significantly longer than|A|,
with a total of2L cost networks. In terms of representation, we do not require the policies


to be compact; thus, we do not need to make the default action assumption. Therefore, the


approximate linear programming algorithm can deal with a more general class of problems,


where each action can have its own independent DBN transition model. On the other hand,


as described in Section 2.3.3, approximate policy iteration has stronger guarantees in terms


of error bounds.


These differences are further highlighted in our experimental results comparing the two


algorithms: empirically, the LP-based approximation algorithm seems to be a favorable


option. Our experiments suggest that approximate policy iteration tends to generate better


policies for the same set of basis functions. However, due to the computational advantages,


we can add more basis functions to the approximate linear programming algorithm, ob-


taining a better policy and still maintaining a much faster running time than approximate


policy iteration.
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5.5.3 Summary


Our approximate dynamic programming algorithms are motivated by error analyses in Sec-


tion 2.3.3 showing the importance of minimizingL∞ error. These algorithms are more


efficient and substantially easier to implement than previous algorithms based on theL2-


projection. Our experimental results also suggest that max-norm projection performs better


in practice.


Our approximate linear programming algorithm for factored MDPs is simpler, easier


to implement and more general than the dynamic programming approaches. Unlike our


policy iteration algorithm, it does not rely on the default action assumption, which states


that actions only affect a small number of state variables. Although this algorithm does not


have the same theoretical guarantees as max-norm projection approaches, empirically it


seems to be a favorable option. Our experiments suggest that approximate policy iteration


tends to generate better policies for the same set of basis functions.







Chapter 6


Factored dual linear


programming-based approximation


In this chapter, we describe the formulation and interpretation of both the dual of the linear


programming-based approximation algorithm, and of the dual of our factored version of


this algorithm. This presentation will yield a very natural interpretation of the factorized


dual LP, a new bound on the quality of the solutions obtained by the LP-based approxima-


tion approach, and a novel algorithm for approximating problems with large induced width


that cannot be solved by our standard LP decomposition technique.


6.1 The approximate dual LP


In Section 2.2.1, we presented an interpretation of the dual of the exact linear programming


solution algorithm for MDPs.1 This exact formulation is, again, given by:


1In this thesis, we call the LP formulation in terms of the value function, presented in Equation (2.4), the
“primal” formulation, while we refer to the one involving the visitation frequencies, in Equation (2.5), the
“dual” formulation. In some presentations by other authors, the latter formulation is called the “primal”, as it
maximizes the rewards directly.


92
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Variables: φa(x) , ∀x, ∀a ;


Maximize:
∑


a


∑
x φa(x)R(x, a) ;


Subject to: ∀x ∈ X, a ∈ A :∑
a φa(x) = α(x) + γ


∑
x′,a′ φa′(x


′)P (x | x′, a′) ;


∀x ∈ X, a ∈ A :


φa(x) ≥ 0.


(6.1)


In this section, we present the formulation and interpretation of the dual of the LP-based


approximation algorithm, and a new bound on the quality of the policies obtained by the


LP-based approximation approach.


6.1.1 Interpretation


We present an interpretation of the dual of the LP-based approximation formulation in (2.8).


Similar interpretations have been described in more general settings involving constrained


optimizations over visitation frequencies [Derman, 1970]. This section will, however, build


the foundation for our bound and novel algorithm.


First, note that the dual of the LP-based approximation formulation in (2.8) is given by:


Variables: φa(x) , ∀x, ∀a ;


Maximize:
∑


a


∑
x φa(x)R(x, a) ;


Subject to: ∀i = 1, . . . , k :∑
x,a φa(x)hi(x) =


∑
x α(x)hi(x) + γ


∑
x′,a′ φa′(x


′)
∑


x P (x | x′, a′)hi(x) ;


∀x ∈ X, a ∈ A :


φa(x) ≥ 0.
(6.2)


At the optimum, the weightswi of the ith basis functionhi in the primal formulation will


be the Lagrange multiplier of theflow constraint:


∑
x,a


φa(x)hi(x) =
∑
x


α(x)hi(x) + γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′)hi(x) (6.3)


induced byhi.
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Note that both the variables and the objective function of this LP are the same as those


in the exact dual LP in (6.1). In this section, we show that the constraints in the approximate


version are a relaxation of the constraints in the exact dual LP in (6.1). To understand this


property, consider a basis functionhj that takes value1 for statexj and zero for all other


states,i.e., hj(x) = 1(x = xj). The constraint corresponding to this basis function in the


approximate dual LP in (6.2) becomes:


∑
x,a


φa(x)1(x = xj) =
∑
x


α(x)1(x = xj) + γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′)1(x = xj) ;


this constraint is equivalent to:


∑
a


φa(xj) = α(xj) + γ
∑


x′,a′
φa′(x


′)P (xj | x′, a′) .


This is exactly the constraint corresponding to statexj in the exact dual LP in (6.1). If


we had an indicator basis function for every statex, then the approximate dual LP in (6.2)


will be exactly equivalent to the exact one in (6.1), as they would have the same set of


constraints. Equivalently, the linear subspace formed by our basis functions would include


any possible value function, and the approximate LP approach would be exact. In practice,


our basis function subspace will not span the whole space of value functions, and, as we


will now prove, the constraints in (6.2) will be a relaxation of those in the exact dual LP


in (6.1).


First, it is useful to interpret the dual variablesφa as a density function:


Lemma 6.1.1 Any feasible set of visitation frequenciesφa(x) in the approximate dual LP


in (6.2) forms a density function overX× A, that is:


∀x, a : φa(x) ≥ 0 , and (6.4)
∑
x,a


φa(x) =
1


1− γ
. (6.5)


Proof: See Appendix A.4.1.


In the exact case in Section 2.2.1, the density represented by the visitation frequencies
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φa(x) has a one to one correspondence to policies in the MDP, as shown in Theorem 2.2.1.


This correspondence is guaranteed by the constraints in the dual LP in (6.1). Although,


in the approximate case, the visitation frequenciesφa(x) still form a density as shown by


Lemma 6.1.1, we now prove that the constraints have been relaxed, and the one to one


correspondence betweenφa(x) and policies no longer holds:


Theorem 6.1.2


1. Letρ be any stationary randomized policy; then if:


φρ
a(x) =


∞∑
t=0


∑


x′
γtρ(a | x)Pρ(x


(t) = x | x(0) = x′)α(x′), ∀x, a , (6.6)


wherePρ(x
′ | x) =


∑
a′ P (x′ | x, a′)ρ(a′ | x), thenφρ


a is a feasible solution to the


approximate dual LP in (6.2).


2. There may exist a feasible solutionφa(x) to the approximate dual LP in (6.2) such


that, for some statex,
∑


a φa(x) = 0.


3. There may even exist a set ofφa(x) that is a feasible solution to the approximate


dual LP in (6.2), and such that, for all statesx,
∑


a φa(x) > 0, but if we define a


randomized policyρ by:


ρ(a | x) =
φa(x)∑
a φa(x)


; (6.7)


then the dual solution defined byφρ
a(x) as in Equation (6.6) is such thatφρ


a(x) 6=
φa(x) for at least somex anda.


Proof: See Appendix A.4.2.


Comparing Theorem 6.1.2 for the approximate dual formulation with the corresponding


Theorem 2.2.1 for the exact case, we formally prove two characteristics of the approximate


dual LP:


Relaxation: Theorem 2.2.1 proves that every solution to the exact dual LP corresponds to


a (randomized) policy. Theorem 6.1.2 Item 1 indicates that all (randomized) policies


yield feasible solutions to the approximate dual LP in (6.2).
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Non-policy solutions: The one to one correspondence between policies and dual solutions


that is present in the exact formulation no longer holds. Specifically, Theorem 6.1.2


Items 2 and 3 prove that not all feasible solutions to the approximate dual LP in (6.2)


necessarily correspond to policies.


Therefore, rather than approximating the space of policies, the approximate dual LP


in (6.2) is finding the approximation to the state visitation frequenciesφa(x) that has max-


imum value. To understand the nature of this approximation, examine again the constraint


introduced by an arbitrary basis functionhi(x):


∑
x,a


φa(x)hi(x) =
∑
x


α(x)hi(x) + γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′)hi(x).


As φa(x) can be interpreted as a density, we can express this constraint using expectations:


Eφa [hi(x)] = Eα [hi(x)] + γEφaPa [hi(x)] . (6.8)


Thus, rather than enforcing the flow constraints described in Section 2.2.1 for all states, we


are now enforcing flow constraints for features of the states (basis functions). That is, a set


of visitation frequenciesφa(x) in our approximate LP will be feasible if, for each feature or


basis functionhi, the total expected value of this feature underφa(x), given byEφa [hi(x)],


is equal to the expected value of this feature under the starting distribution (represented


by the state relevance weightsα(x)), Eα [hi(x)], plus the total discounted expected value


of this feature under the flow from all other statesx′ to this statex times the respective


visitation frequencies of the origin states,γEφaPa [hi(x)]. In other words, we are enforcing


the flow constraints in terms of features of the states, rather than individually for each state.2


2 As in the exact case, this relationship becomes more intuitive in the average reward case, where our
relaxed constraints now become relaxed conditions on a stationary distribution.
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6.1.2 Theoretical analysis of the LP-based approximation policies


Theorem 2.2.1 shows that there exists a one to one correspondence between every feasible


solution to the exact dual LP in (6.1) and a (randomized) policy in the MDP. In Theo-


rem 6.1.2, we proved that every policy corresponds to a feasible solution to the approx-


imate dual formulation in (6.2), but that the one to one correspondence no longer holds.


We will now define a correspondence between feasible solutions to the dual LP in (6.2)


and policies. This correspondence leads to a new bound and intuition on the quality of the


solutions obtained by the LP-based approximation approach, both in the dual form and in


the primal form in (2.8).


Definition 6.1.3 (approximate dual solution policy set)Let φ̃a be any feasible solution


to the approximate dual LP in (6.2). We define theapproximate dual solution policy set,


PoliciesOf[φ̃a], to include every (randomized) policyρ such that:


ρ(a | x) =







φ̃a(x)∑
a′ φ̃a′ (x)


, if
∑


a′ φ̃a′(x) > 0;


ρx
a , otherwise;


whereρx
a is anyprobability distribution over actions such that


∑
a′ ρ


x
a′ = 1.


In other words, we define every feasible solutionφ̃a to the dual LP to correspond to a set


of randomized policies, where for states such that
∑


a′ φ̃a′(x) > 0 we define the policy


in the usual manner, and in states where
∑


a′ φ̃a′(x) = 0 we can select any distribution


over actions. Note that by Theorem 2.2.1, any feasible solutionφa(x) to the exact dual LP


in (6.1) has
∑


a φa(x) > 0 for all states. In this case,PoliciesOf[φa] contain exactly one


policy, as defined by the one to one correspondence in Theorem 2.2.1.


To understand the set of policies inPoliciesOf[φ̃a], let us consider the greedy policy


with respect to the solution of the primal LP-based approximation formulation in (2.8):


Lemma 6.1.4 Let ŵ be the weights of an optimal solution to the approximate primal LP


in (2.8), then there exists an optimal solutionφ̂a to the approximate dual such that:


Greedy [Vŵ] ∈ PoliciesOf[φ̂a] ,
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whereVŵ(x) =
∑


i ŵihi(x) is our approximate value function with weightsŵ.


Proof: See Appendix A.4.3.


This lemma proves that if̂w is an optimal solution to the LP-based approximation


formulation in (2.8), then the greedy policy with respect to this value function is in the set


of policiesPoliciesOf[φ̂a] associated with some optimal dual solutionφ̂a. We now prove a


result bounding the quality of all policies inPoliciesOf[φ̂a].


Note that if the optimal solution̂φa of the approximate dual LP is a feasible solution to


the exact dual LP, then it is also guaranteed to be an exact optimal solution. Intuitively, if


φ̂a is almost feasible in the exact dual, then it should close to the optimal solution. Thus,


we explicitly define a measure of violation, that indicates how closeφ̂a is from satisfying


each flow constraint in the exact dual LP:


Definition 6.1.5 (dual violation) Let φ̃a be any feasible solution to the approximate dual


LP in (6.2). We define thedual violation∆[φ̃a](x) for statex by:


∆[φ̃a](x) =
∑


a


φ̃a(x)− α(x)− γ
∑


x′,a′
φ̃a′(x


′)P (x | x′, a′) .


Our first result bounds the quality of the policies inPoliciesOf[φ̂a] in terms of the dual


violation∆[φ̂a]:


Theorem 6.1.6 Let φ̂a be an optimal solution to the approximate dual LP in (6.2), and let


ρ̂ be any policy inPoliciesOf[φ̂a]; then:


‖V∗ − Vρ̂‖1,α ≤
∑
x


∆[φ̂a](x) Vρ̂(x), (6.9)


whereVρ̂ is the actual value function of the policŷρ; and the weightedL1 norm is defined


by‖V‖1,α =
∑


x α(x) |V(x)|.
Furthermore, ifŵ is an optimal solution to the primal LP associated with the dual


solutionφ̂a, then:


∥∥V∗ − Vŵ
∥∥


1,α
≤ min


ρ̂∈PoliciesOf[φ̂a]


[∑
x


∆[φ̂a](x) Vρ̂(x)


]
, (6.10)
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whereVŵ is the approximate value function with weightsŵ.


Proof: See Appendix A.4.4.


Recall thatφ̂a is not a feasible solution to the exact dual LP in (6.1). Our Theo-


rem 6.1.6 bounds the quality of the approximations obtained by the LP-based algorithm


in Section 2.3.2, and also the quality of all the policies inPoliciesOf[φ̂a], by a term that


measures the infeasibility of̂φa. Our next result build on this theorem to bound the quality


of our approximate value function and of our policies by the quality of the best achievable


approximation in our basis function space. One of our results uses the notion ofLyapunov


functiondefined by de Farias and Van Roy [2001a]. This function is used to weigh our


approximation differently in different parts of the state space.


Theorem 6.1.7 Let φ̂a be an optimal solution to the approximate dual LP in (6.2). Letρ̂


be any policy inPoliciesOf[φ̂a], andVρ̂ be the actual value of the policŷρ. Let the errorε∞ρ̂
of the best max-norm approximation ofVρ̂ in the space of our basis functions be given by:


ε∞ρ̂ = min
w
‖Vρ̂ −Hw‖∞ ; (6.11)


then:


‖V∗ − Vρ̂‖1,α ≤ 2ε∞ρ̂
1− γ


. (6.12)


If ŵ is an optimal solution to the primal LP associated with the dual solutionφ̂a, then:


∥∥V∗ − Vŵ
∥∥


1,α
≤ min


ρ̂∈PoliciesOf[φ̂a]


2ε∞ρ̂
1− γ


, (6.13)


whereVŵ is our approximate value function with weightsŵ.


Furthermore, letL(x) =
∑


i w
L
i hi(x) be anyLyapunov functionin the space of our


basis functions, with contraction factorκ ∈ (0, 1) for the transition modelPρ̂, that is, any


strictly positive function such that:


κL(x) ≥ γ
∑


x′
Pρ̂(x


′ | x)L(x′). (6.14)
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Let the errorε∞,1/L
ρ̂ of the best1/L weighted max-norm approximation ofVρ̂ in the space


of our basis functions be given by:


ε
∞,1/L
ρ̂ = min


w
‖Vρ̂ −Hw‖∞,1/L , (6.15)


where‖V‖∞,1/L = maxx
1


L(x)
|V(x)| ; then:


‖V∗ − Vρ̂‖1,α ≤ 2αᵀL
1− κ


ε
∞,1/L
ρ̂ , (6.16)


and


∥∥V∗ − Vŵ
∥∥


1,α
≤ min


ρ̂∈PoliciesOf[φ̂a]


2αᵀL
1− κ


ε
∞,1/L
ρ̂ . (6.17)


Proof: See Appendix A.4.5.


As the greedy policy with respect to the primal approximate solution is inPoliciesOf[φ̂a],


our bound of course also applies:


Corollary 6.1.8 Letŵ be the weights of an optimal solution to the approximate primal LP


in (2.8), andVŵ(x) =
∑


i ŵihi(x) be our approximate value function with weightsŵ. Let


the greedy policy with respect to this value function be:


πŵ = Greedy [Vŵ] ;


then:


‖V∗ − Vπŵ‖1,α ≤ 2


1− γ
min
w
‖Vπŵ −Hw‖∞ , (6.18)


whereVπŵ is the actual value of policyπŵ.


LetL be a Lyapunov function as defined in Theorem 6.1.7, then:


‖V∗ − Vπŵ‖1,α ≤ 2αᵀL
1− κ


min
w
‖Vπŵ −Hw‖∞,1/L . (6.19)


Proof: This result is a corollary of Lemma 6.1.4 and Theorem 6.1.7.
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In other words, the term‖V∗ − Vρ̂‖1,α measures the quality of each policy inPoliciesOf[φ̂a],


in terms of how well the basis functions can approximateVρ̂, the value function ofthispol-


icy. In particular, we can bound the quality of the greedy policy associated withŵ, the


weights of an optimal solution to the approximate primal LP in (2.8), in terms of how well


our basis functions can approximateVπŵ .


6.1.3 Relationship to existing theoretical analyzes


The results of de Farias and Van Roy [2001a] provide a foundation for the understanding


of the quality of the solution obtained by the LP-based approximation algorithm. The


theoretical bounds presented thus far provide further intuitions about this solution. To


understand this relationship, we review some results by de Farias and Van Roy [2001a].


First, their Theorem 4.1 proves that:


∥∥V∗ − Vŵ
∥∥


1,α
≤ 2


1− γ
min
w
‖V∗ −Hw‖∞ . (6.20)


Theorem 4.2 of de Farias and Van Roy [2001a] states that:


∥∥V∗ − Vŵ
∥∥


1,α
≤ 2αᵀL


1− κ
min
w
‖V∗ −Hw‖∞,1/L , (6.21)


for a Lyapunov functionL as defined in Theorem 6.1.7. Finally, Theorem 3.1 of de Farias


and Van Roy [2001a] states that:


‖V∗ − Vπŵ‖1,α ≤ 1


1− γ


∥∥V∗ − Vŵ
∥∥


1,(1−γ)φπŵ , (6.22)


whereφπŵ
are the visitation frequencies of the greedy policyπŵ. We now compare these


results by de Farias and Van Roy [2001a], with our results in Theorem 6.1.7 and Corol-


lary 6.1.8.


First note that the results of de Farias and Van Roy [2001a] in Equation (6.20) and Equa-


tion (6.21) bound the quality of the solution in terms of the best possible approximation of


the optimal value function. Our results in Theorem 6.1.7, Equations (6.13) and (6.17),
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respectively, present related bounds in terms of how well the basis functions can approxi-


mate the “easiest” policy inPoliciesOf[φ̂a]. Our bounds are, in some sense, weaker, because


we are bounding the quality of the solution as a function of the solution (the approxima-


bility of the policies obtained by the algorithm), while the results of de Farias and Van


Roy [2001a] depend on how well the basis functions can approximate the optimal value


functionV∗, which is independent of the algorithm. However, intuitively, it may be easier


to approximate the “easiest” policy inPoliciesOf[φ̂a]. Thus, we view our bound as intro-


ducing the additional intuition that the LP-based approximation algorithm obtains good


approximations both when the optimal value function can be well-approximated by the ba-


sis functions, and when the value function of the policies generated by the approach can be


well approximated by the basis functions.


Additionally, de Farias and Van Roy [2001a] bound the quality of the greedy policy


πŵ by substituting the bound in Equation (6.20) or the one in Equation (6.21), into Equa-


tion (6.22). On the other hand, our Corollary 6.1.8 bounds the greedy policy directly, albeit


as a function of the approximability of the solution.


Our results thus add some interesting properties to the results of de Farias and Van Roy


[2001a]: first, as discussed above, when both approaches are combined, we obtain bounds


that can depend on the approximability of the value function ofπŵ or on the approxima-


bility of V∗; second, our bound on the quality of the greedy policy is a factor of1
1−γ


tighter


than that of de Farias and Van Roy [2001a], though our result depends on the approximabil-


ity of the value function of this greedy policy; finally, there is an incompatibility between


the norms on the left and on the right hand side of the de Farias and Van Roy bound in


Equation (6.22), this issue does not arise in our result.


6.2 Factored dual approximation algorithm


In the previous section, we presented an interpretation and theoretical analysis of the dual


LP in (6.2). Unfortunately, the number of variables in this LP is exponential in the number


state variables. Thus, as in the primal formulation, a direct solution for this linear program


is infeasible. Fortunately, by considering the dual of the factored LP decomposition in


Chapter 4 we obtain a very compact formulation for the approximate dual.
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6.2.1 Factored objective function


First consider the objective function of the dual LP in (6.2), again given by:
∑


a


∑
x φa(x)R(x, a).


Recall that in factored MDPs, the reward function is decomposed as the sum of restricted-


scope functions:Ra(X) =
∑r


j=1 Ra
j (W


a
j ). Using this representation, the objective func-


tion becomes:


∑
a


∑
x


φa(x)R(x, a) =
∑


a


∑
x


φa(x)
r∑


j=1


Ra
j (x[Wa


j ]) ;


=
r∑


j=1


∑
a


∑
x


φa(x)Ra
j (x[Wa


j ]) .


Note that, asφa(x) forms a density, we can decompose this expectation in an analogous


manner as the backprojection in Section 3.3. To understand this process, we define the


marginal visitation frequencies:


Definition 6.2.1 (marginal visitation frequency, consistent flows)For some subset (clus-


ter) of variablesB ⊆ X, let themarginal visitation frequencyµa(B) be:


µa(b) =
∑


x∼[b]


φa(x) , ∀b ∈ Dom[B] , (6.23)


wherex ∼ [b] are the assignments ofx that are consistent withb.


We can, furthermore, marginalize out the action variable, defining:


µ(b) =
∑


a


µa(b) . (6.24)


Finally, we say that a set of marginal visitation frequenciesµa and a set of global visi-


tation frequenciesφa areconsistent flowsiff µa andφa satisfy Equations (6.23) and (6.24).


Using this definition, we can rewrite the objective function of our dual LP as:


∑
a


∑
x


φa(x)R(x, a) =
r∑


j=1


∑
a


∑


wa
j∈Dom[Wa


j ]


µa(w
a
j )R


a
j (w


a
j ) . (6.25)







104 CHAPTER 6. FACTORED DUAL LP-BASED APPROXIMATION


Thus, the representation of the objective function is now only exponential in the number of


variables in each local reward function. In our SysAdmin example, the reward function has


the formRa(X) =
∑


j Rj(Xj). Thus, to represent the objective function for this problem,


we only need marginal visitation frequencies over single variablesµ(Xj). Therefore our


objective becomes to maximize
∑


j µ(xj)Rj(xj).


6.2.2 Factored flow constraints


Consider the flow constraint in the dual LP in (6.2) induced by each basis functionhi, again


given by:


∑
x,a


φa(x)hi(x) =
∑
x


α(x)hi(x) + γ
∑


x′,a


φa(x
′)


∑
x


P (x | x′, a)hi(x
′) . (6.26)


Now recall thathi has scopeCi. Using the marginal visitation frequencies, as in the ob-


jective function, this constraint can be restated as an equivalentfactored flow constraint:


∑


c∈Dom[Ci]


µ(c)hi(c) =
∑


c∈Dom[Ci]


α(c)hi(c) + γ
∑


a


∑


y∈Dom[Γa(C′i)]


µa(y)ga
i (y) , (6.27)


whereΓa(C
′
i) is the backprojection (parents) of the variablesCi in the DBN as defined in


Section 3.3;ga
i = Backproja(hi) is the backprojection ofhi as defined in Figure 3.2; and


α(c) are the marginal state relevance weights, as defined in Equation (5.2).


To understand the factored flow constraint, consider our SysAdmin example. Each


basis functionhi is an indicator that takes value 1 if machinei is working. In this case, the


marginal visitation frequency constraint becomes:


µ(xi) = α(xi) + γ
∑


a


∑


x′i,x
′
i−1∈Dom[X′


i,X
′
i−1]


µa(x
′
i, x


′
i−1)P (xi | x′i, x′i−1, a) ;


that is, the visitation frequencyµ(xi) for states where machinei is working is equal to the


starting probabilityα(xi) that machinei is working, plus the discounted visitation frequen-


cies for the states of the parent machines in the network that lead to a state where machine


i is working.
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In order to express the objective function and the factored flow constraints for each


basis function, our optimization problem must include variables to represent the marginal


visitation frequenciesµ(b) andµa(b), ∀a, for each assignmentb of each clusterB used


in the formulation. We call this set of clusters thefactored MDP cluster set:


Definition 6.2.2 (factored MDP cluster set)Thecluster setBFMDPfor a factored MDP is


defined as:


BFMDP= {Wa
1, . . . ,W


a
r : ∀a} ∪ {C1, . . . ,Ck} ∪ {Γa(C


′
1), . . . , Γa(C


′
k) : ∀a} ,


where{Wa
1, . . . ,W


a
r} are the scopes of the local reward functions;{C1, . . . ,Ck} are the


scopes of our basis functions; and,{Γa(C
′
1), . . . , Γa(C


′
k)} are the scopes of the backpro-


jections of our basis functions, as defined in Section 3.3.


Note that the scope of the constant basis functionh0 is the empty set, thus the empty set


{∅} is always included inBFMDP.


6.2.3 Global consistency


If we maximize the factored objective function in Equation (6.25) with non-negative vari-


ables, under the factored flow constraints in Equation (6.27), and under the constraints


in Equations (6.23) and (6.24) that enforce the definition of marginal visitation frequen-


cies, we would clearly obtain the same solution as solving the dual LP in (6.2). Un-


fortunately, the constraints in the definition of marginal visitation frequencies in Equa-


tions (6.23) and (6.24) require us to keep the global visitation frequency variablesφa(x) in


the optimization problem, and, thus, the formulation remains exponentially large.


However, in some cases, we can remove the global visitation frequency variablesφa(x)


(and the constraints in Equations (6.23) and (6.24)) from the optimization problem, and


still obtain the same solution as the one for the dual LP in (6.2).


This equivalency occurs when the set of marginal visitation frequencies areglobal con-


sistent:
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Definition 6.2.3 (global consistency)As set of marginal visitation frequenciesµa(b) over


a set of clustersB is said to beglobally consistentif there exists a set of non-negative global


visitation frequenciesφa(x), such thatφa andµa are consistent flows.


Lemma 6.2.4 Let an optimal solution to the factored objective function in Equation (6.25),


under the factored flow constraints in Equation (6.27) for each basis functionhi, be given


by the non-negative marginal visitation frequenciesµ∗a(b), for each assignmentb ∈ Dom[B]


of each clusterB in BFMDP. If the µ∗a(b) are globally consistent, letφ∗a(x) be any set of


global visitation frequencies such thatφ∗a and µ∗a are consistent flows; thenφ∗a(x) is an


optimal solution to the dual LP in (6.2).


Proof: See Appendix A.4.6.


6.2.4 Marginal consistency constraints


Even if we were given an optimal set of globally consistent marginal visitation frequen-


cies µ∗a, it is still infeasible to obtain the global visitation frequenciesφ∗a. Fortunately,


we never need to computeφ∗a. The coefficient of basis functionhi in our approximation


is simply the Lagrange multiplier associated with the factored flow constraint induced by


hi. Therefore, we can restate our problem as one of finding aglobally consistentset of


non-negative marginal visitation frequenciesµ∗a(b) that maximizes the factored objective


function in Equation (6.25), under the factored flow constraint in Equation (6.27) for each


basis functionhi. Unfortunately, our factored flow constraints are not generally sufficient


to ensure that the marginal visitation frequenciesµa are globally consistent. We now show


that we can guarantee global consistency by including additional constraints in our LP.


First, note that if a set of marginal visitation frequenciesµa(b) is globally consistent,


then, for any two clusters of variablesBi andBj, the respective marginalsµa(Bi) and


µa(Bj) assign the same frequency to the variables they share. We can add constraints to


the LP to guarantee this consistency:


Definition 6.2.5 (marginal consistency constraints)For two clusters of variablesBi and


Bj, themarginal consistency constraintsfor the marginal visitation frequenciesµa(Bi) and


µa(Bj) are given by:
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∑


bi∼[y]


µa(bi) =
∑


bj∼[y]


µa(bj) , ∀y ∈ Dom[Bi ∩Bj] , ∀a . (6.28)


For some set of variablesB, theaction-marginalization consistency constraintsare given


by:


µ(b) =
∑


a


µa(b) , ∀b ∈ Dom[B] . (6.29)


For every pair of clusters,Bi andBj, in our factored MDP cluster setBFMDP, we thus


introduce a set of marginal consistency constraints. The number of such constraints is only


exponential in the number of variables inBi ∩ Bj. This number of variables is no larger


than the size of the larger cluster inBFMDP. In some cases, these constraints are sufficient to


guarantee global consistency, as the following example shows:


Example 6.2.6 (marginal consistency may imply global consistency)Assume, for exam-


ple, that our state space is defined via the state variablesA,B, C, and that we have 2 clus-


ters of variables:B1 = {A,B}, B2 = {B, C}. We are given two non-negative marginal


visitation frequencies over these three clusters,


{µ(A,B), µ(B, C)},


where
∑


a,b µ(a, b) = 1
1−γ


and
∑


b,c µ(b, c) = 1
1−γ


.


Suppose that we add marginal consistency constraints for these marginal visitation


frequencies:


∑
a


µ(a, b) =
∑


c


µ(b, c) , ∀b ∈ Dom[B] .


Now, let us define a set of global visitation frequenciesφ(A,B,C) by:


φ(a, b, c) =
µ(a, b)µ(b, c)∑


c′ µ(b, c′)
, ∀a, b, c ∈ Dom[A,B,C],


where we define0
0


= 0.
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We must prove that the global visitation frequenciesφ and the set of marginalsµ are


consistent flows. Consider firstµ(a, b):


∑
c


φ(a, b, c) =
∑


c


µ(a, b)µ(b, c)∑
a′ µ(a′, b)


;


=
µ(a, b)


∑
c µ(b, c)∑


c′ µ(b, c′)
;


= µ(a, b).


A similar derivation proves the consistency ofφ andµ(b, c).


We must finally show thatφ is a well-defined density function. Clearlyφ(a, b, c) is


non-negative, as it is composed of non-negative functions. We also need to show that


φ(a, b, c) is normalized appropriately. We show above that
∑


c φ(a, b, c) = µ(a, b). As∑
a,b µ(a, b) = 1


1−γ
, we have thatφ is a well-defined density function, and the marginal


consistency constraints are sufficient to guarantee global consistency of the set of marginals


µ are consistent flows, in this example.


Although the marginal consistency constraints ensure that theµa(Bi) andµa(Bj) agree


on the visitation frequency of the variables they share, they do not always enforce global


consistency,i.e., the existence of a set of global visitation frequenciesφa, such thatφa and


µa are consistent flows. The following example illustrates this problem:


Example 6.2.7 (marginal consistency does not always imply global consistency)Assume,


for example, that our state space is defined via the binary state variablesA,B,C, and that


we have 3 clusters of variables:B1 = {A,B}, B2 = {B, C}, andB3 = {C,A}. We are


given three non-negative marginal visitation frequencies over these three clusters,


{µ(A,B), µ(B,C), µ(C, A)},


where eachµ sums to 1
1−γ


, as in the previous example.


Now, suppose that we add marginal consistency constraints for these marginal visita-


tion frequencies:







6.2. FACTORED DUAL APPROXIMATION ALGORITHM 109


∑
a


µ(a, b) =
∑


c


µ(b, c) , ∀b ∈ Dom[B] ;


∑


b


µ(b, c) =
∑


a


µ(c, a) , ∀c ∈ Dom[C] ;


∑
c


µ(c, a) =
∑


b


µ(a, b) , ∀a ∈ Dom[A] .


These constraints enforce local consistency between the marginal frequencies. How-


ever, local consistency does not, in general, imply global consistency, i.e., that there exists


a set of global visitation frequenciesφ(A,B, C) such thatφ and theµ’s are consistent


flows.


Consider, for example, the following assignment to the marginal visitation frequencies:


µ(A,B) =


(
0.5
1−γ


0


0 0.5
1−γ


)
, µ(B,C) =


(
0.5
1−γ


0


0 0.5
1−γ


)
, µ(C, A) =


(
0.5−ε
1−γ


ε
1−γ


ε
1−γ


0.5−ε
1−γ


)
,


for any ε ∈ (0, 0.5]; where, for a particular marginalµ(X,Y ), the rows in the matrix


correspond to values ofX, and the columns correspond to values ofY . Clearly, these


marginals satisfy the marginal consistency constraints.


Let us assume that there exists a set of global visitation frequenciesφ(A,B, C), such


thatφ and the set of marginalsµ are consistent flows, and:


∑


a,b,c


φ(a, b, c) =
1


1− γ
, and φ(a, b, c) ≥ 0, ∀a, b, c .


If φ andµ are consistent flows, then:


φ(a, b, c̄) + φ(ā, b, c̄) = µ(b, c̄) = 0.


Thus, by non-negativity of the global visitation frequencies, we have that:


φ(a, b, c̄) = φ(ā, b, c̄) = 0. (6.30)
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Similarly, the consistent flows property implies that:


φ(a, b, c) + φ(a, b, c̄) = µ(a, b) =
0.5


1− γ
.


Substituting the termφ(a, b, c̄) from Equation (6.30), we obtain:


φ(a, b, c) =
0.5


1− γ
. (6.31)


Now considerµ(c, a):


φ(a, b, c) + φ(a, b̄, c) = µ(c, a) =
0.5− ε


1− γ
.


Substituting the termφ(a, b, c) from Equation (6.31), we finally obtain:


φ(a, b̄, c) =
−ε


1− γ
,


violating the positivity requirement on the global visitation frequencies. Thus, even satis-


fying the marginal consistency constraints, the marginal visitation frequenciesµ are not


globally consistent.


6.2.5 Global consistency constraints


In Example 6.2.6, the marginal consistency constraints were sufficient to guarantee global


consistency. In Example 6.2.7, on the other hand, we show that the marginal consistency


constraints do not always guarantee global consistency. Intuitively, this inconsistency is


caused by the cyclic nature of the marginals in the second example. That is,µ(A, B) is


consistent withµ(B, C), µ(B,C) with µ(C, A), andµ(C,A) with µ(A,B), but there is no


constraint enforcing the joint consistency of the three terms. In general, if marginals can


be arranged in a forest (collection of trees) graph, then global consistency is guaranteed, as


we show in this section.


We can guarantee global consistency by using the notion ofdecomposable models[Lau-


ritzen & Spiegelhalter, 1988], where local consistency does imply global consistency.
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These models are characterized by cluster graphs that have a special,cluster tree(or forest),


structure with a particular property:


Definition 6.2.8 (cluster tree, running intersection property) A cluster treeF(B) is an


undirected tree (or forest) with a node for each clusterB ∈ B. A cluster tree is said


to satisfy therunning intersection propertyif, whenever there is a variableX such that


X ∈ Bi ∈ B andX ∈ Bj ∈ B, there exists a (unique) path betweenBi andBj in the


F(B), andX is also present in every clusterBk in this path.


We can now define the requirements for global consistency of a set of clustersB:


Definition 6.2.9 (junction tree) A set of clustersB = {B1, . . . ,Bn} is said to form ajunc-


tion treeif there exists a cluster forestF(B) satisfying the running intersection property.


Clusters that form a junction tree are globally consistent:


Lemma 6.2.10 Let B = {B1, . . . ,Bn} be a cluster set forming a junction treeF(B).


Let µ(B) andµa(B) be a set of non-negative marginal visitation frequencies overB. If,


for every pair of clustersBi andBj in B, the marginal consistency constraints in Equa-


tions (6.28) and (6.29) hold, and for eachB ∈ B we have that
∑


b∈Dom[B] µ(b) = K; then


the marginalsµ(B) andµa(B) are globally consistent. That is, there exists a densityφa(x)


such that for eachB ∈ B:


µa(b) =
∑


x∼[b]


φa(x) , ∀b ∈ Dom[B], ∀a ,


with
∑


x,a φa(x) = K andφa(x) ≥ 0.


Proof: see for example the book by Lauritzen and Spiegelhalter [1988].


Unfortunately, the factored MDP cluster setBFMDPas stated in Definition 6.2.2 does not


necessarily form a junction tree as required by Theorem 6.2.10. However, using a simple


triangulation procedure, we can obtain such a junction tree [Lauritzen & Spiegelhalter,


1988]. LetTr (B) denote such a procedure that takes a cluster setB and returns a (larger)


cluster set forming a junction tree. For simplicity of presentation, we assume thatB ⊆
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Tr (B). Figure 6.1 illustrates a simple implementation of one such triangulation procedure,


where a variable elimination orderO is required.


We are now ready to present the completefactored dual approximationformulation:


Definition 6.2.11 (factored dual approximation) Thefactored dual approximationLP for-


mulation for any set of clustersB ⊇ BFMDPis given by:


Variables: ∀B ∈ B, ∀b ∈ Dom[B], ∀a :


µ(b) andµa(b);


Maximize:
∑r


j=1


∑
a


∑
wa


j∈Dom[Wa
j ] µa(w


a
j )R


a
j (w


a
j ) ;


Subject to: • ∀i = 1, . . . , k :∑
c∈Dom[Ci]


µ(c)hi(c) =
∑


c∈Dom[Ci]
α(c)hi(c)


+ γ
∑


a


∑
y∈Dom[Γa(C′i)]


µa(y)ga
i (y) ,


where Ci = Scope[hi] ;


• ∀Bi,Bj ∈ B, ∀y ∈ Dom[Bi ∩Bj] ,∀a :∑
bi∼[y] µa(bi) =


∑
bj∼[y] µa(bj) ;


• ∀B ∈ B, ∀b ∈ Dom[B], ∀a :


µa(b) ≥ 0 ,


µ(b) =
∑


a′ µa′(b) ,∑
b′∈Dom[B] µ(b′) = 1


1−γ
;


where the backprojection of basis functionhi, given by


ga
i (y) =


∑


c′∈Dom[C′i]


P (c′ | y, a)hi(c
′),


is defined in Section 3.3.


The factored dual approximation formulation is guaranteed to be equivalent to the dual


LP-based approximation formulation in (6.2):
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TR(B,O)
// B = {B1, . . . ,Bm} is a set of clusters.
// O stores the elimination order.
// Return a set of clustersB′ ⊇ B that forms a junction tree.


// Initialize set of clusters.
L ET B′ = B.
FOR i = 1 TO NUMBER OF VARIABLES:


// Select the next variable to be eliminated.
L ET l = O(i) ;
// Select the clusters to be eliminated.
L ET B1, . . . ,BL BE THE CLUSTERS INB CONTAINING VARIABLES Xl.
L ET B = B \ {B1, . . . ,BL}.
// Create a new union cluster.
L ET B =


⋃L
i=1 Bi.


// Add new cluster to the junction tree.
L ET B′ = B′ ∪ {B}.
// Remove eliminated variable and store the new cluster.
L ET B′ = B \Xl.
L ET B = B ∪ {B′}.


// We can now return a cluster set that forms a junction tree.
RETURN B′.


Figure 6.1: Triangulation procedure, returns a cluster set that forms a junction tree.


Theorem 6.2.12 If the marginal visitation frequenciesµ∗a(b) are an optimal solution to


the factored dual approximation formulation in Definition 6.2.11 using a set of clusters


B ⊇ Tr (BFMDP); then there exists a set of global visitation frequenciesφ∗a(x) such thatφ∗a
and the marginalsµ∗a are consistent flows, andφ∗a(x) is an optimal solution to the dual LP


in (6.2).


Proof: The existence of a set of global visitation frequenciesφ∗a(x) such thatφ∗a and the


marginalsµ∗a are consistent flows is guaranteed by Lemma 6.2.10. The optimality ofφ∗a(x)


is then guaranteed by Lemma 6.2.4.


To obtain a value function estimate from the formulation in Definition 6.2.11, we simply


set the weightwi of theith basis functionhi to be the Lagrange multiplier associated with


theith factored flow constraint:


Corollary 6.2.13 Let the marginal visitation frequenciesµ∗a(b), for each assignmentb ∈
Dom[B] of each clusterB in B ⊇ Tr (BFMDP) be an optimal solution to the factored dual
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approximation formulation in Definition 6.2.11. Letwi be the Lagrange multiplier associ-


ated with the factored flow constraint:


∑


c∈Dom[Ci]


µ∗(c)hi(c) =
∑


c∈Dom[Ci]


α(c)hi(c) + γ
∑


a


∑


y∈Dom[Γa(C′i)]


µ∗a(y)ga
i (y) ;


then
∑


i wihi is an optimal solution to the primal formulation LP in (2.8).


Proof: This result is a corollary of Theorem 6.2.12 and of standard complementarity results


in duality theory (e.g., [Bertsimas & Tsitsiklis, 1997, Theorem 4.5]).


Therefore, by solving the compact dual LP in Definition 6.2.11, we obtain the same


value function approximation as solving the exponentially-large dual LP in (6.2), in turn,


yielding the same approximation as the linear programming-based approximation in (2.8).


6.2.6 Approximately factored dual approximation


As with the factored LP construction in Chapter 4, the largest cluster generated by the


triangulation procedure is given by the induced width of an undirected graph defined over


the variablesX1, . . . , Xn, with an edge betweenXl andXm if they appear together in one


of the original clustersBFMDP. This induced width is exactly the size of the largest cluster


in a junction tree that includes the clusters inBFMDP. The number of marginal consistency


constraints is exponential in this induced width. In some systems, the induced width may


be too large to allow us to solve such a optimization problem. A more efficient alternative


is to use anapproximate triangulationprocedure, relaxing the consistency constraints on


the visitation frequencies:


Definition 6.2.14 (approximate triangulation) An approximate triangulationprocedure


T̂r (B) for cluster setB returns some cluster setB′ such thatB ⊆ B′.


Clearly, the approximate triangulation procedurêTr (B) need not return a cluster set that


forms a junction tree, and it may even just return the original clustersB. Using this proce-


dure, we can solve anapproximately factored dual approximationformulation by solving


the LP in Definition 6.2.11 over the clusters in̂Tr (BFMDP). If T̂r (BFMDP) does not increase


the size of the clusters significantly, the size of this approximately factored formulation can







6.3. DISCUSSION AND RELATED WORK 115


be exponentially smaller than that of the globally consistent one obtained when using the


exact triangulation procedureTr (BFMDP).


By definition, for any approximate triangulation procedurêTr (BFMDP), our approxi-


mately factored dual LP contains a factored flow constraint for each basis functionhi, as in


Equation (6.27). Thus, for any choice of̂Tr (BFMDP), we can obtain a factored value func-


tion, where the coefficientwi for eachhi is simply the Lagrange multiplier of the factored


flow constraint induced byhi. This approximately factored formulation thus allows us to


find a value function approximation very efficiently, even in many problems with large


induced width.


Unfortunately, at this point, we cannot provide any theoretical guarantees for the quality


of the value function obtained by this approximately triangulated formulation. However,


this relaxed formulation does provide us with an “anytime” version of our factored LP


decomposition technique: Note that, for two sets of clustersB andB′ such thatBFMDP⊆
B′ ⊂ B, the set of constraints in the factored dual LP forB is exactly a super set of those in


the dual LP forB′, and both LPs have the same objective function. Our “anytime” algorithm


thus starts by formulating and solving the factored dual LP over the clustersBFMDP. We


then choose a set of clustersB, such thatB ⊃ BFMDP. The dual LP formulation forB
can be obtained simply by adding the extra constraints and variables corresponding to the


clusters inB\BFMDP. Interestingly, this procedure corresponds to using a delayed constraint


generation procedure [Bertsimas & Tsitsiklis, 1997] to solve the dual LP formulation with


the full triangulationTr (B). This process can be repeated for increasing sets of constraints


until either the full triangulationTr (BFMDP) is obtained, or a preset running time limit is


reached.


6.3 Discussion and related work


This chapter focused on the dual of the LP-based approximation algorithm. We first de-


scribed an interpretation of this approach, showing that solutions to this approximate dual


no longer have the one to one correspondence to policies that was present in the exact


formulation. We then presented a new analysis of the quality of the policies obtained by


the LP-based approximation algorithm. In this analysis, we defined a mapping between
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approximate dual solutions and policies. We then presented a new bound on the quality


of all policies associated with the optimal solution of the approximate dual. These poli-


cies include the greedy policy with respect to the optimal solution to the primal LP-based


approximation algorithm used thus far in this thesis.


Our theoretical results provide some complementary intuitions to those of de Farias


and Van Roy [2001a]. We are able to obtain a potentially tighter bound on the quality of


the greedy policy than de Farias and Van Roy [2001a], though our bound depends on the


approximability of the value function of the greedy policy obtained by the algorithm, while


de Farias and Van Roy [2001a] provide ana priori bound, in terms of the approximability


of the optimal value function. We thus view our bound as providing the intuition that the


LP-based approximation algorithm will yield good solutions when the value function of


the resulting greedy policy can be well-approximated by the basis functions, in addition to


when the optimal value function allows for such an approximation, which is the original


result of de Farias and Van Roy [2001a].


Our interpretation of the approximate dual also leads to a new link between value func-


tion approximation and the representation of exponentially-large distributions in graphi-


cal models. This link is analogous to the one between value function approximation and


maximization in a cost network presented in our factored primal LP decomposition tech-


nique. The complexity of the primal formulation is equivalent to that of the dual. Further-


more, the data structures used in the implementation of both formulations are very similar.


Thus, there are no significant advantages to solving the dual LP with the exact triangulation


Tr (B), over solving the primal formulation.


However, our dual formulation does yield approximate and “anytime” versions of our


factored LP decomposition technique, as discussed in Section 6.2.6. Note that the sim-


plest formulation of our approximately factored dual LP must contain at least the clusters


in BFMDP. Thus, this approximately factored dual formulation is particularly appropriate


when each cluster inBFMDPonly involves a small number of variables, but the cost net-


work formed by these clusters has high induced width. For example, consider a set of


variables{X1, . . . , Xn}. If BFMDPcontains a cluster for every pair of variables{Xi, Xj},
thenTr (BFMDP) contains a cluster with all variables, and the representation of our factored


LP would be exponential in the number of variables. Alternatively, we can formulate an
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approximately factored dual wherêTr (BFMDP) = BFMDP. This formulation would only be


quadratic in the number of variables.


The use of such a locally consistent approximation is motivated by the success of ap-


proximate inference algorithms in graphical models. Exact inference in a graphical model


requires the same triangulation procedure used to create a junction tree. Analogously, the


complexity of such an inference procedure is exponential in the size of the largest cluster in


this junction tree. Thus, inference in graphical models is generally infeasible for problems


with large induced width. Recently, Yedidiaet al. [2001] proposed a very successful ap-


proximate inference algorithm, which leads only to local consistency between clusters of


variables, when the algorithm converges. The success of this procedure motivates the lo-


cally consistent relaxation of our factored dual approximation algorithm induced byT̂r (B).


We believe that our approximately factored dual formulation will extend the applicabil-


ity of our efficient solution techniques to highly-connected real-world systems.







Chapter 7


Exploiting context-specific structure


Thus far, we have presented a suite of algorithms which exploit additive structure in the


reward and basis functions and sparse connectivity in the DBN representing the transition


model. However, there exists another important type of structure that should also be ex-


ploited for efficient decision making:context-specific independence(CSI), a type of sym-


metry [Boutilieret al., 1995]. For example, consider an agent responsible for building and


maintaining a house, if the painting task can only be completed after the plumbing and the


electrical wiring have been installed, then the probability that the painting is done is0 in


all contexts where plumbing or electricity are not done,independentlyof the agents action.


The representation we have used so far in this thesis would use a table to represent this type


of function. This table is exponentially large in the number of variables in the scope of the


function, and ignores the context-specific structure inherent in the problem definition.


Boutilier et al. [Boutilier et al., 1995; Dearden & Boutilier, 1997; Boutilieret al.,


1999; Boutilieret al., 2000] have developed a set of algorithms which can exploit CSI


in the transition and reward models to perform efficient (approximate) planning. Although


this approach is often successful in problems where thevalue functioncontains sufficient


context-specific structure, the approach is not able to exploit the additive structure which is


also often present in real-world problems. (We discuss these algorithms further at the end


of this chapter.)


In this chapter, we first review the extension of the factored MDP model to include


context-specific structure. We then present an extension of our algorithms that can exploit
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both CSI and additive structure to obtain efficient approximations for factored MDPs.


7.1 Factored MDPs with context-specific and additive struc-


ture


There are several representations for context-specific functions. The most common are


decision trees [Boutilieret al., 1995], algebraic decision diagrams (ADDs) [Hoeyet al.,


1999], and rules [Zhang & Poole, 1999]. We choose to use rules as our basic representation,


for two main reasons. First, the rule-based representation allows a fairly simple algorithm


for variable elimination, which is a key operation in our framework. Second, rules are not


required to be mutually exclusive and exhaustive, a requirement that can be restrictive if


we want to exploit additive independence, where functions can be represented as a linear


combination of a set of non-mutually exclusive functions.


We begin by describing the rule-based representation (along the lines of Zhang and


Poole’s presentation [1999]) for the probabilistic transition model, in particular, the CPDs


of our DBN model. Roughly speaking, each rule corresponds to some set of CPD entries


that are all associated with a particular probability value. These entries with the same value


are referred to aconsistentcontexts:


Definition 7.1.1 (consistent)Let C ⊆ {X,X′} andc ∈ Dom(C). We say thatc is con-


sistentwith b ∈ Dom(B), for B ⊆ {X,X′}, if c andb have the same assignment for the


variables inC ∩B.


The probability of these consistent contexts will be represented byprobability rules:


Definition 7.1.2 (probability rule, context) A probability ruleη = 〈c : p〉 is a function


η : {X,X′} 7→ [0, 1], where thecontextc ∈ Dom(C) for C ⊆ {X,X′} andp ∈ [0, 1],


such thatη(x,x′) = p if (x,x′) is consistent withc and is equal to1 otherwise.


Definition 7.1.3 (rule CPD) A (rule CPD) Pa is a functionPa : ({X ′
i} ∪ X) 7→ [0, 1],


composed of a set of probability rules


{η1, η2, . . . , ηm},
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Electrical Electrical 


PlumbingPlumbingP(Painting’) = 0


Not done Done


DoneNot done


P(Painting’) = 0 P(Painting’) = 0.95


Electrical Electrical 


PlumbingPlumbingP(Painting’) = 0


Not done Done


PaintingPainting


Done


Done


Not done


Not done


P(Painting’) = 0


P(Painting’) = 0 P(Painting’) = 0.9


(a) (b)


η1 = 〈¬Electrical∧ Painting’ : 0〉
η2 = 〈Electrical∧ ¬ Plumbing∧ Painting’ : 0〉
η3 = 〈Electrical∧ Plumbing∧ Painting’ : 0.95〉


η4 = 〈¬Electrical∧ Painting’ : 0〉
η5 = 〈Electrical∧ ¬Plumbing∧ Painting’ : 0〉


η6 = 〈Electrical∧ Plumbing∧ ¬Painting∧ Painting’ : 0〉
η7 = 〈Electrical∧ Plumbing∧ Painting∧ Painting’ : 0.9〉


(c) (d)


Figure 7.1: Example CPDs for the true assignment of variablePainting’ represented as
decision trees: (a) when the action is paint; (b) when the action is not paint. The same
CPDs can be represented by probability rules as shown in (c) and (d), respectively.


whose contexts are mutually exclusive and exhaustive. We define:


Pa(x
′
i | x) = ηj(x,x′),


whereηj is the unique rule inPa for whichcj is consistent with(x′i,x). We require that,


for all x, ∑


x′i


Pa(x
′
i | x) = 1.


In this case, it is convenient to require that the rules be mutually exclusive and exhaustive,


so that each CPD entry is uniquely defined by its association with a single rule. We can


defineParentsa(X
′
i) to be the union of the contexts of the rules inPa(X


′
i | X). An example


of a CPD represented by a set of probability rules is shown in Figure 7.1.


Rules can also be used to represent additive functions, such as reward or basis functions.


We represent such context-specific value dependencies usingvalue rules:
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Definition 7.1.4 (value rule) A value ruleρ = 〈c : v〉 is a functionρ : X 7→ R such that


ρ(x) = v whenx is consistent withc and0 otherwise.


Note that a value rule〈c : v〉 has a scopeC.


In general, our reward functionRa is represented as arule-based function:


Definition 7.1.5 (rule-based function) A rule-based functionf : X 7→ R is composed of


a set of rules{ρ1, . . . , ρn} such thatf(x) =
∑n


i=1 ρi(x).


In the same manner, each one of our basis functionshj is now represented as a rule-based


function.


Example 7.1.6 In our construction example, we might have a set of rules:


ρ1 = 〈Plumbing= done: 100〉;
ρ2 = 〈Electricity = done: 100〉;
ρ3 = 〈Painting= done: 100〉;
ρ4 = 〈Action= plumb : −10〉;


...


which, when summed together, define the reward functionR = ρ1 + ρ2 + ρ3 + ρ4 + · · · .
At a sate where only the plumbing and electricity are done, and the action is to paint, the


reward will be190.


It is important to note that value rules are not required to be mutually exclusive and


exhaustive. Each value rule represents a (weighted) indicator function, which takes on a


valuev in states consistent with some contextc, and 0 in all other states. In any given state,


the values of the zero or more rules consistent with that state are simply added together.


This notion of a rule-based function is related to the tree-structure functions used by


Boutilier et al. [2000], but is substantially more general. In the tree-structure value func-


tions, the rules corresponding to the different leaves are mutually exclusive and exhaustive.


Thus, the total number of different values represented in the tree is equal to the number of


leaves (or rules). In the rule-based function representation, the rules are not mutually exclu-


sive, and their values are added to form the overall function value for different settings of
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the variables. Different rules are added in different settings, and, in fact, withk rules, one


can easily generate2k different possible values, as is demonstrated in Section 7.7.2. Thus,


the rule-based functions can provide a compact representation for a much richer class of


value functions. Using this rule-based representation, we can exploit both CSI and additive


independence in the representation of our factored MDP and basis functions.


7.2 Adding, multiplying and maximizing consistent rules


In our table-based algorithms, we relied on standard sum and product operators applied to


tables. In order to exploit CSI using a rule-based representation, we must redefine these


standard operations. In particular, the algorithms will need to add or multiply rules that


ascribe values to overlapping sets of states.


We will start by defining these operations for rules with the same context:


Definition 7.2.1 (rule product, rule sum) Let ρ1 = 〈c : v1〉 and ρ2 = 〈c : v2〉 be two


rules with the same contextc. Define therule productas ρ1 × ρ2 = 〈c : v1 · v2〉; and


therule sumasρ1 + ρ2 = 〈c : v1 + v2〉.


Note that this definition is restricted to rules with the same context. We will address this


issue in a moment.


We also introduce an additional operation which maximizes a variable from a set of


rules, which otherwise share a common context:


Definition 7.2.2 (rule maximization) Let Y be a variable withDom[Y ] = {y1, . . . , yk},
and let ρi, for eachi = 1, . . . , k, be a rule of the formρi = 〈c ∧ Y = yi : vi〉. Then


for the rule-based functionf = ρ1 + · · · + ρk, define therule maximizationover Y as


maxY f = 〈c : maxi vi〉 .


After this operation,Y has been maximized out from the scope of the functionf .


These three operations we have just described can only be applied in to sets of rules


that satisfy very stringent conditions. In order to make our set of rules amenable to the


application of these operations, we might need to refine some of these rules. We therefore


define the following operation:
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Definition 7.2.3 (rule split) Letρ = 〈c : v〉 be a rule, andY be a variable. Define therule


split Split(ρ∠Y ) ofρ on a variableY as follows: IfY ∈ Scope[C], thenSplit(ρ∠Y ) = {ρ};
otherwise,


Split(ρ∠Y ) = {〈c ∧ Y = yi : v〉 | yi ∈ Dom[Y ]} .


Thus, if we split a ruleρ on a variableY that is not in the scope of the context ofρ, then


we generate a new set of rules, with one for each assignment in the domain ofY .


In general, the purpose of rule splitting is to extend the contextc of one ruleρ to coin-


cide with the contextc′ of another consistent ruleρ′. Naively, we might take all variables in


Scope[C′]− Scope[C] and splitρ recursively on each one of them. However, this process


creates unnecessarily many rules: IfY is a variable inScope[C′]− Scope[C] and we split


ρ on Y , then only one of the|Dom[Y ]| new rules generated will remain consistent with


ρ′: the one which has the same assignment forY as the one inc′. Thus, only this consis-


tent rule needs to be split further. We can now define the recursive splitting procedure that


achieves this more parsimonious representation:


Definition 7.2.4 (recursive rule split) Let ρ = 〈c : v〉 be a rule, andb be a context such


that b ∈ Dom[B]. Define therecursive rule splitrule split!recursiveSplit(ρ∠b) of ρ on a


contextb as follows:


1. {ρ}, if c is not consistent withb; else,


2. {ρ}, if Scope[B] ⊆ Scope[C]; else,


3. {Split(ρi∠b) | ρi ∈ Split(ρ∠Y )}, for some variableY ∈ Scope[B]− Scope[C] .


In this definition, each variableY ∈ Scope[B] − Scope[C] leads to the generation of


k = |Dom(Y )| rules at the step in which it is split. However, only one of thesek rules is


used in the next recursive step because only one is consistent withb. Therefore, the size of


the split set is simply1+
∑


Y ∈Scope[B]−Scope[C](|Dom(Y )|−1). This size is independent


of the order in which the variables are split within the operation.
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Note that only one of the rules inSplit(ρ∠b) is consistent withb: the one with context


c ∧ b. Thus, if we want to add two consistent rulesρ1 = 〈c1 : v1〉 andρ2 = 〈c2 : v2〉, then


all we need to do is replace these rules by the set:


Split(ρ1∠c2) ∪ Split(ρ2∠c1),


and then simply replace the resulting rules〈c1 ∧ c2 : v1〉 and〈c2 ∧ c1 : v2〉 by their sum


〈c1 ∧ c2 : v1 + v2〉. Multiplication is performed in an analogous manner.


Example 7.2.5 Consider adding the following set of consistent rules:


ρ1 = 〈a ∧ b : 5〉,
ρ2 = 〈a ∧ ¬c ∧ d : 3〉.


In these rules, the contextc1 of ρ1 is a ∧ b, and the contextc2 of ρ2 is a ∧ ¬c ∧ d.


Rulesρ1 and ρ2 are consistent, therefore, we must split them to perform the addition


operation:


Split(ρ1∠c2) =







〈a ∧ b ∧ c : 5〉,
〈a ∧ b ∧ ¬c ∧ ¬d : 5〉,
〈a ∧ b ∧ ¬c ∧ d : 5〉.


Likewise,


Split(ρ2∠c1) =


{
〈a ∧ ¬b ∧ ¬c ∧ d : 3〉,
〈a ∧ b ∧ ¬c ∧ d : 3〉.


The result of adding rulesρ1 andρ2 is


〈a ∧ b ∧ c : 5〉,
〈a ∧ b ∧ ¬c ∧ ¬d : 5〉,
〈a ∧ b ∧ ¬c ∧ d : 8〉,
〈a ∧ ¬b ∧ ¬c ∧ d : 3〉.
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7.3 Rule-based one-step lookahead


As in Section 3.3 for the table-based case, the rule-basedQa function can be represented as


the sum of the reward function and the discounted expected value of the next state. Due to


our linear approximation of the value function, the expectation term is, in turn, represented


as the linear combination of the backprojections of our basis functions. To exploit CSI,


we are representing the rewards and basis functions as rule-based functions. In order to


representQa as a rule-based function, it is sufficient for us to show how to represent the


backprojectiongj of the basis functionhj as a rule-based function.


Eachhj is a rule-based function, which can be written ashj(x) =
∑


i ρ
(hj)
i (x), where


ρ
(hj)
i has the form


〈
c


(hj)
i : v


(hj)
i


〉
. Each rule is a restricted-scope function; thus, we can


simplify the backprojection as:


ga
j (x) =


∑


x′
Pa(x


′ | x)hj(x
′) ;


=
∑


x′
Pa(x


′ | x)
∑


i


ρ
(hj)
i (x′);


=
∑


i


∑


x′
Pa(x


′ | x)ρ
(hj)
i (x′);


=
∑


i


∑


x′
Pa(x


′ | x)v
(hj)
i 1(x′ = c


(hj)
i );


=
∑


i


v
(hj)
i Pa(c


(hj)
i | x).


The termPa(c
(hj)
i | x) is equivalent to:


Pa(c
(hj)
i | x) =


∏


l: X′
l∈ C′i


Pa(c
(hj)
i [X ′


l ] | x).


EachPa(c
(hj)
i [X ′


l ] | x) corresponds to a particular instantiation to the CPD ofXl, and is


thus a rule-based function.Pa(c
(hj)
i | x) is then the product of rule-based functions, and


can thus be also written as a rule-based function. We denote this backprojection operation


for a particular rule byRULEBACKPROJa(ρ
(hj)
i ).


The backprojection procedure, described in Figure 7.2, follows three steps. First, the
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RULEBACKPROJa(ρ) , WHERE ρ IS GIVEN BY 〈c : v〉, WITH c ∈ Dom[C].
L ET g = {}.
SELECT THE SETP OF RELEVANT PROBABILITY RULES:
P = {ηj ∈ P (X ′


i | PARENTS(X ′
i)) | X ′


i ∈ C AND c IS CONSISTENT WITHcj}.
REMOVE THE X′ ASSIGNMENTS FROM THE CONTEXT OF ALL RULES INP .
// Multiply consistent rules:
WHILE THERE ARE TWO CONSISTENT RULESη1 = 〈c1 : p1〉 AND η2 = 〈c2 : p2〉:


I F c1 = c2, REPLACE THESE TWO RULES BY〈c1 : p1p2〉;
ELSE REPLACE THESE TWO RULES BY THE SET: SPLIT(η1∠c2) ∪ SPLIT(η2∠c1).


// Generate value rules:
FOR EACH RULE ηi IN P :


UPDATE THE BACKPROJECTIONg = g ∪ {〈ci : piv〉}.
RETURN g.


Figure 7.2: Rule-based backprojection.


relevant rules are selected: In the CPDs for the variables that appear in the context ofρ,


we select the rules consistent with this context, as these are the only rules that play a role


in the backprojection computation. Second, we multiply all consistent probability rules to


form a local set of mutually-exclusive rules. This procedure is analogous to the addition


procedure described in Section 7.2. Now that we have represented the probabilities that


can affectρ by a mutually-exclusive set, we can simply represent the backprojection ofρ


by the product of these probabilities with the value ofρ. That is, the backprojection ofρ is


a rule-based function with one rule for each one of the mutually-exclusive probability rules


ηi. The context of this new value rule is the same as that ofηi, and the value is the product


of the probability ofηi and the value ofρ.


Example 7.3.1 For example, consider the backprojection of a simple rule,


ρ = 〈 Painting = done: 100〉,


through the CPD in Figure 7.1(c) for the paint action:







7.3. RULE-BASED ONE-STEP LOOKAHEAD 127


RULEBACKPROJpaint(ρ) =
∑


x′
Ppaint(x


′ | x)ρ(x′);


=
∑


Painting′
Ppaint(Painting′ | x)ρ(Painting′);


= 100
3∏


i=1


ηi(Painting’ = done,x) .


Note that the product of these simple rules is equivalent to the decision tree CPD shown


in Figure 7.1(a). Hence, this product is equal to0 in most contexts, for example, when


electricity is not done at timet. The product is non-zero only in one context: in the context


associated with ruleη3. Thus, we can express the result of the backprojection operation by


a rule-based function with a single rule:


RULEBACKPROJpaint(ρ) = 〈Plumbing∧ Electrical : 95〉.


Similarly, the backprojection ofρ when the action is not paint can also be represented by a


single rule:


RULEBACKPROJ¬paint(ρ) = 〈Plumbing∧ Electrical∧ Painting : 90〉.


Using this algorithm, we can now write thebackprojectionof the rule-based basis func-


tion hj as:


ga
j (x) =


∑
i


RULEBACKPROJa(ρ
(hj)
i ), (7.1)


wherega
j is a sum of rule-based functions, and therefore also a rule-based function. For


simplicity of notation, we usega
j = RULEBACKPROJa(hj) to refer to this definition of


backprojection. Using this notation, we can writeQa(x) = Ra(x) + γ
∑


j wjg
a
j (x), which


is again a rule-based function.
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7.4 Rule-based maximization over the state space


The second key operation required to extend our planning algorithms to exploit CSI is to


modify the variable elimination algorithm in Section 4.2 to handle the rule-based repre-


sentation. In Section 4.2, we showed that the maximization of a linear combination of


table-based functions with restricted scope can be performed efficiently using non-serial


dynamic programming [Bertele & Brioschi, 1972], or variable elimination. To exploit


structure in rules, we use an algorithm similar to variable elimination in a Bayesian network


with context-specific independence [Zhang & Poole, 1999]. Specifically, we will substitute


the generic operationELIM OPERATORin Figure 4.1 with a new rule-based maximization


operation, which we denote byRULEMAX OUT.


Intuitively, the algorithm operates by selecting the value rules relevant to the variable


being maximized in the current iteration. Then, a local maximization is performed over


this subset of the rules, generating a new set of rules without the current variable. The


procedure is then repeated recursively until all variables have been eliminated.


More precisely, our algorithm “eliminates” variables one by one, where the elimina-


tion process performs a maximization step over the variable’s domain. Suppose that we


are eliminatingXi, whose collected value rules lead to a rule functionf , andf involves


additional variables in some setB, so thatf ’s scope isB ∪ {Xi}. We need to compute the


maximum value forXi for each choice ofb ∈ Dom[B]. We use RULEMAX OUT(f,Xi)


to denote a procedure that takes a rule functionf(B, Xi) and returns a rule functiong(B)


such that:g(b) = maxxi
f(b, xi). This is exactly a rule-based version of the table-based


MAX OUT procedure in Figure 4.2. Such a rule-based maximization procedure is an adap-


tation of the variable elimination algorithm of [Zhang & Poole, 1999].


The rule-based variable elimination algorithm maintains a setF of value rules, initially


containing the set of rules to be maximized. The algorithm then repeats the following steps


for each variableXi until all variables have been eliminated:


1. Collect all rules that depend onXi into fi — fi = {〈c : v〉 ∈ F | Xi ∈ C} — and


remove these rules fromF .


2. Perform the local maximization step overXi: gi = RULEMAX OUT(fi, Xi).


3. Add the rules ingi toF ; now,Xi has been “eliminated”.
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RULEMAX OUT(f,B)
L ET g = {}.
ADD COMPLETING RULES TOf : 〈B = bi : 0〉, i = 1, . . . , k.
// Summing consistent rules:
WHILE THERE ARE TWO CONSISTENT RULESρ1 = 〈c1 : v1〉 AND ρ2 = 〈c2 : v2〉:


I F c1 = c2, THEN REPLACE THESE TWO RULES BY〈c1 : v1 + v2〉;
ELSE REPLACE THESE TWO RULES BY THE SET: SPLIT(ρ1∠c2) ∪ SPLIT(ρ2∠c1).


// Maximizing out variableB:
REPEAT UNTIL f IS EMPTY:


I F THERE ARE RULES〈c ∧B = bi : vi〉, ∀bi ∈ Dom(B) :
THEN REMOVE THESE RULES FROMf AND ADD RULE 〈c : maxi vi〉 TO g;


ELSE SELECT TWO RULES: ρi = 〈ci ∧B = bi : vi〉 AND ρj = 〈cj ∧B = bj : vj〉 SUCH


THAT ci IS CONSISTENT WITHcj , BUT NOT IDENTICAL , AND REPLACE THEM WITH


SPLIT(ρi∠cj) ∪ SPLIT(ρj∠ci) .
RETURN g.


Figure 7.3: Maximizing out variableB from rule functionf .


In the remainder of this section, we present the algorithm for computing the local max-


imization RULEMAX OUT(fi, Xi). The procedure, presented in Figure 7.3, is divided into


two parts: first, all consistent rules are added together as described in Section 7.2; then,


variableB is maximized. This maximization is performed by generating a set of rules,


one for each assignment ofB, whose contexts have the same assignment for all variables


except forB, as in Definition 7.2.2. This set is then substituted by a single rule without a


B assignment in its context and with value equal to the maximum of the values of the rules


in the original set. Note that, to simplify the algorithm, we initially need to add a set of


value rules with0 value, which guarantee that our rule functionf is complete (i.e., there is


at least one rule consistent with every context).


The correctness of this procedure follows directly from the correctness of the rule-


based variable elimination procedure described by Zhang and Poole, merely by replacing


summations withmax, and products with sums.


The cost of this algorithm is polynomial in the number of new rules generated in the


maximization operationRULEMAX OUT(fi, Xi). The number of rules is never larger and


in many cases exponentially smaller than the complexity bounds on the table-based max-


imization in Section 4.2, which, in turn, was exponential only in theinduced widthof the


cost network graph [Dechter, 1999]. However, the computational costs involved in manag-


ing sets of rules usually imply that the computational advantage of the rule-based approach
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over the table-based one will only be significant in problems that possess a fair amount of


context-specific structure.


We conclude this section with a small example to illustrate the algorithm:


Example 7.4.1 Suppose we are maximizing the variableA for the following set of rules:


ρ1 = 〈¬a : 1〉,
ρ2 = 〈a ∧ ¬b : 2〉,
ρ3 = 〈a ∧ b ∧ ¬c : 3〉,
ρ4 = 〈¬a ∧ b : 1〉.


When we add completing rules, we get:


ρ5 = 〈¬a : 0〉,
ρ6 = 〈a : 0〉.


In the first part of the algorithm, we need to add consistent rules: We addρ5 to ρ1 (which


remains unchanged), combineρ1 with ρ4, ρ6 with ρ2, and then splitρ6 on the context ofρ3,


to get the following inconsistent set of rules:


ρ2 = 〈a ∧ ¬b : 2〉,
ρ3 = 〈a ∧ b ∧ ¬c : 3〉,
ρ7 = 〈¬a ∧ b : 2〉, (from addingρ4 to the consistent rule fromSplit(ρ1∠b))


ρ8 = 〈¬a ∧ ¬b : 1〉, (fromSplit(ρ1∠b))


ρ9 = 〈a ∧ b ∧ c : 0〉, (fromSplit(ρ6∠a ∧ b ∧ ¬c)).


Note that several rules with value0 are also generated, but not shown here because they


are added to other rules with consistent contexts. We can move to the second stage (repeat


loop) of RULEMAX OUT. We removeρ2, andρ8, and maximizeA out of them, to give:


ρ10 = 〈¬b : 2〉.


We then select rulesρ3 and ρ7 and splitρ7 on C (ρ3 is split on the empty set and is not
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changed),


ρ11 = 〈¬a ∧ b ∧ c : 2〉,
ρ12 = 〈¬a ∧ b ∧ ¬c : 2〉.


Maximizing outA from rulesρ12 andρ3, we get:


ρ13 = 〈b ∧ ¬c : 3〉.


We are left withρ11, which maximized with its counterpartρ9 gives the final result that does


not depend onA:


ρ12 = 〈b ∧ ¬c : 2〉.


Notice that, throughout this maximization, we have not split on the variableC when¬b ∈
ci, giving us only 6 distinct rules in the final result. This is not possible in a table-based


representation, since our functions would then be over the 3 variablesA,B,C, and therefore


must have 8 entries.


7.5 Rule-based factored LP


In Section 4.3, we showed that the LPs used in our algorithms have exponentially many


constraints of the form:φ ≥ ∑
i wi ci(x)− b(x),∀x, which can be substituted by a single,


equivalent, non-linear constraint:φ ≥ maxx


∑
i wi ci(x)− b(x). We then showed that, us-


ing variable elimination, we can represent this non-linear constraint by an equivalent set of


linear constraints in a construction we called the factored LP. The number of constraints in


the factored LP is linear in the size of the largest table generated in the variable elimination


procedure. This table-based algorithm can only exploit additive independence. We now


extend the algorithm in Section 4.3 to exploitbothadditive and context-specific structure,


by using the rule-based variable elimination described in the previous section.


Suppose we wish to enforce the more general constraint0 ≥ maxy Fw(y), where


Fw(y) =
∑


j fw
j (y) such that eachfj is a rule. As in the table-based version, the super-


scriptw means thatfj might depend onw. Specifically, iffj comes from basis function


hi, it is multiplied by the weightwi; if fj is a rule from the reward function, it is not.


In our rule-based factored linear program, we generate LP variables associated with
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contexts; we call theseLP rules. An LP rule has the form〈c : u〉; it is associated with a


contextc and a variableu in the linear program. We begin by transforming all our original


rulesfw
j into LP rules as follows: If rulefj has the form〈cj : vj〉 and comes from basis


functionhi, we introduce an LP ruleej = 〈cj : uj〉 and the equality constraintuj = wivj.


If fj has the same form but comes from a reward function, we introduce an LP rule of the


same form, but the equality constraint becomesuj = vj.


Now, we have only LP rules and need to represent the constraint:0 ≥ maxy


∑
j ej(y).


To represent such a constraint, we follow an algorithm very similar to the variable elimi-


nation procedure in Section 7.4. The main difference occurs in theRULEMAX OUT(f,B)


operation in Figure 7.3. Instead of generating new value rules, we generate new LP rules,


with associated new variables and new constraints. The simplest case occurs when com-


puting a split or adding two LP rules. For example, when we add two value rules in the


original algorithm, we instead perform the following operation on their associated LP rules:


If the LP rules are〈c : ui〉 and〈c : uj〉, we replace these by a new rule〈c : uk〉, associated


with a new LP variableuk with contextc, whose value should beui + uj. To enforce this


value constraint, we simply add an additional constraint to the LP:uk = ui + uj.


A similar procedure can be followed when a rule split is computed. If we are splitting


〈c : ui〉 on variableY , we introduce new rules〈c ∧ yk : ui〉 for each assignmentyk toY . All


of these new rules refer to the same LP variableui, thus no new LP variables or constraints


need to be introduced.


More interesting constraints are generated when we perform a maximization. In the


rule-based variable elimination algorithm in Figure 7.3, this maximization occurs when we


replace a set of rules:


〈c ∧B = bi : vi〉,∀bi ∈ Dom(B),


by a new rule 〈
c : max


i
vi


〉
.


Following the same process as in the LP rule summation above, if we are maximizing


ei = 〈c ∧B = bi : ui〉, ∀bi ∈ Dom(B),
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we generate a new LP variableuk associated with the ruleek = 〈c : uk〉. We cannot add


the nonlinear constraintuk = maxi ui, but we can add a set of equivalent linear constraints


uk ≥ ui, ∀i.


Therefore, using these simple operations, we can exploit structure in the rule functions


to represent the nonlinear constrainten ≥ maxy


∑
j ej(y), whereen is the very last LP


rule we generate. A final constraintun = φ implies that we are representing exactly the


constraints in Equation (4.2), without having to enumerate every state.


The correctness of our rule-based factored LP construction is a corollary of Theo-


rem 4.3.2 and of the correctness of the rule-based variable elimination algorithm [Zhang &


Poole, 1999].


Corollary 7.5.1 The constraints generated by therule-basedfactored LP construction are


equivalent to the non-linear constraint in Equation (4.2). That is, an assignment to(φ,w)


satisfies the rule-based factored LP constraints if and only if it satisfies the constraint in


Equation (4.2).


The number of variables and constraints in the rule-based factored LP is linear in the num-


ber of rules generated by the variable elimination process. In turn, the number of rules is


no larger, and often exponentially smaller, than the number of entries in the table-based


approach.


To illustrate the generation of LP constraints as just described, we now present a small


example:


Example 7.5.2 Let e1, e2, e3, ande4 be the set of LP rules which depend on the variable


B being maximized. Here, ruleei is associated with the LP variableui:


e1 = 〈a ∧ b : u1〉,
e2 = 〈a ∧ b ∧ c : u2〉,
e3 = 〈a ∧ ¬b : u3〉,
e4 = 〈a ∧ b ∧ ¬c : u4〉.


In this set, note that rulese1 and e2 are consistent. We combine them to generate the
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following rules:


e5 = 〈a ∧ b ∧ c : u5〉,
e6 = 〈a ∧ b ∧ ¬c : u1〉.


and the constraintu1 + u2 = u5. Similarly,e6 ande4 may be combined, resulting in:


e7 = 〈a ∧ b ∧ ¬c : u6〉.


with the constraintu6 = u1 + u4. Now, we have the following three inconsistent rules for


the maximization:
e3 = 〈a ∧ ¬b : u3〉,
e5 = 〈a ∧ b ∧ c : u5〉,
e7 = 〈a ∧ b ∧ ¬c : u6〉.


Following the maximization procedure, since no pair of rules can be eliminated right away,


we splite3 ande5 to generate the following rules:


e8 = 〈a ∧ ¬b ∧ c : u3〉,
e9 = 〈a ∧ ¬b ∧ ¬c : u3〉,
e5 = 〈a ∧ b ∧ c : u5〉.


We can now maximizeB out frome8 ande5, resulting in the following rule and constraints


respectively:


e10 = 〈a ∧ c : u7〉,
u7 ≥ u5,


u7 ≥ u3.


Likewise, maximizingB out frome9 ande7, we get:


e11 = 〈a ∧ ¬c : u8〉,
u8 ≥ u3,


u8 ≥ u6;


which completes the elimination of variableB in our rule-based factored LP.
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7.6 Rule-based factored planning algorithms


We have presented an algorithm for exploiting both additive and context-specific structure


in the LP construction steps of our planning algorithms. This rule-based factored LP ap-


proach can now be applied directly in our linear programming-based approximation and


approximate policy iteration algorithms, which were presented in Sections 5.1 and 5.2,


respectively.


Our linear programming-based approximation in Section 5.1 requires no further modi-


fication. Approximate policy iteration does require an additional modification concerning


the manipulation of the decision list policies presented in Section 5.2.2. Specifically, con-


sider the conditional branches〈ti, ai, δi〉 in the decision list policy. This condition is exactly


a context-specific rule, whereti is the context, andai andδi the “values” associated with


this context. Thus, the policy representation algorithm in Section 5.2.2 can be applied


directly with our new rule-based representation. The actual approximate policy iteration


planning algorithm continues unchanged when we note that the indicators introduced into


the constraints, as in Equation (5.8), are simply rules assigning a−∞ value to the con-


text tj. Therefore, we now have a complete framework for exploiting both additive and


context-specific structure for efficient planning in factored MDPs.


7.7 Empirical evaluation


This section presents empirical evaluations of our rule-based planning algorithm. We report


comparisons between the table-based and the rule-based implementations, and between our


approach and the Apricodd algorithm of Hoeyet al. [1999].


7.7.1 Comparing table-based and rule-based implementations


Our first evaluation compares a table-based representation, which exploits only additive


independence, to the rule-based representation described in this chapter, which can exploit


both additive and context-specific independence. For these experiments, we implemented


our factored linear programming-based approximation algorithm with table-based and rule-


based representations in C++, using CPLEX as the LP solver. Experiments were performed
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Figure 7.4: Running time of rule-based and table-based algorithms in the Process-
SysAdmin problem for various topologies: (a) “Star”; (b) “Ring”; (c) “Reverse star” (with
fit function).
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Figure 7.5: Fraction of total running time spent in CPLEX for table-based and rule-based
algorithms in the Process-SysAdmin problem with a “Ring” topology.


on a Sun UltraSPARC-II, 400 MHz with 1GB of RAM.


To evaluate and compare the algorithms, we utilized a more complex extension of the


SysAdmin problem. This problem, dubbed the Process-SysAdmin problem, contains three


state variables for each machinei in the network:Loadi, Statusi andSelectori. Each com-


puter runs processes and receives rewards when the processes terminate. These processes


are represented by theLoadi variable, which takes values in{Idle, Loaded, Success}, and


the computer receives a reward when the assignment ofLoadi is Success. TheStatusi vari-


able, representing the status of machinei, takes values in{Good, Faulty, Dead}; if its value


is Faulty, then processes have a smaller probability of terminating and if its value isDead,


then any running process is lost andLoadi becomesIdle. The status of machinei can be-


comeFaultyand eventuallyDeadat random; however, if machinei receives a packet from


a dead machine, then the probability thatStatusi becomesFaulty and thenDeadincreases.


TheSelectori variable represents this communication by selecting one of the neighbors of


i uniformly at random at every time step. The status of machinei in the next time step is


then influenced by the status of this selected neighbor.


The SysAdmin can select at most one computer to reboot at every time step. If computer


i is rebooted, then its status becomesGoodwith probability1, but any running process is


lost, i.e., the Loadi variable becomesIdle. Thus, in this problem, the SysAdmin must
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balance several conflicting goals: rebooting a machine kills processes, but not rebooting


a machine may cause cascading faults in network. Furthermore, the SysAdmin can only


choose one machine to reboot, which imposes the additional tradeoff of selecting only one


of the (potentially many) faulty or dead machines in the network to reboot.


We experimented with two types of basis functions: “single+” includes indicators over


all of the joint assignments ofLoadi, Statusi andSelectori, and “pair” which, in addition,


includes a set of indicators overStatusi, Statusj, andSelectori = j, for each neighborj


of machinei in the network. The discount factor wasγ = 0.95. The variable elimination


order eliminated all of theLoadi variables first, and then followed the same patterns as in


the simple SysAdmin problem, eliminating firstStatusi and thenSelectori when machinei


is eliminated.


Figure 7.4 compares the running times for the table-based implementation to the ones


for the rule-based representation for three topologies: “Star”, “Ring” and “Reverse star”.


The “Reverse star” topology reverses the direction of the influences in the “Star”: rather


than the central machine influencing all machines in the topology, all machines influence


the central one. These three topologies demonstrate three different levels of CSI: In the


“Star” topology, the factors generated by variable elimination are small. Thus, although


the running times are polynomial in the number of state variables for both methods, the


table-based representation is significantly faster than the rule-based one, due to the over-


head of managing the rules. The “Ring” topology illustrates an intermediate behavior:


“single+” basis functions induce relatively small variable elimination factors, so the table-


based approach is faster. However, with “pair” basis the factors are larger and the rule-based


approach starts to demonstrate faster running times in larger problems. Finally, the “Re-


verse star” topology represents the worst-case scenario for the table-based approach. Here,


the scope of the backprojection of a basis function for the central machine will involve


all computers in the network, as all machines can potentially influence the central one in


the next time step. Thus, the size of the factors in the table-based variable elimination ap-


proach is exponential in the number of machines in the network, which is illustrated by the


exponential growth in Figure 7.4(c). The rule-based approach can exploit the CSI in this


problem; for example, the status of the central machineStatus0 only depends on machine


j, if Selector0 = j. By exploiting CSI, we can solve the same problem in polynomial time
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Figure 7.6: Comparing Apricodd [Hoeyet al., 2002] with our rule-based LP-based approx-
imation algorithm on the (a)Linear and (b)Exponproblems.


in the number of state variables, as seen in the second curve in Figure 7.4(c).


It is also instructive to compare the portion of the total running time spent in CPLEX


for the table-based as compared to the rule-based approach. Figure 7.5 illustrates this


comparison. Note that amount of time spent in CPLEX is significantly higher for the


table-based approach. There are two reasons for this difference: first, due to CSI, the LPs


generated by the rule-based approach are smaller than the table-based ones; second, rule-


based variable elimination is more complex than the table-based one, due to the overhead


introduced by rule management. Interestingly, the proportion of CPLEX time increases as


the problem size increases, indicating that the asymptotic complexity of the LP solution is


higher than that of variable elimination, thus suggesting that, for larger problems, additional


large-scale LP optimization procedures, such as constraint generation, may be helpful.


7.7.2 Comparison to Apricodd


The most closely related work to ours is a line of research, which began with the work of


Boutilier et al. [1995]. In particular, the approximate Apricodd algorithm of Hoeyet al.


[1999], which uses analytic decision diagrams (ADDs) to represent the value function is


a strong alternative approach for solving factored MDPs. As we will discuss in detail in


Section 7.8.1, the Apricodd algorithm can successfully exploit context-specific structure
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in the value function, by representing it with the set of mutually-exclusive and exhaus-


tive branches of the ADD. On the other hand, our approach can exploit both additive and


context-specific structure in the problem, by using a linear combination of non-mutually-


exclusive rules. To better understand this difference, we evaluated both our rule-based


linear programming-based approximation algorithm and Apricodd in two problems,Lin-


ear andExpon, designed by Boutilieret al. [2000] to illustrate respectively the best-case


and the worst-case behavior of their algorithm. In these experiments, we used the web-


distributed version of Apricodd [Hoeyet al., 2002], running it locally on a Linux Pentium


III 700MHz with 1GB of RAM.


These two problems involven binary variablesX1, . . . , Xn andn deterministic actions


a1, . . . , an. The reward is1 when all variablesXk aretrue, and is0 otherwise. The prob-


lem is discounted by a factorγ = 0.99. The difference between theLinear and theExpon


problems is in the transition probabilities. In theLinear problem, the actionak sets the


variableXk to true and makes allsucceedingvariables,Xi for i > k, false. If the state


space of theLinear problem is seen as a binary number, the optimal policy is to repeatedly


set to true the largest bit (Xk variable) which has all preceding bits set totrue. Using an


ADD, the optimal value function for this problem can be represented in linear space, with


n+1 leaves [Boutilieret al., 2000]. This is the “best-case” for Apricodd, and the algorithm


can compute this value function quite efficiently. Figure 7.6(a) compares the running time


of Apricodd to the one of our algorithm with indicator basis functions between pairs of


consecutive variables. Note that both algorithms obtain the same policy in polynomial time


in the number of variables. However, in such a structured problem, the efficient implemen-


tation of the ADD package used in Apricodd makes it faster in this problem.


On the other hand, theExponproblem illustrates the worst case for Apricodd. In this


problem, the actionak sets the variableXk to true, if all precedingvariables,Xi for i < k,


are true, and it makes all preceding variablesfalse. If the state space is seen as a binary


number, the optimal policy goes through all binary numbers in sequence, by repeatedly set-


ting the largest bit (Xk variable) which has all preceding bits set totrue. Due to discounting,


the optimal value function assigns a value ofγ2n−j−1 to thejth binary number, so that the


value function contains exponentially many different values. Using an ADD, the optimal


value function for this problem requires an exponential number of leaves [Boutilieret al.,
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2000], which is illustrated by the exponential running time in Figure 7.6(b). However, the


same value function can be approximated very compactly as a factored linear value function


usingn + 1 basis functions: an indicator over each variableXk and the constant base. As


shown in Figure 7.6(b), using this representation, our factored linear programming-based


approximation algorithm computes the value function in polynomial time. Furthermore,


the policy obtained by our approach was optimal for this problem. Thus, in this problem,


the ability to exploit additive independence allows an efficient polynomial time solution.


We also compared Apricodd to our rule-based linear programming-based approxima-


tion algorithm on the Process-SysAdmin problem. This problem has significant additive


structure in the reward function and factorization in the transition model. Although this


type of structure is not exploited directly by Apricodd, the ADD approximation steps per-


formed by the algorithm can, in principle, allow Apricodd to find approximate solutions


to the problem. We spent a significant amount of time attempting to find the best set of


parameters for Apricodd for these problems.1 We settled on the “sift” method of variable


reordering and the “round” approximation method with the “size” (maximum ADD size)


criterion. To allow the value function representation to scale with the problem size, we set


the maximum ADD size to4000+400n for a network withn machines. (We experimented


with a variety of different growth rates for the maximum ADD size; here, as for the other


parameters, we selected the choice that gave the best results for Apricodd.) We compared


Apricodd with these parameters to our rule-based linear programming-based approxima-


tion algorithm with “single+” basis functions on a Pentium III 700MHz with 1GB of RAM.


These results are summarized in Figure 7.7.


On very small problems (up to 4–5 machines), the performance of the two algorithms


is fairly similar in terms of both the running time and the quality of the policies generated.


However, as the problem size grows, the running time of Apricodd increases rapidly, and


becomes significantly higher than that of our algorithm. Furthermore, as the problem size


increases, the quality of the policies generated by Apricodd also deteriorates. This differ-


ence in policy quality is caused by the different value function representation used by the


two algorithms. The ADDs used in Apricodd representk different values withk leaves;


thus, they are forced to agglomerate many different states and represent them using a single


1We are very grateful to Jesse Hoey and Robert St-Aubin for their assistance in selecting the parameters.
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Figure 7.7: Comparing Apricodd [Hoeyet al., 2002] and rule-based LP-based approx-
imation on the Process-SysAdmin problem with “Ring” topology, using “single+” basis
functions: (a) running time and (b) value of the resulting policy; and with “Star” topology
(c) running time and (d) value of the resulting policy.
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value. For smaller problems, such agglomeration can still represent good policies. How-


ever, as the problem size increases and the state space grows exponentially, Apricodd’s


policy representation becomes inadequate, and the quality of the policies decreases. On the


other hand, our linear value functions can represent exponentially many values with onlyk


basis functions, which allows our approach to scale up to significantly larger problems.


7.8 Discussion and related work


Our factored LP decomposition technique, as discussed in Chapter 4, is able to exploit the


additive structure in the factored value function. When combined with the planning algo-


rithms in Chapter 5, we obtain efficient planning algorithms for factored MDPs. However,


typical real-world systems possess both additive and context-specific structure. In order to


increase the applicability of factored MDPs to more practical problems, in this chapter, we


extended our factored LP decomposition technique to exploit both additive and context-


specific structure in the factored model. Our table-based factored LP builds on the variable


elimination algorithm of Bertele and Brioschi [1972]. In order to exploit CSI, our rule-


based factored LP now builds on the rule-based variable elimination algorithm of Zhang


and Poole [1999].


We demonstrate that exploiting CSI using a rule-based representation instead of the


standard table-based one, can yield exponential improvements in computational time, when


the problem has significant amounts of CSI. However, the overhead of managing sets of


rules make it less well-suited for simpler problems.


7.8.1 Comparison to existing solution algorithms for factored MDPs


At this point, it is useful to compare our new factored planning algorithms, presented thus


far in this thesis, with other solution methods for factored MDPs.


Tatman and Shachter [1990] considered the additive decomposition of value nodes in


influence diagrams. This exact algorithm provides the first solution method for (finite hori-


zon) factored MDPs. A number of approaches for factoring of general MDPs have been
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explored in the literature. Techniques for exploiting reward functions that decompose ad-


ditively were studied by Meuleauet al. [1998], and by Singh and Cohn [1998].


The use of factored representations such as dynamic Bayesian networks was pioneered


by Boutilieret al. [1995] and has developed steadily in recent years. These methods rely on


the use of context-specific structures such as decision trees or analytic decision diagrams


(ADDs) [Hoey et al., 1999] to represent both the transition dynamics of the DBN and


the value function. These algorithms use a form of dynamic programming on ADDs to


partition the state space, representing the partition using a tree-like structure that branches


on state variables and assigns values at the leaves. The tree is grown dynamically as part of


the dynamic programming process and the algorithm creates new leaves as needed: A leaf


is split by the application of a DP operator when two states associated with that leaf turn


out to have different values in the backprojected value function. This process can also be


interpreted as a form of model minimization [Dean & Givan, 1997].


The number of leaves in a tree used to represent a value function determines the com-


putational complexity of the algorithm. It also limits the number of distinct values that


can be assigned to states: since the leaves represent a partitioning of the state space, ev-


ery state maps to exactly one leaf. However, as was recognized early on, there are trivial


MDPs which require exponentially-large value functions. This observation led to a line of


approximation algorithms aimed at limiting the tree size [Boutilier & Dearden, 1996] and,


later, limiting the ADD size [St-Aubinet al., 2001]. Kim and Dean [2001] also explored


techniques for discovering tree-structured value functions for factored MDPs. While these


methods permit good approximate solutions to some large MDPs, their complexity is still


determined by the number of leaves in the representation and the number of distinct values


than can be assigned to states is still limited as well.


Tadepalli and Ok [1996] were the first to apply linear value function approximation


to Factored MDPs. Linear value function approximation is a potentially more expressive


approximation method than trees or ADDs, because it can assign unique values to every


state in an MDP without requiring storage space that is exponential in the number of state


variables. The expressive power of a tree withk leaves can be captured by a linear function


approximator withk basis functions such that basis functionhi is an indicator function


that tests if a state belongs in the partition of leafi. Thus, the set of value functions that
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can be represented by a tree withk leaves is a subset of the set of value functions that


can be represented by a value function withk basis functions. Our experimental results


in Section 7.7.2 highlight this difference by showing an example problem that requires


exponentially many leaves in the value function, but that can be approximated well using a


linear value function.


The main advantage of tree-based value functions is that their structure is determined


dynamically during the solution of the MDP. In principle, as the value function representa-


tion is derived automatically from the model description, this approach requires less insight


from the user. In problems for which the value function can be well approximated by a rel-


atively small number of values, this approach provides an excellent solution to the problem.


Our method of linear value function approximation aims to address what we believe to be


the more common case, where a large range of distinct values is required to achieve a good


approximation.


In this chapter, we empirically compare our approach to the work of Boutilieret al.. For


problems with significant context-specific structurein the value function, their approach


can be faster due to their efficient handling of the ADD representation. However, as dis-


cussed above, there are problems with significant context-specific structure in the problem


representation, rather than in the value function, which require exponentially-large ADDs.


In some such problem classes, we demonstrate that by using a linear value function our


algorithm can obtain a polynomial-time near-optimal approximation of the true value func-


tion.


We note that Schuurmans and Patrascu [2001], based on our earlier work on max-norm


projection using cost networks and our factored LP decomposition technique, indepen-


dently developed an alternative approach for the (table-based) linear programming-based


approximation presented in Section 5.1. Our method embeds a cost network inside a sin-


gle linear program. By contrast, their method is based on a delayed constraint generation


approach, as discussed in Section 4.5, using a cost network to detect constraint violations.


When constraint violations are found, a new constraint is added, repeatedly generating and


attempting to solve LPs until a feasible solution is found. As the approach of Schuurmans


and Patrascu uses multiple calls to variable elimination in order to speed up the LP solution


step, it will be most successful when the time spent solving the LP is significantly larger
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than the time required for variable elimination. As our experimental results in Section 7.7.1


suggest, the LP solution time is larger for the table-based approach. Thus, Schuurmans and


Patrascu’s constraint generation method will probably be more successful in table-based


problems than in rule-based ones.


Finally, de Farias and Van Roy [2001b] propose a planning algorithm where the LP-


based approximation formulation is solved by considering only a sampled subset of the


exponential number of constraints. They prove that, by sampling a polynomial number of


such constraints (under a particular distribution), they obtain a value function approxima-


tion close to that of considering all possible constraints. As de Farias and Van Roy discuss,


their approach can be quite sensitive to the choice of sampling distribution. Our factored


LP can efficiently decompose the exponentially-large constraint set in factored MDPs, in


closed form. Thus, in structured models, our approach will probably provide better poli-


cies, as shown empirically in Section 9.3 for a particular domain, conversely the sampling


method of de Farias and Van Roy [2001b] will apply to more general problems that can-


not be represented compactly by factored MDPs. In Chapter 14, we suggest methods for


combining the two approaches.


7.8.2 Limitations of the factored approach


In the previous section, we discuss some limitations of our algorithms, when compared to


some other methods mostly for solving factored MDPs. Of course, there are other settings


that are difficult to model with factored MDPs or to solve with our factored algorithms.


For example, BlocksWorld is a domain where an agent must arrange blocks in a particular


order on a table. This problem can be represented very compactly in deterministic settings


using the STRIPS language [Fikes & Nilsson, 1971], or in stochastic settings using the


probabilistic extension of this language [Kushmericket al., 1995]. Many algorithms have


been proposed that can plan effectively in this setting, such as the methods of Kushmerick


et al. [1995] and of Blum and Langford [1999]. Unfortunately, it is quite difficult to


model this setting effectively using the propositional representation of in a factored MDP.


In this case, the underlying model would have a very high connectivity, as each block


can potentially affect every other block. Furthermore, the CSI representation described in
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this chapter would not decrease the representational complexity, as, again, we require a


propositional representation that is not compact in BlocksWorld.


In Chapter 12, we present a relational representation for MDPs. such relational MDP


can potentially represent the BlocksWorld domain compactly. However, we are faced with


a second limitation of our approach: the reward function in BlocksWorld is specific to a


particular arrangement of the blocks. Unfortunately, our factored approaches will often


not be effective in such cases, where the reward function depends on a few very specific


states. Although the resulting value function may have a compact description using rules


that could probably be optimized effective by our method, it will often be difficult to select


basis functions that cover this set of rules.


On the other hand, typical algorithms that successfully address problems such as Blocks-


World tend to be goal-directed. That is, these algorithms can optimize for a single goal


state, but not for a more complex reward function, such as a factored reward function.


Furthermore, these methods are often not able to generate approximate solutions, as often


required in large-scale environments. In general, our approach will be most successful in


tasks were multiple goals must be balanced simultaneously, such as a maintenance task,


rather than a single, very detailed goal. Thus, we can view approaches such as those of


Kushmericket al. [1995] and of Blum and Langford [1999] as complementary to our


methods.


7.8.3 Summary


In the first part of this thesis, we presented the factored MDP representation, along with the


basic tools required by our factored planning algorithms, including our novel LP decom-


position technique. In this part of the thesis, we focused on developing a set of planning


algorithms that build on these basic tools to find efficient approximate solutions to factored


MDPs. This chapter, in particular, focused on extending our basic tools and algorithms to


exploit context-specific structure, in addition to the additive structure addressed previously


in this thesis. This novel algorithm can solve problems with very high induced width that


could not be solved using the table-based representation. We believe that these efficient


methods provide a strong framework for planning in large-scale real-world systems.
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Part III


Multiagent coordination, planning and


learning
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Chapter 8


Collaborative multiagent factored MDPs


Consider a system where multiple agents, each with its own set of possible actions and


its own observations, must coordinate in order to achieve a common goal. One obvious


approach to this problem is to represent the system as an MDP, where the “action” now


is a vector defining the joint action for all of the agents and the reward is the total reward


received by all of these agents.


Thus far in this thesis, we have presented an efficient representation and algorithms for


tackling very large, structured planning problems with exponentially-large states spaces.


Our solution algorithms have assumed, though, that we are faced with single agent planning


problems, where the action spaceA is relatively small. The factored linear programming-


based approximation algorithm in Section 5.1, for example, requires us to apply our fac-


tored LP decomposition technique separately for each actiona ∈ A. Unfortunately, as


discussed in Chapter 1, the action space in multiagent planning problems is exponential


in the number of agents, thus rendering impractical any approach that enumerates possible


action choices explicitly.


In this part of the thesis, we present a representation and algorithms that will allow us


to tackle the exponentially-large action spaces that arise in multiagent systems.
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8.1 Representation


In our collaborative multiagent setting, we have a collection of agentsA = {A1, . . . , Ag},
where each agentAj must choose an actionaj from a finite set of possible actionsDom[Aj].


These agents are again acting in a space described by a set of discrete state variables,


X = {X1 . . . Xn}, as in the single agent case.


Consider a multiagent version of our system administrator problem:


Example 8.1.1 Consider the problem of optimizing the behavior of many system adminis-


trators (multiagent SysAdmin) who must coordinate to maintain a network of computers. In


this problem, we havem administrators (agents), where agentAi is responsible for main-


taining theith computer in the network. As in Example 2.1.1, each machine in this network


is connected to some subset of the other machines.


We base this more elaborate multiagent example on the Process-SysAdmin problem in


Section 7.7.1, without introducing the selector variables. Each machine is now associ-


ated with only two ternary random variables: StatusSi ∈ {good, faulty, dead}, and Load


Li ∈ {idle, loaded, process successful}. In this multiagent formulation, each agentAi must


decide whether machinei should be rebooted, in which case the status of this machine be-


comes good and any running process is lost. On the other hand, if the agent does not reboot


a faulty machine, it may die and cause cascading faults in the network. Our goal here is


to coordinate the actions of the administrators in order to maximize the total number of


processes that terminate successfully in this network.


This example illustrates some of the issues that arise in a collaborative multiagent problem:


although each agent receives a local reward (when its process terminates), its actions can


affect the long-term rewards of the entire system. As we are interested in maximizing


these global rewards, rather than optimizing locally and greedily for each agent, we must


design a model that will represent these long-term global interactions, and yield a global


coordination strategy which maximizes the total reward.


In our collaborative multiagent MDPformulation, a statex is a state for the whole


system and an actiona is a joint action for all agents, as defined above. The transition


modelP (x′ | x, a) now represents the probability that the entire system will transition


from a joint statex to a joint statex′ after the agents jointly take the actiona. Similarly,
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our reward functionR(x, a) will now depend both on the joint state of the system and on


the joint action of all agents. A factored MDP allows us to represent transition models


with the exponentially many states represented by our state variablesX. Unfortunately, as


defined in Chapter 3, our representation requires us to define a DBN for each joint action


a. The number of such DBNs would thus be exponential in the number of agents. In this


chapter, we extend our factored MDP representation and basic framework to allow us to


model multiagent problems.


8.1.1 Multiagent factored transition model


In the multiagent case, we describe the dynamics of the system using adynamic decision


network (DDN)[Dean & Kanazawa, 1989]. A DDN is a simple extension of a DBN,


whose nodes are both the state variables{X1, . . . , Xn, X
′
1, . . . , X


′
n} and the agents’ (action)


variables{A1, . . . , Ag}. For simplicity of exposition, we again assume thatParents(X ′
i) ⊆


{X,A}; this assumption is relaxed in Section 8.2. Each nodeX ′
i is again associated with a


CPDP (X ′
i | Parents(X ′


i)). In the single agent case, we had a set of CPDs for each action


a, now we have one graph for the entire system, and the parents ofX ′
i are a subset of both


state and agent variables. The global transition probability distribution is then defined to


be:


P (x′ | x, a) =
∏


i


P (x′i | x[Parents(X ′
i)], a).


Figure 8.1(a), illustrates the part of the DDN corresponding to theith machine in a


multiagent SysAdmin network, where state variables are represented by circles, agent vari-


ables by squares and reward variables by diamonds in the usual influence diagram nota-


tion [Howard & Matheson, 1984]. The parents of the load variableL′i for the ith machine


are Parents(L′i) = {Li, Si, Ai}, the load in the previous time step, the status of theith


machine and the action of theith agent. Similarly, the parents of the status variableS ′i are


Parents(S ′i) = {Si, Ai} ∪ {Sj | j is connected toi in the computer network}, the status


of theith machine in the previous time step, the action of theith agent, and the statusSj of


all machinesj connected toi in the computer network. For the ring network topology in


Figure 8.1(b), we obtain the complete DDN in Figure 8.1(c).
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Figure 8.1: Multiagent factored MDP example: (a) local DDN component for each com-
puter in a network; (b) ring of 4 computers; (c) global DDN ring of 4 computers.


8.1.2 Multiagent factored rewards


As discussed in Chapter 1, in a collaborative multiagent setting, every agent has the same


reward function, and agents are trying to maximize the long-term joint reward achieved by


all agents. To model this process, we assume that each agent observes a small part of the


global reward function,e.g., each administrator observes the reward for the processes that


terminate on its machine. Each agenti is associated with a local reward functionRi(x, a)


whose scopeScope[Ri(x, a)] is restricted to depend on a small subset of the state variables,


and on the actions of only a few agents. The global reward functionR(x, a) will be the


sum of the rewards accrued by each agentR(x, a) =
∑g


i=1 Ri(x, a). In our multiagent


SysAdmin example, the local reward function for agenti has scope restricted to its load
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Figure 8.2: Multiagent factored MDP example, DDN for ring of 4 computers, including
nodes for basis functions on the right.


variableLi, as shown by the diamonds in Figure 8.1(a). The total reward for a network is


the sum of the rewards accrued by each machine
∑


i Ri(Li). In the ring topology example


in Figure 8.1(c), the reward function becomesR1(L1) + R2(L2) + R3(L3) + R4(L4).


8.2 Factored Q-functions


Although multiagent factored MDPs allow us to model large collaborative multiagent prob-


lems very compactly, an exact solution to these problems remains infeasible. To address


this issue, we resort to the same approximate factored value function framework we used


for single agent problems in Section 3.2. We approximate the global value functionV(x) as


the weighted sum of local basis functionsV(x) =
∑


i wihi(x), where each basis function


hi has scope restricted to a subset of variablesScope[hi] = Ci.
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In this multiagent setting, we maintain a distributed representation of the value function,


where we associate a subset of the basis functions with each agent. These agent basis


functions are summed together to define this agent’s value. The particular assignment of


basis functions to agents can be made arbitrarily, though, as we will show, the assignment


affects the observation and communication requirements of each agent.


Definition 8.2.1 (agent’s value)Let theagent’s valuefor agenti be given by:


Vi(x) =
∑


hj∈Basis[i]


wjhj(x), (8.1)


whereBasis[i] ⊆ {h1, . . . , hk} is a subset of the basis functions which is associated with


agenti, such thatBasis[i] ∩ Basis[j] = ∅, ∀i 6= j, and
⋃g


i=1 Basis[i] = {h1, . . . , hk}.
In Figure 8.2, we have added two types of basis functions represented by diamonds in


the next time step in our DDN:hi, whose scope includes statusSi and loadLi of the ith


computer, andhi−(i+1), with scope including statusSi of the ith computer and statusSi+1


of the i + 1th computer. In this example, the basis functions associated with agent1 are


Basis[1] = {h1, h1−2}.
Given a particular set of weightsw, we again choose the agents actions by computing


the greedy policy with respect to this value function. Recall that greedy policy with respect


to a value functionV is given byGreedy[V ](x) = maxa Q(x, a), where the Q-function is


again defined by:


Q(x, a) = R(x, a) + γ
∑


x′
P (x′ | x, a)V(x). (8.2)


In Section 3.3, we show that by backprojecting our factored value function through the


transition graph for each actiona we can compute the Q-function efficiently.


In multiagent case, we no longer have a transition model for each action, but we can use


a very similar procedure to compute the Q function efficiently by decomposing the global


Q-function as a sum of local Q-functions for each agent:


Definition 8.2.2 (local Q-function) Thelocal Q-functionfor agenti is given by:


Qi(x, a) = Ri(x, a) + γ
∑


x′
P (x′ | x, a)


∑


hj∈Basis[i]


wjhj(x
′). (8.3)
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Backproj(h) — WHERE BASIS FUNCTIONh HAS SCOPEC.
DEFINE THE SCOPE OF THE BACKPROJECTION: Γ(C′) = ∪X′


i∈C′PARENTS(X ′
i).


FOR EACH ASSIGNMENTy ∈ Dom[Γ(C′)]:
g(y) =


∑
c′∈C′


∏
i|X′


i∈C′ P (c′[X ′
i] | y)h(c′).


RETURN g.


Figure 8.3: Backprojection of basis functionh through a DDN.


Using this notation, our global Q-function is defined as:


Q(x, a) =


g∑
i=1


Qi(x, a). (8.4)


Each local Q-function can be computed efficiently using the backprojection proce-


dure. Consider a basis functionh; its backprojection is defined byg(x, a) =
∑


x′ P (x′ |
x, a)h(x′). If the scope ofh is restricted toScope[h] = Y, the scope ofg will be defined


by the backprojected scope ofY through our DDN,i.e., the set of parents ofY′ in the


DDN:


Γ(Y′) = ∪Y ′i ∈Y′Parents(Y ′
i ).


In a multiagent problem,Γ(Y′) will now include both state variablesX and agent variables


A, that is,Scope[g] ⊆ {X,A}. In the example in Figure 8.2, the backprojected scope of


{S ′i, S ′i+1} is given byΓ(S ′i, S
′
i+1) = {Si−1, Si, Si+1, Ai, Ai+1}.


If intra-time-slice arcs are included, so that


Parents(X ′
i) ∈ {X1, . . . , Xn, A1, . . . , Ag, X


′
1, . . . , X


′
n},


then the only change in our algorithm is in the definition of backprojected scope ofY. The


definition now includes not only direct parents ofY ′, but also all variables in{X,A} that


are ancestors ofY ′:


Γ(Y′) = {B ∈ {X,A} | there exists a directed path fromB to anyX ′
i ∈ Y′}.


Figure 8.3 shows the backprojection procedure for a DDN. We denote the backprojec-


tion of basis functionh by g = Backproj(h), whereScope[g] may include both state and
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agent variables. Using this notation, we can represent our local Q-function for agenti by:


Qi(x, a) = Ri(x, a) + γ
∑


hj∈Basis[i]


wjgj(x, a).


Thus, each local Q-functionQi for agenti is the sum of restricted-scope functions. The


globalfactored Q-functionis the sum of the local Q-functions:


Q(x, a) =


g∑
i=1


Qi(x, a) =


g∑
i=1


Ri(x, a) + γ


k∑
j=1


wjgj(x, a).


Although the total scope ofQi, i.e., Scope[Qi] = Scope[Ri]∪{
⋃


hj∈Basis[i] Scope[gj]}, may


be significantly larger than the scope of eachgj or of Ri. For simplicity of presentation,


we assume thatScope[Qi] is restricted to a small subset of the state and agents variables.


Note that all of our methods can exploit further decomposition ofQi; the purpose of this


assumption is to simplify our notation and exposition. In our multiagent SysAdmin ex-


ample,Scope[gi] = {Si−1, Si, Li, Ai}, andScope[gi−(i+1)] = {Si−1, Si, Si+1, Ai, Ai+1}.
Although the scope ofQi is


Scope[Qi] = {Si−1, Si, Si+1, Li, Ai, Ai+1},


our algorithms exploit the locality ofgi andgi−(i+1).


8.3 Discussion and related work


Influence diagrams [Howard & Matheson, 1984] provide a graphical representation for de-


cision processes involving multiple action variables. Multiagent factored MDPs, described


in this chapter, combine influence diagrams with the DBN representation of Dean and


Kanazawa [1989], to define a dynamic decision diagrams, a compact representation for


large-scale collaborative multiagent planning problems.


We showed that, by combining the factored value function representation used thus far


in this thesis with multiagent factored MDPs, we obtain a factored representation of the


Q-function. This factored Q-function, given by the sum of local Q-functions, can then be
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stored in a distributed fashion, where agenti maintains the representation of the local term


Qi. Due to the factorizations of the value function and of the multiagent MDP, the scope


of each termQi now depends on a subset of the state variables, as in the first part of this


thesis, and on the actions of a subset of the agents. This last property is the key element in


our efficient coordination algorithms described in the next chapter.







Chapter 9


Multiagent coordination and planning


In the previous chapter, we described multiagent factored MDPs, a compact representation


for large-scale collaborative multiagent problems. Unfortunately, as in the single agent


case, exact solutions for multiagent factored MDPs are intractable. Here, in addition to


an exponentially-large state space, the size of the action space grows exponentially in the


number of agents. As discussed in Chapter 1, multiagent settings have additional require-


ments. Exact solutions force each agent, online, to observe the full state of the system,


and a centralized procedure that computes the maximal joint action at each time step. Both


of these requirements will hinder the applicability of automated methods in many practical


problems. To address this problem, we suggest, in Chapter 1, that agents should coordinate,


while only observing a small subset of the state variables, and communicating with only a


few other agents.


In this chapter, we exploit structure in multiagent factored MDPs to obtain exact solu-


tions to the coordination problem and approximate solutions to multiagent planning prob-


lems: First, we present an efficient distributed action selection mechanism for tackling the


exponentially-large maximization inarg maxa


∑g
i=1 Qi(x, a) required for agents to coordi-


nate their actions. Then, we describe a simple extension to the linear programming-based


approximation algorithm, which allows us to obtain approximate solutions to multiagent


planning problems very efficiently.
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9.1 Cooperative action selection


In this section, we assume that our basis function weightsw are given, and consider


the problem of computing the optimal greedy action that maximizes the approximate Q-


function. In the next section, we address the problem of findingw which yields a good


approximate value function.


The optimal greedy action for statex using our factored Q-function approximation is


given by:


arg max
a


Q(x, a) = arg max
a


∑
i


Qi(x, a). (9.1)


As the Q-function depends on the action choices of all agents, they must coordinate in order


to select the jointly optimal action that maximizes Equation (9.1).


Our first task is to instantiate the current statex in our Q-function. A näıve approach


would require each agent to observe the all state variables, an unreasonable requirement


in many practical situations. Our distributed representation of the Q-function, described in


the previous chapter, will allow us to address this problem: We divide the scope of the local


Q-functionQi associated with agenti into two parts, the state variables


Obs[Qi] = {Xj ∈ X | Xj ∈ Scope[Qi]}


and the agent variables


Agents[Qi] = {Aj ∈ A | Aj ∈ Scope[Qi]}.


Note that, at each time step, agenti only needs to observe the variables inObs[Qi], and use


these variables only to instantiate its own local Q-functionQi. Thus, each agent will only


need to observe a small subset of the state variables, significantly reducing the observability


requirements for each agent. To differentiate our requirements from partially observable


Markov decision processes [Sondik, 1971], we call this propertylimited observability, as


each agent observes the small part of the system determined by the function approximation


architecture, but the agents are jointly solving a fully observable problem.


At this point, each agenti has observed the variables inObs[Qi] and will instantiate
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Qi accordingly. We denote the instantiated local Q-function byQx
i . The scope of each


instantiated local Q-function includes only agent variables,i.e., Scope[Qx
i ] = Agents[Qi].


Next, the agents must coordinate to determine the optimal greedy action, that is, the


joint actiona that maximizes
∑


i Q
x
i (a). Unfortunately, the number of joint actions is ex-


ponential in the number of agents, which makes a simple action enumeration procedure


infeasible. Furthermore such a procedure would require a centralized optimization step,


which is not desirable in many multiagent applications. We now present a distributed pro-


cedure that efficiently computes the optimal greedy action.


Our procedure leverages on a very natural construct we call acoordination graph. In-


tuitively, a coordination graph connects agents whose local Q-functions interact with each


other and represents the coordination requirements of the agents:


Definition 9.1.1 Acoordination graphfor a set of agents with local Q-functions{Q1, . . . , Qg}
is a directed graph whose nodes are{A1, . . . , Ag}, and which contains an edgeAi → Aj


if and only ifAi ∈ Agents[Qj].


Computing the action that maximizes
∑


i Q
x
i requires a maximization of local functions


in a graph structure, suggesting the use ofnon-serial dynamic programming[Bertele &


Brioschi, 1972], the same variable elimination algorithm which we used in Chapter 4 for


our LP decomposition technique. We first illustrate this algorithm with a simple example:


Example 9.1.2 Consider a simple coordination problem with4 agents, where the global


Q-function is approximated by:


Q = Q1(a1, a2) + Q2(a2, a4) + Q3(a1, a3) + Q4(a3, a4),


and we wish to computearg maxa1,a2,a3,a4 Q1(a1, a2)+Q2(a2, a4)+Q3(a1, a3)+Q4(a3, a4).


The initial coordination graph associated with this problem is shown in Figure 9.1(a).


Let us begin our optimization with agent 4. To optimizeA4, functionsQ1 andQ3 are


irrelevant. Hence, we obtain:


max
a1,a2,a3


Q1(a1, a2) + Q3(a1, a3) + max
a4


[Q2(a2, a4) + Q4(a3, a4)].
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A1A1


A4A4


A2A2 A3A3


),( 211 AAQ


),( 422 AAQ


),( 434 AAQ


),( 313 AAQ
A1A1


A2A2 A3A3


),( 211 AAQ


),( 324 AAe


),( 313 AAQ


(a) (b)


A1A1


A2A2


),( 211 AAQ


),( 213 AAe A1A1)( 12 Ae


(c) (d)


Figure 9.1: Example of distributed variable elimination in a coordination graph: (a) Initial
coordination graph for a 4-agent problem; (b) after agent4 performed its local maximiza-
tion; (c) after agent3 performed its local maximization; and (d) after agent2 performed its
local maximization.


We see that to make the optimal choice overA4, the agent must know the values ofA2


andA3. Additionally, agentA2 must transmitQ2 to A4. In effect, agentA4 is computing


a conditional strategy, with a (possibly) different action choice for each action choice of


agents 2 and 3. Agent 4 can summarize the value that it brings to the system in the different


circumstances using a new functione4(A2, A3) whose value at the pointa2, a3 is the value


of the internalmax expression:


e4(a2, a3) = max
a4


[Q2(a2, a4) + Q4(a3, a4)].


Agent4 has now been “eliminated”. The new functione4(a2, a3) is stored by agent2 and


the coordination graph is updated as shown in Figure 9.1(b).


Our problem now reduces to computing


max
a1,a2,a3


Q1(a1, a2) + Q3(a1, a3) + e4(a2, a3),
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having one fewer agent involved in the maximization. Next, agent 3 makes its decision,


giving:


max
a1,a2


Q1(a1, a2) + e3(a1, a2),


wheree3(a1, a2) = maxa3 [Q3(a1, a3) + e1(a2, a3)]. Once agent 3 is eliminated and the


new functione3(a1, a2) is stored by agent2, the coordination graph is updated as shown in


Figure 9.1(c).


Agent 2 now makes its decision, giving


e2(a1) = max
a2


[Q1(a1, a2) + e3(a1, a2)],


The new functione2(a1) is stored by agent 1, and the coordination graph becomes simply


a single node as shown in Figure 9.1(d).


Agent 1 can now simply choose the actiona1 that maximizes


e1 = max
a1


e2(a1).


The result at this point is a scalar,e1, which is exactly the desired maximum overa1, . . . , a4.


We can recover the maximizing set of actions by performing the process in reverse: The


maximizing choice fore1 defines the actiona∗1 for agent 1:


a∗1 = arg max
a1


e2(a1).


To fulfill its commitment to agent 1, agent 2 must choose the valuea∗2 which yieldede2(a
∗
1):


a∗2 = arg max
a2


[Q1(a
∗
1, a2) + e3(a


∗
1, a2)],


This, in turn, forces agent 3 and then agent 4 to select their actions appropriately:


a∗3 = arg max
a3


[Q3(a
∗
1, a3) + e4(a


∗
2, a3)],


and


a∗4 = arg max
a4


[Q2(a
∗
2, a4) + Q4(a


∗
3, a4)].
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ARGVARIABLE ELIMINATION (F , O, ELIM OPERATOR, ARGOPERATOR)
// F = {f1, . . . , fm} is the set of local functions.
// O stores the elimination order.
// ELIM OPERATORis the operation used when eliminating variables.
// ARGOPERATORis the operation used to obtain the value of an eliminated variable.


FOR i = 1 TO NUMBER OF VARIABLES:
// Select the next variable to be eliminated.
L ET l = O(i) .
// Select the relevant functions.
CACHE THE SETEl = {e1, . . . , eL} OF FUNCTIONS INF WHOSE SCOPE CONTAINSAl.
// Eliminate current variableAl.
L ET e = ELIM OPERATOR(El, Al).
// Update set of functions.
UPDATE THE SET OF FUNCTIONSF = F ∪ {e} \ {e1, . . . , eL}.


// Now, all functions have empty scopes, and the last step eliminates the empty set.
L ET Z = ELIM OPERATOR(F , ∅).


// We can obtain the assignment by eliminating the variables in the reverse order.
L ET a∗ = ∅.
FOR i = NUMBER OF VARIABLES DOWN TO1:


// Select the next variable to be eliminated.
L ET l = O(i) .
// Instantiate the functions corresponding toAl.
FOR EACH ei ∈ El:


L ET e∗i (al) = ei(al,a∗[SCOPE[ei]− {Al}]), ∀al ∈ Al.
REPLACE ei WITH e∗i IN El.


// Compute assignment forAl.
L ET a∗l , THE ASSIGNMENT TOAl IN a∗, BE a∗l = ARGOPERATOR(El, Al).


// Now, a∗ has the assignment for all variables.
RETURN THE ASSIGNMENTa∗ AND VALUE OF THIS ASSIGNMENTZ .


Figure 9.2: Variable elimination procedure, whereELIM OPERATOR is used when a vari-
able is eliminated andARGOPERATORis used to compute the argument of the eliminated
variable. To compute the maximum assignment off1+· · ·+fm, and its value, where eachfi


is a restricted-scope function, we must substituteELIM OPERATORwith MAX OUT from
Figure 4.2, andARGOPERATORwith ARGMAX OUT from Figure 9.3.


ARGMAX OUT (E , Al)
// E = {e1, . . . , em} is the set of functions that depend only onAl.
// Al variable to be maximized.


RETURN arg maxal


∑L
j=1 ej .


Figure 9.3: ARGMAX OUT operator for variable elimination, procedure that returns the
assignment of variableAl that maximizese1 + · · ·+ em.
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Figure 9.2 shows a simple extension of the variable elimination algorithm presented


in Section 4.2. In this extension, we generalize the procedure used in the simple example


above to an arbitrary set of functionsf1, . . . , fm. We divide this algorithm in two parts: The


first part is exactly the maximization presented in Section 4.2. In the second part, we fol-


low the variable elimination order in reverse to obtain the maximizing assignment. When


computing the maximizing assignment forAl, the ith variable to be eliminated, we have


already computed the maximizing assignments to all variables later thani in the ordering.


The scope of the cached local functionfl only depends onAl and on the assignment to vari-


ables which appear later in the ordering,i.e., whose optimal assignment has already been


determined. We can thus computeAl’s optimal assignmenta∗l using a simple maximization


overal.


The correctness of this approach is guaranteed by the correctness of variable elimina-


tion:


Theorem 9.1.3 For any orderingO on the variables, theARGMAX VARIABLE ELIMINA -


TION procedure computes the optimal greedy action for each statex, that is:


ARGMAX VARIABLE ELIMINATION ({Qx
1 , . . . , Q


x
g},O, MAX OUT, ARGMAX OUT)


∈ arg maxa


∑g
i=1 Qx


i (a).


Proof: See for example the book by Bertele and Brioschi [1972].


As with the basic variable elimination procedure in Section 4.2, the cost of this algorithm is


linear in the number of new “function values” introduced, or in our multiagent coordination


case, only exponential in theinduced widthof the coordination graph.


The variable elimination algorithm can thus be used for computing the optimal greedy


action very efficiently, in a centralized fashion. However, in practical multiagent coor-


dination problems, we often need to use a distributed algorithm to avoid the need for any


centralized computation. We have two coordination options in such a distributed procedure:


In asynchronousimplementation, each agent computes its local maximization (conditional


strategy) by following a pre-specified ordering over agents. In an (more robust)asyn-


chronousimplementation, the elimination order is determined at runtime. We present only


the simpler synchronous implementation, as the asynchronous extension is straightforward.
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DISTRIBUTEDACTIONSELECTION(i)
// Distributed action selection algorithm for agenti.


REPEAT EVERY TIME STEPt:
// INSTANTIATION .
// Instantiate the current state.
OBSERVE THE VARIABLES OBS[Qi] IN THE CURRENT STATEx(t).
I NSTANTIATE THE LOCAL Q-FUNCTION WITH THE CURRENT STATE:


Qx(t)


i (a) = Qi(x(t),a).


// INITIALIZATION .
// Initialize the coordination graph.
L ET THE PARENTS OFAi BE THE AGENTS INSCOPE[Qx(t)


i ] = AGENTS[Qi].
STORE Qx(t)


i .


// Maximization.
// Wait for signal from parent ofi in the variable elimination order.
WAIT FOR SIGNAL FROM AGENTO−i , IF O−i = ∅ CONTINUE.
// We can now compute the maximization for agenti.
// First we collect the functions that depend onAi, i.e., the ones stored byi and by the


children ofi in the coordination graph.
COLLECT THE LOCAL FUNCTIONSe1, . . . , eL FROM THE CHILDREN OFi IN THE CO-


ORDINATION GRAPH, AND THE ONES STORED BY AGENTi.
CACHE THIS SETEi = {e1, . . . , eL} OF FUNCTIONS IN WHOSE SCOPE CONTAINSAi.
// Eliminate current variableAl.
L ET e = MAX OUT (El, Al).
// Update the coordination graph.
STORE THE NEW FUNCTIONe WITH SOME AGENTAj ∈ SCOPE[e].
DELETE Ai FROM THE COORDINATION GRAPH AND ADD EDGES FROM THE AGENTS


IN SCOPE[e] TO Aj .
SIGNAL AGENTO+


i .


// Action selection.
// Wait for signal from child ofi in the variable elimination order.
WAIT FOR SIGNAL FROM AGENTO+


i ; IF O+
i = ∅ INITIALIZE a(t) = ∅ AND CONTINUE.


RECEIVE THE CURRENT ASSIGNMENT TO THE MAXIMIZING ACTION a(t) FROM


AGENTO+
i .


// We can now compute the maximizing action for agenti.
// Instantiate the functions corresponding toAi.
FOR EACH ej ∈ Ei:


L ET e∗j (ai) = ej(ai,a∗[SCOPE[ej ]− {Ai}]), ∀ai ∈ Ai.
REPLACE ej WITH e∗j IN Ei.


// Compute assignment forAi.
L ET a∗i , THE ASSIGNMENT TOAi IN a∗, BE a∗i = ARGMAX OUT (Ei, Ai).
// Signal to next agent.
SIGNAL AGENTO−i AND TRANSMIT a(t).


Figure 9.4: Synchronous distributed variable elimination on a coordination graph.
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As in the standard variable elimination algorithm, this synchronous implementation


requires an elimination orderO on the agents, whereO(i) returns theith agent to be max-


imized. Agents do not need knowledge of the full elimination order. Agentj = O(i) only


needs to know the agents that come before and after it in the ordering,i.e.,O−
j = O(i− 1)


andO+
j = O(i + 1) respectively. To simplify our notation,O−


j = ∅ for the first agent in


the ordering andO+
j = ∅ for the last one.


Figure 9.4 presents the complete algorithm that will be executed by agenti. At every


time step, the procedure follows 4 phases:


1. Instantiation: The agent makes local observations and instantiates the current state


in its local Q-function,Qi, resulting inQx
i .


2. Initialization: The edges in the coordination graph are initialized, with agenti


initially storing only theQx
i function.


3. Maximization: When it is agenti’s turn to be eliminated, it collects the local func-


tionse1, . . . , eL whose scope includeAi, i.e., those functions stored by the children


of Ai in the coordination graph and those stored by agenti. These functions are


cached asfi =
∑


j ej. Agent i can now perform its local maximization by defin-


ing a new functione = maxai
fi, the scope ofe is ∪L


j=1Scope[ej] − {Ai}. As the


scope of this new functione does not containAi, it should now be stored by some


different agentj such thatAj ∈ Scope[e]. At this point, agenti has been eliminated,


i.e., there are no functions whose scope includesAi, and the coordination graph is


updated accordingly.


4. Action selection: The optimal action choice can be computed by following the


reverse order over agents. When it is agenti’s turn, all agents later thani in the


ordering have already computed their optimal action and stored it ina∗. The scope


of the cached local functionfi only depends onAi and on the actions of agents later


in the ordering, whose optimal action has already been determined. Agenti can thus


compute its optimal action choicea∗i using a simple maximization overai.


The correctness of this distributed procedure is a corollary of Theorem 9.1.3:
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Corollary 9.1.4 For any orderingO over agents, if each agent executes the procedure in


Figure 9.4, the agents will jointly compute the optimal greedy actiona(t) for each statex(t),


that is:


a(t) ∈ arg max
a


g∑
i=1


Qx(t)


i (a).


It is important to note that in our distributed version of variable elimination, each agent does


not need to communicate directly with every other agent in the system. Agenti only needs


to communicate with agentj if the scope of one of the functions generated in our maximiza-


tion procedure includes bothAi andAj. We call this propertylimited communication, that


is, rather than communicating with every agent in the environment, in our approach, agents


only needs to communicate with a small set of other agents. The communication bandwidth


required by our algorithm is directly determined by the induced width of the coordination


graph. We note that the centralized version of our algorithm is essentially a special case


of the algorithm used to solve influence diagrams with multiple parallel decisions [Jensen


et al., 1994]. However, to our knowledge, these ideas have not been applied to the problem


of online coordination in the decision making process of multiple collaborating agents in a


dynamic system.


Our distributed action selection scheme can be implemented as a negotiation procedure


for selecting actions at run time. Alternatively, if all agents observe the complete state


vectorx at every time step, and these agents agree on a tie-breaking scheme upfront, each


agent can efficiently determine the actions that will be taken by all of the collaborating


agents without any communication at all. Thus, in such cases, each agenti would individ-


ually use the variable elimination algorithm in Figure 9.2, and take its optimal actiona∗i for


the current state. Thus, there is a tradeoff between full observability by each agent with no


communication required between the agents, and limited observability for each agent, but


with some additional communication requirements.


9.2 Approximate planning for multiagent factored MDPs


In the previous section, we presented an efficient online distributed algorithm for select-


ing the optimal greedy action for multiagent problem whose value is approximated by a
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factored Q-function. In Section 8.2, we show that a factored approximation to the value


function, i.e., one where the value function is approximated as a linear combination of


basis functions
∑


i wihi, yields the necessary factored structure in the Q-function. We


now present a small extension to the linear programming-based approximation algorithm


in Section 5.1, which computes the weightsw in our factored value function
∑


i wihi.


As discussed in Section 2.3.2, the linear programming-based approximation formula-


tion is based on the exact linear programming approach for solving MDPs presented in


Section 2.2.1. However, in this approximate version, we restrict the space of value func-


tions to the linear space defined by our basis functions. More precisely, in this approximate


LP formulation, the variables arew1, . . . , wk — the weights for our basis functions. The


LP is given by:


Variables: w1, . . . , wk ;


Minimize:
∑


x α(x)
∑


i wi hi(x) ;


Subject to:
∑


i wi hi(x) ≥ R(x, a) + γ
∑


x′ P (x′ | x, a)
∑


i wi hi(x
′) , ∀x ∈ X, a ∈ A.


(9.2)


This is exactly the same LP formulation as the one in (5.1), except that now our constraints


span all possible joint assignments to the actions of the agentsa ∈ A.


The decomposition of the LP in (9.2) follows the same procedure used in the single


agent formulation in Section 5.1. First, the objective function is decomposed as:


∑
x


α(x)
∑


i


wi hi(x) =
∑


i


wi


∑


ci∈Dom[Ci]


α(ci) hi(ci) =
∑


i


αiwi. (9.3)


The we reformulate the constraints as:


0 ≥ R(x, a) +
∑


i


wi [γgi(x, a)− hi(x)] , ∀x ∈ X, a ∈ A, (9.4)


where the backprojectiongi(x, a) =
∑


x′ P (x′ | x, a)hi(x
′) is a restricted domain function


computed efficiently as described in Figure 8.3. Using the same transformation we applied


in the single agent case in Section 2.2.1, we can rewrite this exponentially-large set of


constraints as a single, equivalent, non-linear constraint:
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MULTIAGENTFACTOREDLPA (P , R, γ, H , O, α)
// P is the factored multiagent transition model.
// R is the set of factored reward functions.
// γ is the discount factor.
// H is the set of basis functionsH = {h1, . . . , hk}.
// O stores the elimination order for all stateX and agentA variables.
// α are the state relevance weights.
// Return the basis function weightsw computed by linear programming-based approximation.


// Cache the backprojections of the basis functions.
FOR EACH BASIS FUNCTIONhi ∈ H :


L ET gi = Backproj(hi).
// Compute factored state relevance weights.
FOR EACH BASIS FUNCTIONhi, COMPUTE THE FACTORED STATE RELEVANCE WEIGHTSαi


AS IN EQUATION (9.3).
// Generate linear programming-based approximation constraints
L ET Ω = FACTOREDLP({γg1 − h1, . . . , γgk − hk}, R,O).
// So far, our constraints guarantee thatφ ≥ R(x,a) + γ


∑
x′ P (x′ | x,a)


∑
i wi hi(x′) −∑


i wi hi(x); to satisfy the linear programming-approximation solution in (9.2) we must add
a final constraint.


L ET Ω = Ω ∪ {φ = 0}.
// We can now obtain the solution weights by solving an LP.
L ET w BE THE SOLUTION OF THE LINEAR PROGRAM: MINIMIZE


∑
i αiwi, SUBJECT TO THE


CONSTRAINTSΩ.
RETURN w.


Figure 9.5: Multiagent factored linear programming-based approximation algorithm.


• Offline:


1. Select a set of restricted-scope basis functions{h1, . . . , hk}.
2. Apply efficient LP-based approximation algorithm as shown in Figure 9.5 to compute coeffi-


cients{w1, . . . , wk} of the approximate value functionV =
∑


j wjhj .


3. Use the one-step lookahead planning algorithm (Section 8.2) withV as a value function estimate
to compute localQi functions for each agent.


• Online:


– Each agenti executes the distributed procedure in Figure 9.4 to compute the greedy policy:


1. Each agenti instantiates its localQi function with values of state variables in scope of
Qi.


2. Agents apply distributed variable elimination on the coordination graph with localQi


functions to compute the optimal greedy action.


Figure 9.6: Our approach for multiagent planning with factored MDPs.
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Number of agents Optimal policy LP-based approximation
“single” basis “pair” basis


1 4.27 4.36± 0.18 4.36± 0.18
2 4.16 4.27± 0.20 4.28± 0.21
3 4.16 3.96± 0.24 4.16± 0.16


Table 9.1: Comparing value per agent of policies on the multiagent SysAdmin problem
with “ring” topology: optimal policy versus LP-based approximation with “single” and
with “pair” basis functions. Value of approximate policies estimated by 20 runs of 100
steps.


0 ≥ max
x,a


R(x, a) +
∑


i


wi [γgi(x, a)− hi(x)] . (9.5)


The difference between this constraint and the one in the single agent LP in (5.4) is that our


maximizationmaxx,a is now over both the state and agent variables.


We can use our factored LP decomposition technique in Chapter 4 to represent this


non-linear constraint exactly, and in closed form, using a set of linear constraints that is


exponentially smaller than the one in Equation (9.4). Note that our LP decomposition tech-


nique is now applied over both state and action variables. Thus, the variable elimination


orderO should now give us an ordering over both state and action variables. Figure 9.5


presents the complete multiagent factored LP-based approximation algorithm. Our over-


all algorithm for multiagent planning and coordination with factored MDPs in shown in


Figure 9.6.


9.3 Empirical evaluation


We first evaluate our algorithms on the multiagent version of the SysAdmin problem pre-


sented in Example 8.1.1. Recall that, for a network ofn machines, the number of states in


the MDP is9n and the joint action space contains2n possible actions,e.g., a problem with


30 agents has over1028 states and a billion possible actions.


We implemented our factored multiagent LP-based approximation algorithm in C++,


using CPLEX as our LP solver. The experiments were run on a Pentium III 700MHz


with 1GB of RAM. We experimented with two types of basis functions: “single”, which
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contains an indicator basis function for each value of eachSi andLi; and “pair” which, in


addition, contains indicators over joint assignments of the Status variables of neighboring


agents. We use a discount factorγ of 0.95.


For small problems, we can run an exact solution algorithm for computing the value


of the optimal policy. These values can then be compared to the value of the approximate


policies computed by our factored multiagent LP-based approximation algorithm. The re-


sults in Table 9.1 compare the value of the two policies for an initial state with all machines


working. These results indicate that, for these small problems, the quality of our approxi-


mate solutions is very close to that of the optimal policy.


As shown in Figure 9.7(a), the running time of the exact solution algorithm grows


exponentially in the number of agents, as expected. In contrast, the time required by our


factored approximate algorithm grows only quadratically in the number of agents, for each


fixed network and basis type. This is the expected asymptotic behavior, as each problem has


a fixed induced tree width of our factored LP. The policies obtained tended to be intuitive:


e.g., for the “star” topology with pair basis, if the server becomes faulty, it is rebooted even


if loaded. but for the clients, the agent waits until the process terminates or the machine


dies before rebooting.


For comparison, we also implemented the distributed reward (DR) and distributed value


function (DVF) algorithms of Schneideret al. [1999]. These algorithms define a local value


function for each agent that may depend on the state of this agent and of a few other agents.


These local value functions are then optimized simultaneously using a Q-learning-style


update rule. This update rule is modified for each agent by including a term that depends


on the neighboring agents’ reward for DR, or value function for DVF.


Our implementation of DR and DVF used 10000 learning iterations, with learning and


exploration rates starting at0.1 and1.0 respectively and a decaying schedule after 5000 it-


erations; the observations for each agent were the status and load of its machine. The results


of the comparison are shown in Figure 9.7(b) and (c). We also computed a utopic upper


bound on the value of the optimal policy by removing the (negative) effect of the neighbors


on the status of the machines. This is a loose upper bound, as a dead neighbor increases


the probability of a machine dying by about50%. For both network topologies tested, the


estimated value of the approximate LP solution using single basis was significantly higher
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Figure 9.7: Multiagent SysAdmin problem: (a) Running time for LP-based approximation
versus the exact solution for increasing number of agents (induced widthk of the underly-
ing factored LP is shown). Policy performance of our LP-based approximation versus the
DR and DVF algorithms [Schneideret al., 1999] on: (b) “star” topology, and (c) “ring of
rings” topology.
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Figure 9.8: Comparing the quality of the policies obtained using our factored LP decom-
position technique with constraint sampling.


than that of the DR and DVF algorithms. Note that the single basis solution requires no


coordination when acting, so, in this sense, this is a “fair” comparison to DR and DVF


which also do not communicate while acting. If we allow for pair bases, which implies


agent communication, we achieve a further improvement in terms of estimated value.


Our factored LP decomposition technique represents the exponentially-large constraint


set in the LP-based approximation formulation compactly and in closed form. An alter-


native to our decomposition technique is to solve the same optimization problem with a


tractable subset of this exponentially-large constraint set. Recently, de Farias and Van Roy


[2001b] analyze an algorithm that uses sampling to select such a subset. In Figure 9.8, we


compare this sampling approach with our LP decomposition technique. Both algorithms


were executed with the same set of basis functions. The number of sampled constraints


was such that the running time was equal for both algorithms, for each set of basis func-


tions. We used a simple uniform sampling distribution to generate constraints. As shown


by de Farias and Van Roy [2001b], the choice of distribution may affect the quality of


the solutions obtained by the sampling approach. They also suggest some heuristics for


choosing a good sampling distribution in some queueing problems. It is possible that a


non-uniform distribution could have improved the performance of the sampling approach,


in the SysAdmin problem.


For smaller problems both sampling and our factored LP approach obtained policies
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with similar value. However, as the problem size increase, the quality of the policies ob-


tained by sampling constraints deteriorated, while the ones generated with our factored LP


maintained their value. If we apply the sampling algorithm with “pair” basis (and, thus,


with the same running time as our factored LP approach with “pair” basis), the quality of


the policies deteriorates more slowly as the problem size increases. However, the policies


obtained by our factored LP approach with “single” basis are still better than the ones ob-


tained by the sampling approach with “pair” basis (and a longer running time). We compare


and contrast these two approaches further in the discussion below.


9.4 Discussion and related work


We provide a principled and efficient approach for planning in collaborative multiagent do-


mains. Rather than placinga priori restrictions on the communication structure between


agents, we first choose the form of the approximate factored value function and derive the


optimal communication structure given the value function architecture. This approach pro-


vides a unified view of value function approximation and agent communication, as a better


approximation will often require more communication between agents. We use a simple


extension of our factored LP-based approximation algorithm to find an approximately op-


timal value function. The inter-agent communication and the LP avoid the exponential


blowup in the state and action spaces, having computational complexity depend, instead,


upon the induced tree width of the coordination graph used by the agents to negotiate their


action selection.


Alternative approaches to this problem have used local optimization for the different


agents, either via reward/value sharing [Schneideret al., 1999; Wolpertet al., 1999], in-


cluding the algorithms we evaluate in Section 9.3, or direct policy search [Peshkinet al.,


2000]. In contrast, we provide a global optimization procedure, where agents can explic-


itly coordinate their actions. An important difference between the methods of Schneider


et al. [1999] and our approach is that, although the agents communicate during learning


with their approach, there is no communication between agents at runtime. The method of


Peshkinet al. [2000] requires no communication between agents both during learning or


at runtime.
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The most closely related approach to our is that of Sallans and Hinton [2001], who


use a product of experts to approximate the Q-function. Action selection is intractable in


such models, and the authors address this problem by using Gibbs sampling [Geman &


Geman, 1984]. The weights of the product of experts are optimized using a local search


procedure. On the other hand, we restrict our value function to linear approximations. This


restriction allows us to optimize the weights using a (convex) linear program, removing the


reliance on local search methods, and lets us perform the action selection step optimally, in


a distributed fashion, using the coordination graph.


We present empirical evaluations of the quality of the policies generated by our mul-


tiagent planning algorithm. For small multiagent problems, where we could obtain the


optimal solution, we showed that our LP-based approximation algorithm obtains policies


with near-optimal value. For larger problem, we could only compare the value of our poli-


cies with a loose theoretical upper bound on the value of the optimal policy. For these


problems, our policies were again near-optimal, with significantly better values that those


obtained with the algorithms of Schneideret al. [1999]. The running time of our al-


gorithm, as expected, demonstrated polynomial scaling for problems with fixed induced


width. Furthermore, the quality of our policies did not show decay in value as the problem


size increased.


Boutilier [1996] partitions coordination methods for collaborative multiagent planning


problems into ones where the agents negotiate their actions via communication, and ones


where the coordination follows from social convention. As discussed at the end of Sec-


tion 9.1, our coordination procedure can be implemented to fit both of these classes: As


described, our distributed action selection scheme requires local communication between


agents. Alternatively, if all agents observe the complete state vectorx at every time step,


and these agents agree on a tie-breaking scheme upfront (the social convention), each agent


can then use variable elimination to compute its own action. This process is guaranteed to


yield the globally optimal greedy action. Thus, our algorithm provides an intuitive tradeoff:


at one end of the spectrum, we have full observability by each agent with no communica-


tion required between the agents, and, at the other end, limited observability for each agent,


but with some additional communication requirements.


The analysis of constraint sampling of de Farias and Van Roy [2001b], discussed in
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more detail in Section 7.8.1, provides an alternative to our factored LP decomposition tech-


nique. The number of samples in the result of de Farias and Van Roy [2001b] depends on


the number of actions in the MDP, which is exponential in multiagent problems. They also


present an equivalent formulation where the state space is augmented with a state variable


to indicate the choice of each action variable. At every time step, the agent then sets one


of these state variables, in order. The number of actions in this modified formulation is


now equal to the size of the domain of each action variable. The theoretical scaling of the


number of samples thus depends on the log of the number of joint actions, but the size


of the state space is multiplied by the number of joint actions. The increased number of


states will probably increase the number of basis functions needed for a good approxi-


mation. Furthermore, as discussed by de Farias and Van Roy [2001b], their method can


often be quite sensitive to the choice of sampling distribution. Our factored LP can effi-


ciently decompose the exponentially-large constraint set in multiagent problems modelled


as factored MDPs, in closed form. Thus, in structured multiagent systems, while the sam-


pling method of de Farias and Van Roy [2001b] will apply to more general problems that


cannot be represented compactly by factored MDPs. We present a preliminary empirical


comparison of the two methods on a problem that can be represented by a factored MDP.


We attempt to make the comparison “fair” by giving both algorithms the same amount of


computer time, though we use a uniform sampling distribution for the method of de Farias


and Van Roy [2001b]. A non-uniform distribution could potentially improve the quality of


their approximation. The policies obtained by our methods outperformed those obtained


by sampling constraints, even when sampling was given a more expressive basis function


space, and increased running time.







Chapter 10


Variable coordination structure


In the previous chapter, we presented efficient coordination and planning algorithms for


multiagent systems. However, this approach assumes that each agent only needs to interact


with a small number of other agents. In many situations, an agent canpotentiallyinteract


with many other agents, but not at thesametime. For example, two agents that are both part


of a construction crew might need to coordinate at times when they could both be working


on the same task, but not at other times. If we use the approach presented in the previous


chapter, we are forced to represent value functions over large numbers of agents, rendering


the approach intractable.


In this chapter, we exploitcontext specificity— a common property of real-world deci-


sion making tasks [Boutilieret al., 1999]. This is the same type of representation used in


the single agent case in Chapter 7. Specifically, we assume that the agents’ value function


can be decomposed into a set ofvalue rules, each describing a context — an assignment to


state variables and actions — and a value increment which gets added to the agents’ total


value in situations when that context applies. For example, a value rule might assert that in


states where two agents are at the same house and both try to install the plumbing, they get


in each other’s way and the total value is decremented by100.


Based on this representation, we provide a significant extension to the notion of a co-


ordination graph. We again describe a distributed decision-making algorithm that uses


message passing over this graph to reach a jointly optimal action. However, the coordina-


tion used in the algorithm can vary significantly from one situation to another. For example,
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if two agents are not in the same house, they will not need to coordinate. The coordination


structure can also vary based on the utilities in the model; e.g., if it is dominant for one


agent to work on the plumbing (e.g., because he is an expert), the other agents will not


need to coordinate with him.


As in Chapter 7, we use context specificity in the factored MDP model, assuming that


the rewards and the transition dynamics are rule-structured. We extend the linear pro-


gramming approach in Chapter 7 to construct an approximate rule-based value function for


multiagent factored MDPs. The agents can then use the coordination graph to decide on a


joint action at each time step. Interestingly, although the value function is computed once


in an offline setting, the online choice of action using the coordination graph gives rise to a


highly variable coordination structure.


10.1 Representation


In order to exploit both additive and context-specific independence in multiagent problems,


we must define a rule-based representation for multiagent factored MDPs. This extension is


analogous to the rule-based version of single agent factored MDPs presented in Chapter 7.


Thus, our presentation will be very concise.


In Chapter 8, we represent the transition model in a multiagent problem using a dynamic


decision network (DDN). In this model, each nodeX ′
i is associated with a conditional


probability distribution (CPD)P (X ′
i | Parents(X ′


i)), where the parents of variableX ′
i in


the graph include both state and agent variables,Parents(X ′
i) ⊆ {X,A}. In order to exploit


context-specific independence, we represent eachP (X ′
i | Parents(X ′


i)) using a rule CPD


as in Definition 7.1.3.


Similarly, we must decompose the reward function into rule functions: In our collabo-


rative multiagent setting, each agenti is associated with a local reward functionRi(x, a)


whose scopeScope[Ri(x, a)] is restricted to depend on a small subset of the state variables,


and on the actions of only a few agents. The global reward functionR(x, a) is the sum of


the rewards accrued by each agentR(x, a) =
∑g


i=1 Ri(x, a). In order to exploit context-


specific independence in the reward function, we represent eachRi(xa) using a rule-based


function as in Definition 7.1.5.
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Our approximation architecture uses basis functionshj defined as rule-based functions.


Using this representation,hj can be written ashj(x) =
∑


i ρ
(hj)
i (x), whereρ


(hj)
i has the


form
〈
c


(hj)
i : v


(hj)
i


〉
, i.e., a function that takes valuevi if the current state is consistent with


c
(hj)
i , and0 otherwise. Using this definition, we can compute the backprojection of basis


functionhj as:


gj(x, a) =
∑


i


RULEBACKPROJ(ρ
(hj)
i ), (10.1)


where RULEBACKPROJ(ρ
(hj)
i ) is computed by applying the algorithm in Figure 7.2 using


our rule-based representation for the multiagent DDN. Note thatgj is a sum of rule-based


functions, and therefore also a rule-based function. For simplicity of notation, we use


gj = RULEBACKPROJ(hj) to refer to this definition of backprojection.


Using this rule-based backprojection, we can now define a rule-based version of the


local Q-function associated with each agent:


Definition 10.1.1 (rule-based local Q-function)Therule-based local Q-functionfor agent


i is given by:


Qi(x, a) = Ri(x, a) + γ
∑


hj∈Basis[i]


wjgj(x, a), (10.2)


where both the reward functionRi(x, a) and the basis functionshj are rule-based func-


tions, and the rule-based backprojectiongj of basis functionhj is defined in Equation (10.1).


Our global Q-function approximation is then defined as a rule-based functionQ(x, a) =∑
i Qi(x, a).


10.2 Context-specific coordination


As in Chapter 9, we begin by assuming that the basis function weightsw are given and we


are interested in computing the optimal greedy action that maximizes:


arg max
a


Q(x, a) = arg max
a


∑
i


Qi(x, a),
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Figure 10.1: Example of variable coordination structure achieved by rule-based coordina-
tion graph, the rules inQj are indicated in the figure by the rules next toAj. Clockwise
from top-left: (a) initial coordination graph; (b) coordination graph for stateX = true; (c)
rules communicated toA1; (d) coordination graph is simplified whenA1 is eliminated.


for the current statex.


In the previous chapter, the long-term utility, or Q-function is the sum of local Q-


functions, associated with the “jurisdiction” of the different agents. For example, if mul-


tiple agents are constructing a house, we can decompose the value function as a sum of


the values of the tasks accomplished by each agent. Thus, we specify the Q-function as a


sum of agent-specific value functionsQi, each with a restricted-scope. EachQi is typically


represented as a table, listing agenti’s local values for different combinations of variables


in the scope. However, this representation is often highly redundant, forcing us to represent


many irrelevant interactions. For example, an agentA1’s local Q-function might depend on


the action of agentA2 if both are trying to install the plumbing in the same house. How-


ever, there is no interaction ifA2 is currently working in another house, and there is no
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point in makingA1’s entire local Q-function depend onA2’s action. Our rule-based rep-


resentation of the local Q-function in Definition 10.1.1 allows us to represent exactly this


type of context specific structure. A value rule in a local Q-function for our example could


be:


〈A1AtHouse= A2AtHouse∧
A1 = plumbing∧ A2 = plumbing: −100〉.


The rule-based local Q-functionQi associated with agenti has the form:


Qi =
∑


j


ρi
j .


Note that if each ruleρi
j has scopeCi


j, thenQi will be a restricted-scope function of∪jC
i
j.


As in the previous chapter, the scope ofQi can be further divided into two parts: The state


variables


Obs[Qi] = {Xj ∈ X | Xj ∈ Scope[Qi]}


are the observations agenti needs to make at each time step. The agent variables


Agents[Qi] = {Aj ∈ a | Aj ∈ Scope[Qi]}


are the agents with whomi interacts directly in the initialization of our coordination graph,


as defined in Definition 9.1.1.


Example 10.2.1Consider a simple 6 agent example, where:


Q1(x, a) =


{
〈a1 ∧ ā2 ∧ x : 5〉
〈a1 ∧ ā3 ∧ x̄ : 1〉 ;


Q2(x, a) =
{
〈a2 ∧ a3 ∧ x : 0.1〉 ;


Q3(x, a) =
{
〈a3 ∧ a4 ∧ x : 3〉 ;


Q4(x, a) =


{
〈ā4 ∧ x : 1〉
〈ā1 ∧ ā2 ∧ a4 ∧ x : 3〉


;


Q5(x, a) =


{
〈a1 ∧ ā5 ∧ x : 4〉
〈ā5 ∧ ā6 ∧ x : 2〉 ;


Q6(x, a) =


{
〈a6 ∧ x : 7〉
〈ā1 ∧ ā6 ∧ x̄ : 3〉 .
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The coordination graph for this example is shown in Figure 10.1(a). See, for example,


that agentA3 has the parentA4, becauseA4’s action affectsQ3.


Recall that, at every time stept, the agents’ task is to coordinate in order to select the


joint actiona(t) that maximizesQ(x(t), a) =
∑


j Qj(x
(t), a). If we apply the distributed


action selection algorithm in Figure 9.4 in the previous chapter, the coordination structure


would be always be the same. Surprisingly, as our example will illustrate, our simple rule-


based representation of the Q-function will yield a coordination structure that will change


with the state of the system, and even with the results of the local maximization performed


by each agent.


Given a particular statex(t) = {x(t)
1 , . . . , x


(t)
n }, agenti instantiatesthe current state on


its local Q-function by discarding all rules inQi not consistent with the current statex(t).


Note that agenti only needs to observe the state variables inObs[Qi], and not the entire


state of the system, substantially reducing the sensing requirements. Interestingly, after the


agents observe the current state the coordination graph may become simpler:


Example 10.2.2Now consider the effect of observing the stateX = true on the rules in


Example 10.2.1. Our instantiated Q-functionQx(a) now becomes:


Qx
1(a) =


{
〈a1 ∧ ā2 : 5〉 ;


Qx
2(a) =


{
〈a2 ∧ a3 : 0.1〉 ;


Qx
3(a) =


{
〈a3 ∧ a4 : 3〉 ;


Qx
4(a) =


{
〈ā4 : 1〉
〈ā1 ∧ ā2 ∧ a4 : 3〉


;


Qx
5(a) =


{
〈a1 ∧ ā5 : 4〉
〈ā5 ∧ ā6 : 2〉 ;


Qx
6(a) =


{
〈a6 : 7〉 .


Once we instantiate the current state, the coordination graph becomes simpler, as


shown in Figure 10.1(b). See, for example, that agentA6 is no longer a parent of agentA1.


Thus, agentsA1 andA6 will only need to coordinate directly in the context ofX = x̄.


After instantiating the current statex(t), eachQx(t)


i will now only depend on the agents’


action choicesa. Now, our task is to select a joint actiona that maximizes
∑


i Q
x(t)


i (a).


Maximization in a graph with context-specific structure suggests the use of the rule-based


version of variable elimination presented in Chapter 7. The only difference between this
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rule-based variable elimination algorithm and the table-based version presented in Fig-


ure 9.2 occurs in the maximization step. Here, we introduce a new functione, such that


e = maxal
fl. Instead of creating a table-based representation fore, we now generate a


rule-based representation for this function by using theRULEMAX OUT(f, B) procedure


presented in Figure 7.3. This procedure takes a rule-based functionf and a variableB


and returns a rule-based functiong, such thatg = maxb f . Thus, we can compute the


joint optimal greedy action for our multiagent system by substitutinge = maxal
fl, with


e = RULEMAX OUT(fl, Al). The rest of the algorithm remains the same.


The cost of this algorithm is polynomial in the number of new rules generated in the


maximization operationRULEMAX OUT(Ql, Al). The number of rules is never larger and


in many cases exponentially smaller than the complexity bounds on the table-based coor-


dination graph in the previous chapter, which, in turn, was exponential only in theinduced


width of this graph [Dechter, 1999]. However, the computational costs involved in manag-


ing sets of rules usually imply that the computational advantage of the rule-based approach


will only manifest in problems that possess a fair amount of context-specific structure.


When considering the distributed version of this algorithm, the rule-based representation


has an additional advantage over the table-based one presented in the previous chapter: as


we show in this section, the distributed rule-based approach may have significantly lower


communication requirements.


Intuitively, the distributed algorithm, shown in Figure 10.2, follows very similar steps


as the table-based one in the previous chapter. An individual agent “collect” value rules


relevant to them from their children. The agent can then decide on its own conditional


strategy, taking all of the implications into consideration. The choice of optimal action and


the ensuing payoff will, of course, depend on the actions of agents whose strategies have


not yet been decided. The agent then simply communicates the value ramifications of its


strategy to other agents, so that they can make informed decisions on their own strategies.


Figure 10.2 presents the complete algorithm that will be executed by agenti. At every


time step, the procedure follows 4 phases:


1. Instantiation: The agent makes local observations and instantiates the current state


in its local Q-function by selecting the rules inQi consistent with the current state.
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RULEBASEDDISTRIBUTEDACTIONSELECTION(i)
// Distributed rule-based action selection algorithm for agenti.


REPEAT EVERY TIME STEPt:
// INSTANTIATION .
// Instantiate the current state.
OBSERVE THE VARIABLES OBS[Qi] IN THE CURRENT STATEx(t).
I NSTANTIATE THE LOCAL Q-FUNCTION WITH THE CURRENT STATE BY SELECTING


THE RULES INQi THAT ARE CONSISTENT WITHx(t):


Qx(t)


i (a) = Qi(x(t),a).


// Initialization.
// Initialize the coordination graph.
L ET THE PARENTS OFAi BE THE AGENTS INSCOPE[Qx(t)


i ] = AGENTS[Qi].
STORE Qx(t)


i .


// Maximization.
// Wait for signal from parent ofi in the variable elimination order.
WAIT FOR SIGNAL FROM AGENTO−i , IF O−i = ∅ CONTINUE.
// We can now compute the maximization for agenti.
// First we collect the rules that depend onAi, i.e., the ones stored byi, and the ones stored


by the children ofi in the coordination graph whose context includesAi.
COLLECT THE LOCAL RULES ρ1, . . . , ρL FROM THE CHILDREN OFi IN THE COORDI-


NATION GRAPH, WHOSE CONTEXT INCLUDESAi, AND THE ONES STORED BY AGENT


i.
CACHE A NEW RULE-BASED FUNCTION fi =


∑L
j=1 ρj ; NOTE THAT SCOPE[fi] =


∪L
j=1SCOPE[ej ].


// Compute the local maximization for agenti.
DEFINE A NEW FUNCTION e = RULEMAX OUT(fi, Ai), THE SCOPE OFe IS


SCOPE[fi]− {Ai}.
// Update the coordination graph.
STORE EACH RULE ρs IN THE NEW FUNCTIONe IN SOME AGENTAj ∈ SCOPE[ρs].
DELETE Ai FROM THE COORDINATION GRAPH, AND ADD EDGES FROM THE AGENTS


IN SCOPE[e] TO Aj .
SIGNAL AGENTO+


i .


// Action selection.
// Wait for signal from child ofi in the variable elimination order.
WAIT FOR SIGNAL FROM AGENTO+


i ; IF O+
i = ∅ INITIALIZE a(t) = ∅ AND CONTINUE.


RECEIVE CURRENT ASSIGNMENT TO THE MAXIMIZING ACTION a(t) FROM AGENT


O+
i .


// We can now compute the maximizing action for agenti.
// Instantiate the maximization function corresponding toAi by selecting the rules infi


whose context is consistent with the action choice thus far,i.e., a(t)[Scope[fi]− {Ai}].
L ET f∗i (ai) = fi(ai,a(t)[SCOPE[fi]− {Ai}]), ∀ai ∈ Ai.
// Compute optimal assignment forAi.
L ET a


(t)
i , THE ASSIGNMENT TOAi IN a(t), BE a


(t)
i = arg maxai f∗i (ai).


// Signal to next agent.
SIGNAL AGENTO−i AND TRANSMIT a(t).


Figure 10.2: Synchronous distributed rule-based variable elimination algorithm on a coor-
dination graph.
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2. Initialization: The edges in the coordination graph are initialized, with agenti


initially storing only theQx
i function.


3. Maximization: When it is agenti’s turn to be eliminated, it collects the rules


ρ1, . . . , ρL whose scopes includeAi, i.e., only the relevant ones out of those rules


stored by the children ofAi in the coordination graph and those stored by agenti.


These rules are combined into a new rule-based functionfi =
∑


j ρj, which is cached


for the second pass of the algorithm. Agenti can now perform its local maximization


by defining a new rule-based functione = RULEMAX OUT(fi, Ai), the scope ofe


is ∪L
j=1Scope[ρj] − {Ai}. As the scopes of all rules in this new functione do not


containAi, each ruleρs ∈ e should now be stored by some other agentj, such that,


Aj ∈ Scope[ρs]. At this point, agenti has been eliminated,i.e., there are no functions


whose scope includesAi, and the coordination graph is updated accordingly.


4. Action selection: The optimal action choice can be computed by following the


reverse order over agents. When it is agenti’s turn, all agents later thani in the


ordering have already computed their optimal action and stored it ina∗. The scope


of the cached rule-based functionfi only depends onAi and on the actions of agents


later in the ordering, whose optimal action has already been determined. Agenti can


thus compute its optimal action choicea∗i using a simple maximization overai.


The correctness of this distributed rule-based procedure is a corollary of Theorem 9.1.3 and


of the correctness of rule-based variable elimination algorithm of Zhang and Poole [1999]:


Corollary 10.2.3 For any orderingO over agents, if each agent executes the procedure in


Figure 10.2, the agents will jointly compute the optimal greedy actiona(t) for each state


x(t), that is:


a(t) ∈ arg max
a


g∑
i=1


Qx(t)


i (a).


Interestingly, the rule-based coordination structure exhibits several important proper-


ties. First, as we discussed, the structure often changes when instantiating the current state,


as in Figure 10.1(b). Thus, in different states of the world, the agents may have to coordi-


nate their actions differently. In our example, if the situation is such that the plumbing is
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ready to be installed, two qualified agents that are at the same house will need to coordinate.


However, they may not need to coordinate in other situations.


The context-sensitivity of the rules also reduces communication between agents. In


particular, agents only need to communicate relevant rules to each other, reducing unneces-


sary interaction. In the table-based version, when agenti performs its local maximization,


it generates a new functionfi by summing up all the local functions that depend onAi. In


the rule-based version, we only need to collect the rules that depend onAi. In this case, the


scope, and thus the size, offi can be significantly smaller, as seen in our example:


Example 10.2.4When agentA1 performs its local maximization, its children in the co-


ordination graph transmit all rules whose scope includesA1. Specifically, as shown in


Figure 10.1(c), agentA4 transmits〈ā1 ∧ ā2 ∧ a4 : 3〉 and agentA5 transmits〈a1 ∧ ā5 : 4〉.
The local Q-function for agentA1 becomes:


Qx
1(a) =







〈a1 ∧ ā2 : 5〉
〈ā1 ∧ ā2 ∧ a4 : 3〉
〈a1 ∧ ā5 : 4〉


.


Note that the scope of the rule-basedQx
1 is {A1, A2, A4, A5}. Had we used the table-based


representation, the scope ofQx
1 would have been larger, i.e.,{A1, A2, A4, A5, A6}, asQx


5


would includeA6 in its scope.


More surprisingly, interactions that seem to hold between agents even after the state-


based simplification and the limited communication of relevant rules can disappear as


agents make strategy decisions. In the construction crew example, suppose electrical wiring


and plumbing can be performed simultaneously. If there is an agent that can do both tasks


and another that is only a plumber, thena prioriagents need to coordinate so that they are


not both working on plumbing. However, when the first agent is optimizing his strategy,


he decides that electrical wiring is a dominant strategy, because either the other agent will


do the plumbing and both tasks are done or the other agent will perform a different task,


in which case the first agent can get to plumbing in the next time step, achieving the same


total value. We can see this effect more precisely in our running example:
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Example 10.2.5After collecting the relevant rules,the local Q-function for agentA1 had


become:


Qx
1(a) =







〈a1 ∧ ā2 : 5〉
〈ā1 ∧ ā2 ∧ a4 : 3〉
〈a1 ∧ ā5 : 4〉


.


As these are all the rules whose scope includesA1, we can now perform the local maxi-


mization for this agent, which yields:


RULEMAX OUT(Qx
1 , A1) =


{
〈ā2 : 5〉
〈ā5 : 4〉 .


The rule〈ā1 ∧ ā2 ∧ a4 : 3〉 disappeared, as〈a1 ∧ ā2 : 5〉 dominates that rule for any as-


signment toA4. Thus,A1’s optimal strategy is to doa1 regardless.


In this example, there is ana prioridependence betweenA2, A4 andA5. However, after


maximizingA1, the dependence onA4 disappears and agentsA4 and A5 will no longer


need to communicate, as shown in Figure 10.1(d).


Finally, we note that the rule structure provides substantial flexibility in constructing


the system. In particular, the structure of the coordination graph can easily be adapted in-


crementally as new value rules are added or eliminated. For example, if it turns out that two


agents intensely dislike each other, we can easily introduce an additional value rule that as-


sociates a negative value with pairs of action choices that puts them in the same house at the


same time, thus forcing them to be in different houses. In the example in Figure 10.1(d), we


may choose to remove the low-value rule〈a2 ∧ a3 : 0.1〉, which will remove the commu-


nication requirement betweenA2 andA3, at the cost of some approximation in our action


selection mechanism.


Therefore, by using the rule-based coordination graph, the coordination structure may


change when:


• instantiating the current state;


• agents communicate relevant rules;


• an agent performs its local maximization;
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• further approximating the value function by eliminating low-value rules.


10.3 Exploiting context-specific and additive structure in


multiagent planning


Thus far, we have presented a representation for multiagent problems that can exploit both


context-specific and additive independence. We have also described an algorithm for co-


ordinating the agents actions given a rule-based approximation to the value function. It


remains to show how such an approximation can be obtained. Fortunately, this approxi-


mation can be computed by a simple modification to the table-based multiagent factored


LP-based approximation algorithm presented in Section 9.2. This algorithm, shown in


Figure 9.5, relies on a call to our factored LP decomposition technique:


FACTOREDLP({γg1 − h1, . . . , γgk − hk}, R,O).


This decomposition exploits additive structure in our model, but relies on a table-based


representation. In order to exploit the context-specific structure in our rule-based repre-


sentation, we should simply replace this procedure with the rule-based one described in


Section 7.5.


10.4 Empirical evaluation


To verify the variable coordination property of our approach, we implemented our rule-


based factored LP-based approximation algorithm, and the message passing coordination


graph algorithm in C++, using again CPLEX as the LP solver. We experimented with a


construction crew problem, where agents need to coordinate to build and maintain a set of


houses. Each house has5 features{Foundation, Electric, Plumbing, Painting, Decoration}.
Each of these features is a state variable in our DDN. Each agent has a set of skills and


some agents may move between houses. Each feature in the house requires two time steps


to complete. Thus, in addition to the feature variables, the DDN for this problem contains
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Prob. ]houses Agent skills Agent location ]states ]actions
Time
(min)


1 1
A1 ∈ {Found, Elec, Plumb};
A2 ∈ {Plumb, Paint, Decor}


House 1
House 1


2048 36 1.6


2 2


A1 ∈ {Paint, Decor}
A2 ∈ {Found, Elec, Plumb, Paint}
A3 ∈ {Found, Elec}
A4 ∈ {Plumb, Decor}


Moves
House 1
Moves
House 2


33,554,432 1024 33.7


3 3


A1 ∈ {Paint, Decor}
A2 ∈ {Found, Elec, Plumb}
A3 ∈ {Found, Elec, Plumb, Paint}
A4 ∈ {Found, Elec, Plumb, Decor}


Moves
House 1
House 2
House 3


34,359,738,368 6144 63.9


4 2


A1 ∈ {Found}
A2 ∈ {Decor}
A3 ∈ {Found, Elec, Plumb, Paint}
A4 ∈ {Elec, Plumb, Paint}


Moves
Moves
House 1
House 2


8,388,608 768 5.7


Table 10.1: Summary of results of our rule-based multiagent factored planning algorithm
on the building crew problem.


“action-in-progress” variables for each house feature, for each agent,e.g., “A1-Plumbing-


in-progress-House1”. Once an agent takes an action, the respective “action-in-progress”


variable becomes true with high probability. If one of the “action-in-progress” variables


for some house feature is true, that feature becomes true with high probability at the next


time step. At every time step, with a small probability, a feature of the house may break,


in which case there is a chain reaction and features that depend on the broken feature will


break with probability 1. For example, if the plumbing breaks, the painting will peel in the


next time step, and the decoration will be ruined in the following step. This effect makes


the problem dynamic, incorporating both house construction and house maintenance in


the same model. Agents receive100 reward for each completed feature and−10 for each


“action-in-progress”. The discount factor is0.95. We selected a simple bases: for each as-


signment to the variables corresponding to the parents of each house feature variable in the


DDN, we introduced a rule-based basis function, whose context is exactly this assignment.


Table 10.1 summarizes the results for various settings. Note that, although the number


of states may grow exponentially from one setting to the other, the running time grows


polynomially. Furthermore, in Problem 2, the backprojections of the basis functions had


scopes with up to 11 variables, too large for the table-based representation to be tractable.


However, by using our rule-based representation, we can represent this backprojection very


compactly.
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Agent skills
Actualvalue of


rule-based policy
Optimal


value
A1 ∈ {Found, Elec};
A2 ∈ {Plumb, Paint, Decor} 6650 6653


A1 ∈ {Found, Elec, Plumb};
A2 ∈ {Plumb, Paint, Decor} 6653 6654


Table 10.2: Comparing the actual expected value of acting according to the rule-based
policy obtained by our algorithm with the optimal policy, on the one house problem starting
from the state with no features built in the house.


The policies generated in these problems are very intuitive. For example:


• In Problem 2, if we start with no features built,A1 will go to House 2 and wait as its


painting skills are going to be needed there before the decoration skills are needed in


House 1.


• In Problem 1, we get very interesting coordination strategies: If the foundation is


completed,A1 will do the electrical fitting andA2 will do the plumbing. Further-


more,A1 makes its decision not by coordinating withA2, but by noting that electri-


cal fitting is a dominant strategy. On the other hand, if the system is at a state where


both foundation and electrical fitting is done, then agents coordinate to avoid doing


plumbing simultaneously.


• Another interesting feature of the policies occurs when agents are idle,e.g., in Prob-


lem 1, if foundation, electric and plumbing are done, then agentA1 repeatedly per-


forms the foundation task (yielding a -10 reward at every time step). This action


choice avoids a chain reaction starting from the foundation of the house. Checking


the rewards, there is actually a higher expected loss from the chain reaction than the


cost of repeatedly checking the foundation of the house.


For small problems with one house, we can compute the optimal policy exactly. In


Table 10.2, we present the optimal values for two such problems. Additionally, we can


compute the actual value of acting according to the policy generated by our method. As


the table shows, these values are very close, indicating that the policies generated by our


method are very close to optimal in these problems.
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10.5 Discussion and related work


We provide a principled and efficient approach for planning in multiagent domains where


the required interactions vary from one situation to another. We show that the task of find-


ing an optimal joint action in our approach leads to a very natural communication pattern,


where agents send messages along acoordinationgraph determined by the structure of


the value rules, as in the previous chapter. However, the coordination structure now dy-


namically changes according to the state of the system, and even on the actual numerical


values assigned to the value rules. Furthermore, the coordination graph can be adapted


incrementally as the agents learn new rules or discard unimportant ones.


Our empirical evaluation shows that our methods scale to very complex problems, in-


cluding problems where traditional table-based representations of the value function blow


up exponentially. In problems where the optimal value could be computed analytically


for comparison purposes, the value of the policies generated by our approach was within


0.05% of the optimal value. We also empirically observed the variable coordination proper-


ties of our approach. Our algorithm thus provides an effective method for acting in dynamic


environments with a varying coordination structure.


From a representation perspective, the factored MDP model used in this chapter ex-


tends the rule-based representation described in Chapter 7 to the multiagent case. Boutilier


[1996] suggests that the algorithms developed in Boutilieret al. [1995] can be extended


to this collaborative multiagent case. The tradeoffs between our methods and those of


Boutilier et al. have been discussed in detail in Section 7.8.1. In particular, their methods


exploit only context-specific structure, while our approach can additionally exploit addi-


tive structure. On the other hand, their methods do not require basis functions to be defined


a priori. We believe that, arguably, additive structure is even more important in multia-


gent systems. In our house building domain, for example, the interaction between agents


with the same skill is context-specific, but the one between agents with different skills is


probably better captured with an additive model.


Interestingly, Koket al. [2003] applied our variable coordination graph to select the


actions for a team of robots, where the weights of the rules were tuned by hand, rather than


with our factored LP-based algorithm. Their team used this policy to win first place (out







10.5. DISCUSSION AND RELATED WORK 193


of 46 teams) in the 2003 RoboCup simulation league, winning all games, scoring a total


of 177 goals with only 7 goals against them. Although the results of Koket al. [2003] do


not evaluate our planning algorithms, they show that our factored Q-function representation


along with our variable coordination graph can capture very complex and effective policies.


We believe that this graph-based coordination mechanism will provide a well-founded


schema for other multiagent collaboration and communication approaches in many envi-


ronments, such as RoboCup, where the coordination structure must change over time.







Chapter 11


Coordinated reinforcement learning


In the previous chapters, we presented approaches that combine value function approxi-


mation with a message passing scheme by which multiple agents efficiently determine the


jointly optimal action with respect to an approximate value function. We have also pre-


sented efficient planning algorithms for computing these approximate value functions, in


multiagent settings.


Unfortunately, in many practical situations, a complete model of the environment,i.e.,


of the transition probabilities,P (x′ | x, a) or of the reward function,R(x, a), is not know.


Typically, there are two possible courses of action in such cases: to consult a domain ex-


pert who can provide an estimate of the model, or to estimate (learn) the model or a policy


directly from data obtained from the real world. The latter process is calledreinforcement


learning(RL), as the agents are learning to act by responding to the reinforcement signals


(rewards) they receive from the environment. For an in-depth presentation of the reinforce-


ment learning problem and of some possible solution methods, we refer the reader to books


on this topic by Sutton and Barto [1998] and by Bertsekas and Tsitsiklis [1996], and the


review by Kaelblinget al. [1996].


At the high-level, there are two typical approaches to reinforcement learning. In a


model-basedapproach [Moore & Atkeson, 1993; Kearns & Singh, 1998; Brafman & Ten-


nenholtz, 2001], the environment is represented by a particular parametric model, and the


agents learn the parameters of this model from their experience in this environment. This
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approximate model is then used to obtain approximate policies for this environment. Typ-


ically, the agents may choose toexplorethe environment further in order to improve the


model, in the hope that an improved model will lead to a better policy in the future. Al-


ternatively, the agents may choose toexploit what they have learned thus far, and select


a policy that maximizes the reward with respect to this approximate model. Kearns and


Singh [1998] present an algorithm that makes this choice between exploring and exploit-


ing explicit. Brafman and Tennenholtz [2001] describe a simple algorithm that makes this


choice implicitly, but that still leads to near-optimal policies in polynomial time (in the


number of states). These methods tend to be effective, if an appropriate parameterization


of the model is chosen.


An alternative is to choose amodel-freeapproach [Sutton, 1988; Watkins, 1989; Williams,


1992], where no assumptions are made about a particular parametric model of the environ-


ment. Here, either the value function or the policy are parameterized. The agents then


optimize these parameters directly from experience. Model-free approaches are often sim-


pler, require less assumptions about the environment, and are often more easily combined


with function approximation methods. Model-based approaches are often more stable and


allow us to obtain more effective exploration strategies. Atkeson and Santamaria [1997]


provide a more detailed discussion on the trade-off between these two approaches.


Most reinforcement learning methods have focused on single agent settings. Although


some algorithms have been proposed for collaborative multiagent settings, these meth-


ods often do not directly consider interactions between agents in the parameterized solu-


tions [Peshkinet al., 2000], or use heuristic methods for combining values or rewards from


different agents [Schneideret al., 1999].


In this chapter, we show how our coordination graph action selection mechanism can be


applied to the design of efficient reinforcement learning algorithms for collaborative mul-


tiagent problems, by building on existing single agent RL methods. We call our approach


coordinated reinforcement learning, as structured coordination between agents is used both


in the core of our learning algorithms and in our execution architectures. Interestingly, in


the context of reinforcement learning, we will no longer require a factored model of the


environment or even a discrete state space.


We begin by presenting two methods for computing an approximate value function
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through reinforcement learning in multiagent settings, building on two existing algorithms:


Q-learning [Watkins, 1989; Watkins & Dayan, 1992] and Least Squares Policy Iteration


(LSPI) [Lagoudakis & Parr, 2001]. We also demonstrate how parameterized value func-


tions of the form acquired by our reinforcement learning variants can be combined in a


very natural fashion with algorithms that attempt to optimize the policy directly, such as


those of Williams [1992], Jaakkolaet al. [1995], Suttonet al. [2000], Konda and Tsitsiklis


[2000], Baxter and Bartlett [2000], Ng and Jordan [2000], and Shelton [2001]. The same


communication and coordination structures used in the value function approximation phase


are used in the policy search phase to sample from and update a factored stochastic policy


function.


Our framework will approximate the global Q-function using the same type of factored


Q-functions described in the previous chapters. Specifically, agenti is associated with a


local Q-functionQwi
i that is parameterized by an independent set of parameterswi. The


global Q-function is again given by:


Qw(x, a) =
∑


i


Qwi
i (x, a).


In our RL setting, we will optimize the parametersw from the agents’ experience with


the environment. This experience is described by quadruples of the form (state, action,


reward, next-state), which we will henceforth refer to as(x(t), a(t), r(t),x(t+1)), for thetth


time step, wherer(t) = R(x(t), a(t)) is the reward associated with the current state of the


system. Note that, in general, the rewards may depend stochastically on the state and


action. That is, at every visit the agents observe some reward sampled according to some


unknown distribution. Furthermore, in this chapter, as the experience with the environment


is represented by samples rather than a model, we no longer need to assume that the state


is discrete. We can thus consider both discrete and continuous state spaces.


11.1 Coordination structure in Q-learning


Q-learning is a standard approach for solving an MDP through reinforcement learning


[Watkins, 1989; Watkins & Dayan, 1992]. In Q-learning, the agent directly learns the
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values of state-action pairs from experience with the environment. The algorithm starts


with some estimate with the Q-function. This estimated is then updated at each iteration


using the following update rule:


Q(x(t), a(t)) ← Q(x(t), a(t)) + α
[
r(t) + γV(x(t+1))−Q(x(t), a(t))


]
, (11.1)


whereα > 0 is the “learning rate,” or step size parameter, and


V(x(t+1)) = max
a


Q(x(t+1), a).


With a suitable decay schedule for the learning rate, a policy that ensures that every state-


action pair is experienced infinitely often, and a representation forQ(x, a) which can assign


an independent value to every state-action pair, Q-learning will converge to estimates for


Q(x, a) which reflect the expected, discounted value of taking actiona in statex and


proceeding optimally thereafter,i.e., the optimal Q-function [Watkins & Dayan, 1992].


In practice the formal convergence requirements for Q-learning almost never hold, be-


cause the state space is too large to permit an independent representation of the value of


every state [Gordon, 2001]. Typically, a parametric function approximator such as a neural


network is used to represent the Q-function for each action. The following gradient-based


update scheme is often used to adapt Q-learning to this setting:


w(t+1) ← w(t) + α
[
r(t) + γV(x(t+1))−Q(x(t), a(t),w(t))


]∇wQ(x(t), a(t),w(t)), (11.2)


wherew is a weight vector for our function approximation architecture and, again, the


valueV(x(t+1)) of the next state is again:


V(x(t+1)) = max
a


Q(x(t+1), a). (11.3)


The Q-learning update mechanism is completely generic and requires only that the


approximation architecture be differentiable. We are free to choose an architecture that is


compatible with our action selection mechanism. Therefore, as described above, we can


assume that every agenti maintains a local Q-functionQi defined over some subset of the
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(possibly continuous) state variables, its own actions, and possibly actions of some other


agents. The global Q-function is again a function of the global statex and the joint action


vectora:


Qw(x, a) =


g∑
i=1


Qwi
i (x, a),


where the dependence onwi of Qwi
i (x, a) indicates the parametric (possibly non-linear)


nature of our local Q-function representation. There are some somewhat subtle conse-


quences of this representation. The first is that determiningV(x(t+1)) in Equation (11.3)


requires a maximization over an exponentially-large action space that can be computed ef-


ficiently using the coordination graph procedure from Section 9.1 (or the rule-based version


in Section 10.2).


TheQi functions themselves can be maintained locally by each agent as an arbitrary,


differentiable function of a set of local weightswi. EachQi can be defined over the entire


state space, or just some subset of the state variables visible to agenti. It is important to note


that the dependence on the state variables does not affect the complexity of our coordination


graph algorithms, as the current state is always instantiated before these procedures are


applied.


Once we have defined the localQi functions, we must compute the weight update in


Equation (11.2). Each agent must compute:


∆(x(t), a(t), r(t),x(t+1),w(t)) =
[
r(t) + γV(x(t+1))−Qw(t)


(x(t), a(t))
]
, (11.4)


the difference between the current Q-value and the discounted value of the next state. Thus,


each agent needs access tor(t), V(x(t+1)), andQw(t)
(x(t), a(t)). Both the global rewardr(t)


and theQ value for the current state,Qw(t)
(x(t), a(t)), can be computed by a simple message


passing scheme similar to the one in the coordination graph, by fixing the action of every


agent to the one assigned ina(t). A more elaborate process is required in order to compute


V(x(t+1)). However, as mentioned above, this term can be computed efficiently using our


coordination graph maximization procedures.


Therefore, after the coordination step, each agent will have access to the value of


∆(x(t), a(t), r(t),x(t+1),w(t)). At this point, the weight update equation is entirely local:
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COORDINATEDQLEARNING(Q, w(0) γ, n, α, O)
// Q = {Q1, . . . , Qg} is the set of local Q-functions, eachQi is parameterized bywi.
// w(0) is the initial value for the parameters.
// γ is the discount factor.
// n is the number of iterations.
// α = {α(0), . . . , α(n)} is the set of learning rates for each iteration.
// O stores the elimination order.
// Return the parameters of Q-function aftern iterations.


FOR ITERATION t = 0 TO n− 1:
// Observe the current transition.
OBSERVE (x(t),a(t), r(t),x(t+1)).
// Compute the action which maximizes the Q-function at the next state and its value using


the variable elimination algorithm in Figure 9.2.
L ET


[
a(t+1),V(x(t+1))


]
= ARGVARIABLE ELIMINATION (Qw(t)


(x(t+1),a),
O, MAX OUT, ARGMAX OUT),


WHERE Qw(t)
(x(t+1),a) = {Qw


(t)
1


1 (x(t+1),a), . . . , Q
w(t)


g
g (x(t+1),a)}.


// Compute gradient for current state.


COMPUTE THE GRADIENT∇wiQ
w


(t)
i


i (x(t),a(t)) FOR EACH LOCAL Q-FUNCTION Qi.
// Update parameters.
UPDATE Q-FUNCTION PARAMETERSwi FOR EACH LOCAL Q-FUNCTION Qi BY:


w(t+1)
i ← w(t)


i + α(t)
[
r(t) + γV(x(t+1))−Qw(t)


(x(t),a(t))
]
∇wiQ


w
(t)
i


i (x(t),a(t)),


// Take actiona(t+1) which maximizesQw(t)
(x(t+1),a). If an exploration policy is used,


the action should be computed appropriately.
EXECUTE ACTION a(t+1).


RETURN THE PARAMETERSw(n).


Figure 11.1: Coordinated Q-learning algorithm.
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w
(t+1)
i ← w


(t)
i + α ∆(x(t), a(t), r(t),x(t+1),w(t))∇wi


Q
w


(t)
i


i (x(t), a(t)). (11.5)


Note that, in this equation, agenti only needs to compute the local gradient


∇wi
Q


w
(t)
i


i (x(t), a(t)),


rather than the global gradient∇wQw(t)
(x(t), a(t)) used in Equation (11.2). The reason for


this simplification is that the gradient decomposes linearly as no two local Q-functionsQi


andQj share parameters inw. The locality of the weight updates in this formulation of Q-


learning makes it very attractive for a distributed implementation. Each agent can maintain


an entirely local Q-function and does not need to know anything about the structure of


the neighboring agents’ Q-functions. Different agents can even use different architectures,


e.g., one might use a neural network and another might use a CMAC [Albus, 1975]. The


only requirement is that the joint Q-function be expressed as a sum of the these individual


Q-functions.


Our complete multiagent extension of the Q-learning algorithm is shown in Figure 11.1.


Note that Q-learning is usually implemented with anexploration policy: instead of always


taking the action that maximizes the Q-function at every time step, the agent also takes


actions that lead to rarely visited states. For examples of such policies and its effect on the


convergence of Q-learning, see the book by Sutton and Barto [1998].


A negative aspect of this Q-learning formulation is that, like almost all forms of Q-


learning with function approximation, it is difficult to provide any kind of formal conver-


gence guarantees.


11.2 Multiagent LSPI


An often effective approach to RL is to optimize a value function or policy using a stored


corpus of data, such methods are calledbatch reinforcement learningalgorithms. Specifi-


cally, batch methods use a set of samples,


S = {(xi, ai,x
′
i, ri)| i = 1, 2, . . . , L},
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collected from the environment to optimize a value function estimate or a policy. In this


section, we propose a multiagent batch RL approach that builds on Least Squares policy


iteration (LSPI) [Lagoudakis & Parr, 2001], a batch algorithm that uses the stored corpus


of samples instead of a model to perform approximate policy iteration.


Given a policyπ, the Q-function for this policy is again given by the following set of


linear equations:


Qπ(x, a) = R(x, a) + γ
∑


x′
P (x′ | x, a)Vπ(x′), ∀x ∈ X, ∀a ∈ A, (11.6)


whereVπ(x) = Qπ(x, π(x)). In matrix notation, we can express this fixed-point equation


as:


Qπ = R + γPVπ, (11.7)


whereQπ andR are|X| · |A| vectors,V is a|X| vector, andP is a|X| · |A| × |X| matrix.


LSPI approximates the Q-functions using a linear combination of basis functions (fea-


tures). Specifically, given a policyπ, the Q-function for this policy is approximated by:


Q̂w
π (x, a) =


k∑
i=1


wiφi(x, a) = wᵀφ(x, a), (11.8)


where we useφi(x, a) to denote a basis function used for approximating the Q-function,


whose scope thus includes both stateX and agentA variables. This notation differentiates


this type of basis functions from our usual basis functionhi(x), whose scope includes only


state variables.


For a policy,π(i), associated with theith iteration of the algorithm, LSPI computes


an approximation to the Q-function,̂Qπ(i), satisfying the fixed-point conditions in Equa-


tion (11.6) with respect to our sample set. The newQ̂π(i) then implicitly defines a greedy


policy π(i+1):


π(i+1)(x) = arg max
a


Q̂π(i)(x),


and the process is repeated until some form of convergence is achieved.


We briefly review the mathematical operations required for LSPI. For convenience we
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express our basis functions in matrix form:


Φ =






φ(x1, a1)
ᵀ


...


φ(x, a)ᵀ


...


φ(x|X|, a|A|)ᵀ






;


whereΦ is matrix(|X| · |A| × k), where each row corresponds to a state-action pair, and


each column corresponds to a basis function. We can represent our approximation of the


Q-function byΦw. Additionally, we can define a matrixΦπ, with one row for each state


x, where the action choice for this row is the one specified by our policy,π(x):


Φπ =






φ(x1, π(x1))
ᵀ


...


φ(x, π(x))ᵀ


...


φ(x|X|, π(x|X|))ᵀ






,


note thatΦπ is a (|X| × k) matrix. Similarly,Φπw forms our approximation ofVπ, the


value of policyπ.


If we knew the transition matrix,P , and the reward function,R, we could, in principle,


compute the weights of our Q-function approximation by solving a least-squares approxi-


mation to the fixed point in Equation (11.7):


Qπ = R + γPVπ;


Φw ≈ R + γPΦπw;


ΦᵀΦw ≈ ΦᵀR + γΦᵀPΦπw;


Rearranging, we obtain the weightsw by solving the following system of linear equations:


Cwπ = b, (11.9)
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whereC = Φᵀ(Φ− γPΦπ) and b = ΦᵀR.


Unfortunately, the matrices in Equation (11.7) contain entries for each state and action,


and are thus exponentially-large. Furthermore, in our RL setting, we do not have models of


R andP . However, we can use the samples in our corpus to construct approximate versions


of the fixed point in Equation (11.9) by using an approximate version ofΦ, PΦπ, andR as


follows:


Φ̂ =






φ (x1, a1)
ᵀ


...


φ (xi, ai)
ᵀ


...


φ (xL, aL)ᵀ






; P̂Φπ =






φ (x′1, π(x′1))
ᵀ


...


φ (x′i, π(x′i))
ᵀ


...


φ (x′L, π(x′L))ᵀ






;


R̂ =






r1


...


ri


...


rL






.


Note thatΦ̂ still has one column for each basis function, but now we only have one row for


each sample, rather than a row for each state and action. Similarly, the vectorR̂ contains


one element per sample indicating the reward associated with this sample. Finally,P̂Φπ


is an approximation of the backprojection of the basis functions. This matrix contains


one row per sample with the valueφ (x′i, π(x′i))
ᵀ, which is an unbiased estimate of the


backprojections, when actionai is taken at statexi.


We can now compute the weights of our Q-function approximation for any policyπ by


solving a linear system of equations:


Φ̂
ᵀ
(Φ̂− γP̂Φπ)wπ = Φ̂


ᵀ
R̂. (11.10)


The complete algorithm, starting from some initial set of weightsw(0) and some sample


setS, is given by repeating the following steps:
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1. Generate the backprojection matrix,̂PΦπ(t+1), for the greedy policyπ(t+1) with re-


spect to our previous Q-function estimate defined by the weightsw(t), where each


row of P̂Φπ(t+1) is given by:


φ
(
x′i, π


(t+1)(x′i)
)ᵀ


,


andπ(t+1)(x′i) = arg maxa Q̂π(x′i, a,w(t)).


2. Compute weightsw(t+1) of Q-function estimate for new policyπ(t+1) by solving the


linear system in Equation (11.10).


Lagoudakis and Parr [2001] present a simple incremental update rule for to generate


the matriceŝC and b̂ directly. Thus, we never need to generate the intermediate matrices


Φ̂, R̂, andP̂Φπ. Specifically, assume that we initializêC(t) = 0 andb̂(t) = 0. For policy


π(t), each sample(x, a, r,x′) contributes to the approximation according to the following


update equation :


Ĉ(t) ← Ĉ(t) + φ(x, a)
(
φ(x, a)− γφ(x′, π(t)(x′))


)ᵀ
, (11.11)


and b̂ ← b̂ + rφ(x, a). We can then obtain the parameters for the Q-function estimate


associated with this policy by solving the linear systemĈ(t)w = b̂(t).


Importantly, LSPI is able to reuse the same set of samples even as the policy changes.


For example, suppose the corpus contains a tuple(x, a1, r,x
′), i.e., a transition from statex


to statex′ under actiona1. Now suppose that the current policyπ(t) takes actiona2 at state


x′, i.e., π(t)(x′) = a2. This tuple is thus entered into theC(t) matrix using Equation (11.11)


as if a transition were made fromφ(x, a1) to φ(x′, a2):


Ĉ ← Ĉ + φ(x, a1)
(
φ(x, a1)− γφ(x′, a2)


)ᵀ
.


If π(t+1)(x′) changes the action forx′ from a2 to a3, then the next iteration of LSPI enters


a transition fromφ(x, a1) to φ(x′, a3) into theC matrix:


Ĉ ← Ĉ + φ(x, a1)
(
φ(x, a1)− γφ(x′, a3)


)ᵀ
.
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The sample can be reused because the dynamics for statex under actiona1 have not


changed, only the greedy action definingVπ(x′) = Q(x′, π(x′)) has changed froma2 to


a3.


Extending LSPI to a multiagent setting is surprisingly straightforward if we use our


collaborative action selection mechanism, as shown in Figure 11.2. We first note that since


LSPI is a linear method, any set of Q-functions produced by LSPI will, by construction,


be of the right form for collaborative action selection. Each agent is assigned a local set of


basis functions which define its local Q-function. The scope of these basis functions can


be defined over the agent’s own actions as well as the actions of a small number of other


agents. As with ordinary LSPI, the current policyπ(t) is defined implicitly by the current set


of Q-functions,Q̂π(t). However, in the multiagent case, we cannot enumerate each possible


action to determine the policy in Step 1 of the algorithm, because this set of actions is


exponential in the number of agents. Fortunately, we can again exploit the structure of the


coordination graph to determine the optimal actions relative toQ̂π(t) : For each transition


from statex to statex′ under joint actiona the coordination graph is used to determine the


optimal greedy actiona′ = π(x′) = arg maxa Q̂π(t)(x′, a) for x′. The transition is added


to theC matrix in Equation (11.11) as a transition fromQ(x, a) to Q(x′, a′).


A disadvantage of LSPI is that it is not currently amenable to a distributed implementa-


tion during the learning phase: The construction of theC matrix requires knowledge of the


evaluation of each agent’s basis functions for every state in the corpus, not only for every


action that is actually taken by the agents, but also for the action selected by the each pol-


icy for the next time step. Thus, as most batch methods, multiagent LSPI is most useful as


an offline technique for computing value function approximations from samples, without


estimating a model of the environment.


11.3 Coordination in direct policy search


Value function-based reinforcement learning methods have recently come under some crit-


icism as being unstable and difficult to use in practice [Gordon, 1999]. A function ap-


proximation architecture that is not well-suited to the problem can diverge or produce poor


results with little meaningful feedback that is directly useful for modifying the function
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MULTIAGENTLSPI(Φ, w(0), γ, S , Tmax, ε, O)
// Φ = {φ1, . . . , φk} is the set of basis functions.
// w(0) is the initial value for the weights.
// γ is the discount factor.
// S is the sample set.
// Tmax is the maximum number of iterations.
// ε is a precision parameter.
// O stores the elimination order.
// Return the weights for basis functions.


L ET ITERATION t = 0.
REPEAT :


// Initialization.
L ET Ĉ = 0 AND b̂ = 0.
// Iterate over samples.
FOR EACH (xi,ai,x′i, ri) ∈ S :


// Compute the action assigned by the policyπ(t) to the next statex′i, that is the action


which maximizes the current Q-functionarg maxa


∑
i w


(t)
i φ(x′i,a) at the next state


x′i using the variable elimination algorithm in Figure 9.2.
L ET


a′ = ARGVARIABLE ELIMINATION ({w(t)
1 φ1(x′i,a), . . . , w(t)


k φk(x′i,a)},
O, MAX OUT, ARGMAX OUT),


// Add this sample toC matrix and to theb vector.


L ET Ĉ ← Ĉ + φ(xi,ai)
(
φ(xi,ai)− γφ(x′i,a


′)
)ᵀ


.


L ET b̂ ← b̂ + riφ(xi,ai).
// Compute new basis function weightsw(t+1).
L ET w(t+1) BE THE SOLUTION TO THE LINEAR SET OF EQUATIONS: Ĉw = b̂.
L ET t = t + 1.


UNTIL
∥∥w(t+1) −w(t)


∥∥
∞ ≤ ε OR t = Tmax.


RETURN THE WEIGHTSw(t).


Figure 11.2: Multiagent LSPI algorithm.







11.3. COORDINATION IN DIRECT POLICY SEARCH 207


approximator to achieve better performance.


LSPI was designed to address some of the concerns with Q-learning-based value func-


tion approximation. It is more stable than Q-learning and since it is a linear method, it is


somewhat easier to debug. However, LSPI is still an approximate policy iteration procedure


and can be quite sensitive to small errors in the estimated Q-values for policies [Bertsekas


& Tsitsiklis, 1996]. In practice, LSPI takes large, coarse steps in policy space.


The shortcomings of value function-based methods have led to a surge of interest in


direct policy search methods [Williams, 1992; Jaakkolaet al., 1995; Suttonet al., 2000;


Konda & Tsitsiklis, 2000; Baxter & Bartlett, 2000; Ng & Jordan, 2000; Shelton, 2001].


These methods use gradient ascent to search a space of parameterized stochastic policies.


As with all gradient methods, local optima can be very problematic. Furthermore, gradient


estimates are often very noisy and susceptible to plateaus, where the gradient magnitude is


very small and becomes difficult to follow. Defining a relatively smooth but expressive pol-


icy space and finding reasonable starting points within this space are all important elements


of any successful application of gradient ascent.


11.3.1 REINFORCE


In this section, we briefly review one of the simplest single agent policy search algorithms,


REINFORCE[Williams, 1992]. We refer the reader to the presentation of Meuleauet al.


[2001] for a more detailed derivation. TheREINFORCEalgorithm tacklesepisodic prob-


lems, where the agent start from an initial statex(0) distributed according toP
(
x(0)


)
, and


collects rewards forτmax steps. Then a new starting state is sampled, and the process


is repeated. In the episodic formulation, the expected valueVρw of a stochastic policyρ


parameterized byw is given by:


Vρw = Eρw


[
τmax∑
t=0


γtR
(
X(t),A(t)


)
]


. (11.12)


If we differentiate the value in Equation (11.12) with respect to a particular policy
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parameterw ∈ w, we obtain:


∂


∂w
Vρw = Eρw


[
τmax∑
t=0


γtR
(
X(t),A(t)


)
(


t∑


t′=0


∂


∂w
ln ρw


(
A(t′) | X(t′)


))]
.


(11.13)


Unfortunately, the derivative in Equation (11.13) requires us to compute a sum over all


possible assignments to the state and agent variables for the whole episode, an exponentially-


large summation. TheREINFORCE algorithm addresses this issue by usingL sampled


episodes:


S =
{(


x
(0−t)
1 , a


(0−t)
1 , r


(0−t)
1


)
, . . . ,


(
x


(0−t)
L , a


(0−t)
L , r


(0−t)
L


)}
, (11.14)


where
(
x


(0−t)
i , a


(0−t)
i , r


(0−t)
i


)
denotes, respectively, the states visited from time0 to t, the


actions taken, and the rewards accrued. Using these samples, we obtain an unbiased esti-


mate of the derivative:


∂̂


∂w
Vρw =


1


L


L∑
i=1


τmax∑
t=0


γtr
(t)
i


[
t∑


t′=0


∂


∂w
ln ρw


(
a


(t′)
i | x(t′)


i


)]
.


(11.15)


We thus need two operations in order to compute the gradient using theREINFORCEal-


gorithm: a method to sample from our stochastic policy, in order to collect the samples,


and an efficient algorithm for computing∂
∂w


ln ρw
(
a


(t′)
i | x(t′)


i


)
, the partial derivative of


the policy, for some fixed state and action choice.


11.3.2 Multiagent factored soft-max policy


In order to extend the reinforce algorithm to collaborative multiagent settings, we must first


choose an appropriate policy parameterization. We now show how to seed a gradient ascent


procedure with a multiagent policy generated by Q-learning or LSPI as described above.


Of course, the methods presented in this section also apply for policy search methods that


start from any initial policy estimate.


To guarantee that the gradient is well-defined, policy search methods require us to use
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stochastic policies (see definition in Chapter 2). Our first task is to convert the determin-


istic policy implied by our approximate Q-function into a stochastic policy,ρ(a|x), i.e.,


a distribution over actions given the state. A natural way to do this, which also turns out


to be compatible with most policy search methods, is to create a soft-max policy over the


Q-values:


Definition 11.3.1 (soft-max policy) Let thesoft-max policySoftMax(a | x, Qw) associ-


ated with the local Q-functionsQw = {Qw1
1 (x, a), . . . , Q


wg
g (x, a)} be defined as:


SoftMax(a | x, Qw) =
e


1
T


∑
j Q


wj
j (x,a)


∑
b e


1
T


∑
k Q


wk
k (x,b)


; (11.16)


whereT is a temperature parameterindicating how stochastic we want to make the initial


policy.


Note that once we optimize theQwj


j in the policy description, they no longer form an


estimate of the Q-function. We now view them simply as a parameterization of the policy.


To be able to apply policy search methods for such a policy representation, we must


address two additional issues: First, to act according to our policySoftMax(a | x, Qw),


agents must coordinate to sample an action according to the soft-max distribution in Equa-


tion (11.16). Second, for gradient ascent purposes, we need an efficient method for com-


puting the derivative of our stochastic policySoftMax(a | x, Qw) with respect to the pa-


rametersw.


11.3.3 Sampling from a multiagent soft-max policy


The standard approach for sampling from a soft-max policy at some statex is to com-


pute the value of the numerator for each actiona. These values are then normalized, and


an action is chosen at random according to these normalized values. Sampling from our


multiagent soft-max policy may appear problematic, because the size of the joint action


space makes such action enumeration procedure intractable. Fortunately, we can again use


a variable elimination-style algorithm on our coordination graph to sample our multiagent


policy.
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Instantiating the current statex into Q is again easy: each agent needs to observe only


the variables inObs[Qj] and instantiate eachQj, asQx
j , appropriately. At this point, we


need to generate a sample from a soft-max ofQx
j functions that depend only on the action


choice. In order to illustrate the general sampling procedure [Cowellet al., 1999], we


use an example that follows the same structure as the one we used for action selection in


Example 9.1.2:


Example 11.3.2Following our earlier example, our task is now to sample from the poten-


tial corresponding to the numerator ofSoftMax(a | x, Qw). Suppose, for example, that,


after instantiating the statex, the individual agent’s Q-functions have the following form:


Qx = Q1(a1, a2) + Q2(a2, a4) + Q3(a1, a3) + Q4(a3, a4),


and that we wish to sample from the potential function for


e
∑


j Qx
j (a) = eQ1(a1,a2)eQ2(a2,a4)eQ3(a1,a3)eQ4(a3,a4).


To sample actions one at a time, we will follow a strategy of marginalizing out actions until


we are left with a potential over a single action. We then sample from this potential and


propagate the results backwards to sample actions for the remaining agents.


Suppose we begin by eliminatingA4. Agent 4 can summarize its impact on the rest of


the distribution by combining its potential function with that of agent 2 and defining a new


potential:


f4(a2, a3) =
∑
a4


eQ2(a2,a4)eQ4(a3,a4).


The problem now reduces to sampling from


eQ1(a1,a2)eQ3(a1,a3)f4(a2, a3),


having one fewer agent. Next, agent 3 communicates its contribution giving:


f3(a1, a2) =
∑
a3


eQ3(a1,a3)f4(a2, a3).
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SUMOUT (E , Al)
// E = {e1, . . . , em} is the set of functions.
// Al variable to be summed out.


L ET f =
∏L


j=1 ej .
I F Al = ∅:


L ET e = f .
ELSE:


DEFINE A NEW FUNCTION e =
∑


al
f ; NOTE THAT


SCOPE[e] = ∪L
j=1SCOPE[ej ]− {Xl}.


RETURN e.


Figure 11.3: SUMOUT operator for variable elimination, procedure that sums out a vari-
ableAl from functions


∏
i ei.


Agent 2 now communicates its contribution, giving


f2(a1) =
∑
a2


eQ1(a1,a2)f3(a1, a2).


Agent 1 can now sample its action from the potentialP (a1) ∝ f2(a1). Let us denote


this sample bya∗1.


We can now sample actions for the remaining agents by reversing the direction of the


messages and sampling from the distribution for each agent, conditioned on the choices of


the previous agents. For example, when agent 2 is informed of the action selected by agent


1, agent 2 can sample actions from the distribution:


P (a2|a∗1) ∝ eQ1(a∗1,a2)f3(a
∗
1, a2).


After agent 2 samples actiona∗2, agent 3 can sample from:


P (a3|a∗1, a∗2) ∝ eQ3(a∗1,a3)f4(a
∗
2, a3).


Finally, after agent 3 samples actiona∗3, agent 4 can sample its actiona∗4 according to:
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SAMPLEOUT (E , Al)
// E = {e1, . . . , em} is the set of functions that depend only onAl.
// Al variable to be sampled.


RETURN A SAMPLE a∗l DISTRIBUTED PROPORTIONALLY TO
∏L


j=1 ej .


Figure 11.4: SAMPLEOUT operator for variable elimination, procedure that returns a sam-
ple of the variableAl distributed according to


∏
i ei.


P (a4|a∗1, a∗2, a∗3) ∝ eQ2(a∗2,a4)eQ4(a∗3,a4).


The general algorithm has the same message passing topology as our original action


selection mechanism. The only difference is the content of the messages: The forward pass


messages are probability potentials and the backward pass messages are used to compute


conditional distributions from which actions are sampled. The generic variable elimina-


tion algorithm in Figure 9.2 can be used to obtain a centralized version of this algorithm,


all we need to do is use different operators, as in the example above. Specifically, we


substitute theELIM OPERATOR with SUMOUT from Figure 11.3, andARGOPERATOR


with SAMPLEOUT from Figure 11.4. The distributed version is analogous to the one in


Figure 9.4. The correctness of this approach is guaranteed by the correctness of variable


elimination:


Theorem 11.3.3For any orderingO on the variables, theARGVARIABLE ELIMINATION


in Figure 9.2 procedure produces samples from the soft-max policy:


ARGVARIABLE ELIMINATION ({e 1
T


Qx
1 , . . . , e


1
T


Qx
g},O, SUMOUT, SAMPLEOUT)


∼ e
1
T


∑
j Q


wj
j (x,a)


∑
b e


1
T


∑
k Q


wk
k (x,b)


,


= SoftMax(a | x, Qw),


for each statex.


Proof: see for example the book by Lauritzen and Spiegelhalter [1988].


As with the basic variable elimination procedure in Section 4.2, the cost of this sampling


algorithm is linear in the number of new “function values” introduced, or in our multiagent


coordination case, only exponential in theinduced widthof the coordination graph.
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11.3.4 Gradient of a multiagent policy


The next key operation in our multiagent policy search framework is the computation of the


gradient of a multiagent soft-max policy function, a key operation in aREINFORCEstyle


[Williams, 1992] policy search algorithm.1


First, recall that the globalQ-function is the sum of the localQj-functions:


Qw(x, a) =


g∑
j=1


Q
wj


j (x, a),


and our soft-max policy is given by:


SoftMax(a | x, Qw) =
e


1
T


∑
j Q


wj
j (x,a)


∑
b e


1
T


∑
k Q


wk
k (x,b)


.


As discussed in Section 11.3.1, most policy search approaches require us to compute


the gradient of the log of the stochastic policy. Consider the derivative of the log of our


soft-max policy with respect to a particular parameterwi ∈ wi of agenti’s local Q-function:


∂


∂wi


ln [SoftMax(a | x, Qw)] =
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∂wi
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e
1
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∑
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(11.17)


Using the fact that ∂
∂wi


ln f =
∂


∂wi
f


f
, Equation (11.17) becomes:


∂


∂wi
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∑
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1
T


∑
j Q


wj
j (x,b′)


.


(11.18)


1Most policy search algorithms are of this style.







214 CHAPTER 11. COORDINATED REINFORCEMENT LEARNING


MULTIAGENTPOLICYDERIVATIVE (Qw , T , a∗, i,wi,Z(x),O)
// Qw = {Qw1


1 , . . . , Q
wg
g } is the set of local Q-functions.


// T is the temperature parameter.
// a∗ is the current action.
// i is the agent we are considering.
// wi is the parameter we are differentiating.
// Z(x) is the partition functionZ(x) =


∑
b e


1
T


∑
j Qj(x,b,wj) computed at statex: .


// O stores the elimination order.
// Return the derivative∂


∂wi
ln


[
SoftMax(a | x, Qw)


]
computed at actiona∗.


// Collect set of functions to be summed to compute numerator of the second term in the righthand
side of Equation (11.19).


L ET F = {e 1
T Q


w1
1 (x,b), . . . , e


1
T Q


wg
g (x,b), 1


T
∂


∂wi
Qwi


i (x,b)}.
L ET Num = VARIABLE ELIMINATION (F ,O, SUMOUT).
// We can now compute the desired derivative.
L ET δ(a) = 1


T
∂


∂wi
Qi(x,a,wi)− Num


Z(x) .
RETURN DERIVATIVE δ(a∗).


Figure 11.5: Procedure for computing the derivative of the log of our multiagent soft-max
policy: ∂


∂wi
ln [SoftMax(a | x, Qw)], computed at actiona∗.


Using the fact that ∂
∂wi


ef = ef ∂f
∂wi


, and the linearity of derivatives, Equation (11.18) be-


comes:
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(11.19)


The first term in the righthand side of Equation (11.19) is just the local derivative of the


agent’s local Q-function. The denominator of the second term is the partition function of


our multiagent soft-max policy:


Z(x) =
∑


b′
e


1
T


∑
j Q


wj
j (x,b′), (11.20)


computed at statex. We obtain the partition function as a side product of our efficient


sampling algorithm using the variable elimination algorithm in Figure 9.2.







11.3. COORDINATION IN DIRECT POLICY SEARCH 215


Therefore, the only term that remains to be computed is the numerator of the second


term in the righthand side of Equation (11.19). We can again use a variable elimination


procedure to compute this term. Specifically, this numerator can be rewritten as:


∑
a


1


T


∂


∂wi


Qwi
i (x, a)


∏
j


e
1
T


Q
wj
j (x,a). (11.21)


Note that the term inside the sum is the product of restricted-scope functions: the product of
∂


∂wi
Qwi


i (x, a), whose scope isScope[Qi], with eache
1
T


Q
wj
j (x,a), whose scope isScope[Qj].


Thus, computing the numerator in Equation (11.21) is equivalent to computing the sum


over all action of a product of functions, which is exactly a partition function. This task


can again be performed efficiently using variable elimination, analogously to the sampling


method that relies on variable elimination.


Figure 11.5 shows the complete algorithm for computing the derivative of the log of


our multiagent soft-max policy with respect to a particular parameterwi. The derivation in


this section proves the correctness of this procedure:


Theorem 11.3.4For any orderingO on the variables, theMULTIAGENTPOLICYDERIVA-


TIVE procedure computes the derivative of the log of the soft-max policy with respect to


parameterwi ∈ wi of agent’si local Q-function:


MULTIAGENTPOLICYDERIVATIVE(Qx, T, a∗, i, wi, Z(x),O) =


∂


∂wi


ln [SoftMax(a | x, Qw)] ,


computed at actiona∗, for each statex, where the partition functionZ(x) is defined in


Equation (11.20).


If we want to compute the derivative of the log of the policy with respect to every


parameterw ∈ w using the algorithm in Figure 11.5, we would be applying variable elim-


ination once for each parameter. However, by using the clique tree algorithm [Lauritzen &


Spiegelhalter, 1988], it is possible to compute all of these derivatives in time equivalent to


about two passes of variable elimination. Specifically, we would start by building a clique


tree representation for our soft-max policy, conditional on the current statex. Now note
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that we can interpret the second term in the righthand side of Equation (11.19) as the ex-


pectation of1
T


∂
∂wi


Qi(x, a,wi) with respect to our soft-max policy. Given a clique tree, this


expectation can be computed efficiently by just using the calibrated potential in a clique


that includes the agent variables inAgents[Qi], without any further variable elimination


steps.


11.3.5 MultiagentREINFORCE


In the previous sections, we presented efficient algorithms for sampling and computing the


gradient of a multiagent soft-max policy. We can now revisit theREINFORCE, described in


Section 11.3.1, to obtain a new collaborative multiagent policy search algorithm, where the


policy represents explicit correlations between the actions of our agents.


In Figure 11.5, we present an efficient algorithm for computing the derivative of the


log of our multiagent soft-max policy. We can now use this algorithm to compute an


REINFORCE-style approximation to the gradient of the value of our multiagent policy using


the formulation in Equation (11.15). Using this estimate of the gradient, we can use any


of the standard gradient ascent procedures to optimize the parameters of our multiagent


soft-max policy.


We have presented a centralized version of our policy search algorithm. As in the case


of Q-learning, a global error signal must be shared by the entire set of agents in a distributed


implementation. Apart from this, the gradient computations and stochastic policy sampling


procedures involve a message passing scheme with the same topology as the action selec-


tion mechanism. We believe that these methods can be incorporated into any of a number


of policy search methods to fine tune a policy derived by a value function method, such as


Q-learning or by LSPI.


11.4 Empirical evaluation


We validated our coordinated RL approach on two domains: multiagent SysAdmin and


power grid [Schneideret al., 1999].


We first evaluated our multiagent LSPI algorithm on the multiagent SysAdmin problem
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MULTIAGENTREINFORCE(Q, w, T , L, τmax, O)
// Q = {Q1, . . . , Qg} is the set of local Q-functions parameterized byw.
// w is the current value of the parameters.
// T is the temperature parameter.
// L is the number of trajectories.
// Return an unbiased estimate of the gradient of our multiagent soft-max policy:


∇wV SoftMax(a|x,Qw).


// For each trajectory.
FOR l = 1 TO L:


// Initialization.
L ET ∆l(w) = 0.
L ET δl(w) = 0.
SAMPLE INITIAL STATE x(0).
// For each step.
FOR t = 0 TO τmax:


// Sample action from soft-max policy, and get partition function for free.


L ET
[
a(t), Z(x(t))


]
= MULTIAGENTSOFTMAX POLICY({e 1


T Qx(t)
1 , . . . , e


1
T Qx(t)


g },O)].
// Execute action, and observe reward and next state.
EXECUTE ACTION a(t), AND OBSERVE REWARDr(t) AND NEXT STATE x(t+1).
// Compute the derivative of the log of the policy for each parameterw ∈ w.
FOR EACH AGENT i AND EACH PARAMETERwi ∈ wi, LET:


δl(wi) = δi(wi)+MULTIAGENTPOLICYDERIVATIVE(Qx(t)
, T,a(t), i, wi, Z(x(t)),O).


// Update the gradient of the value.
L ET ∆(w) = ∆(w) + γtr(t)δ(w), FOR EACH PARAMETERw ∈ w.


RETURN GRADIENT ∆(w) = 1
L


∑
l ∆l(w).


Figure 11.6: Procedure for the multiagentREINFORCEalgorithm for computing an estimate
to the gradient of the value of our multiagent soft-max policy.
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for a variety of network topologies. Figure 11.7 shows the estimated value of the resulting


policies for problems with increasing number of agents. For comparison, we also plot


the results for three other methods: our planning algorithm using the factored LP-based


approximation (LP); and the algorithms of Schneideret al. [1999], distributed reward (DR)


and distributed value function (DVF). Note, the LP-based approach is a planning algorithm,


i.e., uses full knowledge of the (factored) MDP model. On the other hand, coordinated RL,


DR and DVF are all model-free reinforcement learning approaches.


We experimented with two sets of multiagent LSPI basis functions corresponding to


the backprojections of the “single” and of the “pair” basis functions in Section 9.3. For


n machines, we found that about600n samples are sufficient for multiagent LSPI to learn


a good policy. Samples were collected by starting at the initial state (with all working


machines) and following a purely random policy. To avoid biasing our samples too heavily


by the stationary distribution of the random policy, each episode was truncated at15 steps.


Thus, samples were collected from40n episodes each one15 steps long. The resulting


policies were evaluated by averaging performance over20 runs of100 steps. The entire


experiment was repeated10 times with different sample sets and the results were averaged.


Figure 11.7 shows the results obtained by LSPI compared with the results of LP, DR, and


DVF. We also plot the “Utopic maximum value”, a loose upper bound on the value of the


optimal policy.


The results in all cases clearly indicate that multiagent LSPI learns very good policies


comparable to the LP approach using the same basis functions, butwithoutany use of the


model. Note that these policies are near-optimal, as their values are very close to the upper


bound on the value of the optimal policy. It is worth noting that the number of samples


used grows linearly in the number of agents, whereas the joint state-action space grows


exponentially. For example, a problem with15 agents has over205 trillion states and32


thousand possible actions, but required only9000 samples.


We also tested our multiagent LSPI approach on the power grid domain of Schneider


et al. [1999]. Here, the grid is composed of a set of nodes. Each node is either a Provider


(a fixed voltage source), a Customer (with a desired voltage), or a Distributor. Links from


distributors to other nodes are associated with resistances and no customer is connected


directly to a provider. The distributors must set the resistances to meet the demand of the
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Figure 11.7: Comparing multiagent LSPI with factored LP-based approximation (LP), and
with the distribute reward (DR) and distributed value function (DVF) algorithms of [Schnei-
der et al., 1999], on the SysAdmin problem. Estimated discounted reward per agent of
resulting policies are presented for topologies: (a) star with “single” basis; (b) star with
“pair” basis; (c) ring of rings with “single” basis.
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Figure 11.8: Comparison of our multiagent LSPI algorithm with the DR and DVF algo-
rithms of [Schneideret al., 1999] on their power grid problem: average cost over 10 runs
of 60000 steps and95% confidence intervals. DR and DVF results as reported in [Schneider
et al., 1999].


customers. If the demand of a particular customer is not met, then the grid incurs a cost


equal to the demand minus the supply. At every time step, each distributor can decide


whether to double, halve or maintain the value of the resistor at each of its links. If two


distributors are linked, they share the same resistance and their action choices may conflict.


In such case, a conflict resolution schema is applied,e.g., if distributor 1 is connected


to distributor 2, and distributor 1 wants to halve the resistance and distributor 2 wants to


double it, then the value is maintained. We refer to the presentation of Schneideret al.


[1999] for further details.


Schneideret al. [1999] proposed a set of algorithms, including DR and DVF, and ap-


plied them to this problem. In their set up, each distributor observes a set of state variables,


including the value of the resistance at each of its links, the sign of the voltage differential


to the neighbors, etc; then, it makes a local decision for each of its links. We applied our


multiagent LSPI algorithm to the same problem with two simple types of state-action basis


functions: “no comm.”, which is composed of indicators for each assignment of the state


of the resistor and the action choice, with a total of9 indicator bases for each end of a


link; and “pair comm.”, which has indicator bases for each assignment of the resistance


level, action of distributori and action of distributorj, for each pair(i, j) of directly con-


nected distributors (27 indicators per pair). Thus, our agents observe a much smaller part
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of the state than those of Schneideret al. [1999]. The quality of the resulting policies are


shown in Figure 11.8. Multiagent LSPI used10, 000 samples with different sample sets


for each run. The multiagent LSPI results with the “no comm.” basis set are sub-optimal.


Although some of the policies obtained with this basis set were near-optimal, most were


close to random and the resulting average cost was high (with large confidence intervals).


However, the very simple pairwise coordination strategy obtained from the “pair comm.”


basis set yielded near-optimal policies. The DR and DVF agents must communicate during


the learning process, but not during action selection. Our “pair comm.” basis set requires


a coordination step in both steps. These agents incur a lower average cost than the DR and


DVF agents for all grids and observe a much smaller part of the state space.


11.5 Discussion and related work


We propose a new approach to reinforcement learning:coordinated RL. In this approach,


agents make coordinated decisions and share information to achieve a principled learning


strategy. Our method successfully incorporates the cooperative action selection mecha-


nisms described in Chapters 9 and 10 into the reinforcement learning framework to allow


for structured communication between agents, each of which has only partial access to the


state description. A feature of our method is that the structure of the communication be-


tween agents is not fixeda priori, but derived directly from the value function or policy


architecture.


We believe our coordination mechanism can be applied to almost any reinforcement


learning method. In this chapter, we applied the coordinated RL approach toQ-learning


[Watkins, 1989; Watkins & Dayan, 1992], LSPI [Lagoudakis & Parr, 2001], and policy


search [Williams, 1992]. WithQ-learning and policy search, the learning mechanism can


be distributed; agents communicate reinforcement signals, utility values, and conditional


policies. In LSPI, some centralized coordination is required to compute the projection of


the value function. The resulting policies can always be executed in a distributed manner.


In our view, a batch algorithm, such as LSPI, can provide an offline estimate of theQ-


function. Subsequently,Q-learning or direct policy search can be applied online to refine


this estimate. By using our coordinated RL method, we can smoothly shift between these
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two phases, in collaborative multiagent settings.


We evaluate our coordinated RL methods, comparing the results both to our planning


algorithm, and to other RL approaches. In these experiments, we reliably learned policies


that were comparable to the best policies achieved by our planning algorithm with full


knowledge of the model, and that were better than other state-of-the-art RL approaches.


The amount of data required scaled linearly with the number of state and action variables


even though the state and action spaces were growing exponentially.


Our coordinated RL experiments involved discrete state spaces. These domains were


chosen primarily to compare learning performance with our planning algorithm. However,


the methods discussed in this chapter will also apply to collaborative multiagent planning


problems in continuous state spaces.


Learning in the context of collaborative multiagent problems has also been widely ex-


plored in the past. Claus and Boutilier [1998] partition methods intoindependent learners


(IL), where each agent learns to optimize ignoring the existence of other agents, andjoint


action learners(JAL), where agents learn the value of their actions in conjunction with


other agents through coordination. The policy search method of Peshkinet al. [2000] can


be seen as an example of IL, as the gradient is decomposed into an independent term for


each agent. On the other hand, reward or value sharing methods, such as those of Schnei-


der et al. [1999] and Wolpertet al. [1999], enforce some coordination between agents


when learning the parameters of the value function. The method of Sallans and Hinton


[2001], discussed in more detail in Section 9.4, requires an approximate action selection


step. Our method seeks to optimize the global Q-function or policy, through an efficient


distributed agent coordination mechanism. This optimization is achieved with our coordi-


nation graph and a particular choice of approximation architecture,i.e., a sum of localQi’s


for each agent, where eachQi uses a linear architecture in multiagent LSPI, and eachQi can


use any approximation architecture in multiagent Q-learning and multiagentREINFORCE.


Our empirical evaluation demonstrates that such coordination can significantly improve the


quality of the policies obtained. Our approach will, of course, be most advantageous when


the trueQ-function can be approximated reasonably by such a linear combination of local


Q-functions defined over subsets of the agents.


In this part of the thesis, we developed a suite of algorithm for coordination, planning
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and learning in large-scale systems. We believe that these methods will provide a strong


foundation for solving complex real-world dynamic decision-making problems involving


multiple agents.
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Part IV


Generalization to new environments


225







Chapter 12


Relational Markov decision processes


Most planning methods, including the ones presented thus far in this thesis, are designed


to optimize the plan of an agent in a fixed environment. However, in many real-world


settings, an agent will face multiple environments over its lifetime, and its experience with


one environment should help it to perform well in another.


Consider, for example, an agent designed to play a strategic computer war game, such as


theFreecraftgame shown in Figure 12.1 (an open source version of the popularWarcraftr
game). In this game, the agent is faced with many scenarios. In each scenario, it must


control a set of agents (or units) with different skills in order to defeat an opponent. Most


scenarios share the same basic elements:resources, such as gold and wood;units, such as


peasants, who collect resources and build structures, and footmen, who fight with enemy


units; andstructures, such as barracks, that are used to train footmen. To avoid competitive


multiagent settings, as described in Chapter 1, we are assuming that the Freecraft controlled


enemies are part of the environment and do not respond strategically to our policy choice.


Each scenario is composed of these same basic building blocks, but they differ in terms


of the map layout, types of units available, amounts of resources, etc. We would like the


agent to learn from its experience with playing some scenarios, enabling it to tackle new


scenarios without significant amounts of replanning. In particular, we would like the agent


to generalize from simple scenarios, allowing it to deal with other scenarios that are too


complex for any effective planner.


The idea of generalization has been a longstanding goal in traditional planning [Fikes
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Figure 12.1: Freecraft strategic domain with 9 peasants, a barrack, a castle, a forest, a
gold mine, 3 footmen, and an enemy; executing the generalized policy computed by our
algorithm.


et al., 1972], and later in Markov decision processes and reinforcement learning research [Sut-


ton & Barto, 1998; Thrun & O’Sullivan, 1996]. This problem is a challenging one, because


it is often unclear how to translate the solution obtained for one domain to another. MDP


solutions assign values and/or actions to states. Two different MDPs (e.g., two Freecraft


scenarios), are typically quite different, in that they have a different set (and even number)


of states and actions. In cases such as this, the mapping of one solution to another is not


obvious.


Our approach is based on the insight that many domains can be described in terms of


objects and the relations between them. A particular domain will involve multiple objects


from several classes. Different tasks in the same domain will typically involve different sets


of objects, related to each other in different ways. For example, in Freecraft, different tasks


might involve different numbers of peasants, footmen, enemies, etc. We therefore define


a notion of arelational MDP (RMDP), based on theprobabilistic relational model (PRM)


framework of Koller and Pfeffer [1998]. An RMDP for a particular domain provides a


general schema for an entire suite of environments, or worlds, in that domain. It specifies


a set of classes, and how the dynamics and rewards of an object in a given class depend on


the state of that object and of related objects.


We use the class structure of the RMDP to define a value function that can be general-


ized from one domain to another. We begin with the assumption that the value function is
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approximated with our factored value function representation. Thus, the value of a global


Freecraft state is approximated as a sum of terms corresponding to the state of individual


peasants, footmen, gold, etc. We then assume that individual objects in the same class


have a very similar value function. Thus, we define the notion of aclass-based value func-


tion, where each class is associated with aclass value subfunction. All objects in the same


class have the value subfunction of their class. The overall value function for a particular


environment is the sum of value subfunctions for the individual objects in the domain.


A set of value subfunctions for the different classes immediately determines a value


function for any new environment in the domain, and can be used for acting. Thus, we can


compute a set of class subfunctions based on some a subset of environments, and apply


them to a new environment without replanning for it.


In addition to a computer game, there are many other domains where this relational


framework could be applied. In Chapter 1, we describe a few such application domains. For


example, in manufacturing settings, modern factories are often composed of cells, where


each cell is of one of a few “types”, or classes in our relational model. In sensor networks, a


large-scale sensing task is performed by a large collection of a few types of sensors. These


tasks could potentially be addressed effectively using relational MDPs to generalize from


small scenarios to the large-scale ones required in practice.


12.1 Relational representation


A relational MDPdefines the system dynamics and rewards at the level of a template for


a task domain. Given a particular environment within that domain, it defines a specific


factored MDP instantiated for that environment.


12.1.1 Class template


As in theprobabilistic relational model(PRM) framework of Koller and Pfeffer [1998],


the domain in a relational MDP is defined via aschemathat specifies a set ofobject classes


C = {C1, . . . , Cc}. Each classC is associated with a set ofstate variablesX [C] =


{C.X1, . . . , C.Xk} that describe the state of an object in that class. As in a factored
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MDP, each state variableC.X has adomainof possible valuesDom[C.X]. We define


XC to be the random variables defining the state of an object inC, i.e., the assignment


to the state variablesX [C] of classC. Each cell is of one of a few “types”, or classes in


our relational model. For each class, the schema also specifies a set ofaction variables


A[C] = {C.A1, . . . , C.Ag}. Each action variableC.Ai can take on one of several assign-


mentsDom[C.Ai], and we useAC to define the set of possible assignments to all action


variables of classC.


Example 12.1.1 (Freecraft classes)The classes in our Freecraft domain might include:


Peasant , Footman, Resource, etc. The classPeasant may have a state variable Task


whose domain isDom[Peasant .Task] = {Waiting, Mining, Harvesting, Building}, and a


state variable Health whose domain has three values, indicating the peasant’s health level.


In this case,XPeasant would have4 · 3 = 12 assignments, one for each combination of


values for Task and Health.


Additionally, a peasant can decide to collect resources, by mining or harvesting wood,


or to build a structure. Thus, the peasant classPeasant is associated with a single action


variable whose domain isDom[Peasant .A] = {Wait, Mine, Harvest, Build}.


12.1.2 Links


The schema also specifies a set oflinksL[C] = {L1, . . . , Ll} for each classC representing


links between objects in the domain. Each linkC.L has arangeρ[C.L] = C ′, indicating


that an object of classC is linked to one object of classC ′. In a more complex situation, a


link may relate a classC to many instances of a classC ′ simultaneously. We denote such


a set linkby ρ[C.L] = SetOf{C ′}, i.e., every object of classC is linked to zero, one, or


(possibly) many objects of classC ′.


Example 12.1.2 (Freecraft links) In our Freecraft example, a barrack can be built by


a peasant if enough resources are available. Thus, objects of classBarrack might be


linked toPeasant objects –ρ[Barrack .BuiltBy] = Peasant . In addition a barrack is


linked to two instances of the resource class:ρ[Barrack .MyWood] = Resource, and


ρ[Barrack .MyGold] = Resource.
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The relationship between footmen and enemies is more complex, as multiple footmen


can attack an enemy at same time. In this case, an object of the classEnemy may be linked


to multiple objects of the classFootman, which we denote byρ[Enemy .My Footmen] =


SetOf{Footman}.


12.1.3 A world


A particular instance of the schema is defined via aworld ω, specifying the set of objects


of each class, and the links between them. For a particular worldω, we useO[ω][C] to


denote the objects of classC, andO[ω] to denote the total set of objects inω. A statex of


the worldω at a given point in time is a vector defining the states of the individual objects


in the world. We usexo for an objecto to denotex[Xo], i.e., the instantiation inx to the


state variables of objecto. Similarly, an actiona in the worldω definesao, the assignment


to the action variables of objecto.


The worldω also specifies the domain of possible values of the links between objects.


Thus, for each linkC.L, and for eacho ∈ O[ω][C], ω specifiesDomω[o.L], the set of


possible values ofo.L. Each valueo.` ∈ Domω[o.L] specifies a set of objectso′ ∈ ρ[C.L].


We assume that the domain of valuesDomω[o.L] is fixed throughout time, but the particular


valueo.` of the link may change.


Example 12.1.3 (Freecraft world) Consider a Freecraft scenario containing 2 peasants,


a barrack, and a gold mine. In order to specify a world for this scenario, we would first


define two instances of classPeasant , which we denote byO[ω][Peasant ] = {Peasant1,


Peasant2}, an instance of the barrack class, denoted byO[ω][Barrack ] = {Barrack1},
and, finally,O[ω][Gold ] = {Gold1}. If Peasant1is responsible for building the barrack,


we would specify the linkBarrack1.BuiltBy = Peasant1, whose domain has a single value,


thus does not change over time. We describe a Freecraft domain with a changing relational


structure later in this chapter.


12.1.4 Transition model template


This section presents the basic elements forming the relational representation of the transi-


tion model.
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Class transition model: The dynamics and rewards of an RMDP are also defined at the


schema level. Each classC is associated with aclass transition modelPC that specifies the


probability distribution over the next state of an objecto in classC, given the current state


xo of this object, the assignment to its action variablesao, and the states and actions of all


of the objects linked too:


PC(X′
C | XC ,AC ,XC.L1 ,AC.L1 , . . . ,XC.Ll


,AC.Ll
). (12.1)


As discussed by Koller and Pfeffer [1998], in addition to depending on the state of linked


objectsLi ∈ L[C], such a relational representation can recursively include dependencies on


objects linked to objects inLi, e.g., objects inLi.Lj, for Lj ∈ L[C ′] such thatρ[C.Li] = C ′,


as long as the recursion is guaranteed to be finite. We refer the reader to the presentation of


Koller and Pfeffer [1998] for further details.


In general,X′
C is a set of state variables. We can thus representPC compactly using


a dynamic decision network (DDN), as in Section 8.1.1. In the graph for this DDN, the


parents of each state variableC.X ′
i for classC will be a subset of the state and action


variables ofC and of the objects linked to this class, which we denote by:


Parents(C.X ′
i) ⊆ {X [C],A[C],X [C.L1],A[C.L1], . . . ,X [C.Ll],A[C.Ll]}. (12.2)


The conditional probability distribution (CPD) forC.X ′
i will thus be given by:


PC.X′
i(C.X ′


i | Parents(C.X ′
i)). (12.3)


Using this factored representation, the class transition probabilities become:


PC(X′
C | XC ,AC ,XC.L1 ,AC.L1 , . . . ,XC.Ll


,AC.Ll
) =


∏
i


PC.X′
i(C.X ′


i | Parents(C.X ′
i)).


(12.4)


Example 12.1.4 (Freecraft class transition model)In Freecraft, a peasant can choose to


build a barrack. If there are enough resources (gold and wood), this barrack will be built


with high probability in the next time step. Thus, the transition model for the status of a


barrack in the next time step,Barrack .Status′, depends on its status in the current time
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step, on the task performed by any peasant that could build it (Barrack .BuiltBy.Task), and


on the amount of wood and gold.


Aggregators: The transition model for a classC is conditioned on the state of the objects


in C.Li. In general, whenρ[C.Li] = SetOf{C ′}, Li links an object of classC to a set of


objects of classC ′ (e.g., the set of footmen that can attack an enemy). Thus, our class


template must provide a compact specification of the transition model that can depend on


the state of an unbounded number of variables. We can deal with this issue using the idea of


aggregation[Koller & Pfeffer, 1998]. Note that every objecto′ in C.Li belongs to the same


classC ′. Thus, these objects have the same set of state and action variables. Intuitively,


aggregation summarizes the state of the objectso′ linked to an objecto of classC. The


transition model will then depend on this summary, rather than on the state of every object


in C.Li in isolation.


More specifically, we define acounting functionthat counts the number of objects in a


particular state:


Definition 12.1.5 (counting function) LetB = {o1, . . . , om} be a set of objects of a class


C. Also, letY ⊆ {X [C],A[C]} be a subset of the state and action variables of classC.


We define thecounting function] for some assignmenty to Y in a world statex and action


a by:


](B,x, a,y) =
m∑


i=1


1((xoi
, aoi


)[Y] = y),


where(xoi
, aobji


)[Y] is the instantiation to the variables inY in (xoi
, aobji


), the state and


action of objectoi defined inx anda.


Using this notion of aggregation we can formalize the class transition probabilities in


Equation (12.1) for cases whereC.Li is a set link to elements of classC ′. In such cases,


the probability ofX′
C will depend on](C.Li,x, a,y), wherey is an assignment to the


variables inXC′ ,AC′. For simplicity of exposition, this notion of aggregation is only a


special case of the one defined by Pfeffer [2000]. The more general notion will also apply


in our relational MDP framework.


Example 12.1.6 (Freecraft aggregation)In our Freecraft example, the transition model
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for an enemy’s health depends on an aggregation of the footmen attacking it. Specifically,


the probability that the assignment ofEnemy .Health transitions from Healthy to Dead


depends on:


] (Enemy .My Footmen, x, a, Footman.Health= Healthy∧ Footman.Action= Attack) ,


that is, thenumberof footmen inEnemy .My Footmen who are healthy and attacking in


the current setting to the state variablesx and to the action variablesa.


Dynamic relational structure: The class-level transition model in Equation (12.1) is


defined in terms of the linksC.Li. As discussed in Section 12.1.3, in any particular world


a link o.L for objecto may take one of many values inDomω[o.L]. Thus, the relational


structure of the world may potentially change over time. To simplify our presentation, we


assume that this evolution is deterministic. Specifically, at every time step, the current


(joint) state and action will uniquely specify the particular valueo.` of o.L.


To allow agents or state variables to affect the evolution of links, we define the notion


of a selector variable:


Definition 12.1.7 (selector variable)If a variable B of classC is a selector variable,


C.B = Selector [C ′.L], for some linkC ′.L; then, in a worldω, the domain ofo.B, where


o ∈ O[ω][C], is given by:


Dom[o.B] = Domω[o′.L],


for someo′ ∈ O[ω][C ′]. This instantiated selector variable is denoted by


o.B = Selectorω[o′.L].


In other words, the domain of a variableo.B will be the domain of possible values of a link


o′.L of some (potentially different) objecto′. Note that both state and action variables can


be selectors in this formulation. Using a selector action an object can, for example, choose


which object it will influence in the next time step. Such settings include a computer


network, where a machine can choose to send packets to one of a few other machines, and


Freecraft, where a footman can choose to attack one of several enemies.
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To simplify our models, we assume that an object can only have a selector variable


over its own links or the links of related objects. Specifically, ifo.B = Selectorω[o′.L] we


assume that eithero = o′, or o ∈ Domω[o′.L]. For example, a computer selecting which


machine to receive packets from is an example whereo = o′, as the machine is selecting


the computers that will influence its state. In Freecraft, if we allow a footman to select an


enemy to attack, we are considering the second case,o ∈ Domω[o′.L], as the footman is


setting an object that influences this enemy. This restriction ensures that the links of each


objecto can only be influenced by its own state and action, or by the state and action of


objects inDomω[o.L].


Returning to our dynamic relational structure, we assume that the value of a link is


deterministically specified by each state and action. Specifically, for each linko.L, the


valueo.` at some time step will be deterministically specified by objecto and the objects in


Domω[o.L]. We will not introduce further notation to represent the actual function specify-


ing the valueo.` of the link. We will simply assume that objecto is linked to every object


in Dom[o.L], and that our CPD will select the specific target according to the current state


and action. We can view this formulation as a form of context-specific structure, where


the context, specified by the current action and state, defines which linked objectso′ will


influenceo in the next time step.


Pfeffer [2000] defines relations as first class objects, and thus considers uncertainty


about the target of a link. Using his formulation, we could define a more general notion


of relations that change over time. However, such models could significantly increase the


computational cost of our algorithm.


12.1.5 Reward function template


Finally, we must also define rewards at the class level. We assume for simplicity of notation


that rewards are associated only with the states of individual objects; adding dependencies


on linked objects is straightforward. We define a reward functionRC(XC ,AC) that repre-


sents the contribution to the reward of any object inC. We assume that the reward foreach


objectis bounded byRo
max, or equivalently,


Ro
max ≥ RC(xC , aC) ≥ 0, ∀xC ∈ XC , ∀aC ∈ AC , ∀C ∈ C.
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Example 12.1.8 (Freecraft class reward function)In Freecraft, we may have a reward


function associated with theEnemy class that specifies a reward of 10 if the state of an


enemy object is Dead:


REnemy(Enemy .Health) =


{
10, if Enemy .Health= Dead;


0, otherwise.


More elaborate models may include more global reward functions; for example, the player


may only receive a reward when all enemies are dead. Although such reward functions can


be represented compactly using a relational model, the efficiency of our planning algorithm


can be hindered by factors that depend on many objects simultaneously.


12.2 From templates to factored MDPs


Given a worldω, the RMDP representation uniquely defines aground factored MDPΠω,


whose transition model is specified (as usual) as a dynamic decision network (DDN) [Dean


& Kanazawa, 1988]. The random variables in this factored MDP are the state variables of


the individual objectso.X, for eacho ∈ O[ω][C] and for eachX ∈ X [C]. Similarly, the


action variables will beo.A, for eacho ∈ O[ω][C] and for eachA ∈ A[C].


Next, we must define the transition graph associated with the ground DDN of our fac-


tored MDP. This graph specifies the dependence of the variables at timet + 1 on the vari-


ables at timet. Consider the parents of a state variableo.X ′
i, whereo is an instance of class


C, i.e., o ∈ O[ω][C]. In Equation (12.2), our template for the class transition probabilities


defines the set of parents forC.X ′
i, the class-level state variable corresponding too.X ′


i.


Our worldω specifies the assignment to the linksL[C], i.e., the objectso′ that are linked


to o. Once we set these assignments to the links into Equation (12.2), we obtain the set of


parentsParents(o.X ′
i) of o.X ′


i in our ground DDN.


A template for the conditional probability distribution (CPD) for the class state vari-


ableC.X ′
i was specified at the class-level in Equation (12.3). Using this template, we can


specify the CPD foro.X ′
i:


PC.X′
i(o.X ′


i | Parents(o.X ′
i)). (12.5)
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Example 12.2.1 (Freecraft ground DDN) In a Freecraft world with two peasants, the


random variables in the ground DDN include:


Peasant1.Task, Peasant2.Task, Barrack1.Status, etc.


The parents of the timet + 1 variableBarrack1.Status′ are the timet variables:


Barrack1.Status, Peasant1.Task, Gold1.Amount andWood1.Amount.


The transition model is the same for all instances in the same class, as in Equa-


tion (12.1). Thus, all of theo.Status variables for barrack objects share the same con-


ditional probability distribution. Note, however, that each specific barrack depends on the


particular peasants linked to it. Thus, the actual parents in the DDN of the status variables


for two different barrack objects can be different. That is, the parents of the status vari-


able of a particular barrack will only include the task variables of peasants linked to this


barrack.


The reward function in our ground factored MDPΠω is simply the sum of the reward


functions for the individual objects:


Rω(x, a) =
∑
C∈C


∑


o∈O[ω][C]


RC(x[Xo], a[Ao]).


In our simple Freecraft example, our overall reward function in a given state will be10


times the number of dead enemies in that state.


It remains to specify the actions in the ground MDP. The RMDP specifies a set of


possible action variables for every object in the world. In a setting where only a single


action can be taken at any time step (single agent case), the agent must choose both an


object to act on, and which action to perform on that object. In this case, the set of actions


in the ground MDP is simply the union of the possible actions for each object:


⋃
o∈ω


Dom[Ao].
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Enemy


H’H’HealthHealth


RR
CountCount


Footman
H’H’HealthHealth


AFootmanAFootmanAFootman


my_enemymy_enemy


Figure 12.2: Schema for Freecraft tactical domain.


In a setting where multiple actions can be performed in parallel (say, in a collaborative


multiagent setting), it might be possible to perform an action on every object in the domain


at every step. Here, the set of actions in the ground MDP is a vector specifying an action


for every object: ⊗
o∈ω


Dom[Ao].


Intermediate cases, allowing degrees of parallelism, are also possible. For simplicity of


presentation, we focus on the multiagent case. Freecraft is an example of a multiagent


problem, where an action is an assignment to the action of every unit in the game.


Example 12.2.2 (Freecraft tactical domain)Consider a simplified version of the Freecraft


problem, whose schema is illustrated in Figure 12.2, where only two classes of units par-


ticipate in the game:C = {Footman, Enemy}. Both the footman and the enemy classes


have only one state variable each, Health, with domain:


Dom[Health] = {Healthy, Wounded, Dead}.


The footman class contains one single-valued link:ρ[Footman.My Enemy] = Enemy .


Thus, the transition model for a footman’s health will depend on the health of its enemy:


P Footman(X′
Footman | XFootman,XFootman.My Enemy),


that is, if a footman’s enemy is not dead, then the probability that a footman will become


wounded, and eventually die, is significantly higher.
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Figure 12.3: Resulting factored MDP for Freecraft tactical domain for a world with 2
footmen and 2 enemies.


A footman can choose deterministically to attack any enemy. thus, each footman is


associated with an actionFootman.A that selects the enemy it is attacking:Footman.A =


Selector [Enemy .My Footmen]. The actual value ofEnemy .My Footmen at some point in


time will be deterministically specified as the union of the footmen who select to attack


this enemy. As a consequence, an enemy could end up being linked to a set of footmen,


ρ[Enemy .My Footmen] = SetOf{Footman}. In this case, the transition model of the


health of an enemy may depend on the number of footmen who are not dead and whose


action choice is to attack this enemy:


P Enemy
(
X′


Enemy | XEnemy , ] (Enemy .My Footmen,X,A, ¬Footman.Health= Dead∧ Footman.A = this Enemy)
)


.


Finally, we must define the template for the reward function. Here there is only a reward


when an enemy is dead:REnemy(XEnemy).
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We now have a template to describe any instance of the tactical Freecraft domain.


In a particular world, we must define the instances of each class and the links between


these instances. For example, a world with 2 footmen and 2 enemies has 4 objects:


{Footman1, Footman2, Enemy1, Enemy2}. Each footman is linked to an enemy:


Footman1.My Enemy= Enemy1, and Footman2.My Enemy= Enemy2.


Each enemy can potentially be linked to both footmen:Dom2vs2[Enemy1.My Footmen] =


Dom2vs2[Enemy2.My Footmen] = {{∅}, {Footman1}, {Footman2}, {Footman1, Footman2}}.
At each time step the action choices of the two footmen will specify the actual value of these


links.


The template, along with the number of objects and the links in this specific (“2vs2”)


world, yields a well-defined factored MDP,Π2vs2, as shown in Figure 12.3.


12.3 Relational value functions


In our relational setting, the state space is exponentially large, with one state for each joint


assignment to the random variableso.X of every object (e.g., exponential in the number


of units in the Freecraft scenario). In a multiagent problem, the number of actions is also


exponential in the number of agents. Thus, it is infeasible to represent the exact value


function for such problems, and we must resort to an approximate solution.


12.3.1 Object value subfunctions


We again address the problem of exponential growth in the value function representation


by using our factored linear value function, where the value function of a world is approxi-


mated as a sum oflocal object value subfunctionsassociated with the individual objects in


the model. Here, we associate a value subfunctionVo with every object inω. Most simply,


this local value function can depend only on the state of the individual objectXo. A richer


approximation might associate a value function with pairs, or even small subsets, of closely


related objects. Each object value subfunctionVo can be further decomposed into a linear


combination of a set ofobject basis functions:
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Definition 12.3.1 (object basis function, object value subfunction)Anobject basis func-


tion ho
i for objecto is a functionho


i : To,i 7→ R, whose scope,Scope[ho
i ] = To,i, is a subset


of the state variables of this object, and of related objects; formally, we have that:


To,i ⊆ {Xo,Xo.L1 , . . . ,Xo.Ll
}.


Anobject value subfunctionVo for objecto is a functionVo : To 7→ R, such that:


Vo(To) =
∑


ho
i∈Basis[o]


ho
i w


o
i (To),


whereBasis[o] is the set of basis functions associated with objecto. Thus, the scope ofVo


is given by:


To = Scope[Vo] =
⋃


ho
i∈Basis[o]


Scope[ho
i ].


Given a set of local value subfunctions, we approximate the global value function as:


Vω(x) =
∑


o∈O[ω]


Vo(x[To]). (12.6)


Example 12.3.2 (Freecraft object value subfunctions)In our Freecraft example, the lo-


cal value subfunctionVEnemy1for enemy object Enemy1 might associate a numeric value


for each assignment to the variable Enemy1.Health. We may use a richer approximation for


the footman class, where the functionVFootman1for Footman1 might be defined over the


joint assignments of Footman1.Health and Enemy1.Health, where Footman1.My Enemy=


Enemy1. We represent the complete value function for a world as the sum of the local value


subfunctions for the individual objects in this world. In our example world (ω = 2vs2) with


2 footmen and 2 enemies, the global value function, shown in Figure 12.4(a), will be:


V2vs2(F1.Health, E1.Health, F2.Health, E2.Health) =


VFootman1(F1.Health, E1.Health) + VEnemy1(E1.Health)+


VFootman2(F2.Health, E2.Health) + VEnemy2(E2.Health).
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Figure 12.4: Relational value function representation in Freecraft tactical domain: (a) Fac-
tored value function in the object level for theω = 2vs2 world; (b) Illustrative values of the
local object value subfunctions, objects of the same class have similar values; (c) Class-
based value subfunctions; (d) Class-based value function instantiated in the2vs2 world.
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12.3.2 Class-based value functions


As for any linear approximation to the value function, the factored algorithms presented


thus far in this thesis can be used to compute the coefficients of the object value subfunc-


tions efficiently. Although this approach provides us with a principled way of decomposing


a high-dimensional value function in certain types of domains, it does not help us address


the generalization problem: A local value function for objects in a worldω does not help


us provide a value function for objects in other worlds, especially worlds with different sets


of objects.


To obtain generalization, we build on the intuition that different objects in the same


class behave similarly: they share the transition model and reward function in the relational


MDP. Although they differ in their interactions with other objects, their local contribution


to the value function is often similar. Consider our Freecraft example:


Example 12.3.3 (Freecraft class-based value function)Consider the Freecraft world in


Example 12.3.2. If we apply an approximate MDP solution algorithm to this problem, we


obtain the actual numeric values of each object value function, such as the ones illustrated


in Figure 12.4(b).


As every footman behaves in a similar manner in the game, the numeric values of


VFootman1andVFootman2are very similar, as are the values ofVEnemy1andVEnemy2.


We can thus define new subfunctions for each class:VFootman for footmen, andVEnemy for


enemies, as shown in Figure 12.4(c). We call these new subfunctions,class-based value


subfunctions, as they are defined for classes of objects.


We can now use our class-based value subfunctions to represent the value function of


the2vs2 world, as shown in Figure 12.4(d), by:


V2vs2(F1.Health, E1.Health, F2.Health, E2.Health) =


VFootman(F1.Health, E1.Health) + VEnemy(E1.Health)+


VFootman(F2.Health, E2.Health) + VEnemy(E2.Health).
(12.7)


Note that every object of the classFootman uses the same value subfunctionVFootman, but


every individual footman uses this subfunction with a different argument: the contribution


of Footman1 depends on Footman1.Health and Enemy1.Health, while the contribution of
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Footman2 depends on Footman2.Health and Enemy2.Health. Thus, despite the fact that


these two objects share the same class value subfunction, at every state their contribution


to the global value function may be different. For example, in a state where Footman1 is


alive and Footman2 is dead, the first object will have a higher contribution to the value


function than the second.


In Equation (12.7), we show that the class-based value subfunctions give us a global


value function for the2vs2 world. Importantly, this class-based representation can also


give us a value function for any instance of the Freecraft tactical domain. Thus, we can


generalize the value function obtained in a world with 2 footmen and 2 enemies to a world


with N footmen andN enemies, without replanning:


VNvsN(F1.Health, E1.Health, . . . , FN .Health, EN .Health) =∑N
i=1 VFootman(Fi.Health, Ei.Health) + VEnemy(Ei.Health),


(12.8)


assuming Fi.Enemy= Ei.


This example illustrates our generalization approach: We restrict our space of value func-


tions by requiring that all of the objects in a given class share the same local value subfunc-


tion. We can then generalize this type of value function to any world in our domain.


Formally, we define aclass value subfunctionVC for each class, where eachVC is de-


fined by a linear combination ofclass basis functionsVC =
∑


i w
C
i hC


i . We assume that


the parameterization of this class value subfunction is well-defined for every objecto in


C. This assumption holds trivially if the scope of eachhC
i is restricted to state variables


in X [C], as every instance of classC contains these variables. When the class basis func-


tions can also depend on the state of linked objects, we must define the parameterization


accordingly:


Definition 12.3.4 (class basis functions, class value subfunction)A class basis function


hC
i for classC is a functionhC


i : TC,i 7→ R, whose scope,Scope[hC
i ] = TC,i, is a subset


of the state variables of this class, and of related objects, formally, we have that:


TC,i ⊆ {X [C],X [C.L1], . . . ,X [C.Ll]}.
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A class value subfunctionVC for classC is a functionVC : TC 7→ R, such that:


VC(TC) =
∑


hC
i ∈Basis[C]


wC
i hC


i (TC),


whereBasis[C] is the set of basis functions associated with classC. Thus, the scope ofVC


is given by:


TC = Scope[VC ] =
⋃


hC
i ∈Basis[C]


Scope[hC
i ].


As with the class transition model defined in Section 12.1.4, our class value subfunctions


require aggregators to be defined appropriately whenC.Li links an object of classC to a


whole set of objects of classC ′. Additionally, as with the transition model, class value


subfunctions can depend recursively on the state of objects linked to the objects inC.Li,


that is, the objects inC.Li, C.Li.Lj, C.Li.Lj.Lk, etc.


12.3.3 Generalization


Our class value subfunctions can be used to define aclass-based value functionspecific for


each worldω. This value function is represented as the sum of the class value subfunctions


instantiated for each object inω:


Vω(x) =
∑
C∈C


∑


o∈O[ω][C]


VC(x[To]), (12.9)


whereTo is the scope of the class value subfunctionsTC instantiated with the specific


objects in the links defined by the worldω. This value function definition depends both on


the set of objects in the world and (when local value functions can involve related objects)


on the links between them.


Importantly, although objects in the same class contribute the same class subfunction


into the summation of Equation (12.9), the argument of the function for an object is the


state of that specific object (and perhaps of its related objects). In any given state, the


contributions of different objects of the same class can differ. Thus, as illustrated in Ex-


ample 12.3.3, every footman has the same local value subfunction parameters, but a dead
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footman will have a lower contribution than one that is alive.


Therefore, if we compute the coefficients of the class basis functions, we obtain a set of


class value subfunctions that allow us to generate a value function for any worldω in our


domain.


12.4 Discussion and related work


In this chapter, we present the new framework of relational MDPs. This model seeks to


address a longstanding goal in planning research, the ability to generalize plans developed


for some set of environments to a new but similar environment, with minimal or no re-


planning. An RMDP can model a set of similar environments by representing objects as


instances of different classes, building on the probabilistic relational models of Koller and


Pfeffer [1998].


In order to generalize plans to multiple environments, we specify an approximate value


function in terms of classes of objects and, in a multiagent setting, classes of agents. If we


optimize the parameters of this class-level value function, we obtain a set of class value


subfunctions that allow us to generate a value function for any world in our domain.


In the next chapter, we present an algorithm that estimates these parameters from a set


of sampled environments, allowing us to generalize from these worlds to other worlds in


our domain, without replanning. In particular, we can generalize to larger worlds than we


can solve even with our factored approximate solution algorithms.







Chapter 13


Generalization to new environments


with relational MDPs


In the previous chapter, we defined relational MDPs, a framework that provides a general


schema for representing factored MDPs for an entire suite of environments, or worlds, in a


domain. It specifies a set of classes, and how the dynamics and rewards of an object in a


given class depend on the state of that object and of related objects. We also used the class


structure of the RMDP to define a class-based value function that can be generalized from


one domain to another.


In this chapter, we provide an optimality criterion for evaluating the quality of a class-


based value function for a distribution over environments, and show how it can, in principle,


be optimized using an LP. Unfortunately, this formulation requires an optimization over all


possible worlds simultaneously. The number of possible worlds is usually too large for this


approach to be feasible. Furthermore, if we need to consider all possible worlds, then we


will not be achieving the type of generalization we are seeking. To address this problem,


we also show how a class-based value function can be “learned” by optimizing it relative


to a sample of “small” environments encountered by the agent. We prove that a polyno-


mial number of sampled “small” environments suffices to construct a class-based value


function that is close to the one obtainable for the entire distribution over (arbitrarily-large)


environments. Finally, we show how we can improve the quality of our approximation by


automatically discovering subclasses of objects that have “similar” value subfunctions.


246
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13.1 Finding generalized MDP solutions


With a class-level value function, we can easily generalize from one or more worlds to a


new one. To do so, we assume that a single set of class value subfunctionsVC is a good


approximation across a wide range of worldsω. Assuming we have such a set of value func-


tions, we can act in any new worldω without replanning, as described in Section 12.3.2.


We simply define a world-specific value function as in Equation (12.9), and use it to act.


In order for our generalization approach to be successful, we must now optimizeVC


over an entire set of worlds simultaneously. To formalize this intuition, we assume that


there is a probability distributionP (ω) over the worlds that the agent encounters. We want


to find a single set of class value subfunctions{VC}C∈C that is a good fit for this distribution


over worlds. We view this task as one of optimizing for a single “meta-level” MDPΠmeta ,


where nature first chooses a worldω, and the rest of the dynamics are then determined by


the MDPΠω.


More formally, the state space ofΠmeta is:


{x0} ∪
⋃
ω


{(ω,x) : x ∈ Xω}.


The transition model is the natural one: From the initial statex0, nature chooses a world


ω according toP (ω), and an initial state inω according to some initial starting distribu-


tion P 0
ω(x) over the states inω. The remaining evolution is then done according toω’s


dynamics:


P ((ω,x) | x0) = P (ω) · P 0
ω(x)


P ((ω′,x′) | (ω,x), a) =


{
0 , ω′ 6= ω ;


Pω(x′ | x, a) , otherwise.


In our Freecraft example, nature will choose the number of footmen and enemies, and


define the links between them, which then yields a well-defined MDP,e.g., Π2vs2.
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13.2 LP formulation


The meta-MDPΠmeta allows us to formalize the task of finding a generalized solution to an


entire class of MDPs. Specifically, we wish to optimize the class-level parameters forVC ,


not for a single ground MDPΠω, but for the entire meta-level MDPΠmeta .


13.2.1 Object-based LP formulation


Consider first the problem of approximate planning for a single worldω. As each world is


a factored MDP, we can address this problem using the LP solution algorithms presented


thus far in this thesis, the ones in Chapter 5 for the single agent case, and in Chapter 9 for


multiagent problems.


Variables: As described in Section 12.3.1, the value function for a particular world is


represented by:


Vω(x) =
∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i h


o
i (x[To,i]).


As for any linear approximation to the value function, the LP approach can be adapted to


use this value function representation [Schweitzer & Seidmann, 1985]. Our LP variables


are now the coefficients of our object basis functions for each object:


{wo
i | ∀ho


i ∈ Basis[o], ∀o ∈ O[ω]}. (13.1)


In our Freecraft example, there will be one LP variable for each joint assignment ofF1.Health


andE1.Healthto represent the components ofVFootman1. Similar LP variables will be in-


cluded for the components ofVFootman2, VEnemy1, andVEnemy2.
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Constraints: As before, we have a constraint for each global statex and each global


actiona:


∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i h


o
i (x[To,i]) ≥


∑


o∈O[ω]


Ro(x[Xo], a[Ao]) + γ
∑


x′
Pω(x′ | x, a)


∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i h


o
i (x


′[To,i
′]).


(13.2)


Objective function: Finally, our objective function is to minimize:


∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i


∑
to∈To


αo(to)h
o
i (to), (13.3)


where theobject state relevance weightsαo are simply:


αo(to) =
∑


x∼[to]


αω(x),


andαω are the state relevance weights forΠω.


This transformation has the effect of reducing the number of free variables in the LP to


n (the number of objects) times the number of basis functions in each object value subfunc-


tion. However, we still have a constraint for each global state and action, an exponentially-


large number. As described in the previous chapter, by using our RMDP formulation, the


MDP associated with each world in our domain is represented compactly by a factored


MDP. The structure of the DDN representing the process dynamics is often highly fac-


tored, defined via local interactions between objects. Similarly, the value functions are


local, involving only single objects or groups of closely related objects. Thus, we can


use our factored LP decomposition technique to obtain the coefficients of the object-based


value function. Often, the induced width of the underlying factored LP in such problems


is quite small, allowing our techniques to be applied very efficiently. This induced width


depend both on the structure of the relational MDP, and on the values of the relations in the


particular worldω. Thus, it is possible that a compact relational MDP may be instantiated


into a highly connected world, with large induced width. In such cases, we may exploit
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context-specific structure, if possible, or need to use additional approximation steps, such


as the approximate factorization proposed in Chapter 6 and the future directions discussed


in Section 14.2.3.


13.2.2 Class-based LP formulation


In the previous section, we show how our factored algorithms can be applied to optimize the


object-based value function for a single ground MDPΠω. However, in order to generalize


to new worlds, we must optimize the class-level parameters forVC for the entire meta MDP


Πmeta .


Variables: We can address the problem of optimizing the class-level value function by


using a similar LP solution to the one we used for a single world. The variables in the


class-based linear programare simply the weights of the class basis functions:


{wC
i | ∀hC


i ∈ Basis[C], ∀C ∈ C}. (13.4)


In our example, there will be one LP variable for each joint assignment ofFootman.Health


andEnemy.Health to represent the components ofVFootman for the footman class. Similar


LP variables will be included for the components ofVEnemy. In the2vs2 world, the basis


functions forFootman1andFootman2will use the parameters inVFootman, and the ones for


Enemy1andEnemy2will use the parameters inVEnemy.


Constraints: Recall that our object-based LP formulation in Equation (13.2) for world


ω had a constraint for each statex ∈ Xω and each action vectora ∈ Aω in this world.


In the generalized solution, the state space is the union of the state spaces of all possible


worlds, plus the initial statex0. Our constraint set forΠmeta will, therefore, be a union of
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constraint sets, one for each worldω, each with its own actions:


∀ω ∈ Ω, ∀x ∈ Xω, ∀a ∈ Aω :


∑
C∈C


∑


hC
i ∈Basis[C]


∑


o∈O[ω][C]


wC
i hC


i (x[To,i]) ≥
∑


o∈O[ω]


Ro(x[Xo], a[Ao]) + γ
∑


x′
Pω(x′ | x, a)


∑
C∈C


∑


hC
i ∈Basis[C]


∑


o∈O[ω][C]


wC
i hC


i (x′[To,i
′]);


(13.5)


where the class-based value function for worldω is represented by:


Vω(x) =
∑
C∈C


∑


hC
i ∈Basis[C]


∑


o∈O[ω][C]


wC
i hC


i (x[To,i]). (13.6)


It is important to note that, as each world is represented by a factored MDP, and we can


represent the constraints in Equation (13.5) compactly for each world using our LP decom-


position technique.


In principle, we should have an additional constraint for the new statex0:


V(x0) ≥ R(x0) + γ
∑


ω,x∈Xω


P (ω)P 0
ω(x)Vω(x), (13.7)


whereR(x0) = 0, and the value function for a world,Vω(x), is defined at the class level


as in Equation (13.6). However, as Equation (13.7) is the only inequality involvingV(x0),


and the objective of our LP is to minimize (a weighted combination of) the values of the


states, we can eliminate this constraint by definingV(x0) to have as its value the right hand


side of Equation (13.7).


Objective function: The objective function of our class-based LP has the form:


α(x0)V(x0) +
∑


ω


∑
x∈Xω


α(ω,x)Vω(x).
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As before, we require that the state relevance weightsα be positive and sum to 1. By


substituting the definition ofV(x0) from Equation (13.7), our objective function becomes:


∑
ω,x∈Xω


[
α(x0)γP (ω)P 0


ω(x) + α(ω,x)
]Vω(x).


To simplify this objective function, we assume that


α(x0) = 1/2, and α(ω,x) = P (ω)/2 · αω(x),


for some set ofworld-specific relevance weightsαω(x) > 0, such that
∑


x∈Xω
αω(x) = 1.


In this case, we can reformulate our objective as:


∑
ω,x∈Xω


P (ω)/2[γP 0
ω(x) + αω(x)]Vω(x).


Given the form of this objective, ifP 0
ω(x) > 0,∀x, a particularly natural choice for the


world-specific state relevance weights is:αω(x) = P 0
ω(x). Using this choice of weights,


which will continue to use in this chapter, the objective function becomes:


Minimize:
1 + γ


2


∑
ω


P (ω)
∑
x∈Xω


P 0
ω(x)Vω(x);


or equivalently:


Minimize:
1 + γ


2


∑
ω


P (ω)
∑
C∈C


∑


hC
i ∈Basis[C]


wC
i αC


i (ω), (13.8)


where theclass basis function relevance weightsαC
i (ω) for a worldω are given by


αC
i (ω) =


∑


o∈O[ω][C]


∑
x∈Xω


P 0
ω(x)hC


i (x[To,i]). (13.9)


In some cases, we can further simplify the definition of the class basis function rel-


evance weightαC
i (ω). For example, if the initial state distribution is uniform, the basis
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functions are normalized to sum to one:
∑


to,i∈To,i
hC


i (to,i) = 1 (e.g., indicator basis func-


tions), and the size of the domain of each basis function|To,i| is the same for all objectso


of classC, then we can simplify Equation (13.9) as:


αC
i (ω) =


|O[ω][C]|
|To,i| ;


where|O[ω][C]| is the number of objects of classC in world ω.


In some models, the potential number of objects may be infinite, which could make


the objective function unbounded. To prevent this problem, we assume that the probability


P (ω) goes to zero sufficiently fast, as the number of objects tends to infinity. To understand


this assumption, consider the following generative process for selecting worlds: first, the


number of objects is chosen according toP (]); then, the classes and links of each object are


chosen according toP (ω] | ]). Using this decomposition, we have thatP (ω) = P (])P (ω] |
]). The intuitive assumption described above can be formalized as:


Assumption 13.2.1The probability that a worldω hasn objects is bounded by:


P (] = n) ≤ κ]e
−λ]n, ∀n,


for someκ] > 0, andλ] > 0.


If this assumption holds, the objective function becomes bounded, as the reward function


grows linearly with the number of objects, while the probability of a world decays expo-


nentially with this number. Note that the distributionP (]) over number of objects can


be chosen arbitrarily, as long as it is bounded by some exponentially decaying function.


If, for example, we chooseP (]) to be an exponential distribution with parameterλ, then


λ] = κ] = λ, and the expected number of objects in a world would be1/λ.


13.3 Sampling worlds


The main problem with the class-based LP formulation presented in the previous section is


that the size of the LP — the size of the objective and the number of constraints — grows


with the number of worlds, which, in most situations, grows exponentially with the number
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of possible objects, or may even be infinite. Furthermore, there may be worlds that are too


large to solve, even with our factored approximation algorithms. Finally, this formulation


would not fulfill our generalization goal, as we actually need to consider all possible worlds.


A practical approach to address this problem is tosamplesome reasonable number of


“small” worlds, and solve the LP for these worlds only. The resulting class-based value


function can then be used for worlds that were not sampled, and even for worlds that are


too large to solve with our factored planning algorithms.


A straightforward approach would be to sample worlds from the distributionP (ω). Un-


fortunately, this may lead us to sample very large worlds, albeit relatively low probability


due to Assumption 13.2.1. To address this problem, we restrict our sampling toP≤n(ω),


the distribution over worlds with at mostn objects, which we define in the natural way:


P≤n(ω) =
P (ω)∑


ω′∈Ω≤n
P (ω′)


, ∀ω ∈ Ω≤n , (13.10)


whereΩi is the set of worlds with exactlyi objects, andΩ≤n =
⋃n


i=1 Ωi is the set of worlds


with at mostn objects.


We will start by sampling a setD≤n of m i.i.d. “small” worlds according toP≤n(ω).


We can now define our LP in terms of the worlds inD≤n, rather than all possible worlds.


For each worldω in D≤n, our LP will contain a set of constraints of the form presented


in Equation (13.2). Note that in all worlds these constraints share the variableswC
i that


represent the weights of our class basis functions. The complete LP is given by:


Variables: {wC
i | ∀hC


i ∈ Basis[C], ∀C ∈ C};


Minimize: 1+γ
2m


∑
ω∈D≤n


∑
C∈C


∑
hC


i ∈Basis[C] w
C
i αC


i (ω);


Subject to: ∀ω ∈ D≤n, ∀x ∈ Xω, ∀a ∈ Aω :


∑
C∈C


∑
hC


i ∈Basis[C]


∑
o∈O[ω][C] w


C
i hC


i (x[To,i]) ≥∑
o∈O[ω] R


o(x[Xo], a[Ao])+


γ
∑


x′ Pω(x′ | x, a)
∑


C∈C
∑


hC
i ∈Basis[C]


∑
o∈O[ω][C] w


C
i hC


i (x′[To,i
′]);


(13.11)
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where, by using our sampled worlds, the objective function in Equation (13.8) is approx-


imated by: 1+γ
2m


∑
ω∈D≤n


∑
C∈C


∑
hC


i ∈Basis[C] w
C
i αC


i (ω). Our complete LP-based approxi-


mation algorithm for computing the class-based value function over the sampled worlds is


summarized in Figure 13.1.


The solution obtained by the LP with sampled worlds will, in general, not be equal to


the one obtained if all worlds are considered. However, we can show that the quality of


the two approximations is close, if a sufficient number of worlds are sampled. Specifically,


with apolynomialnumber of sampled worlds, we can guarantee that, with high probability,


the quality of the value function approximation obtained when sampling worlds is close


to the one obtained when considering all possible (unboundedly-large) worlds. In order to


prove this result we need two additional assumptions:


Assumption 13.3.1The magnitude of each basis functionhC
i is normalized to1:


∥∥hC
i


∥∥
∞ ≤ 1, ∀hC


i ∈ Basis[C], ∀C ∈ C.


Further, we assume that the weights of our basis functions are bounded by:


∣∣wC
i


∣∣ ≤ Ro
max


1− γ
, ∀hC


i ∈ Basis[C], ∀C ∈ C.


These assumptions guarantee that eachwC
i hC


i has a bounded magnitude, which is necessary


to guarantee that the space of class-based value function templates is bounded. Note that we


are not assuming a bound on the instantiation of this class-based value function in a world,


on the contrary, our theoretical results will hold even in unboundedly-large worlds, where


this instantiation will also be unbounded. The assumption on the magnitude of the basis


functions can be guaranteed by appropriate construction. The bound on the basis function


weights can be enforced by using additional constraints in our LP, though the result of


this constrained problem may be suboptimal in the original one. However, in practice, the


results of our algorithm usually satisfy this bound, without additional LP constraints, even


when we sample worlds.


Under this assumption, we prove the following bound on the quality of our class-based


LP:







256 CHAPTER 13. GENERALIZATION TO NEW ENVIRONMENTS WITH RMDPS


CLASSBASEDLPA (PC , RC , γ, HC , D≤n, Oω , α)
// PC is the class-based transition model.
// RC is the set of class-based reward functions.
// γ is the discount factor.
// HC is the set of class basis functionsHC = {hC


i | ∀hC
i ∈ Basis[C], ∀C ∈ C}.


// D≤n is a set of sampled worlds.
// Oω stores the elimination order for each sampled worldω ∈ D≤n.
// α are the class basis functions relevance weights as defined in Equation (13.9).
// Return the class basis function weights{wC}C∈C computed by our linear programming-based
approximation over the sampled worlds.


// Generate linear programming-based approximation constraints for each sampled world.
FOR SAMPLED WORLDω ∈ D≤n:


// Compute backprojection of basis functions for this world.
FOR EACH CLASS C ; FOR EACH BASIS FUNCTION IN THIS CLASShC


i ∈ BASIS[C];
FOR EACH OBJECT OF THIS CLASS IN THE WORLDo ∈ O[ω][C]:


L ET go
i = Backprojω(hC


i (To,i)).
// Generate linear programming constraints for this world.
L ET Ωω = FACTOREDLP({(γgo


i − ho
i ) | ∀ho


i ∈ BASIS[o], ∀o ∈ O[ω]}, Rω,Oω).
// So far, our constraints guarantee that


φω ≥ Rω(x, a)+γ
∑


x′
Pω(x′ | x, a)


∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i ho


i (x
′)−


∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i ho


i (x);


to satisfy the linear programming-approximation solution in (13.11) for worldω, we must
add a constraint.


L ET Ωω = Ωω ∪ {φω = 0}.
// Finally, we must introduce a set of equality constraints that ensure that objects of the


same class have the same global class basis function coefficients.
FOR EACH CLASS C ; FOR EACH BASIS FUNCTION IN THIS CLASShC


i ∈ BASIS[C];
FOR EACH OBJECT OF THIS CLASS IN THE WORLDo ∈ O[ω][C]:


L ET Ωω = Ωω ∪ {wo
i = wC


i }.
// We can now obtain the weights of the class basis functions by solving an LP.
L ET {wC}C∈C BE THE SOLUTION OF THE LINEAR PROGRAM:


M INIMIZE :
∑


ω∈D≤n


∑
C∈C


∑
hC


i ∈BASIS[C] w
C
i αC


i (ω);
SUBJECT TO: Ωω, ∀ω ∈ D≤n.


RETURN {wC}C∈C .


Figure 13.1: Factored class-based LP-based approximation algorithm to obtain a general-
izable value function.
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Theorem 13.3.2Consider the following class-based value functions (each withk param-


eters): V̂ obtained from the LP over all possible worldsΩ by minimizing Equation (13.8)


subject to the constraints in Equation (13.5); andṼ obtained by solving the class-level LP


in (13.11) with constraints only for a setD≤n of m worlds sampled fromP≤n(ω), i.e., only


sampled from the set of worldsΩ≤n with at mostn objects, where


n =


⌊
ln


(
1
ε


)


λ]


⌋
.


LetV∗ be the optimal value function of the meta-MDPΠmeta over all possible worldsΩ. For


anyδ > 0 andε > 0, for a number of sampled worldsm polynomial in(k, 1
1−γ


, 1
ε
, ln 1


δ
),


the error introduced by sampling worlds is bounded by:


∥∥∥Ṽ − V∗
∥∥∥


1,PΩ


≤
∥∥∥V̂ − V∗


∥∥∥
1,PΩ


+ 18ε
ln


(
1
ε


)


λ]


Ro
max


1− γ


κ]


λ]


,


with probability at least1−δ, where‖V‖1,PΩ
=


∑
ω∈Ω,x∈Xω


P (ω)P 0
ω(x) |Vω(x)|, andRo


max


is the maximum per-object reward.


Proof: See Appendix A.5.


Our theorem states that if we sample a polynomial number of “small” worlds with at most⌊
ln( 1


ε)
λ]


⌋
objects, independently of the number of states or actions, we obtain an approxi-


mation to the optimal value function of the meta MDP that is close to the one we would


have obtained had we considered all possible (unboundedly-large) worlds in our optimiza-


tion. If, for example, we again chooseP (]) to be an exponential distribution, then


⌊
ln( 1


ε)
λ]


⌋


would lead us to sample worlds with a number of objects that is no larger thanln
(


1
ε


)
times


the expected number of objects in our domain.


The proof uses some of the techniques developed by de Farias and Van Roy [2001b]


for analyzing constraint sampling in general MDPs. However, there are some important


differences: First, our analysis includes the error introduced when sampling the objective


function, which is approximated by a sum only over a sampled subset of “small” worlds


rather than over all worlds as in the LP for the full meta-MDP. This issue was not previously


addressed. Second, and more important, the algorithm of de Farias and Van Roy relies on
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the assumption that constraints are sampled according to some “ideal” distribution (the


product of a Lyapunov function with the stationary distribution of the optimal policy). In


our algorithm, after each world is sampled according toP≤n(ω), our algorithm exploits the


factored structure in the model to represent the constraints exactly, in closed-form, avoiding


the dependency on the “ideal” distribution. Finally, the number of samples in the result of


de Farias and Van Roy [2001b] depends on the number of actions in the MDP, which is


exponential in multiagent problems. They also present an equivalent formulation where


the state space is augmented with a state variable to indicate the choice of each action


variable. At every time step, the agent then sets one of these state variables. The number of


actions in this modified formulation is now equal to the size of the domain of each action


variable, and the theoretical scaling of the number of samples now depends on the log of


the number of joint actions, but multiplies the size of the state space by the number of


joint actions. The increased number of states will probably increase the number of basis


functions needed for a good approximation. Our factored LP decomposition technique


allows us to prove a result that has no dependency on the number of actions when each


world is represented as a factored MDP. Appendix A.5 also presents a more general (and


tighter) version of our result, where in addition to pickingε andδ, the maximum number


of objectsn can be picked arbitrarily.


13.4 Learning classes of objects


The definition of a class-based value function assumes that all objects in a class have the


same local value subfunction. Specifically, our class-based representation forces every


objecto of a particular classC to have the same class basis function coefficient in every


world:


wo
i = wo′


i = wC
i , ∀o, o′ ∈ O[ω][C], ∀hC


i ∈ Basis[C], ∀ω.


However, in many cases, even objects in the same class might play different roles in the


model, and therefore have a different impact on the overall value. For example, if only one


peasant has the capability to build barracks, his status may have a greater impact. Thus,


we may often need to distinguish objects into subclasses. Distinctions of this type are not







13.4. LEARNING CLASSES OF OBJECTS 259


usually known in advance, but are learned by an agent as it gains experience with a domain


and detects regularities.


We propose a procedure that takes exactly this approach to find potential subclasses for


each class: Assume that we have been presented with a setD of worlds. For each world


ω ∈ D, an approximate value function


Vω =
∑


o∈O[ω]


∑


ho
i∈Basis[o]


wo
i h


o
i


is computed as described in Section 13.2.1. If every objecto of classC (o ∈ O[ω][C]) is


similar, then they must have very similar coefficientswo
i in every world inD. Otherwise,


we need a procedure to splitC into subclassesC ′, C ′′, etc, such that objects in each subclass


have similar coefficients.


In order to differentiate objects into subclasses, we assume that each object in a world is


associated with a set of class-based featuresFC
ω [o]. For example, the features may include


local information, such as whether the object is a peasant linked to a barrack or not, as well


as global information, such as whether this world contains archers in addition to footmen.


We use these features, along with the basis function coefficientswo
i , to differentiate objects


of classC into one of the subclasses.


Specifically, we can define our “training data”DC , for each classC, as


{〈FC
ω [o],wo


〉
: ∀o ∈ O[ω][C], ∀ω ∈ D}


,


wherewo is a vector of basis function weights for objecto whoseith component iswo
i .


We now have a well-defined learning problem: given this training data, we would like to


partition the objects of classC into subclasses, such that objects of the same subclass have


similar coefficientswo
i for each basis functionho


i in the object value subfunction. Note


that this is not a standard learning task, we would like to find a rule to describe objects


that have similar coefficients, but we will not use these coefficients in our class-level value


function. Once the subclass definitions are obtained, the specific (sub)class coefficients are


optimized using our class-level LP.


There are many approaches for tackling our learning task. For each classC, we choose
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1. Learning Subclasses:


• Input:


– A set of training worldsD.
– A set of featuresFC


ω [o].


• Algorithm:


(a) For eachω ∈ D, compute an object-based value function, as described in Section 13.2.1.
(b) For each classC: Apply regression tree learning on


{〈FC
ω [o],wo


〉
: ∀o ∈ O[ω][C], ∀ω ∈ D}


.


(c) Define a subclass of classC for each leaf, characterized by the feature vector associated
with its path.


2. Computing Class-Based Value Function:


• Input:


– A set of (sub)class definitionsC.
– A template for{VC =


∑
hC


i ∈Basis[C] w
C
i hC


i : C ∈ C}.
– A set of training “small” worldsD≤n with at mostn objects.


• Algorithm:


(a) Compute the parameters{wC : C ∈ C} that optimize the LP in Equation (13.11) relative
to the worlds inD≤n.


3. Acting in a New World:


• Input:


– A set of class value subfunctions{VC : C ∈ C}.
– A set of (sub)class definitionsC.
– Any world ω.


• Algorithm: Repeat


(a) Obtain the current statex.
(b) Determine the appropriate classC for eacho ∈ O[ω] according to its features.
(c) DefineVω according to Equation (13.12).
(d) Use the coordination graph algorithm to compute an actiona that maximizesRω(x,a) +


γ
∑


x′ P
ω(x′ | x,a)Vω(x′).


(e) Take actiona in the world.


Figure 13.2: The overall generalization algorithm.
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to use decision tree regression [Breimanet al., 1984], so as to construct a tree that predicts


the basis function coefficients given the features. Thus, each split in the tree corresponds


to a feature inFC
ω [o]; each branch down the tree defines a subset of the objects of class


C whose feature values are as defined by the path; the leaf at the end of the path contains


the average coefficients for this set of objects. We use a squared error criteria to guarantee


that objects in a leaf have similar coefficients. As the regression tree learning algorithm


tries to construct a tree that is predictive about the basis function coefficients, it will aim to


construct a tree where the mean at each leaf is very close to the training data assigned to that


leaf. Thus, the leaves tend to correspond to objects inC whose basis function coefficients


are similar. We can thus take the leaves in the tree to define our subclasses, where each


subclass is characterized by the combination of feature values specified by the path to the


corresponding leaf. This algorithm is summarized in Step 1 of Figure 13.2. Note that the


mean subfunction at a leaf is not used as the value subfunction for the corresponding class;


rather, the parameters of the value subfunction are optimized using the class-based LP in


Step 2 of the algorithm. We present a case study of this algorithm in Section 13.5.1.


Once we have our subclass definitions, we define the class-based value function as in


Equation (12.9):


Vω(x) =
∑
C∈C


∑


o∈O[ω][C]


VC(x[To,i]). (13.12)


However, our set of classesC now includes all subclasses of each classC, and the class of


each objecto is now the subclass whose branch is consistent with the features of this object


FC
ω [o].


13.5 Empirical evaluation


In this section, we present empirical evaluations of our generalization algorithm on two do-


mains: First, we use the multiagent SysAdmin domain to evaluate the scaling properties of


our approach, and the effect of learning subclasses on the quality of our policies. Then, we


present results on the actual Freecraft game. Here, we evaluate the ability of our algorithm


to generalize to problems that are significantly larger than our planning algorithms could


address.
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13.5.1 Computer network administration


We first experimented with the multiagent SysAdmin problem described in Example 8.1.1.


In this problem, we have a single classComp to represent computers in the network. This


class is associated with two state variablesX [Comp] = {Comp.Status, Comp.Load},
where


Dom[Comp.Status] = {good, faulty, dead}, and


Dom[Comp.Load] = {idle, loaded, process successful}.


Each object of theComp class is also associated with an action variableA[Comp] =


{Comp.A}, whereDom[Comp.A] = {reboot, not reboot}. Each object of classComp


has a single set linkL[Comp] = {Neighbors}, such that


ρ[Comp.Neighbors] = SetOf{Comp},


i.e., every computer is linked to a set of other computers.


The class transition probabilities for the status variable are described as follows:


P Comp.Status’(Comp.Status’| Comp.Status, Comp.A, ] (Comp.Neighbors.Status= Dead)) ,


that is, the status of a machine in the next time step depends on its status in the current


time step, on the action of its administrator (rebooting causes the machine to be good with


probability 1), and on the number of neighbors that are dead, as a dead machine increases


the probability that its neighbors will become faulty and eventually die. In our experiments,


we use a noisy-or to represent this relationship, where each neighbor has the same noise


parameters [Pearl, 1987].


The class transition model for the load variable is simply:


P Comp.Load’ (Comp.Load’ | Comp.Load, Comp.Status, Comp.A) ,


as processes take longer to terminate when a machine is faulty, and are lost when the


machine dies or the administrator decides to reboot it.
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The system receives a reward of 1 if a process terminates successfully. Thus, the class


reward template is simply:


RComp(Comp.Load’) = 1 (Comp.Load= process successful) .


A world in this problem is defined by a number of computers and a network topology


that defines the objects inComp.Neighbors. For a worldω with n machines, the number


of states in the MDPΠω is 9n and the joint action space contains2n possible actions,e.g.,


a problem with30 computers has over1028 states and a billion possible actions. We use a


discount factorγ of 0.95.


The formulation of our class basis functions was based on the “pair” basis defined in


Section 9.3. Each object of classComp is associated with two sets of basis functions:


The first set contains an indicator function over each joint assignment ofComp.Statusand


Comp.Load. The second set includes indicators overComp.StatusandComp’.Status, for


eachComp’ ∈ Comp.Neigbourghs.


For this problem, we implemented our class-based LP generalization algorithm de-


scribed in Chapter 13 in Matlab, using CPLEX as the LP solver. Rather than using the


full LP decomposition presented in Chapter 4, we used the constraint generation extension


proposed in by Schuurmans and Patrascu [2001], described in Section 4.5, as the memory


requirements were lower for this second approach.


We first tested the extent to which value functions are shared across objects. In Fig-


ure 13.3(a), we plot the value each object gave to the assignment to the indicator basis


function1(Comp.Status= working), for instances of the ‘three legs’ topology. Clearly,


these values cluster into three classes. This is the type of structure that we can extract with


our subclass learning algorithm in Section 13.4. We usedCARTr to learn decision trees


for our class partition. Our training dataDComp should be of the form:


{〈FComp
ω [o],wo


〉
: ∀o ∈ O[ω][Comp], ∀ω ∈ D}


,


whereFComp
ω [o] is some set of features evaluated for objecto in world ω.


In our ‘three legs’ network example, we associated each instance of classComp with a


single featured(o, ω) that measures the number of hops from the center of the network to
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Figure 13.3: Results of learning subclasses for the multiagent SysAdmin problem: (a)
training data; (b) classes learned for ‘three legs’; (c) advantage of learning subclasses.


computero. For this particular case, the learning algorithm partitioned the computers into


three subclasses illustrated in Figure 13.3(b). Intuitively, we name these subclassesServer,


Intermediate, andLeaf. In Figure 13.3(a), we see that the basis function coefficient for


the classServer (third column) has the highest value, because a broken server can cause


a chain reaction affecting the whole network, while the coefficient of the classLeaf (first


column) is lowest, as it cannot affect any other computer.


We then evaluated the generalization quality of our class-based value function by com-


paring its performance to that of planning specifically for a new environment. For each


topology, we computed the class-based value function with5 sampled networks of up to20


computers. We then sampled a new larger network of size21 to 32, and computed for it a


value function that used the same factorization, but with no class restrictions. This value


function has more parameters – different parameters for each object, rather than for entire


classes. These parameters are optimized for each particular network. This process was


repeated for8 sets of networks.


First, we wanted to determine if our procedure for learning classes yields better ap-


proximations than the ones obtained from the default classes. Figure 13.3(c) compares the


max-norm error between our class-based value function and the one obtained by replanning


in each domain, without any class restrictions. The graph suggests that, by learning classes


using our decision tree regression procedure, we obtain a much better approximation of the


value function than we would have, had we replanned.
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Figure 13.4: Generalization results for the multiagent SysAdmin problem: (a) generaliza-
tion quality (evaluated by20 Monte Carlo runs of100 steps); (b) adding noise to instanti-
ated object parameters.


Next, we evaluate the quality of the greedy policies obtained from our class-level value


function, as compared to replanning in each world. The results, shown in Figure 13.4(a),


indicate that the value of the policy from the class-based value function is very close to


the value of replanning, suggesting that we can generalize well to new problems. We also


computed a utopic upper bound on theexpectedvalue of the optimal policy by removing


the (negative) effect of the neighbors on the status of the machines. Although this bound is


loose, our approximate policies still achieve a value close to the bound, indicating that our


generalized policies are near-optimal for these problems.


In practice, objects may not have exactly the same transition model as the one defined


by the class template. To evaluate the effects of such uncertainty, we used a hierarchical


Bayes approach. Thus, rather than giving each object the same transition probabilities as


the class, we sampled the parameters of each object independently from a class Dirichlet


distribution whose mean is determined by the class parameter. Figure 13.4(b) shows the


error between our class-based approximation versus the value function we obtain for re-


planning with theparticular instantiated objects, without class restriction. Note, the error


grows linearly in a log-log scale, that is, only polynomially with the standard deviation of


the Dirichlet, indicating that our approach is robust to such noise.
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Figure 13.5: RMDP schema for Freecraft.


13.5.2 Freecraft


We also evaluated the quality of our class-based approximations on the actual Freecraft


game. For this evaluation, we implemented our methods in C++ and used CPLEX as the


LP solver. We created two tasks, which assess our policies in two different aspects of


the game:strategic domain– evaluating long-term strategic decision making, andtactical


domain– testing coordination in local tactical battle maneuvers. Our Freecraft interface,


and scenarios for these and other more complex tasks are publicly available at:


http://dags.stanford.edu/Freecraft/ .


For each task we designed an RMDP model to represent the system by consulting “do-


main experts”. In this model, we have 6 classes:


C = {Peasant, Wood, Gold, Barrack, Footman, Enemy}.
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The state and action variables of each class are:


X [Peasant] = {Task}, A[Peasant] = {Action}.
X [Gold] = {Amount}.
X [Wood] = {Amount}.
X [Barrack] = {Status}.
X [Footman] = {Health}, A[Footman] = {Create, Attack}.
X [Enemy] = {Health}.


An object of the classPeasant can have one of 4 tasks,


Dom[Peasant.Task] = {Waiting, Harvesting, Mining, Building},


and one of 4 actions:Dom[Peasant.Action] = {Wait, Harvest, Mine, Build}. At every


time step, a peasant’s task will be set according to its action, with high probability.


The amount of gold or wood is discretized into 3 levels. The value ofGold.Amountat


each time step increases with a probability that depends monotonically on the number of


peasants whose task isMining. The class transition model forWood is analogous.


In our model, the status of a barrack takes one of 2 values:{Unbuilt, Built}. A barrack


will transition from unbuilt to built with high probability, if enough gold and wood are


available, and the task of a peasant linked to this barrack isBuilding.


The state variableFootman.Healthis discretized into 5 “health points”, a footman with


no health points is considered “dead”. If a dead footman takes actionFootman.Create,


a barrack is built, and there is enough gold, this footman’s health points will be set to


its maximum level. At every time step, a footman’s health points may decrease, if it is


attacked by an enemy who is not dead. In addition, the footman’s second action variable,


Footman.Attack, is used to select which enemy this footman is attacking in the next time


step, as described in Example 12.2.2.


Objects of classEnemy are described similarly to those of classFootman. The state


variableEnemy.Healthis discretized into 5 “health points”. At every time step, an enemy’s


health points may decrease with a probability that increases monotonically with the number


of footmen whoseFootman.Attack action variable selects this enemy. In our Freecraft
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(a) (b)


Figure 13.6: Freecraft problem domains: (a) tactical; (b) strategic.


model, only theEnemy class is associated with a reward function:


REnemy = 1 (Enemy.Health= Dead) .


After solving a number of small problems, we learned that thePeasant class needed


to be divided into 2 subclasses: Peasants that are linked to objects of the classBarrack,


i.e., peasants that can build a barrack, are defined to belong to classBuilder, while other


peasants are included in the standardPeasant class.


Figure 13.5 illustrates our complete relational MDP representation for the general Freecraft


domain. We use this relational representation to obtain class-level value functions. After


planning, our policies were evaluated on the actual game. To better visualize our results,


we direct the reader to view videos of our policies at a website:


http://robotics.stanford.edu/∼guestrin/Research/Generalization/ .


This website also contains more details of our RMDP model. It is important to note that


our policies were constructed relative to this very approximate model of the game, but


evaluated against the real game.


Tactical domain: In the tactical domain, also described in Example 12.2.2, the goal is


to take out an opposing enemy force with an equivalent number of units. At each time step,


each footman decides which enemy to attack. The enemies are controlled using Freecraft’s
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hand-built strategy. We modelled footmen and enemies as described above. To encourage


coordination, each footman was also linked to a “buddy” in a ring structure.


Our class value function forFootman was defined by a set of indicators over the as-


signments of this footman’s health, his buddy’s health, and the health of the enemy that


attacks this footman. Additionally, the class value function forEnemy was defined by a


set of indicators over the assignments of this enemy’s health, the health of the footman this


enemy is attacking, and the health of the enemy that attacks this footman’s buddy.


We solved this model for a world with 3 footmen and 3 enemies, illustrated in Fig-


ure 13.6(a). The resulting policy demonstrates successful coordination between our foot-


men: initially all three footmen focus on one enemy. When the enemy becomes injured,


one footman switches its target. Finally, when the enemy is very weak, only one foot-


man continues to attack it, while the other two tackle a different enemy. Our full policy is


fairly complex, with action choices depending both on the state of the footmen and of the


enemies. Using this policy, our footmen defeat the enemies in Freecraft.


The scope of our class value function forFootman includes the health of the enemy.


Unfortunately, the scope of the backprojection of this function includes theHealth and


Attackvariables of all footmen, as every footman can choose to attack this enemy. Thus,


the size of the backprojection grows exponentially in the number of objects in the world.


Therefore, we cannot solve large models using our standard factored LP approach. It may


be possible to exploit CSI in this model, as the CPD of an enemy only depends on a footman


in contexts where the footman’s action chooses to attack this enemy. However, solving a


factored MDP with this formulation requires extensions to the CSI methods presented in


this thesis to address the aggregation in the enemy’s CPD. Although some such extensions


are discussed by Pfeffer [2000], we have not yet pursed them in the context of MDPs.


Fortunately, when executing a policy, we first instantiate the state at every time step.


Thus, after instantiation, the factors become significantly smaller, and action selection is


performed efficiently. Thus, even though we cannot execute Step 2 in Figure 13.2 of our


algorithm for larger scenarios, we can generalize our class-based value function to a world


with 4 footmen and enemies without replanning, using only Step 3 of our approach. The


policy continues to demonstrate successful coordination between footmen, and we again


beat Freecraft’s policy. However, as the number of units increases, the position of enemies
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becomes increasingly important. Specifically, one of our footmen may choose to attack an


enemy that is not close to the footman’s current position. As our footman moves towards


that enemy, it is attacked by other enemies along the way, wasting valuable health points.


Currently, our model does not consider this feature, and in a world with 5 footmen and


enemies, our policy loses to Freecraft in a close battle.


Strategic domain: The goal in thestrategic domainis to kill a strong enemy. The player


starts with a few peasants, who can collect gold or wood, or attempt to build a barrack, a


task requiring both gold and wood. All resources are consumed after eachBuild action.


With a barrack and gold, the player can train a footman. The footmen can choose to attack


the enemy. When attacked, the enemy loses “health points”, but fights back and may kill


the footmen.


In addition to the standard links in our RMDP model, we included links between every


peasant and a “central” object of the new subclassBuilder defined above. Each footman


was also linked to a “buddy” in a ring structure, as described above. Our local value


subfunctions for each class were composed of indicators for the assignment of the state


variables of each triple of linked objects in our model.


We solved a world with 2 peasants, 1 barrack, 2 footmen, and an enemy. The resulting


policy for this instance of the strategic problem is quite interesting: the peasants gather


gold and wood to build a barrack, then gold to build a footman. Rather than attacking the


enemy at once, this footman waits until the peasants collect enough gold to build a second


footman. Then, these two footmen attack the enemy together. Unfortunately, the stronger


enemy is able to kill both of these footmen, becoming quite weak in the process. When


the next footman is trained, rather than waiting for a second one, it attacks the now weak


enemy, and is able to kill him.


As with the tactical domain, planning in large instances of the strategic domain is in-


feasible, as every peasant can influence the amount of the gold and wood. Fortunately, at


every time step, every peasant’s task and the amount of gold are observed. Thus, the instan-


tiated Q-function is very compact, and action selection can be performed very efficiently.


Therefore, we can use our generalized value function to tackle a world with 9 peasants and


3 footmen, without replanning.
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Interestingly, the policy in the larger scenario is qualitatively different from the one in


the smaller scenario: As before, the 9 peasants coordinate to gather resources, and build


a barrack. However, rather than attacking with 2 footmen, as in the smaller scenario, the


policy now waits for 3 footmen to be trained before attacking. The 3 footmen are able


to kill the enemy, and only one of these footmen dies. This problem shows successful


generalization from a problem with about106 joint state-action pairs to one with over1013


pairs.


13.6 Discussion and related work


We present an algorithm that is able to generalize plans to new environments represented by


relational MDPs. Such a generalization has two complementary uses: First we can tackle


new environments with minimal or no replanning. Second it allows us to generalize plans


from smaller tractable environments to significantly larger ones that could not be solved


directly with our planning algorithm. Our theoretical analysis proves that, by solving a


linear program over a sampled set of “small” worlds, we obtain a solution that is close to


the one we would have obtained if we had sampled all possible worlds. This LP can be


solved by our factored LP decomposition technique, allowing us to obtain the weights of


our class-level basis functions very efficiently. Finally, we present an approach for learning


subclass structure by finding regularities in the value functions of a set of small worlds.


We present empirical evaluations of our generalization algorithm, demonstrating the


two complementary uses of generalization: First, in a multiagent network management


task, we showed that the quality of the generalized policies are very close to those obtained


by replanning in each world, without class restrictions in the value function. We have


also empirically demonstrated that our approximations can be significantly enhanced by


learning subclasses of objects.


Second, we demonstrated in the actual Freecraft game that our class-based value func-


tions allow us to generalize plans from smaller tractable environments to significantly larger


ones that could not be solved directly with our planning algorithm. This real strategic com-


puter game contains many characteristics present in real-world dynamic resource allocation







272 CHAPTER 13. GENERALIZATION TO NEW ENVIRONMENTS WITH RMDPS


problems. Our generalized policies for this the Freecraft domain demonstrated the long-


term planning, and elaborate coordination between agents required to solve such general


resource allocation problems.


13.6.1 Comparisons and limitations


Several other authors have considered the generalization problem, first in traditional plan-


ning [Fikeset al., 1972], and later in stochastic domains [Sutton & Barto, 1998; Thrun


& O’Sullivan, 1996]. Several approaches can represent value functions in general terms,


but usually require it to be hand-constructed for the particular task. Others have focused


on reusing solutions from isomorphic regions of state space [Parr, 1998; Hauskrechtet al.,


1998; Dietterich, 2000]. By comparison, our method exploits similarities between objects


evolving in parallel. It would be very interesting to combine these two types of decompo-


sition, as discussed in Section 14.2.8.


The work of Boutilieret al. [2001] on symbolic value iteration computes first-order


value functions that generalize over objects in a world. However, it focuses on computing


exact value functions, which are unlikely to generalize to a different world. Furthermore, it


relies on the use of theorem proving tools, which adds to the complexity of the approach.


Methods in deterministic planning have focused on generalizing from compactly de-


scribed policies learned from many domains to incrementally build a first-order policy


[Khardon, 1999; Martin & Geffner, 2000]. Closest in spirit to our approach is the recent


work of Džeroskiet al. [2001] and of Yoonet al. [2002] that extends these determinis-


tic approaches to stochastic domains. Their methods find regularities in exact policies or


Q-functions obtained for small environments. These approaches then useinductive logic


programming(ILP) methods [De Raedt (ed.), 1995] to obtain relational representations of


the policy or Q-function. We thus view these methods as attempting to find generalized so-


lutions from the compact policies or value functions obtained from goal-based algorithms,


such as those described in Section 7.8.2, where a policy or value function can sometimes


be represented compactly using a propositional description.







13.6. DISCUSSION AND RELATED WORK 273


Our procedure for discovering subclasses by finding structure in the factored value func-


tion is, in some sense, analogous to the ILP approaches. Once we have learned these sub-


classes, we perform a global planning step, taking into account many problem domains


simultaneously. More fundamentally, we are attempting to find an approximate factored


value functions that generalize across environments, rather than similarities between parts


of exact policies or value functions. The comparison between our generalization approach


and those of Ďzeroskiet al. [2001] and of Yoonet al. [2002] is analogous to the compar-


isons between our factored planning algorithms and the planning methods of Kushmerick


et al. [1995] and of Blum and Langford [1999], presented in Section 7.8.2. In multiagent


settings, however, exact compact propositional descriptions of the policy or of the value


function are often very difficult to obtain. Thus, we expect that the algorithms of Džeroski


et al. [2001] and of Yoonet al. [2002] will be less successful in these settings.


The key assumption in our method is interchangeability between objects of the same


class. Our mechanism for learning subclasses allows us to deal with cases where objects in


the domain can vary, but our generalizations will not be successful in very heterogeneous


environments, where most objects have very different influences on the overall dynamics


or rewards. Additionally, the efficiency of our LP solution algorithm depends on the con-


nectivity of the underlying problem. In a domain with strong and constant interactions


between many objects (e.g., RoboCup), or when the reward function depends arbitrarily on


the state of many objects (e.g., Blocksworld), the solution algorithm will probably not be


efficient, as discussed in Section 7.8.2.


Although our experiments show that we can successfully apply our class-based value


functions to new environments without replanning, there are domains where such direct


application would not be sufficient to obtain a good solution. In such domains, our gen-


eralized value functions can provide a good initial policy, which could be refined using a


variety of local search methods.


We have assumed that relations only change deterministically over time. In many do-


mains (e.g., Blocksworld or RoboCup), this assumption is false. In Chapter 10, we showed


thatcontext-specific independencecan allow for dynamically changing coordination struc-


tures in multiagent environments. Similar ideas may allow us to tackle stochastically


changing relational structures, as discussed further in Section 14.2.9.
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13.6.2 Summary


This part of the thesis presents: RMDPS, a relational representation for MDPs; a class-


based value functions that, once optimized, can be instantiated to generate approximate


solutions to new environments without replanning; an efficient LP-based algorithm for


optimizing the weights of these class-based basis functions by considering a polynomial


sample of “small” environments; and a method for discovering subclass structure that can


improve the quality of our approximations. Our empirical results support both RMDPs as a


model for generalization in dynamic environments, and our LP-based algorithm for learn-


ing the parameters of the class-level value function from a set of sampled environments.


The choice of learning algorithm is, of course, orthogonal to our RMDP representation.


However, we believe that our combined methods will provide a strong framework for ob-


taining generalized approximate solutions to large-scale stochastic planning domains.







Part V


Conclusions and future directions
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Chapter 14


Conclusions


This thesis demonstrates that, by exploiting problem-specific structure, we can scale up


automated methods for planning under uncertainty to complex large-scale domains. This


chapter provides a summary of the methods and algorithms presented in this thesis, along


with a discussion of some limitations of our work and future questions that remain open.


14.1 Summary and contributions


This sections presents a high-level summary of our results, emphasizing the connections


between the parts of the thesis.


14.1.1 Foundation


This thesis provides a formal framework for exploiting problem specific structure in com-


plex planning problems under uncertainty. Factored MDPs [Boutilieret al., 1995] allow us


to represent such structured problems very compactly. Unfortunately, even with this com-


pact representation, optimal planning is still intractable [Mundhenket al., 2000; Liberatore,


2002; Allenderet al., 2002]. We thus focus on approximate solutions for such problems.


Specifically, we choose a linear approximation architecture [Bellmanet al., 1963], where
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the value function is approximated as linear combination of a set of basis functions:


V(x) =
∑


i


wihi(x).


This architecture provides simple and often effective methods for obtaining approximate


solutions for planning problems. More specifically, in the context of factored MDPs, we


focus on factored value functions [Koller & Parr, 1999], where each basis functionhi is


restricted to depend only on a small set of state variablesCi:


V(x) =
∑


i


wihi(x[Ci]).


Factored value functions are sometimes able to represent near-optimal approximations of


the true value function very compactly, even in some exponentially-large problems, as


demonstrated in this thesis.


This thesis builds on this basic factored representation of the MDP and of the value


function to design very efficient planning algorithms and multiagent coordination strate-


gies. Additionally, we extend our approach to address multiagent reinforcement learning


problems where a model of the world is not known, and to obtain multiagent coordination


structures, which may vary with the state of the system. Finally, we describe a relational


representation for MDPs, which allows us to generalize solutions devised from a sample of


small worlds to larger worlds, without replanning.


Our algorithms leverage on factored LPs, a novel LP decomposition technique, analo-


gous to variable elimination in cost networks [Bertele & Brioschi, 1972], that reduces an


exponentially-large LP to a provably equivalent, polynomial-sized one. This algorithm,


described in Chapter 4, is a central element in almost every method in this thesis.


14.1.2 Factored single agent planning


The basic factored MDP representation addresses single agent problems. For such prob-


lems, we have developed three planning algorithms, which build on our factored LP de-


composition technique. These algorithms follow the structure described in Figure 14.1.
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Figure 14.1: Overview of our framework for efficient planning in structured single agent
problems.


We assume that the world is modelled by a factored MDP and that a set of (factored) basis


functions has been selected. Offline, one of our planning algorithms is used to compute the


weightsw of our basis functions. Then, online, the agent follows a closed-loop policy, by


observing the current statex from the real world, computing the greedy action:


arg max
a


Qw(x, a) = arg max
a


R(x, a) + γ
∑


x′
P (x′ | x, a)


∑
i


wihi(x
′) .


This greedy action can be computed efficiently using the backprojection algorithm in Sec-


tion 3.3. Once the maximizing action is obtained, the agent executes this action in the real


world, observes the next state, and the process is repeated.


We proposed three algorithms for optimizing the weightsw of the basis functions: ap-


proximate policy iteration, LP-based approximation, and the factored dual algorithm. Our


approximate policy iteration algorithm is motivated by error analyses showing the impor-


tance of minimizingL∞ error. This algorithm is more efficient and substantially easier to
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implement than previous methods based on theL2-projection. Our experimental results


suggest that ourL∞ method also performs better in practice. Both of these algorithms re-


quire a default action assumption, stating that an action only modifies the CPDs of a few


state variables.


Our factored LP-based approximation algorithm is simpler, easier to implement and


more general than the policy iteration approach. Unlike our policy iteration algorithm, the


LP-based approximation algorithm does not rely on the default action assumption stating


that actions only affect a small number of state variables. Although the LP-based approx-


imation algorithm does not have the same theoretical guarantees as max-norm projection


approaches, empirically it seems to be a favorable option. Our experiments suggest that


approximate policy iteration tends to generate better policies for the same set of basis func-


tions. However, due to the computational advantages, we can add more basis functions


to the LP-based approximation algorithm, obtaining a better policy and still maintaining a


much faster running time than approximate policy iteration approach.


The complexity of our planning algorithms is only exponential in the induced width of


a cost network formed by the backprojections of the basis functions, rather than exponen-


tial in the number of variables. Thus, these algorithms will be very efficient in sparsely


connected factored MDPs that can be well-approximated by basis functions whose scope


is restricted to small sets of variables.


We also present the factored dual algorithm. This novel formulation provides an ap-


proximate version of our factored LP decomposition technique. We can thus potentially


address problems with large induced width. Additionally, this formulation provides an


anytime version of our factored planning approach by incrementally improving the approx-


imation of the LP decomposition. Although we currently cannot provide theoretical bounds


on the quality of this approximation of our factored LP decomposition, we believe that this


novel factored dual approach may provide effective solutions to many complex problems


that could not be solved, even with our other factored planning algorithms.


Our experimental results on single agent problems demonstrate polynomial scaling for


problems with fixed induced width, as expected by our complexity analysis. For some


small problems, where the optimal solution can be computed exactly, we show that the ac-


tual long-term reward received by the policies obtained by our approximate methods using
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Figure 14.2: Overview of our algorithm for efficient planning and coordination in struc-
tured multiagent problems.


simple basis functions are within6% of those obtained by the optimal policy. For larger


problems, we compute bounds on the quality of our policies showing that our solutions do


not degrade significantly as the problem size increases.


14.1.3 Multiagent coordination and planning


In this thesis, we also address planning under uncertainty problems involving multiple col-


laborating agents. We approximate the value function for such problems using the same


factored value function representation described above. Unfortunately, our approximate


dynamic programming algorithms do not apply in these multiagent problems, as the poli-


cies can no longer be represented compactly by a decision list. Fortunately, the computation


of the weights of the approximate value function can be performed by using a simple ex-


tension of the factored LP-based approximation algorithm. Similarly, our factored dual


algorithm is also appropriate for solving such multiagent problems, thus allowing us to


tackle some domains with large induced width.
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As outlined in Figure 14.2, we approach multiagent problems by modelling the system


as a multiagent factored MDP, and then selecting a set of factored basis functions. The


weights of our factored value function are then computed offline by one of these two fac-


tored planning algorithms. As in the single agent case, the multiple agents then follow a


closed-loop policy, where the maximizing joint action is computed online for each statex


visited by the system according to:


arg max
a


Qw(x, a) = arg max
a


R(x, a) + γ
∑


x′
P (x′ | x, a)


∑
i


wihi(x
′) ,


wherea is a joint action defining the specific action of each agent. Unfortunately, the


number of joint actions is exponential in the number of agents. Furthermore, this maxi-


mization requires a centralized optimization procedure, which, as discussed in Chapter 1,


is not desirable in many practical real world problems.


In Chapter 9, we address the action selection problem by proposing thecoordination


graphsframework, a novel, simple, distributed message passing algorithm based on vari-


able elimination. This procedure leads to the selection of the optimal maximizing action


in multiagent problems, while only requiring agents to observe a small set of state vari-


ables, and to communicate with a small number of other agents. This limited observability


and communication properties should increase the applicability of our methods to many


complex problems, such as the application to the RoboCup presented by Koket al. [2003].


Interestingly, the communication structure between agents is not defineda priori, as


in many existing methods, but is derived directly from the structure of the factored MDP


and of the factored value function. The communication bandwidth required between agents


is exactly the induced width of the coordination graph derived from our formulation. We


thus present an unified view of multiagent coordination and value function approximation:


A particular factored value function structure induces a particular coordination structure


between agents. If the we choose to increase the scope of the basis functions, for exam-


ple, we can probably increase the quality of our approximations. On the other hand, this


new representation will probably form a coordination graph of higher induced width, thus


requiring more communication between agents.


It is interesting to compare the complexity of our planning and coordination algorithms.







282 CHAPTER 14. CONCLUSIONS


Our factored LP-based approximation algorithm is exponential in the induced width of a


cost network formed by the backprojection of our basis functions. In contrast, our coor-


dination graph is formed by the same backprojections, but where the state of the system


has been instantiated. Thus, the induced width of the coordination graph depends only on


the action variables of our system. Therefore, our coordination step can be exponentially


faster than our planning algorithm. This difference allows us to coordinate agents even in


very highly connected complex environments, where our planning algorithms are infeasi-


ble, such as the larger game scenarios described in Section 13.5 that can only be solved by


generalizing solutions from smaller problems.


Our multiagent experimental results again demonstrate polynomial time scaling for


problems with fixed induced width, and near-optimal policies in small problems that can be


solved exactly. For larger problems, with simple basis functions, we obtain solutions that


are within5% of a loose upper bound on the quality of the optimal policy. We also compare


our methods to state-of-the-art algorithms of Schneideret al. [1999], demonstrating that, at


least for these problems, our solutions are about10% better than those obtained by previous


approaches. Finally, a (more general) alternative to our factored LP algorithm is to sample a


subset of the exponential number of constraints present in our LPs, as analyzed by de Farias


and Van Roy [2001b]. When compared to our closed-form factored LP algorithm, uniform


sampling of constraints yielded policies whose quality degraded significantly as the prob-


lem size increased. As discussed by de Farias and Van Roy [2001b], sampling methods


can be quite sensitive to the choice of sampling distribution. Thus, these sampling results


could potentially be improved with a different sampling distribution, though, in general, it


may be difficult to find such distribution. Even when provided with more expressive basis


functions and significantly more running time, the policies obtained by the uniform sam-


pling approach degraded on larger problems to at least10% lower levels than the policies


obtained by our approach with less expressive basis functions.
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14.1.4 Context-specific independence and variable coordination struc-


ture


Unlike previous approaches, our algorithms can exploit both additive and context-specific


structure in the factored MDP model, by using a rule-based representation instead of the


standard table-based one. Many real-world systems possess both of these types of structure.


Thus, this feature of our algorithms will increase the applicability of factored MDPs to more


practical problems.


We demonstrated that exploiting context-specific independence, can yield exponential


improvements in computational time when the problem has significant amounts of CSI.


However, the overhead of managing sets of rules make it less well-suited for simpler prob-


lems. We also compared our approach to the work of Boutilieret al. [2000] that exploits


only context-specific structure. For problems with significant context-specific structure in


the value function, their approach can be faster due to their efficient handling of the ADD


representation used by their algorithm. However, there are many problems with significant


context-specific structure in the problem representation, rather than in the value function,


that require exponentially-large ADDs. In some such problem classes, we demonstrated


that by using a linear value function, our algorithm can obtain a polynomial-time near-


optimal approximation of the true value function.


By exploiting context-specific structure in multiagent settings, we also provide a prin-


cipled and efficient approach for planning in multiagent domains, where the required inter-


actions between agents may vary from one situation to another. We show that the task of


finding an optimal joint action in our approach leads to a very natural communication pat-


tern, where agents send messages along a coordination graph with a dynamically changing


structure that is determined by the value rules representing the value function. This coor-


dination structure changes according to the state of the system, and even according to the


actual numerical values assigned to the value rules. Furthermore, the coordination graph


can be adapted incrementally as the agents learn new rules or discard unimportant ones.


We show empirically that our results scale to very complex problems, including high


induced width problems, where traditional table-based representations of the value function
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Figure 14.3: Overview of our coordinated reinforcement learning framework.


blow up exponentially. In problems where the optimal value could be computed analyti-


cally for comparison purposes, the value of the policies generated by our approach were


within 0.05% of the optimal value. Our experiments also verify the variable coordination


property of our approach, demonstrating that the coordination structure can vary signifi-


cantly according to the state of the system.


14.1.5 Coordinated reinforcement learning


Thus far, we have assumed that the system we are tackling has been modelled by a fac-


tored MDP. In many practical problems, this model is not knowna priori. In such cases,


the agents must learn effective policies through their interactions with the environment by


applying reinforcement learning strategies. In this thesis, we demonstrate that many of the


existing RL algorithms that have been successfully applied to single agent problems can


be generalized to collaborative multiagent settings by applying simple extensions of our


factored value function representation, along with our multiagent coordination algorithm.


This overall framework, which we call coordinated reinforcement learning, is outlined
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in Figure 14.3. Rather than selecting basis functions over a subset of the state variables, we


now define parametric local Q-functionsQwi
i (x, a) over state and action variables, which


are then used to approximate the global Q-function:


Qw(x, a) =
∑


i


Qwi
i (x, a).


In contrast to the factored value function, the localQwi
i functions may depend arbitrar-


ily on any set of state variables, including state variables defined over continuous spaces.


Furthermore, we no longer require that the underlying model be represented by a factored


MDP. We do require that the scope of eachQwi
i be restricted to depend only on a small set


of action variables; this assumption allows us to apply our coordination graph algorithm to


select the maximizing action. Note that we could also utilize a rule-based representation of


eachQwi
i . In such cases, we would have a varying coordination structure both during the


learning process and during action selection.


In this thesis, we applied the coordinated RL framework to generalize three existing


single agent RL algorithms to multiagent problems:Q-learning [Watkins, 1989; Watkins


& Dayan, 1992], LSPI [Lagoudakis & Parr, 2001], and policy search [Williams, 1992].


With Q-learning and policy search, the learning mechanism can be distributed. Agents


communicate reinforcement signals, utility values, and conditional policies. In LSPI some


centralized coordination is required to compute the projection of the value function. The


resulting policies can always be executed in a distributed manner. We believe the coordi-


nation mechanism can be applied to almost any reinforcement learning method.


We present two types of experimental comparisons involving our multiagent version


of LSPI: First, we compare the multiagent LSPIlearning algorithm to our factored LP-


basedplanningalgorithm, which assumes full knowledge of the factored model. In these


problems, the quality of the solutions obtained by the planning algorithm tended to be


only slightly better policies than that of multiagent LSPI, when using comparable sets of


basis functions. The amount of data required by the multiagent LSPI algorithm scaled


linearly with the number of state and action variables even though the underlying space


was growing exponentially. We also compare multiagent LSPI to the learning algorithms


of Schneideret al. [1999]. Our multiagent LSPI algorithm obtained better policies both
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Figure 14.4: Overview of our generalization approach using relational MDPs.


on the SysAdmin problem used in this thesis, and on the power grid problem described by


Schneideret al. [1999]. Finally, our experiments demonstrate that coordination between


agents can significantly improve the quality of the policies obtained by our approach.


14.1.6 Generalization to new environments


We have also tackled a longstanding goal in planning research, the ability to generalize


plans to new environments. Such a generalization has two complementary uses: First,


we can tackle new environments with minimal or no replanning. Second, it allows us to


generalize plans from smaller tractable environments to significantly larger ones that could


not be solved directly with our planning algorithm.


Our generalization approach builds on a novel relational representation of the MDP,


where a domain is represented in terms of related objects of various classes. We achieve


generalization by defining a value function at the level of object classes. Specifically, every


object of classC shares the same set of basis function weightswC . Using this class-


level representation, we can obtain a value function for any worldω in our domain by
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instantiating the class-level basis functions with the state of each specific objecto in this


world:


VwC


ω (x) =
∑
C∈C


∑


o∈O[ω][C]


VwC


C (x[To]) =
∑
C∈C


∑


o∈O[ω][C]


∑


hi∈Basis[C]


wC
i hC


i (x[To]).


By backprojecting this value function, we obtain a Q-function for this world:


QwC


ω (x, a) = Rω(x, a) + γ
∑


x′
P (x′ | x, a)VwC


ω (x′).


In single agent problems, we can obtain the policy by simply selecting the action that


maximizesQwC


ω at the current state. In multiagent problems, we can use our coordination


graph algorithm to select this maximizing action.


We also present an optimization algorithm for determining the weightswC of our class-


level value function. We propose an optimality criteria, where the weightswC are optimiz-


ing simultaneously for all worlds. For each particular world, we could optimize these


weights using one of our efficient planning algorithms. However, optimizing for all worlds


simultaneously is both infeasible, and does not fulfill our generalization goal, as all worlds


must be considered. Instead we propose a formulation, where the parameterswC are opti-


mized over a set of sampled worlds. We prove that, by sampling a polynomial number of


“small” worlds, we obtain an estimate of the class-level value function that is close to the


one we would obtain had we planned for all worlds simultaneously.


We first assumed that set of classes of objects had been predefined in the model. We


then describe a learning method for dividing objects into classes. This method first solves a


few sampled environments, where each object belongs to an unique class. We can then use


standard learning methods, such as decision tree regression, to find similarities between the


value functions of different objects. We can then use the result of this learning algorithm


to divide objects into a small set of classes.


Our overall generalization approach is outlined in Figure 14.4. We use a relational


representation of the MDP, a sample of small worlds, and the class definitions, perhaps


obtained by our learning method, to formulate a compact linear program to optimize the


class-level parameterswC offline. Then, online, when faced with a new world, we can
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instantiate our class-level value function, obtaining a Q-function for this new world, thus


yielding a policy without any replanning.


Our relational MDP formulation of the generalization problem could be applied in con-


junction with any algorithm for optimizing the class-level parameterswC . Although we


believe that our class-level LP provides an effective method for performing such optimiza-


tion, other algorithms could also be applied. For example, our coordinated RL approach


could be used to optimize these parameters in settings where the factored MDP model is


not knowna priori. Other methods could also be applied when the value function represen-


tation depends non-linearly on the parameterswC . Finally, for simplicity, we have assumed


that our class-level value function provides an effective policy for new worlds, without any


replanning. We could, of course, use the class-level value function as a good starting point


from which the specific policy for this new world is optimized.


Our experimental results support the fact that our class-based value function generalizes


well to new plans, and that the class and subclass structure discovered by our learning


procedure improves the quality of the approximation. Specifically, on a set of simulated


problems, we show that the performance of the policy obtained from our generalized value


function was within1% of the policy obtained when replanning in each world, without any


class restrictions. Furthermore, we successfully demonstrated our methods on Freecraft,


a real strategic computer game that contains many characteristics present in real-world


dynamic resource allocation problems. Here, we were able to generalize from a small


environment to a very large, highly-connected environment that could not be solved directly


by our factored algorithms.


14.2 Future directions and open problems


We now outline some directions that remain open, which we feel could lead to fruitful


research topics, and provide some initial thoughts on how these directions could be pursued.
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14.2.1 Basis function selection


The success of our algorithms depends on our ability to capture the most important structure


in the value function using a linear, factored approximation. This ability, in turn, depends


on the choice of the basis functions and on the properties of the domain. The algorithms


currently require the designer to specify the factored basis functions. This is a limitation


compared to the algorithms of Boutilieret al. [2000] that are fully automated. However, our


experiments suggest that a few simple rules can be quite successful for designing a basis.


First, we ensure that the reward function is representable by our basis. A simple basis that,


in addition, contained a separate set of indicators for each variable often did quite well.


We can also add indicators over pairs of each variable; most simply, we can choose these


according to the DBN transition model, where an indicator is added between variablesXi


and each one of the variables inParents(Xi), thus representing one-step influences. This


procedure can be extended, adding more basis functions to represent more influences as


required. Thus, the structure of the DBN gives us indications of how to choose the basis


functions. Other sources of prior knowledge can also be included for further specifying the


basis.


Nonetheless, a general algorithm for choosing good factored basis functions still does


not exist. However, there are some potential approaches: First, in problems with CSI, one


could apply the algorithms of Boutilieret al. for a few iterations to generate partial tree-


structured solutions. Indicators defined over the variables in backprojection of the leaves


could, in turn, be used to generate a basis set for such problems. Second, the Bellman


error computation, which we perform efficiently as shown in Section 5.3, not only provide


a bound on the quality of the policy, but also the actual state where the error is largest. This


knowledge can be used to create a mechanism to incrementally build the basis set, adding


new basis functions to tackle states with high Bellman error. Finally, the recent work of


Poupartet al. [2002] and Patrascuet al. [2002], building on our factored algorithms, at-


tempts to greedily construct a set of basis functions in order to improve the quality of the


approximation. Such approaches provide some basic groundwork for the design of auto-


mated basis function selection mechanisms. Such mechanisms could significantly extend


the applicability of our methods.







290 CHAPTER 14. CONCLUSIONS


14.2.2 Structured error analysis


If a factored MDP can be divided into completely independent parts, then it is clear that


a factored value function spanning each part separately will be able to represent the op-


timal value function. Intuitively, if a system is formed by weakly interacting parts, then


we expect that it may be possible to approximate its true value function with a factored


representation. It would thus be interesting to prove a theoretical bound on the quality of


the solutions obtained by our factored algorithms that depends explicitly on the structure


of the underlying factored MDP. A potential avenue for proving such bounds could use the


error analysis of de Farias and Van Roy [2001a], which allows us to introduce a Lyapunov


function, weighing the approximation differently in different parts of the state space. We


could thus select a Lyapunov function that is compatible with the structure of the factored


MDP, weighing weakly interacting parts appropriately. The structure analysis developed


by Boyen and Koller [1999] for approximate inference in DBNs could provide intuitions on


how to obtain such a Lyapunov function. Such a bound could be useful both in understand-


ing when a factored MDP can be effectively approximated, and how to select appropriate


basis functions to obtain good approximations.


Another interesting, related, theoretical direction is to analyze when our class-level


value functions will provide a good (or even exact) solution to new environments. We


can again view this problem as one of bounding the quality of the solutions obtained by


the LP-based approximation algorithm, though we are now solving the meta MDPΠmeta .


However, there are other situations where different types of generalization bounds could be


obtained. For example, in some cases that contain significant amounts of symmetry, it may


be possible to prove that a class-based value function is equal to the object-based value


function we would obtain had we not imposed class restrictions. In the tactical Freecraft


problem in Example 12.2.2, if we only had class-based basis functions between an enemy


and its related footman, then, by symmetry, this class-based solution will be equal to an


object-based solution that allows each enemy to use different parameter values. This type


of analysis could also provide automated methods for designing the class structure of the


relational MDP.
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14.2.3 Models with large induced width


A central element governing the efficiency of our planning algorithms is the induced width


of the underlying cost network formed by the backprojection of our basis functions. A very


important open direction is the design of algorithms that can tackle problems with large


induced width. We have proposed two approaches in this thesis: In problems with large in-


duced width, but with significant amounts of context-specific structure in the model, we can


apply our rule-based factored LP decomposition to obtain approximate solutions efficiently.


Alternatively, in problems where the backprojection of each basis function depends on a


small set of variables, but where the induced width of the underlying cost network is still


very large, we can apply our approximately factored dual algorithm described in Chapter 6.


However, there are practical problems that do not fall into one of these two cases. For


example, when a variableXi in the DBN has a noisy-or CPD depending on many other


variables in the previous time step, neither our rule-based algorithms, nor our approximate


factorization, will be able to tackle this problem. An example of such a variable is the


Gold variable in our Freecraft model, whose CPD depends on the state of every peasant in


the model. We could address the Freecraft problem by generalizing solutions from smaller


game scenarios. Nonetheless, it is still important to design algorithms for handling high


induced width models in problems where generalization is not effective.


There are many possible solution paths for tackling problems with large induced width.


Many of these directions build on successful algorithms for approximate or exact inference


in graphical models with large induced width. For example, as discussed in Section 6.3,


we can relate our approximately factored dual algorithm to the belief propagation algo-


rithm [Pearl, 1988; Yedidiaet al., 2001]. Similarly, combining sampling or conditioning


techniques, where a subset of the variables are instantiated, with exact inference has lead


to successful algorithms for inference in graphical models [Horvitzet al., 1989; Casella &


Robert, 1996; Doucetet al., 2000; Bidyuk & Dechter, 2003; Allen & Darwiche, 2003]. We


could follow a similar path by combining the sampling approach of de Farias and Van Roy


[2001b] with our LP decomposition technique. Interestingly, we can view our class-level


LP formulation as a special case of such a procedure, where a set of worlds is sampled,


and our LP decomposition technique is applied exactly for each of these worlds. Finally,
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Pfeffer [2000] and Poole [2003] have recently developed methods that can handle sets of


similar objects simultaneously, without generating a propositional representation of the


world. These methods could perhaps also be incorporated into our factored LP decompo-


sition technique, thus handling worlds with a very large number of objects.


14.2.4 Complex state and action variables


We have assumed that each state, or action variable takes on one of a few discrete values.


Although our coordinated RL approach can also handle continuous state variables, we feel


that this is an important issue, which requires further investigation. We can attempt to han-


dle continuous state variables by using discretization algorithms [Chow & Tsitsiklis, 1991;


Rust, 1997], reducing the continuous problem to a discrete one. More interestingly, we


could attempt to design discretization methods that are compatible with our factored LP


decomposition technique, discretizing the intermediate factors generated by our maximiza-


tion algorithm, rather than the state variables themselves. Such approach could introduce


an explicit link between discretization complexity and the structure of a factored MDP.


Similar types of discretization have been applied in DBNs by Kozlov and Koller [1997].


Models containing continuous action variables transform the action selection step into


a general nonlinear optimization problem [Isidori, 1989]. Such problems are often very


difficult to solve. An obvious approach to address this issue is to apply standard local


search or gradient ascent algorithms to perform the optimization. Unfortunately, these


approaches are usually prone to local maxima problems. A more interesting direction could


be to attempt to exploit structure in our coordination graph. Specifically, we can use the


same type of discretization of intermediate factors described above. This would allow us


to perform the action selection step using a discretized dynamic programming algorithm,


thus minimizing the influence of local optima.


Additionally, some problems may include discrete state or action variables that have


very large domain sizes, for example, the action variable of a footman in Freecraft that se-


lects among many enemies, or variables obtained when a continuous variable is discretized,


such as the amount of gold in a Freecraft scenario. In such cases, even problems with rel-


atively small induced width may be difficult to solve. We could address this problem by
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exploiting a structured decomposition of domain values using a similar representation to


the rule-based one used for CSI [Geiger & Heckerman, 1996; Friedman & Singer, 2000;


Sharma & Poole, 2003]. Alternatively, we could use sampling methods, such as the ones


analyzed by de Farias and Van Roy [2001b], to consider only a subset of the assignments


in the domain of such variables.


In our implementation, we have used indicator basis functions over assignments of the


domain of small sets of variables. Such a representation will be infeasible in problems with


large domain sizes. In such problems, we may need to use basis functions that generalize


over possible domain values. For example, a basis function over a discretized variable


may have values that depend polynomially on the assignment of the original continuous


variable.


14.2.5 Model-based reinforcement learning


Coordinated RL is a model-free approach, that is, it attempts to obtain successful policies


without explicitly building a model of the environment. Model-free algorithms do not need


to make strong assumptions about the underlying structure of the world. Unfortunately,


as no model of the world is maintained, it is often difficult to bound the quality of the


current solution, or design effective exploration strategies. Model-based approaches, on


the other hand, build a parametric model of the world and use this model to explore the


environment effectively [Moore & Atkeson, 1993; Kearns & Singh, 1998; Brafman &


Tennenholtz, 2001]. Furthermore, if the model parameterization is a good approximation


of the underlying world, then model-based methods can be very effective. An interesting


future direction is to design algorithms that effectively explore the environment, assuming


that the underlying system can be modelled by a factored MDP. Kearns and Koller [1999]


and Guestrinet al. [2002c] propose algorithms for exploring the environment in order


to learn effective policies, assuming that the structure of the underlying factored MDP is


known, but that the model parameters are unknown. Although these algorithms provide


initial methods to address the factored model-based RL problem, a general solution that


effectively learns both the structure and the parameters of a factored model is still an open


problem.
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14.2.6 Partial observability


We have assumed that the underlying planning problem is fully observable, that is, each


agent can observe the state variables relevant to their local Q-function. In more general


formulations, the agents may be only able to make noisy observations about the world, for


example, using sensors. Such problems can be formulated as a partially observable Markov


decision process (POMDP) [Sondik, 1971]. Exact solutions for POMDPs are intractable,


even when the number of states is polynomial [Madaniet al., 1999; Bernsteinet al., 2000].


Typically, exact algorithms can only solve problems with tens of states [Cassandraet al.,


1997; Hansen, 1998]. Recent approximate methods have scaled to POMDPs with many


hundreds of states Pineauet al. [2003].


Designing efficient POMDP solution algorithms that exploit problem structure is an


exciting area of future research. One possible direction to tackle this problem is to ex-


ploit a factored representation of the POMDP [Boutilier & Poole, 1996], perhaps by using


factored value function approximation methods [Guestrinet al., 2001c]. Another option


relies on projecting the space of possible beliefs over the state of the system into a lower


dimensional space [Roy & Thrun, 2000; Poupart & Boutilier, 2002; Roy & Gordon, 2002].


We believe that an effective method for solving structured POMDPs could combine these


two approaches by using a structured representation of the beliefs that is compatible with


the structure of the factored POMDP, in a similar manner that our factored value function


is compatible with the structure of the factored MDP. This decomposition would be anal-


ogous to the one we used to decompose the dual variables in our factored dual algorithm


in Chapter 6. We believe that such approach could provide an effective method for solving


large-scale POMDPs.


14.2.7 Competitive multiagent settings


This thesis has focused on long-term planning problems involving multiple collaborating


agents that have the same reward function. However, many practical problems involve


competitive settings, where the agents have different reward functions. Such stochastic


dynamic systems involving multiple competing agents can be modelled usingstochastic


games, a generalization of MDPs, which was first proposed by Shapley [1953], and later
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studied by, among others, Littman [1994] and Brafman and Tennenholtz [2001]. As with


standard MDPs, stochastic games suffer from the curse of dimensionality, as the number of


possible strategies grows exponentially in the number of agents.


Many existing algorithms tackle stochastic games by using model-free reinforcement


learning algorithms in two-player zero-sum settings. Specifically, Littman [1994] focused


on exact solutions, while Van Roy [1998] and Lagoudakis and Parr [2002] present approx-


imate solutions for such problems, by using linear approximations of the value function.


In recent years, there has been increasing interest in designing algorithms that exploit


structure ingraphical games, structured representations of competitive multiagent settings


that do not evolve over time [Littmanet al., 2002; Leyton-Brown & Tennenholtz, 2003;


Blum et al., 2003]. This formulation can also be generalized to finite horizon problems


represented by competitive extensions of influence diagrams [La Mura, 1999; Koller &


Milch, 2001].


We believe that, by using factored value functions, we could exploit structure in factored


models to solve two-player zero-sum problems efficiently, using extensions of the tech-


niques developed in this thesis. Furthermore, by combining factored MDPs with graphical


games, one could attempt to address infinite horizon problems involving multiple agents.


We can view our collaborative multiagent planning algorithm as an approximate method


for obtaining best-response policies when the opponent is “nature”. Stochastic games pro-


vide equilibrium strategies, where each agent plays a best-response policy, assuming the


other agents are perfectly rational. In many settings, such as exponentially-large factored


problems, agents can only perform approximate optimizations, and may thus not be per-


fectly optimal. We believe that often, in such settings, rather than defining the problem as


one of attempting to respond optimally to rational agents, one should attempt to respond


effectively to opponents that can be classified as belonging to certain classes of opponents.


In such settings, one could use our methods, or extension to POMDPs, to obtain good


strategies that attempt to respond well to opposing agents sampled from a distribution over


the classes of possible opponents.
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14.2.8 Hierarchical decompositions


Many researchers have examined the idea of dividing a planning problem into simpler


subproblems in order to speed-up the solution process. There are two common ways to


split a problem into simpler pieces, which we will callserial decompositionandparallel


decomposition.


In a serial decomposition, exactly one subproblem is active at any given time. The


overall state consists of an indicator of which subproblem is active along with that sub-


problem’s state. Subproblems interact at their borders, that is, at states where we can enter


or leave a subproblem. For example, imagine a robot navigating in a building with multiple


rooms connected by doorways: fixing the value of the doorway states decouples the rooms


from each other and lets us solve each room separately. In this type of decomposition, the


combined state space is the union of the subproblem state spaces, and so the total size of


all of the subproblems is approximately equal to the size of the combined problem.


Serial decomposition planners in the literature include the algorithms of Kushner and


Chen [1974] and Dean and Lin [1995], as well as a variety of hierarchical planning algo-


rithms. Kushner and Chen were the first to apply Dantzig-Wolfe decomposition to MDPs,


while Dean and Lin combined this decomposition with state abstraction. Hierarchical plan-


ning algorithms include MAXQ [Dietterich, 2000], hierarchies of abstract machines [Parr


& Russell, 1998], and planning with macro-operators [Suttonet al., 1999; Hauskrecht


et al., 1998].


By contrast, in aparallel decomposition, multiple subproblems can be active at the same


time, and the combined state space is the cross product of the subproblem state spaces. The


size of the combined problem is therefore exponential rather than linear in the number


of subproblems. Thus, a parallel decomposition can potentially save significantly more


computation than a serial one. For an example of a parallel decomposition, suppose there


are multiple robots in our building, interacting only through a common resource constraint


such as limited fuel or through a common goal such as lifting a box which is too heavy


for one robot to lift alone. A subproblem of this task might be to plan a path for one robot


using only a compact summary of the plans for the other robots.


Parallel decomposition planners in the literature include the algorithms of Singh and
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Cohn [1998], Meuleauet al. [1998] and Yost [1998]. Singh and Cohn’s planner builds the


combined state space explicitly, using subproblem solutions to initialize the global search.


So, while it may require fewer planning iterations than naive global planning, it is limited


by having to enumerate an exponentially-large set. Meuleauet al.’s planner, which was


further improved by Yost [1998], is designed for parallel decompositions in which the only


coupling is through global resource constraints. More complicated interactions such as


conjunctive goals or shared state variables are beyond its scope.


Recently, Guestrin and Gordon [2002] propose a planning algorithm that handles both


serial and parallel decompositions, providing more opportunities for abstraction than other


parallel-decomposition planners. The approach of Guestrin and Gordon builds a hierarchi-


cal representation of a factored MDP that is analogous to the hierarchical decomposition of


Koller and Pfeffer [1997] for Bayesian networks. In addition, Guestrin and Gordon [2002]


propose a fully distributed planning algorithm: at no time is there a global combination


step requiring knowledge of all subproblems simultaneously, contrasting with the factored


planning algorithms presented in this thesis, which require the offline solution of a global


linear program. This approach also allows for the reuse of solutions obtained in one sub-


system in other similar subsystems. We can view this property as generalization within a


planning problem, while our relational models provide generalizations between planning


problems.


Unfortunately, the approach of Guestrin and Gordon [2002] requires a tree decomposi-


tion of the environment into subsystems. This tree structure is analogous to the triangulated


clusters required in our factored dual algorithm. Thus, this decomposition will be infeasi-


ble in problems with large induced width. We believe that the approximate factorization


described in Chapter 6, or one of the methods for tackling problems with large induced


width described above, could be used to obtain approximate versions of the decomposition


of Guestrin and Gordon [2002].


Such approximate decompositions could then be combined with other existing decom-


position methods. For example, the algorithms of Meuleauet al. [1998] and Yost [1998]


allow us to introduce more global resource constraints than our local decomposition tech-


nique. These methods could potentially be combined with the decompositions of Guestrin


and Gordon [2002] to approximately represent systems involving both global constraints
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and local structure.


It would also be interesting to explore the combination of our parallel decomposition


with the serial decomposition algorithms of Dietterich [2000], Parr and Russell [1998],


Suttonet al. [1999], Hauskrechtet al. [1998], and Andre and Russell [2002]. The al-


gorithm of Andre and Russell [2002], for example, would potentially allow us to intro-


duce temporal abstractions into our factored model. When combined with our relational


representation, we could obtain a hierarchical decomposition that allows us to generalize


temporally-extended value functions. These two types of generalization could yield effec-


tive approximation methods for handling complex systems, using hierarchical, serial and


parallel decompositions.


14.2.9 Dynamic uncertain relational structures


Our relational MDP assumed that, in a particular world, relations are either fixed, or change


deterministically with the actions of different agents. In general domains, relations may


change stochastically over time, though, as we are tackling fully observable problems, the


values of the relations will be observed by the agents at every time step. Extending the


relational MDP model to allow for changing relational structures is straightforward. The


PRM framework of Koller and Pfeffer [1998] allows for relational uncertainty, the same


framework could be applied to relational MDPs.


Note, however, that if the relational structure changes, then our definition of the objects


in the scope of an instantiated class basis function may also change. In our SysAdmin


problem, we had basis functions between pairs of neighboring objects in the network. If


the structure of the network changes, the neighbor of a particular machine may change,


and its contribution to the global value function will now depend on the state of a dif-


ferent machine. In such cases, we may need more elaborate methods for computing the


backprojection of our basis functions. Specifically, the state in the current time step spec-


ifies a distribution over assignments to the relations in the next time step. For each one of


these relational assignments the scope of our class basis function is well-defined. Thus,


the backprojection of a class basis function will be a weighted linear combination of the


backprojections obtained for each possible assignment to the relations in the next time step.
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More importantly, we must adapt our planning algorithm to tackle such varying rela-


tional structures. Such problems will often have very high induced width. For example,


consider a model of multiple robots exploring a building after an earthquake. The state of


one robot could potentially be influenced every other robot. However, at every time step, a


robot’s state only depends on robots that are within a certain radius. Clearly, the induced


width of such a problem will be very large, involving the state of all robots. However,


there is a significant amount of context-specific structure in this problem. Generally, we


could address relations that change over time by exploiting context-specific independence.


However, CSI may not be sufficient to tackle such problems. In these cases, the other


approaches for tackling problems with large induced width suggested above, such as sam-


pling, conditioning, or approximate factorizations, could be used to address problems with


dynamically changing relational structure.


14.3 Closing remarks


We believe that the framework described in this thesis significantly extends the efficiency,


applicability, and general usability of automated methods in the control of large-scale dy-


namic systems. However, many issues remain to be studied before automated methods


can be deployed in practical settings. In this chapter, we outline a few open directions


that particularly relate to our approach. There are, of course, many other more general


open questions that must be addressed before effective general-purpose methods can be de-


signed for tackling large-scale complex systems. Ultimately, we hope that such automated


methods will aid users in the solution of many real-world long-term planning tasks.







Appendix A


Main proofs


A.1 Proofs for results in Chapter 2


A.1.1 Proof of Lemma 2.3.4


There exists at least a setting to the weights — the all zero setting — that yields a bounded


max-norm projection errorβP for any policy (βP ≤ Rmax). Our max-norm projection


operator chooses the set of weights that minimizes the projection errorβ(t) for each policy


π(t). Thus, the projection errorβ(t) must be at least as low as the one given by the zero


weightsβP (which is bounded). Thus, the error remains bounded for all iterations.


A.1.2 Proof of Theorem 2.3.6


First, we need to bound our approximation ofVπ(t):


∥∥∥Vπ(t) −Hw(t)
∥∥∥
∞


≤
∥∥∥Tπ(t)Hw(t) −Hw(t)


∥∥∥
∞


+
∥∥∥Vπ(t) − Tπ(t)Hw(t)


∥∥∥
∞


; (triangle inequality;)


≤
∥∥∥Tπ(t)Hw(t) −Hw(t)


∥∥∥
∞


+ γ
∥∥∥Vπ(t) −Hw(t)


∥∥∥
∞


; (Tπ(t) is a contraction.)


Moving the second term to the right hand side and dividing through by1− γ, we obtain:


∥∥Vπ(t) −Hw(t)
∥∥
∞ ≤ 1


1− γ


∥∥Tπ(t)Hw(t) −Hw(t)
∥∥
∞ =


β(t)


1− γ
. (A.1)
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For the next part of the proof, we adapt a lemma of Bertsekas and Tsitsiklis, [1996, Lemma


6.2, p.277] to fit into our framework. After some manipulation, this lemma can be refor-


mulated as:


‖V∗ − Vπ(t+1)‖∞ ≤ γ ‖V∗ − Vπ(t)‖∞ +
2γ


1− γ


∥∥Vπ(t) −Hw(t)
∥∥
∞ . (A.2)


The proof is concluded by substituting Equation (A.1) into Equation (A.2) and, finally,


induction ont.


A.2 Proof of Theorem 4.3.2


First, note that the equality constraints represent a simple change of variable. Thus, we can


rewrite Equation (4.2) in terms of these new LP variablesufi
zi


as:


φ ≥ max
x


∑
i


ufi
zi


, (A.3)


where any assignment to the weightsw implies an assignment for eachufi
zi


. After this


stage, we only have LP variables.


It remains to show that the factored LP construction is equivalent to the constraint in


Equation (A.3). For a system withn variables{X1, . . . , Xn}, we assume, without loss of


generality, that variables are eliminated starting fromXn down toX1. We now prove the


equivalence by induction on the number of variables.


The base case isn = 0, so that the functionsci(x) andb(x) in Equation (4.2) all have


empty scope. In this case, Equation (A.3) can be written as:


φ ≥
∑


i


uei . (A.4)


In this case, no transformation is done on the constraint, and equivalence is immediate.


Now, we assume the result holds for systems withi− 1 variables and prove the equiva-


lence for a system withi variables. In such a system, the maximization can be decomposed


into two terms: one with the factors thatdo notdepend onXi, which are irrelevant to the
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maximization overXi, and another term with all the factors that depend onXi. Using this


decomposition, we can write Equation (A.3) as:


φ ≥ max
x1,...,xi


∑
j


uej
zj


;


≥ max
x1,...,xi−1



 ∑


l : Xi 6∈Zl


uel
zl


+ max
xi


∑
j : Xi∈Zj


uej
zj



 . (A.5)


At this point we can define new LP variablesue
z corresponding to the second term on


the right hand side of the constraint. These new LP variables must satisfy the following


constraint:


ue
z ≥ max


xi


∑̀
j=1


u
ej


(z,xi)[Zj ]
. (A.6)


This new non-linear constraint is again represented in the factored LP construction by a set


of equivalent linear constraints:


ue
z ≥


∑̀
j=1


u
ej


(z,xi)[Zj ]
,∀z, xi. (A.7)


The equivalence between the non-linear constraint Equation (A.6) and the set of linear con-


straints in Equation (A.7) can be shown by considering binding constraints. For each new


LP variable createdue
z, there are|Xi| new constraints created, one for each valuexi of


Xi. For any assignment to the LP variables in the righthand side of the constraint in Equa-


tion (A.7), only one of these|Xi| constraints is relevant. That is, one where
∑`


j=1 u
ej


(z,xi)[Zj ]


is maximal, which corresponds to the maximum overXi. Again, if for each value ofz more


than one assignment toXi achieves the maximum, then any of (and only) the constraints


corresponding to those maximizing assignments could be binding. Thus, Equation (A.6)


and Equation (A.7) are equivalent.


Substituting the new LP variablesue
z into Equation (A.5), we get:


φ ≥ max
x1,...,xi−1


∑


l : xi 6∈zl


uel
zl


+ ue
z,
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which does not depend onXi anymore. Thus, it is equivalent to a system withi − 1


variables, concluding the induction step and the proof.


A.3 Proof of Lemma 5.3.1


First note that at iterationt+1 the objective functionφ(t+1) of the max-norm projection LP


is given by:


φ(t+1) =
∥∥Hw(t+1) − (


Rπ(t+1) + γPπ(t+1)Hw(t+1)
)∥∥


∞ .


However, by convergence the value function estimates are equal for both iterations:


w(t+1) = w(t).


So we have that:


φ(t+1) =
∥∥Hw(t) − (


Rπ(t+1) + γPπ(t+1)Hw(t)
)∥∥


∞ .


In operator notation, this term is equivalent to:


φ(t+1) =
∥∥Hw(t) − Tπ(t+1)Hw(t)


∥∥
∞ .


Note that,π(t+1) = Greedy[Hw(t)] by definition. Thus, we have that:


Tπ(t+1)Hw(t) = T ∗Hw(t).


Finally, substituting into the previous expression, we obtain the result:


φ(t+1) =
∥∥Hw(t) − T ∗Hw(t)


∥∥
∞ .
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A.4 Proofs for results in Chapter 6


A.4.1 Proof of Lemma 6.1.1


The non-negativity condition is stated directly in the dual LP in (6.2).


To prove the condition in Equation (6.5), consider the constraint induced by the constant


basis functionh0:


∑
x,a


φa(x)h0(x) =
∑
x


α(x)h0(x) + γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′)h0(x) ;


yielding: ∑
x,a


φa(x) =
∑
x


α(x) + γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′) .


Using the facts that
∑


x α(x) = 1, and
∑


x P (x | x′, a′) = 1, we obtain the result.


A.4.2 Proof of Theorem 6.1.2


Item 1: Clearlyφρ
a(x) ≥ 0 for all x anda. We must now show that for an arbitrary basis


functionhi:


∑
x,a


φρ
a(x)hi(x) =


∑
x


α(x)hi(x) + γ
∑


x′,a′
φρ


a′(x
′)


∑
x


P (x | x′, a′)hi(x) .


Substituting the definition ofφρ
a in Equation (6.6) into the second term on the righthand


side of this constraint:


γ
∑


x′,a′
φρ


a′(x
′)


∑
x


P (x | x′, a′)hi(x)


= γ
∑


x′,a′


∞∑
t=0


∑


x′′
γtρ(a′ | x′)Pρ(x


(t) = x′ | x(0) = x′′)α(x′′)
∑
x


P (x | x′, a′)hi(x) ;


=
∑


x′′


∑
x


∞∑
t=0


∑


x′,a′
α(x′′)hi(x) γt+1Pρ(x


(t) = x′ | x(0) = x′′)ρ(a′ | x′)P (x | x′, a′) .
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As the transition probabilities of our randomized policy are defined byPρ(x | x′) =∑
a′ ρ(a′ | x′)P (x | x′, a′), we obtain:


γ
∑


x′,a′
φρ


a′(x
′)


∑
x


P (x | x′, a′)hi(x)


=
∑


x′′
α(x′′)


∑
x


hi(x)
∞∑


t=0


γt+1Pρ(x
(t+1) = x | x(0) = x′′) ;


=
∑


x′′
α(x′′)


∑
x


hi(x)


[( ∞∑
t=0


γtPρ(x
(t) = x | x(0) = x′′)


)
− Pρ(x


(0) = x | x(0) = x′′)


]
;


=
∑


x′′
α(x′′)


∑
x


hi(x)


[( ∞∑
t=0


γtPρ(x
(t) = x | x(0) = x′′)


)
− 1(x′′ = x)


]
;


=
∑
x,a


φρ
a(x)hi(x)−


∑
x


α(x)hi(x) ;


concluding the proof of Item 1.


Item 2: Fork basis functions, there arek constraints in the dual formulation to the lin-


ear programming-based approximation formulation (not including positivity constraints).


Thus, any non-singular basic feasible solution to the dual will have at mostk non-zero


variables,i.e., k state-action pairs such thatφa(x) > 0. Item 2 holds ifk is smaller than the


number of states.


Item 3: Consider a simple MDP where every statex transitions to an initial statex0


with probability 1,i.e., the transition probabilities are defined by:P (x0 | x′, a) = 1 for all


x′ anda.


Now consider the approximate dual LP induced by an approximation architecture with


only one basis function, the constant functionh0. Lemma 6.1.1 specifies the only feasibility


constraints on the dual variables. Let us selectφa(x) = 1
|X||A|(1−γ)


, clearly a feasible


solution. The randomized policyρ defined in Equation (6.7) becomes the uniform policy:


ρ(a | x) = 1
|A| for all x.


We now compute the visitation frequencies forρ according to Equation (6.6):


Forx 6= x0, we have that:
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φρ
a(x) =


∞∑
t=0


∑


x′
γtρ(a | x)Pρ(x


(t) = x | x(0) = x′)α(x′) ;


=
∑


x′
ρ(a | x)Pρ(x


(0) = x | x(0) = x′)α(x′)


+
∞∑


t=1


∑


x′
γtρ(a | x)Pρ(x


(t) = x | x(0) = x′)α(x′) ;


= ρ(a | x)α(x) ;


asPρ(x
(t) = x | x(0) = x′) = 0, for all x 6= x0, for all t > 0.


The visitation frequency forx0 is given by:


φρ
a(x0) =


∞∑
t=0


∑


x′
γtρ(a | x0)Pρ(x


(t) = x0 | x(0) = x′)α(x′) ;


= ρ(a | x0)α(x0) +
∞∑


t=1


∑


x′
γtρ(a | x0)Pρ(x


(t) = x0 | x(0) = x′)α(x′) ;


= ρ(a | x0)α(x0) + ρ(a | x0)
∞∑


t=1


γt
∑


x′
α(x′) ;


= ρ(a | x0)α(x0) +
γρ(a | x0)


1− γ
;


asPρ(x
(t) = x0 | x(0) = x′) = 1, for all t > 0.


Thus,φρ
a(x) 6= φa(x) for all x anda, concluding the proof of Item 3.


A.4.3 Proof of Lemma 6.1.4


First note that, by standard primal-dual results (e.g., [Bertsimas & Tsitsiklis, 1997]), a dual


variable is positive,φa(x) > 0, if and only if the primal constraint corresponding to the


statex and the actiona is tight:


∑
i


wihi(x) = R(x, a) + γ
∑


x′
P (x′ | x, a)


∑
i


wihi(x
′).
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Now consider the optimal solution̂w to the primal LP in (2.8). The greedy policy with


respect to this solution is given by:


Greedy[Vŵ](x) = arg max
a


[
R(x, a) + γ


∑


x′
P (x′ | x, a)


∑
i


ŵihi(x
′)


]
. (A.8)


If the constraints for some statex and for all actionsa are loose, then the corresponding


dual variableφa(x) is equal to 0, for all actions in all optimal dual solutions corresponding


to the primal solution̂w. Thus, according to Definition 6.1.3 our policies in can select any


(randomized) action for this state, includingGreedy[Vŵ](x).


We must now consider statesx where our primal constraints are tight for at least some


actiona. If the constraints are tight for exactly one action, then this is exactly the greedy


action in Equation (A.8). Moreover, the corresponding dual variable for this actionφa(x) is


strictly positive, in all optimal dual solutions corresponding to the primal solutionŵ. Thus,


according to Definition 6.1.3 all of our policies must select the actionGreedy[Vŵ](x) at


statex. In cases where, for some statex, the primal constraints are tight for more than one


action, then thearg maxa in Equation (A.8) is not unique, and there is a basic feasible dual


solution for each possible maximizing action.


A.4.4 Proof of Theorem 6.1.6


Let φρ̂
a be the true state-action visitation frequencies of policyρ̂. By Theorem 2.2.1, we can


decompose these frequencies into:


φρ̂
a(x) = ρ̂(a | x)φρ̂(x),


whereφρ̂(x) = φρ̂
a(x)∑


a′ φ
ρ̂


a′ (x)
.


Now note that we can decompose our optimal solutionφ̂a to the approximate dual in a


similar manner:


φ̂a(x) = ρ̂(a | x)φ̂(x),


for any policy inPoliciesOf[φ̂a], asφ̂(x) = φ̂a(x)∑
a′ φ̂a′ (x)


if
∑


a′ φ̂a′(x) > 0, and zero otherwise.


We can now define the difference between these two sets of visitation frequencies:
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ερ̂
a(x) = φ̂a(x)− φρ̂


a(x);


= ρ̂(a | x)
(
φ̂(x)− φρ̂(x)


)
;


= ρ̂(a | x)ερ̂(x);


where we defineερ̂(x) = φ̂(x)− φρ̂(x).


As theφρ̂
a are the true visitation frequencies of policŷρ, by Theorem 2.2.1 we know


that this is a feasible solution to the exact dual LP. Thus, we have that:


φρ̂(x) = α(x) + γ
∑


x′
φρ̂(x′)Pρ̂(x | x′),


wherePρ̂(x | x′) =
∑


a ρ̂(a | x′)P (x | x′, a). In matrix notation, we have that:


φρ̂ = α + γφρ̂Pρ̂.


As φρ̂ = φ̂− ερ̂, we have that:


φ̂− ερ̂ = α + γ
(
φ̂− ερ̂


)
Pρ̂.


Rearranging, we finally get:


ερ̂ =
(
φ̂− α− γφ̂Pρ̂


)
(I − γPρ̂)


−1 ;


=
(
∆[φ̂a]


)ᵀ
(I − γPρ̂)


−1 . (A.9)


Let φ∗a be an optimal solution to the exact dual LP. Asφ∗a is feasible in the approximate


dual LP in (6.2), we have that:


∑
x,a


φ̂a(x)R(x, a) ≥
∑
x,a


φ∗a(x)R(x, a).


Similarly, φρ̂
a is a feasible solution to the exact dual LP in (6.1), thus:


∑
x,a


φ̂a(x)R(x, a) ≥
∑
x,a


φ∗a(x)R(x, a) ≥
∑
x,a


φρ̂
a(x)R(x, a). (A.10)
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From the definition ofερ̂, we have that:


∑
x,a


φρ̂
a(x)R(x, a) =


∑
x


φρ̂(x)Rρ̂(x);


=
∑
x


φ̂(x)Rρ̂(x)−
∑
x


ερ̂(x)Rρ̂(x);


whereRρ̂(x) =
∑


a ρ̂(a | x)R(x, a). In matrix notation, we have that:


(φρ̂)ᵀRρ̂ = (φ̂)ᵀRρ̂ − (ερ̂)ᵀRρ̂.


Substitutingερ̂ from Equation (A.9), we have that:


(φρ̂)ᵀRρ̂ = (φ̂)ᵀRρ̂ −
(
∆[φ̂a]


)ᵀ
(I − γPρ̂)


−1 Rρ̂.


Note thatVρ̂ = (I − γPρ̂)
−1 Rρ̂. Thus:


(φρ̂)ᵀRρ̂ = (φ̂)ᵀRρ̂ −
(
∆[φ̂a]


)ᵀ
Vρ̂.


Rearranging, we obtain that:


∑
x,a


φρ̂
a(x)R(x, a) +


∑
x


∆[φ̂a](x) Vρ̂(x);


=
∑
x,a


φ̂a(x)R(x, a);


≥
∑
x,a


φ∗a(x)R(x, a);


≥
∑
x,a


φρ̂
a(x)R(x, a)


=
∑
x,a


φ̂a(x)R(x, a)−
∑
x


∆[φ̂a](x) Vρ̂(x); (A.11)


where the inequalities are substitutions from Equation (A.10).


By the strong duality theorem for LPs, we have that:
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∑
x,a


φ̂a(x)R(x, a) =
∑
x


α(x)V ŵ(x);


∑
x,a


φ∗a(x)R(x, a) =
∑
x


α(x)V ∗(x);


∑
x,a


φρ̂
a(x)R(x, a) =


∑
x


α(x)Vρ̂(x).


Substituting these results into Equation (A.11), we first obtain:


∑
x,a


φρ̂
a(x)R(x, a) +


∑
x


∆[φ̂a](x) Vρ̂(x);


=
∑
x


α(x)Vρ̂(x) +
∑
x


∆[φ̂a](x) Vρ̂(x);


≥
∑
x,a


φ∗a(x)R(x, a);


=
∑
x


α(x)V ∗(x); (A.12)


yielding Equation (6.9) when we note that, for each statex, V ∗(x) ≥ Vρ̂(x) by the opti-


mality of V∗.


Substituting the strong duality results into Equation (A.11) again, we also obtain:


∑
x,a


φ∗a(x)R(x, a) =
∑
x


α(x)V ∗(x);


≥
∑
x,a


φ̂a(x)R(x, a)−
∑
x


∆[φ̂a](x) Vρ̂(x);


=
∑
x


α(x)V ŵ(x)−
∑
x


∆[φ̂a](x) Vρ̂(x). (A.13)


Equation (6.10) now follows by noting that Equation (A.13) holds for anyρ̂ ∈ PoliciesOf[φ̂a],


and thatV ŵ(x) ≥ V∗(x) for every statex (as shown by de Farias and Van Roy [2001a]).
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A.4.5 Proof of Theorem 6.1.7


First, note that, by the feasibility of̂φa in the approximate dual formulation, we have that,


for any set of weightsw:


∑
x,a


φ̂a(x)
∑


i


wihi(x) =
∑
x


α(x)
∑


i


wihi(x)+γ
∑


x′,a′
φa′(x


′)
∑
x


P (x | x′, a′)
∑


i


wihi(x);


where this equation is just a weighted combination of the flow constraints in Equation (6.3).


Rearranging, we obtain:


∑
x,a φ̂a(x)


∑
i wihi(x)


−∑
x α(x)


∑
i wihi(x)− γ


∑
x′,a′ φa′(x


′)
∑


x P (x | x′, a′) ∑
i wihi(x) = 0.


(A.14)


Theorem 6.1.6 says that we must bound:


(∆[φ̂a])
ᵀVρ̂ =


∑
x


∆[φ̂a](x) Vρ̂(x),


or equivalently:


(∆[φ̂a])
ᵀVρ̂ =


∑
x,a


φ̂a(x)Vρ̂(x)−
∑
x


α(x)Vρ̂(x)−
∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)Vρ̂(x).


Subtracting Equation (A.14), we obtain:


(∆[φ̂a])
ᵀVρ̂ =


∑
x,a φ̂a(x) [Vρ̂(x)−∑


i wihi(x)]−∑
x α(x) [Vρ̂(x)−∑


i wihi(x)]


−γ
∑


x′,a′ φ̂a′(x
′)


∑
x P (x | x′, a′) [Vρ̂(x)−∑


i wihi(x)] ;
(A.15)


for any set of weightsw.


We can now prove the first part of our theorem by choosing the set of weights that


define the minimum in Equation (6.11), and thus noting that:


Vρ̂(x)−
∑


i


wihi(x) ≤ ε∞ρ̂ , ∀x.


Substituting into Equation (A.15), we obtain:
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(∆[φ̂a])
ᵀVρ̂ ≤ ε∞ρ̂


[∑
x,a


∣∣∣φ̂a(x)
∣∣∣ +


∑
x


|α(x)|+ γ


∣∣∣∣∣
∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)
∣∣∣∣∣


]
;


= ε∞ρ̂


[
1


1− γ
+ 1 +


γ


1− γ


]
;


=
2ε∞ρ̂
1− γ


;


concluding the proof of the first part of the theorem.


For the proof of the second part, we multiply each term in Equation (A.15) byL(x)
L(x)


:


(∆[φ̂a])
ᵀVρ̂ =


∑
x,a φ̂a(x)L(x)


L(x)
[Vρ̂(x)−∑


i wihi(x)]−∑
x α(x)L(x)


L(x)
[Vρ̂(x)−∑


i wihi(x)]


−γ
∑


x′,a′ φ̂a′(x
′)


∑
x P (x | x′, a′)L(x)


L(x)
[Vρ̂(x)−∑


i wihi(x)] .


Substituting the weighted max-norm errorε
∞,1/L
ρ̂ in place of each 1


L(x)
[Vρ̂(x)−∑


i wihi(x)],


we obtain:


(∆[φ̂a])
ᵀVρ̂ ≤ ε


∞,1/L
ρ̂


[∑
x,a


∣∣∣φ̂a(x)L(x)
∣∣∣ +


∑
x


|α(x)L(x)|


+ γ
∑


x′,a′


∣∣∣∣∣φ̂a′(x
′)


∑
x


P (x | x′, a′)L(x)


∣∣∣∣∣


]
;


= ε
∞,1/L
ρ̂


[∑
x,a


φ̂a(x)L(x) +
∑
x


α(x)L(x)


+ γ
∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x)


]
;


= ε
∞,1/L
ρ̂


[∑
x,a


φ̂a(x)L(x) +
∑
x


α(x)L(x)


+


(
1− 2


1− κ
+


2


1− κ


)
γ


∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x)


]
;
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where we remove the absolute values in the second equality because all terms are non-


negative. Using the Lyapunov condition in Equation (6.14), we can change


(
2


1− κ


)
γ


∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x),


which is equal to (
2


1− κ


)
γ


∑


x′
φ̂(x′)


∑
x


Pρ̂(x | x′)L(x),


into the larger (
2κ


1− κ


) ∑
x


φ̂(x)L(x),


which is equal to (
2κ


1− κ


) ∑
x,a


φ̂a(x)L(x),


obtaining:


(∆[φ̂a])
ᵀVρ̂ ≤ ε


∞,1/L
ρ̂


[(
1 +


2κ


1− κ


) ∑
x,a


φ̂a(x)L(x) +
∑
x


α(x)L(x)


+


(
1− 2


1− κ


)
γ


∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x)


]
;


= ε
∞,1/L
ρ̂


[(
1 + κ


1− κ


) ∑
x,a


φ̂a(x)L(x) +
∑
x


α(x)L(x)


+


(
−1 + κ


1− κ


)
γ


∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x)


]
.


As the Lyapunov function is in the space of our basis functions, we can use Equation (A.14)


with weightswL to substitute the term:


(
1 + κ


1− κ


) ∑
x,a


φ̂a(x)L(x) +


(
−1 + κ


1− κ


)
γ


∑


x′,a′
φ̂a′(x


′)
∑
x


P (x | x′, a′)L(x)


with 1+κ
1−κ


∑
x α(x)L(x), obtaining:
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(∆[φ̂a])
ᵀVρ̂ ≤ ε


∞,1/L
ρ̂


(
1 + κ


1− κ
+ 1


) ∑
x


α(x)L(x);


= ε
∞,1/L
ρ̂


2


1− κ


∑
x


α(x)L(x);


thus concluding our proof.


A.4.6 Proof of Lemma 6.2.4


By contradiction: assume that there exists a set of global visitation frequenciesφ̂a(x) sat-


isfying the flow constraints in Equation (6.3), such thatφ̂a(x) andµ∗a are not consistent


flows, and: ∑
a


∑
x


φ̂a(x)R(x, a) >
∑


a


∑
x


φ∗a(x)R(x, a). (A.16)


Let µ̂a be the marginal visitation frequencies associated withφ̂a as defined in Equations (6.23)


and (6.24).


Eachµ̂a is guaranteed to be non-negative, by the non-negativity ofφ̂a. The derivation


in Section 6.2.2 shows that̂µa must satisfy the factored flow constraints.


As φ∗a andµ∗a are consistent flows, Equation (6.25) implies that:


∑
a


∑
x


φ∗a(x)R(x, a) =
r∑


j=1


∑
a


∑


wa
j∈Dom[Wa


j ]


µ∗a(w
a
j )R


a
j (w


a
j ) .


Similarly, µ̂a andφ̂a are consistent flows by definition, yielding:


∑
a


∑
x


φ̂a(x)R(x, a) =
r∑


j=1


∑
a


∑


wa
j∈Dom[Wa


j ]


µ̂a(w
a
j )R


a
j (w


a
j ) .


Substituting these two equations into Equation (A.16), we obtain:


r∑
j=1


∑
a


∑


wa
j∈Dom[Wa


j ]


µ∗a(w
a
j )R


a
j (w


a
j ) <


r∑
j=1


∑
a


∑


wa
j∈Dom[Wa


j ]


µ̂a(w
a
j )R


a
j (w


a
j ) ;


contradicting the optimality ofµ∗a.
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A.5 Proof of Theorem 13.3.2


We start the proof of our Theorem 13.3.2 with a lemma that measures the effect of sampling


on the objective function:


Lemma A.5.1 Consider the following class-based value functions (each withk parame-


ters): V̂ obtained from the LP over all possible worldsΩ by minimizing Equation (13.8)


subject to the constraints in Equation (13.5); andṼ obtained by solving the class-level LP


in (13.11) with constraints only for a setD≤n of m worlds sampled fromP≤n(ω), i.e., only


sampled from the set of worldsΩ≤n with at mostn objects, for anyn ≥ 1. For anyδ > 0


andε > 0, if the number of sampled worldsm is:


m ≥ 2


[⌈(
16k


ε


)2
⌉


ln(2k + 1) + ln
8


δ


](
8


ε


)2


,


then:


EΩ


[
Ṽ


]
− EΩ


[
V̂


]
≤ 2Ro


max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
, (A.17)


with probability at least1 − δ
2
; whereEΩ [V ] =


∑
ω∈Ω,x∈Xω


P (ω)P 0
ω(x)Vω(x), andRo


max


is the maximum per-object reward.


Proof:


As described in Section 13.2.2, we can decompose the probability of a world into:


P (ω) = P (])P (ω] | ]).


Substituting this formulation into the left side of Equation (A.17), we obtain:


EΩ


[
Ṽ


]
− EΩ


[
V̂


]
=


∞∑
i=1


∑
ω∈Ωi


∑
x∈Xω


P (] = i)P (ω | ] = i)P 0
ω(x)


(
Ṽω(x)− V̂ω(x)


)
,
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or equivalently:


EΩ


[
Ṽ


]
− EΩ


[
V̂


]
=


n∑
i=1


∑
ω∈Ωi


∑
x∈Xω


P (] = i)P (ω | ] = i)P 0
ω(x)


(
Ṽω(x)− V̂ω(x)


)
+


∞∑
j=n+1


∑
ω∈Ωj


∑
x∈Xω


P (] = j)P (ω | ] = j)P 0
ω(x)


(
Ṽω(x)− V̂ω(x)


)
.


(A.18)


We will bound each term in Equation (A.18) in turn.


Let us start by considering the first term on the righthand side of Equation (A.18), which


we can rewrite as:


n∑
i=1


∑
ω∈Ωi


∑
x∈Xω


P (] = i)P (ω | ] = i)P 0
ω(x)


(
Ṽω(x)− V̂ω(x)


)
= EΩ≤n


[
Ṽ − V̂


] ∑


ω′∈Ω≤n


P (ω′).


(A.19)


In addition, recall that our class-based LP minimizes:


ED≤n
[V ] =


∑
ω∈D≤n,x∈Xω


P (ω)P 0
ω(x)Vω(x),


which is a sample-based approximation to the expectationEΩ≤n
[V ], and thatṼ is an op-


timal solution to this linear program.̂V, on the other hand, satisfies the constraints for all


worlds, including of course the constraints for worlds inD≤n. Thus,V̂ is clearly a feasible


solution for our class-level LP, consequently:


ED≤n


[
Ṽ


]
≤ ED≤n


[
V̂


]
.


As we want to boundEΩ≤n


[
Ṽ − V̂


]
, and we now know thatED≤n


[
Ṽ − V̂


]
≤ 0, it is


sufficient to bound:


EΩ≤n


[
Ṽ − V̂


]
− ED≤n


[
Ṽ − V̂


]
.


If the weights of our approximations̃V andV̂ were fixed, we could use Hoeffding’s inequal-


ity to bound these terms, as they are a difference between an expectation and the sample







A.5. PROOF OF THEOREM 13.3.2 317


mean. However, our LP picks the basis function weights after the worlds are sampled, and


thus Hoeffding’s no longer holds, as an adversarial could pick weights that maximize the


error. Fortunately, we can compute such a bound for the worst possible (most adversar-


ial) choice of weights, with high probability, using the framework of Pollard [1984]. This


framework bounds the number of ways that the weights can be picked by using a covering


number. A union bound is the used to combine the probability of a large deviation for all


possible choices of weights. Pollard [1984] then proves a Hoeffding-style inequality using


this covering number:


P
(
∃ w̃, ŵ : EΩ≤n


[
Ṽ − V̂


]
− ED≤n


[
Ṽ − V̂


]
> ε


)


≤ 2 E
[N (


ε/16, L(k),D≤n


)]
e


−ε2m


128‖Ṽ−V̂‖2S ,


(A.20)


wherew̃ andŵ are the parameters of̃V and V̂, respectively;N (
ε/16, L(k),D≤n


)
is the


covering numberof a linear function withk parameters [Pollard, 1984]; and the span norm


‖·‖S is defined to be‖V‖S = maxx V(x)−minx V(x).


The bound of Pollard [1984] thus depends on the covering number of our linear function


parameterized byw. We can bound this covering number as a function of the number of


basis functions, the maximum value of each basis, and the magnitude of the weights, using


the result of Zhang [2002] Theorem 3:


lnN (
ε/16, L(k),D≤n


) ≤
⌈(


16 a≤n ‖w̃ − ŵ‖1


ε


)2
⌉


ln(2k + 1), (A.21)


where


a≤n = max
C


max
hC


i ∈Basis[C]
max


ω∈Ω≤n


|O[ω][C]|
∥∥hC


i


∥∥
∞ .







318 APPENDIX A. MAIN PROOFS


Using Assumption 13.3.1, we obtain the following bounds:


a≤n ≤ n;


‖w̃ − ŵ‖1 ≤ 2kRo
max


1− γ
;


∥∥∥Ṽ − V̂
∥∥∥


S
≤ 2nRo


max


1− γ
.


By substituting these bounds into Equation (A.20), we obtain the bound:


EΩ≤n


[
Ṽ − V̂


]
− ED≤n


[
Ṽ − V̂


]
≤ ε,


for a number of sampled worlds:


m ≥ 2


[⌈(
32nkRo


max


ε(1− γ)


)2
⌉


ln(2k + 1) + ln
8


δ


](
16nRo


max


ε(1− γ)


)2


,


with probability at least1− δ
2
. Recastingε as


ε
2nRo


max


(1− γ)
,


we obtain:


EΩ≤n


[
Ṽ − V̂


]
− ED≤n


[
Ṽ − V̂


]
≤ ε


2nRo
max


(1− γ)
, (A.22)


for a number of sampled worlds:


m ≥ 2


[⌈(
16k


ε


)2
⌉


ln(2k + 1) + ln
8


δ


] (
8


ε


)2


, (A.23)


with probability at least1− δ
2
, which is the number of samples that appears on the statement


of this lemma.
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Substituting Equation (A.22) into Equation (A.19) we obtain:


EΩ≤n


[
Ṽ − V̂


] ∑


ω′∈Ω≤n


P (ω′) ≤
(
EΩ≤n


[
Ṽ − V̂


]
− ED≤n


[
Ṽ − V̂


]) ∑


ω′∈Ω≤n


P (ω′);


≤ ε
2nRo


max


(1− γ)


∑


ω′∈Ω≤n


P (ω′).


We can bound the term
∑


ω′∈Ω≤n
P (ω′) by using Assumption 13.2.1:


∑


ω′∈Ω≤n


P (ω′) =
n∑


i=1


∑
ω∈Ωi


P (] = i)P (ω | ] = i);


=
n∑


i=1


P (] = i)


≤
n∑


i=1


κ]e
−λ]i;


≤
∫ n


0


κ]e
−λ]xdx;


=
κ]


λ]


[
1− e−λ]n


]
. (A.24)


Concluding the bound of the first term on the righthand side of Equation (A.18) as:


EΩ≤n


[
Ṽ − V̂


] ∑


ω′∈Ω≤n


P (ω′) ≤ ε
2nRo


max


(1− γ)


κ]


λ]


[
1− e−λ]n


]
. (A.25)
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We can now focus on the second term on the righthand side of Equation (A.18):


∞∑
j=n+1


∑
ω∈Ωj


∑
x∈Xω


P (] = j)P (ω | ] = j)P 0
ω(x)


(
Ṽω(x)− V̂ω(x)


)


≤
∞∑


j=n+1


∑
ω∈Ωj


∑
x∈Xω


P (] = j)P (ω | ] = j)P 0
ω(x)


∥∥∥Ṽω − V̂ω


∥∥∥
∞


;


≤
∞∑


j=n+1


∑
ω∈Ωj


∑
x∈Xω


P (] = j)P (ω | ] = j)P 0
ω(x)


2jRo
max


1− γ
;


=
2Ro


max


1− γ


∞∑
j=n+1


j P (] = j),


where the first inequality bounds the differenceṼω(x) − V̂ω(x) by the max-norm term∥∥∥Ṽω − V̂ω


∥∥∥
∞


. This max-norm term is bounded in the second inequality by2jRo
max


1−γ
, as every


world in Ωj has at mostj objects, and thus each value function is bounded byjRo
max


1−γ
, and


the difference between two value functions is no larger than2 times this bound.


We can now focus on
∑∞


j=n+1 j P (] = j). Using Assumption 13.3.1, we obtain the


following bound:


∞∑
j=n+1


j P (] = j) ≤
∞∑


j=n+1


j κ]e
−λ]j;


≤
∫ ∞


n


xκ]e
−λ]xdx;


=
κ]


λ]


[
n +


1


λ]


]
e−λ]n. (A.26)


We thus conclude the bound on the second term on the righthand side of Equation (A.18)


by:
2Ro


max


1− γ


κ]


λ]


[
n +


1


λ]


]
e−λ]n. (A.27)


Our final result follows from the sum of Equation (A.25) and Equation (A.27), and


rearranging the terms.
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In order to prove our main result we use a theorem by de Farias and Van Roy [2001b]


that considers linear systems with large number of constraints that are represented approx-


imately by a sampled subset of these constraints. Our class-level LP is an example of such


a system. If we solve an LP only considering this subset of the constraints, some of the


other constraints may be violated. Their theorem bounds the “number” of such constraints


that are violated:


Theorem A.5.2 (de Farias and Van Roy [2001b])Consider a (satisfiable) set of linear


constraints:


aᵀ
zw + bz ≥ 0, ∀z ∈ Z,


wherew ∈ Rk andZ is a set of constraint indices.


For anyδ > 0 andε > 0, and


m ≥ 4


ε


(
k ln


12


ε
+ ln


4


δ


)
,


a setẐ ofm i.i.d. random variables sampled fromZ according to a distributionψ satisfies:


sup
{w| aᵀ


zw+bz≥0, ∀z∈Ẑ}


∑
z∈Z


ψ(z)1 (aᵀ
zw + bz < 0) ≤ ε,


with probability at least1− δ
2
.


We can now prove our main theorem:


Theorem A.5.3 Consider the following class-based value functions (each withk param-


eters): V̂ obtained from the LP over all possible worldsΩ by minimizing Equation (13.8)


subject to the constraints in Equation (13.5); andṼ obtained by solving the class-level LP


in (13.11) with constraints only for a setD≤n of m worlds sampled fromP≤n(ω), i.e., only


sampled from the set of worldsΩ≤n with at mostn objects, for anyn ≥ 1. LetV∗ be the


optimal value function of the meta-MDPΠmeta over all possible worldsΩ. For anyδ > 0


andε > 0, if the number of sampled worldsm is:


m ≥ 4


ε(1− γ)


(
k ln


12


ε(1− γ)
+ ln


4


δ


)
+ 2


[⌈(
16k


ε


)2
⌉


ln(2k + 1) + ln
8


δ


](
8


ε


)2


,
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the error introduced by sampling worlds is bounded by:


∥∥∥Ṽ − V∗
∥∥∥


1,PΩ


≤
∥∥∥V̂ − V∗


∥∥∥
1,PΩ


+
6Ro


max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
;


with probability at least1 − δ; where ‖V‖1,PΩ
=


∑
ω∈Ω,x∈Xω


P (ω)P 0
ω(x) |Vω(x)|, and


Ro
max is the maximum per-object reward.


Proof:


For any vectorV, we denote its positive and negative parts by:


V+ = max(V , 0), and V− = max(−V , 0),


where the maximization is computed componentwise.


Let Pπ∗, Rπ∗ , andTπ∗ be, respectively, the transition model, reward function, and Bell-
man operator associated withπ∗, the optimal policy of the meta-MDPΠmeta . As noted by
de Farias and Van Roy [2001b], Theorem 3.1, we have that:


∥∥∥Ṽ − V∗
∥∥∥


1,PΩ


= (PΩ)ᵀ
∣∣∣(I − γPπ∗)−1((I − γPπ∗)Ṽ −Rπ∗)


∣∣∣ ;


≤ (PΩ)ᵀ ∣∣(I − γPπ∗)−1
∣∣
∣∣∣(I − γPπ∗)Ṽ −Rπ∗


∣∣∣ ;


= (PΩ)ᵀ (I − γPπ∗)−1
∣∣∣(I − γPπ∗)Ṽ −Rπ∗


∣∣∣ ;


= (PΩ)ᵀ (I − γPπ∗)−1
[
((I − γPπ∗)Ṽ −Rπ∗)+ + ((I − γPπ∗)Ṽ −Rπ∗)−


]
;


= (PΩ)ᵀ (I − γPπ∗)−1
[
((I − γPπ∗)Ṽ −Rπ∗)+ − ((I − γPπ∗)Ṽ −Rπ∗)−


+2((I − γPπ∗)Ṽ −Rπ∗)−
]
;


= (PΩ)ᵀ (I − γPπ∗)−1
[
(I − γPπ∗)Ṽ −Rπ∗ + 2(Ṽ − Tπ∗ Ṽ)−


]
;


= (PΩ)ᵀ (Ṽ − V∗) + 2 (PΩ)ᵀ (I − γPπ∗)−1(Ṽ − Tπ∗ Ṽ)−. (A.28)


The left side of Equation (A.28) is exactly the term we are bounding in this theorem. We


will obtain this bound by bounding each term on the righthand side of Equation (A.28) in


turn.


Let us first consider the term(PΩ)ᵀ (Ṽ − V∗), which is equivalent to:


(PΩ)ᵀ (Ṽ − V∗) = EΩ


[
Ṽ


]
− EΩ [V∗] .
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We can bound this term using the result in our Lemma A.5.1:


EΩ


[
Ṽ


]
− EΩ [V∗] ≤ EΩ


[
V̂


]
− EΩ [V∗] +


2Ro
max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
,


with probability at least1 − δ
2
. As V̂ satisfies the constraints for all worldsΩ in Equa-


tion (13.5), we have that̂V ≥ V∗, componentwise (as shown by de Farias and Van Roy


[2001a] for general MDPs). Thus:


(PΩ)ᵀ (Ṽ − V∗) = EΩ


[
Ṽ


]
− EΩ [V∗] ;


≤ EΩ


[
V̂


]
− EΩ [V∗] +


2Ro
max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
;


=
∥∥∥V̂ − V∗


∥∥∥
1,PΩ


+
2Ro


max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
.


(A.29)


Equation (A.29) gives us a bound on the first term on the righthand side of Equa-


tion (A.28). We must now bound the second term in this equation. Letφ∗ be the visi-


tation frequencies ofπ∗, the optimal policy of the meta-MDP for the worlds inΩ. For the


starting-state distributionPΩ, we have that:


φ∗(ω,x) = P (ω)φ∗ω(x);


whereφ∗ω are the state visitation frequencies of the optimal policy in the MDPΠω for


world ω. That is, the optimal visitation frequency for a particular world and state in this


world factorizes into the probability of selecting this world defined byPΩ times the optimal


visitation frequencies for this world. In matrix notation, we have that


(φ∗)ᵀ = (PΩ)ᵀ (I − γPπ∗)
−1;
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and thus, returning to the second term on the righthand side of Equation (A.28), we have


that:


2 (PΩ)ᵀ (I − γPπ∗)
−1(Ṽ − Tπ∗Ṽ)−


= 2(φ∗)ᵀ(Ṽ − Tπ∗Ṽ)−;


= 2
∑


ω∈Ω,x∈Xω


P (ω)φ∗ω(x)
[
(T ω


π∗Ṽω)(x)− Ṽω(x)
]
1


(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


;


≤ 2
∑


ω∈Ω,x∈Xω


P (ω)φ∗ω(x)
∥∥∥T ω


π∗Ṽω − Ṽω


∥∥∥
∞
1


(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


.


≤ 2
∑


ω∈Ω,x∈Xω


P (ω)φ∗ω(x)
[
‖Rω


π∗‖∞ +
∥∥∥γP ω


π∗Ṽω


∥∥∥
∞


+
∥∥∥Ṽω


∥∥∥
∞


]
1


(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


.


≤ 2
∑


ω∈Ω,x∈Xω


P (ω)φ∗ω(x)


[
][ω]Ro


max +
γ][ω]Ro


max


1− γ
+


][ω]Ro
max


1− γ


]
1


(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


.


= 2
∑


ω∈Ω,x∈Xω


2][ω]Ro
max


1− γ
P (ω)φ∗ω(x) 1


(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


;


(A.30)


where the first inequality replaces the difference between the one-step lookahead value


T ω
π∗Ṽω and the value functioñVω with the maximum difference; the second inequality sim-


ply relies on the triangle inequality for each term in
∥∥∥T ω


π∗Ṽω − Ṽω


∥∥∥
∞


; and the bound on


each max-norm term in the third inequality uses Assumption 13.3.1, where][ω] is the num-


ber of objects in worldω.


By moving out the constant term4Ro
max


1−γ
, the summation term in Equation (A.30) be-


comes: ∑
ω∈Ω,x∈Xω


][ω]P (ω)φ∗ω(x)1
(
Ṽ(x) < (Tπ∗Ṽ)(x)


)
(A.31)


As described in Section 13.2.2, we can decompose the probability of a world into:


P (ω) = P (])P (ω] | ]).
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Substituting this formulation into Equation (A.31), we obtain:


∞∑
i=1


∑
ω∈Ωi


∑
x∈Xω


i P (] = i)P (ω | ] = i)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


,


or equivalently, by separating the summation into one term for worlds with up ton objects,


and another term for larger worlds, we obtain:


∑n
i=1


∑
ω∈Ωi


∑
x∈Xω


i P (] = i)P (ω | ] = i)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


+
∑∞


j=n+1


∑
ω∈Ωj


∑
x∈Xω


j P (] = j)P (ω | ] = j)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


.


(A.32)


Let us start by considering the first term in Equation (A.32). We can apply Theo-


rem A.5.2 to bound this term with high probability. In particular, we choose our sampling


distributionψ≤n to be


ψ≤n(ω,x) = (1− γ)P≤n(ω)φ∗ω(x);


=
1− γ∑


ω′∈Ω≤n
P (ω′)


P (ω)φ∗ω(x).


We thus have that:


n∑
i=1


∑
ω∈Ωi


∑
x∈Xω


i P (] = i)P (ω | ] = i)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


≤ n


n∑
i=1


∑
ω∈Ωi


∑
x∈Xω


P (] = i)P (ω | ] = i)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


= n
∑


ω∈Ω≤n


∑
x∈Xω


P (ω)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


;


=


∑
ω′∈Ω≤n


P (ω′)


1− γ
n


∑
ω∈Ω≤n


∑
x∈Xω


ψ≤n(ω,x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


;


≤
∑


ω′∈Ω≤n


P (ω′) εn, (A.33)
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where the first inequality simply substitutesi with n; and the second inequality uses Theo-


rem A.5.2, recastingε asε(1 − γ). By using the bound in Equation (A.24), we obtain the


bound:


∑


ω′∈Ω≤n


P (ω′) εn ≤ κ]


λ]


[
1− e−λ]n


]
εn, (A.34)


with probability at least1− δ
2
, if the number of sampled worlds is:


m ≥ 4


ε(1− γ)


(
k ln


12


ε(1− γ)
+ ln


4


δ


)
.


Note that our algorithm does not sample directly from this distributionψ≤n. How-


ever, we do sample worlds fromP≤n(ω), and then represent the constraints for all states


and actions in this world, in closed form, by using our factored LP decomposition tech-


nique. Thus, each one of our sampled worlds corresponds to an i.i.d. sample fromψ≤n in


our constraint set (plus many additional constraints), thus guaranteing the condition of the


Theorem A.5.2.


Now, let us consider the second term in Equation (A.32).


∞∑
j=n+1


∑
ω∈Ωi


∑
x∈Xω


j P (] = j)P (ω | ] = j)φ∗ω(x)1
(
Ṽω(x) < (T ω


π∗Ṽω)(x)
)


≤
∞∑


j=n+1


∑
ω∈Ωi


∑
x∈Xω


j P (] = j)P (ω | ] = j)φ∗ω(x);


=
∞∑


j=n+1


j P (] = j). (A.35)


By using Equation (A.26), we bound this term by:


∞∑
j=n+1


j P (] = j) ≤ κ]


λ]


[
n +


1


λ]


]
e−λ]n. (A.36)
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We can finally obtain a bound for the terms in Equation (A.28):


∥∥∥Ṽ − V∗
∥∥∥


1,PΩ


≤ (PΩ)ᵀ (Ṽ − V∗) + 2 (PΩ)ᵀ (I − γPπ∗)
−1(Ṽ − Tπ∗Ṽ)−


≤
∥∥∥V̂ − V∗


∥∥∥
1,PΩ


+
2Ro


max


1− γ


κ]


λ]


[
εn +


(
n(1− ε) +


1


λ]


)
e−λ]n


]
+


4Ro
max


1− γ


[
κ]


λ]


[
1− e−λ]n


]
εn +


κ]


λ]


[
n +


1


λ]


]
e−λ]n


]
, (A.37)


where we substituted the intermediate results in Equations (A.29), (A.30), (A.34), and (A.36),


into Equation (A.28). The proof is concluded by rearranging the terms in Equation (A.37).


The simplified version presented in Theorem 13.3.2 is obtained by choosing:


n =


⌊
ln


(
1
ε


)


λ]


⌋
,


yielding:


εn +


(
n(1− ε) +


1


λ]


)
e−λ]n ≤ ε


ln
(


1
ε


)


λ]


+


(
ln


(
1
ε


)


λ]


(1− ε) +
1


λ]


)
e
−λ]


ln( 1
ε)


λ] ;


=
1


λ]


[
ε ln


(
1


ε


)
+ ε


(
ln


(
1


ε


)
(1− ε) + 1


)]
;


=
ε


λ]


[
ln


(
1


ε


)
(2− ε) + 1


]
.


≤ 3ε


λ]


ln


(
1


ε


)
.
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