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Abstract

In this paper, we examine a method for fea-
ture subset selection based on Information
Theory. Initially, a framework for defining
the theoretically optimal, but computation-
ally intractable, method for feature subset se-
lection is presented. We show that our goal
should be to eliminate a feature if it gives
us little or no additional information beyond
that subsumed by the remaining features. In
particular, this will be the case for both ir-
relevant and redundant features. We then
give an efficient algorithm for feature selec-
tion which computes an approximation to the
optimal feature selection criterion. The con-
ditions under which the approximate algo-
rithm is successful are examined. Empirical
results are given on a number of data sets,
showing that the algorithm effectively han-
dles datasets with large numbers of features.

1 Introduction

In the classic supervised learning task, we are given a
training set of labeled fixed-length feature vectors, or
instances, from which to induce a classification model.
This model 1s then used to predict the class label for
a set of previously unseen instances. Thus, the infor-
mation about the class that is inherent in the features
determines the accuracy of the model. Theoretically,
having more features should give us more discriminat-
ing power. However, the real-world provides us with
many reasons why this is not generally the case.

First, the time requirements for an induction algo-
rithm often grow dramatically with the number of fea-
tures, rendering the algorithm impractical for prob-
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lems with a large number of features. Furthermore,
many learning algorithms can be viewed as perform-
ing (a biased form of) estimation of the probability of
the class label given a set of features. In domains with
a large number of features, this distribution is very
complex and of high dimension. Unfortunately, in the
real world, we are often faced with the problem of lim-
ited data from which to induce a model. This makes
it very difficult to obtain good estimates of the many
probabilistic parameters. In order to avoid over-fitting
the model to the particular distribution seen in the
training data, many algorithms employ the Occam’s
Razor (Blumer et al. 1987) bias to build as simple a
model as possible that still achieves some acceptable
level of performance on the training data. This bias
often leads us to prefer a small number of relatively
predictive features over a very large number of features
that, taken in the proper, but complex, combination,
are entirely predictive of the class label. Irrelevant and
redundant features also cause problems in this context
as they may confuse the learning algorithm by helping
to obscure the distributions of the small set of truly
relevant features for the task at hand.

If we reduce the set of features considered by the al-
gorithm, we can therefore serve two purposes. We can
considerably decrease the running time of the induc-
tion algorithm, and we can increase the accuracy of
the resulting model. In light of this, a number of re-
searchers have recently addressed the issue of feature
subset selection in machine learning. As defined by
(John, Kohavi, & Pfleger 1994), this work is often di-

vided along two lines: filter and wrapper models.

In the filter model, feature selection is performed as
a preprocessing step to induction. Thus the bias of
the learning algorithm does not interact with the bias
inherent in the feature selection algorithm. Two of
the most well-known filter methods for feature selec-



tion are RELIEF (Kira & Rendell 1992) and FOCUS
(Almuallim & Dietterich 1991). In RELIEF, a sub-
set of features in not directly selected, but rather each
feature is given a weighting indicating its level of rele-
vance to the class label. RELIEF is therefore ineffec-
tive at removing redundant features as two predictive
but highly correlated features are both likely to be
highly weighted. The FOCUS algorithm conducts an
exhaustive search of all feature subsets to determine
the minimal set of features that can provide a consis-
tent labeling of the training data. This consistency
criterion makes FOCUS very sensitive to noise in the
training data. Moreover, the exponential growth of
the power set of the features makes this algorithm im-
practical for domains with more than 25-30 features.

Another feature selection methodolgy which has re-
cently received much attention is the wrapper model
(John, Kohavi, & Pfleger 1994) (Caruana & Freitag
1994) (Langley & Sage 1994). This model searches
through the space of feature subsets using the esti-
mated accuracy from an induction algorithm as the
measure of goodness for a particular feature subset.
Thus, the feature selection is being “wrapped around”
an induction algorithm, so that the bias of the oper-
ators that define the search and that of the induction
algorithm strongly interact. While these methods have
encountered some success on induction tasks, they are
often prohibitively expensive to run and can be in-
tractable for a very large number of features. Further-
more, the methods leave something to be desired in
terms of theoretical justification. While an important
aspect of feature selection is how well a method helps
an induction algorithm in terms of accuracy measures,
it is also important to understand how the induction
problem in general is affected by feature selection.

In this work, we address both theoretical and empiri-
cal aspects of feature selection. We describe a formal
framework for understanding feature selection, based
on ideas from Information Theory (Cover & Thomas
1991). We then present an efficient implemented al-
gorithm based on these theoretical intuitions. The
algorithm overcomes many of the problems with ex-
isting methods: it has a sound theoretical foundation;
it is effective in eliminating both irrelevant and redun-
dant features; it i1s tolerant to inconsistencies in the
training data; and, most importantly, it is a filter al-
gorithm which does not incur the high computational
cost of conducting a search through the space of fea-
ture subsets as in the wrapper methods, and is there-
fore efficient for domains containing hundreds or even
thousands of features.

2 Theoretical Framework

A data instance is typically described to the system
as an assignment of values f = (f1,..., fa) to a set
of features F = (Fy,...,Fy,). As usual, we assume
that each instance is drawn independently from some
probability distribution over the space of feature vec-
tors. Formally, for each assignment of values f to F,
we have a probability Pr(F = f).

A classifier 1s a procedure that takes as input a data
instance and classifies it as belonging to one of a num-
ber of possible classes ¢1,...,c¢. The classifier must
make its decision based on the assignment f associ-
ated with an instance. Optimistically, the feature vec-
tor will fully determine the appropriate classification.
However, this is rarely the case: we do not typically
have access to enough features to make this a deter-
ministic decision. Therefore, we use a probability dis-
tribution to model the classification function: For each
assignment of values f to F we have a distribution
Pr(C | F = f) on the different possible classes, C.
A learning algorithm implicitly uses the empirical fre-
quencies observed in the training set — an approxi-
mation to the conditional distribution Pr(C' | F) — to
construct a classifier for the problem.

Let us consider the effect of feature space reduction on
the distribution that characterizes the problem. Let G
be some subset of F. Given a feature vector f, we use
fe to denote the projection of f onto the variables in
G. Consider a particular data instance characterized
by f. In the original distribution, this data instance in-
duces the distribution Pr(C | F = f). In the reduced
feature space, the same instance induces the (possi-
bly different distribution) Pr(C' | G = fg). Our goal
is to select G so that these two distributions are as
close as possible. As our distance metric, we use the
information-theoretic measure of cross-entropy (also
known as KL-distance (Kullback & Leibler 1951)).
Thus, we can view this as selecting a set of features G
which causes us to lose the least amount of information
in these distributions. While other measures of separa-
bility (notably divergence) have been suggested in the
statistics community for feature selection (Fukunaga
1990), these measures are often aimed at selecting fea-
tures to enhance the separability of the data and may
have difficulty in very large dimensional spaces. Hence,
they bring with them an inherent bias which may
not be appropriate for particular induction algorithms.
Our method seeks to eliminate non-informative fea-
tures and thereby allow induction methods to employ
their own bias in a much reduced feature space.



Formally, let 4 and o be two distributions over some
probability space Q. The cross-entropy of p to o is
defined as D(p,0) = ), cqpn(z)log 558 Note that
the roles of y and o are not symmetrical in this def-
inition. Generally speaking, the idea is that p is the
“right” distribution, and ¢ is our approximation to
it. Then, D(u,o) measures the extent of the “er-
ror” that we make by using o as a substitute for pu.
Thus, cross-entropy is particularly suitable for our ap-
plication, with Pr(C' | f) in the role of the “right”
distribution g, and Pr(C | fg) in the role of ¢. In
this case, the probability space Q is the set of pos-
sible classifications {c1,...,¢,}. Therefore, we define

da(f) = D(Pr(C| f), Pr(C | fa))-

Of course, in order to have a metric which allows us
to compare one feature set G to another, we must in-
tegrate the values dg(f) for different feature vectors f
into a single quantity. Naively, we might think to sim-
ply sum the cross-entropy for the different feature vec-
tors, or to consider the maximum cross-entropy over all
feature vectors. Neither of these ideas take into con-

sideration the fact that some feature vectors are far
more likely to occur than others, and that we might
not mind making a larger mistake in certain rare cases.
Therefore, we want to find a feature set G for which

Ag = Zf Pr(f)da(f) is reasonably small.

Clearly, the feature set that minimizes this quantity is
simply F, since that maintains the exact distribution.
This suggests that we use a backward elimination algo-
rithm, where at each state we eliminate a feature F; in
a way that allows us to remain as close to this distribu-
tion as possible. Intuitively, we use a greedy algorithm
where we eliminate the feature F; which would cause
us the smallest increase in A. That is, we have a cur-
rent feature set G, initially set to F. At each stage, we
want to eliminate the feature F; such that Ag_ip,})
is as close as possible to Ag.

Unfortunately, it is impractical to simply implement
this idea as described, since the computation of Ag 1s
exponential in the number of features in our domain.
Furthermore, we cannot really compare our approxi-
mate distribution to the true conditional distribution
Pr(C | F), since the precise distribution is not avail-
able to us. Rather, we have a training set which pro-
vides us only a rough approximation to it. In those
cases where we have a large number of features, the
number of data instances in our training set corre-
sponding to any particular assignment f will be very
small. Therefore, as the number of features grow, our
ability to use the training set to approximate this con-
ditional distribution decreases (exponentially).

As we now show, we can utilize ideas from probabilistic
reasoning (Pearl 1988) to circumvent this problem (to
some extent). Intuitively, features that cause a small
increase in A are those that give us the least additional
information beyond what we would obtain from the
other features in G'. We can capture this intuition via
the formal notion of conditional independence.

Definition 1 Two sets of variables (e.g., F; or C)
are said to be conditionally independent given some
set of variables X if, for any assignment of values a,
b, and x to the variables A, B, and X respectively,
PrlA=a | X =2,B=b) =Pr(d=a | X = z).
That is, B gives us no information about A beyond
what 1s already in X .

Proposition 1 Let G be a subset of features and F;
be a feature in G. Then F; is conditionally inde-
pendent of C given G' = G — {F;} if and only if
Ag =Ag.

Thus, we can eliminate a conditionally independent
feature F; from G without increasing our distance
from the desired distribution. Intuitively, removing
a feature which is “almost” conditionally independent
will not make our distance grow too large.

While it 1s also impractical to test for conditional inde-
pendence given G’ this reformulation of the problem
points the way to a solution. Intuitively, if all of the
information in Fj is subsumed by the features in G’, it
is almost certainly subsumed by some subset of these
features. After all, it is very unlikely that all of these
(usually very many) features are actually required.

Definition 2 Let M be some set of features which
does not contain F;. We say that M 1is a Markov
blanket for F; if F; is conditionally independent of
(FUC) — M — {F;} given M. (Pearl 1988, p. 97).

It is easy to see that if M is a Markov blanket of Fj,
then it is also the case that the class C' is conditionally
independent of the feature F; given M. Therefore:

Corollary 2 Let G be a subset of features and F; be
a feature in G. Assume that some subset M of G 1s
a Markov blanket of F;. Then Ag: = Ag.

However, the Markov blanket condition is stronger
than conditional independence. It requires that M
subsume not only the information that F; has about
C, but also about all of the other features. While it
might be difficult to find such a set M, use of Markov
blankets as the basis for feature elimination has a num-
ber of very desirable properties.



Intuitively, we want to remove features for which we
find a Markov blanket within the set of remaining fea-
tures. We now show that features judged as unneces-
sary based on this criterion remain unnecessary during
the rest of the process. Assume, for example, that we
remove a feature F; based on a Markov blanket M.
At some later phase, we might remove some other fea-
ture F; € M. In general, the removal of F; might now
render F; relevant again; that is, if we were to add Fj
back in, we might not be able to remove it again. As
we now show, this is not the case.

Theorem 3 Let G be our current set of features, and
assume that some (previously removed) feature F; ¢ G
has a Markov blanket within G. Let F; € G be some
feature which we are about to remove based on some
Markov blanket within G. Then F; also has a Markov
blanket within G — {F;}.

Proof: The proof is based on the basic indepen-
dence properties of probability distributions, as de-
scribed in (Pearl 1988, p. 84). We will use the notation
I(X,Y | Z) to denote the conditional independence of
two variables or sets of variables X and Y given a set
of variables 7. Let M; C G be the Markov blanket of
F; (note that this is not necessarily the same Markov
blanket which we used in order to remove F; in the
first place); let M; C G be the Markov blanket which
we are now using to remove Fj. It is straightforward
to show that if M; does not contain Fj, then it re-
mains a Markov blanket for F; even after the removal
of F; from G. Therefore, consider the case where
F; € M; and define M; = M/ U {F;}. We will show
that M;UM; is a Markov blanket for F;. Let X denote
G—{F;}—(M/UM;). We need to show that I(F;, X |
(M U M;)). From the Markov blanket assumption
for F; and the Decomposition property, we have that
I(F;, (X U M}) | M;). Using the Weak Union prop-
erty, we obtain that I(F;, X | (M/ U M;)). Similarly,
we can derive that I(F;, (X U(M;—M/)) | M/U{F;}),
and therefore that I(F;, X | M} U M; U {F;}). From
these two facts, we can use the Contraction property
to show the desired result. 1

Thus, the Markov blanket criterion only removes at-
tributes that are really unnecessary. As interesting is
the fact that the converse is also true. Two types of at-
tributes are generally perceived as being unnecessary:
attributes that are irrelevant to the target concept, and
attributes that are redundant given other attributes.
The Markov blanket criterion captures both of these.
Attributes that are irrelevant will be unconditionally
independent of everything, so they will be removed

Figure 1: Forward vs. backward selection

based on a Markov blanket consisting of the empty
set of features. Even if we have a set of attributes
that are correlated only with each other, but are com-
pletely independent of the class variable, the Markov
blanket criterion will remove them one by one: at each
stage, the remaining irrelevant features will be used as
a Markov blanket for the one we are trying to remove.
If, on the other hand, we have a feature whose value is
fully determined (or even probabilistically determined)
by some set S, we will be able to remove it by using S
as its Markov blanket.

It is interesting to compare our approach to another,
seemingly very similar one, often used in the litera-
ture (Singh & Provan 1996). There, rather than start-
ing with the full feature set and eliminating features,
we begin with an empty set of features and add fea-
tures one by one. Usually, the metric used to add fea-
tures is information gain: we add to our current G the
feature Fj; that maximizes the expected cross-entropy
between Pr(C' | G) and Pr(C | GU{F;}). It is easy to
show that our idea of using a Markov blanket to esti-
mate the cross-entropy can also be applied in the case
of forward selection. Therefore, it might seem that the
two approaches are essentially minor variants on the
same theme. We claim that this is not the case: Our
formal framework provides us with the tools to com-
pare forward selection and backward elimination, and
justifies our choice of backward elimination.

Recall that our goal was to remain as close as possible
to the “correct” conditional distribution Pr(C' | F).
By removing features that only take “small steps”
away from this distribution, we can remain close to it.
By contrast, the forward selection scheme starts out
with the prior distribution Pr(C) given no features. Tt
then tries to take “large steps” away from that distri-
bution. If the goal of this process is to get as close
as possible to the “right” distribution, the problem
becomes clear. There is no guarantee that taking a
large step away from initial distribution actually gets
us closer to the goal distribution. For example, as illus-
trated in Figure 1, adding F; might let us take a much
larger step than adding Fj, but the resulting distribu-
tion Pr(C | Fj;) is actually further from the “right”



distribution than Pr(C' | F;). As we show in Section 4,
this behavior actually occurs on some of our data sets.

3 An Approximate Algorithm

Previously, we showed how we can eliminate a fea-
ture F; from a candidate feature set G by finding
a Markov blanket M for F;. Unfortunately, there
might not be a full Markov blanket for a feature, but
rather only an approximate one that subsumes the in-
formation content of the feature. Furthermore, find-
ing either a true or an approximate Markov blanket
might be hard. We now present a simple algorithm
which provides a heuristic approach to dealing with
this problem. Broadly, our algorithm iteratively se-
lects one candidate set M; for each feature F;, and
uses a rough heuristic to estimate how close M; is
to being a Markov blanket for Fj; the feature F; for
which M; is closest to being a Markov blanket is elim-
inated, and the algorithm repeats. Our intuition for
constructing a candidate Markov blanket is as follows:
Assume that F; does, in fact, have a Markov blanket
M;. We can think of F; as directly influencing the
features in M;. Therefore, these features will tend to
be quite strongly correlated with F;. Other features,
on the other hand, are conditionally independent of F;
given M;. Thus, F; influences them only indirectly, via
M;. There is a well-known “folk-theorem” that proba-
bilistic influence tends to attenuate over distance; that
is, direct influence is typically stronger than indirect
influence. Therefore, we heuristically choose, as an
approximation to the Markov blanket, some set of K
features which are strongly correlated with F;. We
tested a number of feature “correlation” metrics in-
cluding statistical correlation, mutual information be-
tween features, class conditional mutual information
and “pair-wise” cross-entropy (decribed below). The
latter metric provided the best initial results and was
used in the experiments reported here.

We now want to figure out how close M; is to being a
Markov blanket for F;. Unfortunately, evaluating the
conditional independence expression in Definition 2 is
typically very expensive. We try to approximate this
notion by observing that, if M; is really a Markov blan-
ket for F;, then D(Pr(C' | M = fu, F; = f;),Pr(C |
M = fu)) = 0 for any assignment of feature values
fu and f; to M and F; respectively. We therefore
define the expected cross-entropy:

da(F; | M;) = Z Pr(M; = fu,, F; = fi)-
oy, fi
D(Pr(C | M = fu,F; = f;),Pr(C | M = fur)).

If M; is, in fact, a Markov blanket for F;, then
dg(F; | M;) = 0. (This follows from the same tech-
niques used in Corollary 2.) Hopefully, if it is an ap-
proximate Markov blanket, then this value will be low.

These approximations result in the following algo-
rithm: We begin by computing the cross-entropy of
the class distribution given pairs of features, v;; =
D(Pr(C | F; = fi, Fj = f3), Pr(C' | Fj = f;)) of every
pair of features F; and F;. We then instantiate G' to
F | and iterate the following steps until some prespec-
ified number of features have been eliminated: (1) For
each feature F; € G, let M; be the set of K features
F; in G — {F;} for which v;; is smallest. (2) Compute
dg(F; | M;) for each 1. (3) Choose the i for which this
quantity is minimal, and define G = G — {F;}.

This algorithm is simple and fairly easy to implement.
However, it is clearly suboptimal in many ways, par-
ticularly due to the very naive approximations that it
We now discuss the consequences of this and
some ways in which the algorithm can be improved.
First, the current algorithm eliminates a prespecified
number of features, and constructs M; sets of a fixed
prespecified size K. It is easy to have the algorithm
stop automatically when the expected cross-entropy
estimate for dropping any remaining feature gets too
large. It is also fairly straightforward to extend the al-
gorithm to pick a different size M; based on the num-
ber of features which were highly correlated with F;.
There is, however, an important tradeoff that must be
kept in mind. Theoretically, the larger the condition-
ing set, the likelier it i1s to subsume all of the informa-
tion in the feature, thereby forming a Markov blan-
ket. On the other hand, larger conditioning sets frag-
ment our training set into small chunks (correspond-
ing to the different assignment of values to the features
in M;), reducing the accuracy of our probability and
hence cross-entropy estimates. Therefore, it is crucial,
when doing this modification, to have a penalty term
associated with adding additional features to M;.

uses.

More importantly, we would like to improve our tech-
niques for choosing the candidate Markov blankets
M; and for evaluating how close each one is to ful-
fulling the Markov blanket assumption. In particular,
the expected cross-entropy does not really test for the
Markov blanket property: The expected cross-entropy
will also have value 0 if F; is conditionally independent
of C' given M;. But we have already pointed out that
conditional independence is a weaker property than
the Markov blanket assumption. In fact, using condi-
tional independence as a selection criterion can lead to
counterintuitive behavior. For example, as we can see



in our results, increasing the size K of the conditioning
set can actually cause the results to degrade. While
some of this degradation is due to fragmentation of the
training set (see below), some of it is caused by the
fact that conditional independence is not a monotonic
property. That is, it is possible for a certain feature
to be conditionally independent of C' given some con-
ditioning set M, but strongly correlated with C' given
a strict superset of M. In a way, this fact is not sur-
prising. It i1s well-known that additional information
can cause correlations that were not present before to
appear (Pearl 1988).

To illustrate this phenomenon in our context, consider
a text classification problem, where the data instances
are documents, the features are the presence or ab-
sence of a word, and the classes are document topics.
The word mining is not significantly correlated with
the topic machine-learning. Therefore, if we were to
run our algorithm with K = 0, we would probably
eliminate mining fairly early. However, this word 1is
strongly correlated with the word data; moreover, if
we condition on the presence of the word data, there
is a strong correlation between the word mining and
the topic machine learning. Thus, by putting the word
data into our conditioning set M, we have caused a
seemingly irrelevant word to become relevant. The
converse can also occur, so that we can get the es-
timated “relevance” of a feature fluctuating multiple
times as we change K. We believe that the perfor-
mance of our algorithm will be significantly improved
by the use of more refined techniques (e.g., Bayesian
methods) to choose a candidate (or even several can-
didates) Markov blanket, and by the use of a more
precise formula for evaluating how close the different
candidates are to fulfilling the requirement.

4 Results

In order to empirically test our theoretical model for
feature selection as implemented by our approximate
algorithm, we ran a number of experiments on both
artificial and real-world data. These datasets include:
the Corral data which was artificially constructed by
John et al (1994) specifically for research in feature
selection; the LED24, Vote, and DNA datasets from
the UCI repository (Murphy & Aha 1995); and two
datasets which are a subset of the Reuters document
collection (Reuters 1995). These datasets are detailed
in Table 1. We selected these datasets as they are ei-
ther well understood in terms of feature relevance or
they contain many features and are thus good candi-
dates for feature selection.

No. No. Training Testing
Dataset Classes | Features | Set Size Set Size
Corral 2 6 32 128
LED24 10 24 3200 5-fold CV
Vote 2 487 435 5-fold CV
DNA 3 180* 3186 5-fold CV
Reuters1 3 1675 337 5-fold CV
Reuters2 3 1646 379 5-fold CV

Table 1: Datasets. *Denotes Boolean encoding.

We first analyze the artificial domains. The Corral
dataset has been noted by previous researchers (John,
Kohavi, & Pfleger 1994) as particularly difficult for fil-
ter methods since, of the 6 features in this domain, the
target concept is a Boolean function of only four of the
features: (A A B) V (C A D). The fifth feature is en-
tirely irrelevant and the sixth feature is “correlated”
with the target concept in that it matches the class
label 756% of the time. Thus, many filter approaches
which use forward selection are likely to always select
the correlated feature. This poses a problem for cer-
tain induction methods; C4.5, for example, is likely
to initially split on the correlated feature, thus frag-
menting the data enough that the true target concept
cannot be recovered in the subtrees. One should note,
however, that, due to the disjunctive nature of the tar-
get function, the Naive Bayesian classifier is actually
better off with the correlated feature than without it.
This seems to be more a shortcoming of the simplicity
of this induction method than a flaw with feature se-
lection methods that eliminate the correlated feature.

We verified this analysis experimentally, finding that
forward selection (even with conditioning) always se-
lects the correlated feature (thereby taking a “large”
step in a suboptimal direction, as in Figure 1). Run-
ning backward elimination with conditioning, on the
other hand, avoids this problem: we eliminate the cor-
related feature, since it has no effect on the class distri-
bution for the function given the features that deter-
mine the target concept (or some large subset thereof).
When we conditioned on 2 or more features and set the
algorithm to drop 2 features, it consistently eliminated
both the correlated and irrelevant features.

In the LED24 domain, we find a situation (albeit artifi-
cial) where conditioning on correlated features actually
makes 1t more difficult to determine an appropriate
subset of features. This domain contains 7 relevant
and 17 irrelevant features. Moreover, the class label
in the LED24 domain entirely determines the value of
each relevant feature (modulo a noise term), whereas



the irrelevant features are random. Thus, there is no
dependence between features given the class label. As
a result, we would expect that conditioning on cor-
related features would only confuse our algorithm by
forcing 1t to unnecessarily estimate a larger number
of probability values with the same amount of data,
thus leading to poorer estimates. Again, this conjec-
ture was verified experimentally, as our method in fact
only consistently selected the 7 relevant features when
we conditioned on no variables.

To test how our method of feature subset selec-
tion affected classification, we employed both a Naive
Bayesian classifier (Duda & Hart 1973) and C4.5
(Quinlan 1993) as induction algorithms; these were ap-
plied both to the original datasets and to the datasets
filtered through our feature selection algorithm (us-
ing both forward selection and backward elimination).
Accuracy results for the UCI data are given in Table 2.

As seen in the accuracy results for Corral (using C4.5),
Vote (using Naive Bayes with aggressive feature elim-
ination), and DNA, selection of the appropriate fea-
ture set can have a large impact on classification ac-
curacy. In the DNA domain we see some of the most
dramatic results: accuracy improvements after elim-
inating 100, or even 150, of the 180 features with
our method! A two-tailed paired T-test over the
cross-validation folds reveals statistically significant
improvements (P < 0.10) in accuracy for the Vote do-
main using Naive Bayes with aggressive feature selec-
tion and in the DNA domain for backward elimination
used in conjunction with C4.5. Moveover, feature se-
lection never significantly degraded accuracy in any of
the real-world datasets tested. More importantly, how-
ever, is the fact that, in many domains, our feature se-
lection algorithm can make dramatic reductions in the
feature space and consequently improve running-time
performance as well.

As far as computational expense, our filter approach
also shows promise for scaling to larger domains. Both
theoretical and empirical results show that the time
complexity of our algorithm is quite low. Theoreti-
cally, it requires O(n?(m+ logn)) operations for com-
puting the pairwise cross-entropy matrix and sorting
it, where n is the initial number of features and m is
the number of instances. The subsequent feature selec-
tion process requires O(rnmkc2*) time, where r is the
number of features to eliminate, k is the small, fixed
number of conditioning features and ¢ is the number
of classes. Using caching schemes, it is possible to re-
duce the second term by close to a factor of n, due to
the fact that an eliminated feature is likely to be in

the M; of only a few of the remaining features. Thus,
we need only recompute a new M; and its expected
cross-entropy for this small number of features.

Empirically, this low running time allows us to deal
with very large domains in a reasonable amount of
time. By way of comparison, Kohavi (1995) obtains
similar accuracy results on the DNA dataset for Naive-
Bayes and C4.5 using the wrapper approach, but notes
that doing so takes 15 hours on a Sun sparc 10. In
our experiments, an inefficient implementation of our
algorithm (one that did not utilize clever data struc-
tures to reduce the running time) reduced the DNA
dataset by 100 features using between 10 and 20 min-
utes on the same machine (depending on the number
of conditioning variables). This is a time savings of
nearly two orders of magnitude! Moreover, since our
approach is a filter method, we do not need to re-run
the algorithm for every induction algorithm we choose
to run on a reduced-feature dataset.

The ability to deal effectively with very high-
dimensional datasets allows us to apply our work to
the domain of information retrieval. (In fact, this was
part of the original motivation for our work.) In these
applications, we have a feature for every word in the
corpus, which leads to an overwhelming number of fea-
tures. Therefore, such datasets present an exceptional
challenge for many feature selection algorithms. In
particular, feature selection using a wrapper method
is simply intractable due to the prohibitive cost of
running an induction algorithm thousands of times on
very high-dimensional data. Hence, an efficient filter
method, akin to the one method described here, is the
only suitable approach.

To test this empirically, we constructed two high-
dimensional datasets from the Reuters collection, each
of which contains articles on three topics (classes). The
first subset, Reutersl, is comprised of articles on the
topics coffee, iron-steel, and livestock. These topics
are not likely to have many meaningful overlapping
words. Reuters2, on the other hand, contains articles
on reserves, gold, and the gross national product, which
are likely to have many similar words used in different
contexts across topics. Each article was encoded into
a binary vector, where each feature denoted whether
a particular word occured in the article or not. As a
simple pre-processing step, all words which occurred
less than 3 times in each dataset were eliminated sim-
ply as a means for removing extremely rare words such
as unique names.

We ran our feature selection algorithm on the Reuters



# Features Naive Bayes Accuracy C4.5 Accuracy
Dataset | Orig./Final | K Orig. Fwd. Bckwd. Orig. Fwd. Bckwd.
0 84.4 84.4 81.2 75.0
1 81.3 84.4 75.0 87.5
Corral 6 /4 2 90.6 81.3 87.5 81.2 75.0 100.0
3 81.3 87.5 81.2 100.0
4 81.3 87.5 81.2 100.0
0 721 +1.0 | 721 £ 1.0 713+ 1.2 | 71.3 £ 1.3
LED-24 24 /14 1 721 4+21 ] 71.94+09 | 721 +07 | 71.1 £ 1.2 | 71.0 £ 1.0 | 709 £+ 1.2
2 7224+14 | 724+ 14 719+ 1.0 | 71.3 £ 0.9
0 728+ 1.5 | 728 £ 1.5 721 4+£09 | 72.1 +£ 0.9
LED-24 24 /7 1 721 4+21|7224+18 | 722+18 | 71.1 £1.2 | 71.3+£19 | 71.3 £ 1.9
2 721 +1.5 | 72.1 £ 0.8 716 £ 1.3 | 71.5 £ 1.1
0 90.1 +£ 1.8 | 90.1 + 1.8 95.7+ 1.5 | 95.7 £ 1.5
Vote 48 / 28 1 190.1+181|90.1+27]|90.1+27]|9.2+15|95.0+28 | 952+ 28
2 90.3 £ 3.4 | 90.3 + 3.4 945+ 1.3 | 947+ 1.3
0 92.0 +£ 2.7 | 92.0 + 2.7 95.4+29 | 954 £ 2.9
Vote 48 / 8 1 1901+18|936+18|92.7+£25|9.2+15|9.9+15|95.7+15
2 95.2+26 | 93.1 +£ 54 95.0 +£ 2.5 | 96.0 £ 2.2
0 95.0 £ 0.5 | 95.0 £ 0.5 93.6 +£ 0.7 | 93.5 £ 0.7
DNA 180 / 80 1 [1940+06 | 954+£07|955+£09|923+£0.7 |934+£08 | 93.3=+06
2 949+ 0.9 | 94.8 + 0.6 93.6 +1.4 | 935+ 1.1
0 941+ 1.0 | 94.1 +£ 1.0 93.6 £ 0.2 | 93.6 £ 0.3
DNA 180 / 30 1 [940+06 | 942+1.1|943+£1.1|923+£0.7 |93.6+0.8 | 934+0.7
2 923+ 1.8 | 93.8 + 1.0 91.7+ 1.5 | 933+ 1.0
Table 2: Accuracy percentages for Naive-Bayes and C4.5 using feature selection.
# Features Naive Bayes Accuracy C4.5 Accuracy
Dataset Orig./Final | K Orig. Fwd. Bckwd. Orig. Fwd. Bckwd.
Reutersl 1675 / 675 0 | 90.5£5.2 | 90.7 £5.1 | 90.7 £ 5.1 | 95.2 + 2.5 | 95.5 £ 2.4 | 949+ 2.7
2 91.9 + 3.1 | 96.1 £ 3.3 95.8+ 25 | 96.4 £ 2.0
Reuters2 1646 [/ 646 0 | 89+£22 |923+£1.7|923+1.7|91.5+1.2 | 93.0+06 | 93.0+ 0.6
2 90.6 + 2.5 | 94.1 £ 2.8 91.5+29 | 949+ 20

Table 3: Accuracy percentages for Reuters text datasets using feature selection.

datasets in order to reduce the feature space by 1000
features — down to nearly 1/3 its original size! The
results of these experiments are shown in Table 3,
which also includes results for forward selection. In
the Reutersl domain, where we expect more distinct
terms between topics (and hence less feature interac-
tion) we see that both feature selection methods have
a tendency to work comparably well without condi-
tioning information, producing good accruacy results.
When conditioning is introduced, however, the results
using the backward elimination method clearly domi-
nate those obtained using forward selection. Employ-
ing forward selection is simply inadequate for finding
good features with conditioning information. In the
second Reuters domain, however, we see that employ-
ing backward elimination allows the algorithm to effec-
tively make use of conditioning information to increase
the accuracies of both induction methods in a drasti-
cally reduced feature space. The results for Reuters2

using our backward elimination method with K = 2
are statistically significant (P < 0.10) improvements
over the accuracy on the original dataset.

As for resource comsumption, eliminating 1000 fea-
tures from the Reuters datasets took about 2.5 hours
on a Sun sPARC 10. By way of comparison, a rough
estimate of the time required by a wrapper approach
such as that of Caruana & Freitag (1994) or John et
al (1994) to eliminate this many features is on the or-
der of thousands of hours, assuming the method does
not get caught in a local minima first and prematurely
stops eliminating attributes as a result.

5 Conclusions

We have presented a theoretically justified model for
optimal feature selection based on using cross-entropy
to minimize the amount of predictive information lost



during feature elimination. Within this theoretical
framework, we prove several desirable properties of us-
ing such a method for feature selection. Moreover, we
present an algorithm that approximates our theoreti-
cal model and provide extensive empirical testing. We
show that this algorithm is effective at drastically re-
ducing the feature space in many learning tasks while
also helping to improve accuracy in many cases.

Our method attempts to eliminate features in a way
that keeps the conditional probability of the class given
the features as close to the original distribution as pos-
sible. This is not the same as attempting to maintain
the same classification for each instance. While this
too is a desirable goal, it is necessarily specific to a
particular induction algorithm. Rather, we focus on
an algorithm-independent paradigm for feature sub-
set selection, viewing an induction algorithm as a bi-
ased method for approximating the probability distri-
bution of class labels given features and transforming
this distribution into a classification. We stay free of
the bias of a particular induction algorithm by simply
maintaining as much as possible the underlying con-
ditional distribution of class labels that the induction
algorithm attempts to approximate.

Due in large part to its induction-bias-free nature, our
approach sometimes provides only modest gains in ac-
curacy. However, it can be used as a tool for obtain-
ing much better accuracy for very high-dimensional
datasets. Currently, when faced with such a domain,
we are essentially forced to use simple, less computa-
tionally intensive induction algorithms such as Naive
Bayes. The use of our feature selection algorithm
as a pre-processing step will enable the use of more
powerful, but computationally expensive, induction al-
gorithms (such as full Bayesian classifiers). In this
way, we hope to make such induction methods much
more applicable to problems with many features. Fur-
thermore, although we argue that wrapper methods
are, a priori, too computationally expensive for such
datasets, we can use them on the feature-reduced
datasets resulting from our algorithm. This will allow
us to produce a classifier which is optimized for accu-
racy with respect to a specific induction algorithm, by
searching in the filtered feature space. We hope that
these techniques, taken together, will allow us to effec-
tively tackle induction problems in very large feature
spaces.
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