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Abstract

Bayesian networks are becoming an important tool for knowledge representation and
reasoning under uncertainty. Bayesian networks allow intuitive causal representation
of dependencies as well as efficient algorithms for probabilistic inference. Bayesian
networks have been applied to problems in medical diagnosis, speech recognition,
automated vision, machine learning, fault and yield diagnosis, scheduling and other
areas. The number of practical applications is increasing rapidly as more and more
areas encounter the need for decision making under uncertain circumstances.

A Bayesian belief network (BN) is a directed acyclic graph (DAG) whose nodes
represent random variables and whose edges represent dependencies between these
random variables. The dependencies are expressed as conditional probabilities of a
node conditioned on the set of its parents. As a whole, a BN represents a joint
probability distribution over the random variables in its domain, which is given by a
product of conditional probabilities in the network.

A probabilistic inference in a Bayesian network is a computation which answers
a quantitative question, called a query, about the probability of one event given
information about some other events. For example, one might query the probability
of a person having lung cancer given that he has a positive X-ray result. The inference
task in a general BN is NP-hard and thus computationally expensive. This thesis
addresses the problem of improving BN inference so that it scales up to much larger
problems.

First, we show how parallelism can be exploited to speed up probabilistic inference.
We find that exact probabilistic inference is extremely memory intensive as compared

to more traditional scientific parallel applications, since the data set accessed grows

v



in proportion to the computation with a small constant. By utilizing special-purpose
techniques for managing data locality, we manage to achieve almost linear speedup
on medium scale machines (up to 64 processors) for real-world networks.

Parallelism by itself is insufficient for handling large and complex problems. In
this case, the intermediate steps of the inference process generate probability distri-
butions whose dimension is very large, rendering the inference process impractical.
My thesis investigates the idea of doing approximate probabilistic inference by using
more compact representations of these large distributions. We propose a new general
approach for doing so, by abstracting (partitioning) the state space of a complex
distribution. This thesis contains both techniques for choosing the abstraction and
algorithms for probabilistic inference in the abstracted representation. We provide a
technique to tailor the abstraction to the task at hand.

Our approach differs from existing approaches in that we choose to abstract the
joint state space of a group of nodes, a clique in BN terms. This allows us to make the
state space abstraction more effective and probabilistic inference in an abstracted net-
work more efficient. We propose a practical algorithm to adjust the abstraction gran-
ularity during probabilistic inference based on the minimization of the information-
theoretic measure of distance, the KL distance. Furthermore, we introduce a new
hierarchical data structure for representing the clique state space abstraction, the
Binary Split Partition (BSP) tree.

We demonstrate these techniques on a few examples. In BN20 networks (two-
layer cause and effect networks), particularly useful for medical diagnosis tasks, we
find a simple fixed static state space partitioning that reduces the computation time
substantially at the expense of a small error for all possible diagnostic queries in
the network. We extend the static abstraction to a dynamic abstraction in hybrid
networks, networks with both discrete and continuous variables that are often useful in
practice, and show how to choose the appropriate hierarchical state space partitioning
dynamically based on the task and required precision. As a result, we provide the

first effective general-purpose inference algorithm for hybrid networks.



Preface

“The only difference between me and a madman is

that I am not mad.”

Salvador Dali (1904-89)

This thesis is the result of my tumultuous graduate study at the department of
Applied Physics at Stanford University from October 1991 to March 1998. During
this time, I changed advisors three times, and was lucky to meet Prof. Daphne Koller
who finally turned out to be my principal advisor. The topic of my dissertation,
which finally turned out to be related to Artificial Intelligence, changed even a larger
number of times.

Although I spent more time and effort than I might have wished to and may have
preferred to work with Daphne Koller from the start, the experience of changing fields
greatly enriched my knowledge and skills. This experience taught me to understand
people with a different background talking a different scientific language. My training
in other areas also helped me to obtain some non-traditional insights into the problem.
I hope that the new way of looking at probabilistic inference described in this thesis

will be useful for my colleagues.

Alexander V. Kozlov
Palo Alto, 1998
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Chapter 1
Introduction

Inference is a process of obtaining new knowledge from existing knowledge. It is at
the heart of all computer-based decision-making systems. In this thesis, I consider
efficiency of inference in a graphical structure called a Bayesian network [Pearl, 1988;
Heckerman and Wellman, 1995, which got its name from Bayes’ rule for computing
conditional probabilities of causally related random variables [Bayes, 1763]. Bayesian
networks are also called belief networks, causal probabilistic networks, directed Markov
fields, or, given some additional structure, influence diagrams. Bayesian network
inference is based on the theory of probability and is often called probabilistic inference.
Probabilistic inference has been used in a number of practical systems.

A Bayesian belief network (BN) consists of nodes, which represent random vari-
ables taking a set of values, and directed edges, which represent direct probabilistic
dependencies between these variables. Each node is assigned a conditional probabil-
ity for itself conditioned on its parents in the graph. More precisely, the graphical
structure specifies a set of conditional independence statements, and the numerical
values of the conditional probabilities characterize the strength of probabilistic de-
pendencies [Pearl, 1988]. As a whole, a BN provides a compact representation for the
joint probability distribution, the probability distribution over the joint state space
of all variables in the network, by a product of all conditional probabilities associated
with the nodes in the network.

Given a BN, we can answer a question, called a query, about the probability of a
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random variable taking one of its values, conditioned on the fact that we know the
values of some other random variables. The process of inferring such a probability
or a set of probabilities is called probabilistic inference. In general, an input to a
probabilistic inference system based on a BN is evidence about the values of some
variables(s), say the results of physical examination and tests performed on a hospital
patient, and the output is a probability distribution over the values of some other
variable(s), say the disease that the patient has; the BN in this case describes a set
of expert beliefs about the patient and the disease in question. A BN representation
of knowledge has many benefits: it allows intuitive causal interpretation, is elegant,
concise, and modular.

Probabilistic inference in a BN is computationally intensive and is known to be
NP-hard in general [Cooper, 1990]; the costs grow exponentially with the size of
a BN. It is crucial to deal with this issue since the computational tasks in many
practical applications involve hundreds and thousands of variables, making the cost
prohibitively large even for modern computers.

In this thesis, I investigate two ways of dealing with the computational complex-
ity of probabilistic inference. The first one is to apply parallel processing, where
we partition the computation workload between several processors in an attempt to
reduce computation time of exact probabilistic inference. The other one is to make
approximations in the probabilistic inference, where we try to get the best estimate
of the output probabilities in a limited amount of computation time.

Let us begin by formally defining a BN and looking at some simple examples of

BNs and probabilistic inference.

1.1 BN definition & examples

A BN is a joint probability distribution over random variables represented as a product
of conditional probabilities. The random variables in a BN are formally represented
by nodes. The probability of each node is determined by the probability distribution
for the values of the node parents in the BN graph. This dependency is formally

represented by a conditional probability p(z;|Pa(x;)) associated with the node, where
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z; denotes a random variable and Pa(z;) denotes the set of node parents.
Thus, the joint probability distribution of over all random variables in a BN is

formally given by the chain rule:

n

p(e1, ... @) = | [ p(xi|Pa(:)). (1.1)
i=1
A joint probability entry formally gives the probability of an event with a fixed set
of values for all variables z1, ... ,z, in the network.

For example, let us consider the “Chest Clinique” expert knowledge from a medical
domain [Lauritzen and Spiegelhalter, 1988]. Tuberculosis and lung cancer create an
abnormality in the chest. Either of these abnormalities can cause positive chest
X-ray and dyspnea (shortness of breath). Another probable cause of dyspnea is
bronchitis. Tuberculosis is more likely in people who have visited Asia. Lung cancer
and bronchitis, in their turn, are more often encountered in smokers. These facts are

incorporated in the graphical structure of a “Chest Clinique” BN shown in Fig. 1.1.

Corowna >
Geroiosy  Clrgcrcr

Figure 1.1: The “Chest Clinique” BN describing statistical dependencies between predis-
posing factors, diseases, and symptoms of a chest clinic patient.
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A node in Fig. 1.1 represents a random variable. Although a random variable in
general can have any number of values, we assume that each of the variables in the
“Chest Clinique” BN can have only two possible values: either true or false. For
example, if the patient has visited Asia, we say that the value of the variable zy
corresponding to the node “Visit to Asia” is true. On the other hand, if the patient
has not visited Asia, we say that the value of this variable is false. The facts about
the patient can be found from the patient data sheet and tests and are called findings
in medical literature.

Similarly, the fact that the patient has or has not the disease tuberculosis is
reflected by the true or false value of the variable z7 corresponding to the disease
node “Tuberculosis”. Although the value of this variable might not be available prior
to the final diagnosis, it is possible to have beliefs about it. The probability of the
variable z7 to be in either state might affect the treatment of the patient.

An edge in Fig. 1.1 represents a direct dependence. For example, we believe that
the probability of lung cancer is likely to be affected by smoking. On the other hand,
there is no apparent correlation between smoking and the probability of visiting Asia,
and we do not have an edge between nodes “Smoking” and “Visit to Asia”. We say
that the random variables corresponding to the nodes “Smoking” and “Visit to Asia”
are independent.

Although there is no edge between nodes “Visit to Asia” and “Abnormality in
chest”, the corresponding to these nodes variables are dependent through the node
“Tuberculosis”. Chest abnormalities are more likely in people who visited Asia since
they are more likely to have tuberculosis. Thus, the events “Visit to Asia” and
“Abnormality in chest” can affect each other.

However, if the value of variable z7 is given, i.e., we know that the patient has or
has not tuberculosis, the variables x4 and zy become independent. A visit to Asia
does not directly affect the probability of a person having an abnormality in lungs.
We say that the variables z4 and zy are conditionally independent given the variable
xr. In general, a node is conditionally independent of all non-descendants given its

parents.
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A conditional probability associated with each node in the graph is used to quan-
tify the dependencies in a BN. For example, we associate a conditional probability
p(zp|ra, zp) of the variable zp corresponding to the node “Dyspnea” conditioned
on the variables x4 and zp corresponding to the nodes “Abnormality in chest” and
“Bronchitis”. The values for this conditional probability might be given by Table 1.1
for instance, as they are in the original formulation of this network [Lauritzen and
Spiegelhalter, 1988)].

H Ty ‘ B H p(zp = true) H
false false 0.1
false true 0.8
true false 0.7
true true 0.9

Table 1.1: Values for the conditional probability p(zp|z4,zp) of the node zp, “Dyspnea”,
conditioned on the nodes x4, “Abnormality in chest”, and zp, “Bronchitis”. All these
random variables are assumed to have only two possible values false and true.

The “Chest Clinique” BN defines a joint probability distribution over all variables
Ty, T, T, Tx, XL, Ts, T, and xp in the network. For this network, the full joint
probability distribution table has 28 = 256 entries. All these entries are represented
compactly by the product of all conditional probabilities in the “Chest Clinique” BN:

p(zv, ... ,zp) = p(zp|za, z8)p(zE|Ts)P(Ts5)

p(zx|za)p(zalzr, zr)p(zL|2s)p(zr |2y )D(TYV).  (1.2)

The joint probability distribution defined by a BN is used for probabilistic inference.

The set of values for a random variable in a BN can also be continuous. A BN
in this case is called a hybrid BN since discrete and continuous variables are usually
intermixed. For instance, the BN shown in Fig. 1.2 describes a statistical dependence

of the average daily temperature on the season of the year. The “Temperature”
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Temperature

Figure 1.2: “Temperature” Bayesian network, which is a hybrid BN and describes a statis-
tical dependence of the average daily temperature on the year season.

node represents a continuous variable xzr, and the “Season” node represents a four-
valued discrete variable g which can take one of the four values: “Winter”, “Spring”,
“Summer”, or “Autumn”.

The edge in Fig. 1.2 represents a dependence between the continuous random
variable “Temperature” and the discrete random variable “Season”, which is quanti-
fied by a probability density function. For example, we might specify the dependence

between variable 7 and xg by a normal distribution:

N(zr; p, 0%) = exp(—(z — u)*/20%) (1.3)

1
V2o
with the average temperature (T) = u and variance (T?) — u®> = o2, both of which
depend on the discrete value of the x5 variable. In this representation, the dependence
between zr (temperature) and zs (season) might be given by Table 1.1.!

One of the questions we can ask the “Temperature” network is what the prob-

ability of the season being “Winter” is if the current average daily temperature is

! The data are for Berkeley, California, 1989; the data were taken from The Earth System Science
Community web-page at http://www.circles.org.
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H zs H I | o |
“Winter” 9.4 2.6
“Spring” 14.7 7.6
“Summer” 17.3 1.6
“Autumn” 15.3 6.6

Table 1.2: Values for the dependence p(zr|zg) of the node zp, “Temperature”, conditioned
on the nodes zg, “Season”. The temperature has a normal distribution whose parameters
depend on the season of the year.

12°C, thus modeling an intuitive human perception of a season: the low temperature
corresponds to the winter and the higher temperature corresponds to the summer.
Of course, the values in Table 1.1 can describe the season-temperature depen-
dence only for one particular region, which was Berkeley in the above case. However,
both the “Chest Clinique” and the “Temperature” BNs can be refined by adding
additional nodes and details and made more general and useful. For example, in the
“Temperature” BN we can include the dependence of the average daily temperature
on such factors as shade, altitude, distance from the Pacific Ocean, all of which can
also be expressed as random variables. However, we will see that the increase in the
number of variables and dependencies between variables makes probabilistic inference
much harder computationally. In general, probabilistic inference time increases by a
factor for each additional variable. Thus, it grows exponentially with the number of

variables in a general BN.

1.2 Existing applications

Above we have shown two very simple BNs. Let us look at the practical examples of
BNs which are used in practice.
Disease diagnosis is a traditional application for BNs. A typical query in a diag-

nostic BN is about the probability of a disease given a set of findings. One of the first
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medical BNs was built by David Heckerman at Stanford Medical School for practi-
cal lymph node disease diagnosis and was called PATHFINDER [Heckerman, 1990;
Heckerman et al., 1992]. It contains several simplifying assumptions built in, for
example a single fault hypothesis, which significantly reduces the complexity of the
network construction process and the probabilistic inference computation.

The two largest practical BNs also come from a medical project called QMR
(Quick Medical Reference, [Shwe et al., 1991]). The QMR-DT (Decision-Theoretic
Quick Medical Reference) BN is a two layer medical diagnostic network with a simpli-
fied interaction between nodes, which facilitates probabilistic inference (see a detailed
description of BN20 networks in Chapter 5). The QMR-DT BN has over 600 dis-
ease nodes, 4000 finding nodes, and 40,000 disease-finding links. The other BN in
the QMR project, the CPCS (Computer-based Patient Case Study) BN for internal
disease diagnosis (see Fig. 1.3), has 448 nodes and 908 arcs and has multiple layers.
Techniques for efficient inference in large networks such as these was one of the main
goals of this dissertation.

Probabilistic encoding of information has been used for time critical applications,
making efficient inference crucial. For example, the Vista system [Horvitz and Barry,
1995] is a decision-theoretic system that has been used at NASA Mission Control
Center in Houston. The system uses Bayesian networks to interpret live telemetry
and provides advice on the likelihood of alternative failures of the space shuttle’s
propulsion systems; it considers time criticality and recommends actions of the highest
expected utility. The Vista system employs decision-theoretic probabilistic methods
for controlling the display of information to dynamically identify the most important
information to highlight.

Belief networks in one form or another have been used for fault diagnosis (Win-
dows 95, Intel processor fault diagnosis, airplane engines), robot control (optimizing
actions under uncertainty), real-time monitoring (freeway traffic surveillance), fore-
casting (weather, stock market, oil prices, crop production), speech recognition, image

analysis, and information retrieval. The number of applications is increasing rapidly.

2See the UAI web sites devoted to BN applications http://www.auai.org/BN-Routine.html.
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Figure 1.3: A fragment of the CPCS (Computer-based Patient Case Simulation) medical

diagnostic network. The full network contains 448 nodes and 908 arcs.
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1.3 Probabilistic inference

Probabilistic inference answers a question about the probability distribution over the
values of query variables given some other evidence variables. For example, in a
medical application we compute the probability distribution over possible diseases
given the findings. In the “Chest Clinique” BN, a query might be to compute p(zp =
true|zx = true,xs = false), i.e., to compute the probability of a patient having cancer
if he has positive X-ray results and does not smoke. In the “Temperature” network,
a query might be p(xs = “Winter”|zr = 12°C), i.e., to compute the probability of
winter if the daily average temperature outside is 12°C.

Probabilistic inference can be represented as an application of the Bayes’ rule to
the joint probability distribution defined by a BN. For example, to compute the prob-
ability p(zg = “Winter”|zy = 12°C), we notice that it is the ratio of two probabilities:

p(zs = “Winter”, xzp = 12°C)

= “Winter” =12°C) = . 14
p(zs inter” |z ) o(@r = 12°0) (1.4)

Each of the probabilities on the right side might be computed from the joint proba-
bility distribution of the “Temperature” BN:

p(xs = “Winter”|zr = 12°C)

p(zs = “Winter”, 7 = 12°C)
p(zs = “Winter”, x7 = 12°C) + p(zs = “Spring”, z7 = 12°C) +

p(zs = “Summer”, zr = 12°C) + p(zs = “Autumn”, zp = 12°C)

B N(12;9.4,2.6) 047
" N(12;9.4,2.6) + N(12;14.7,7.6) + N(12;17.3,1.6) + N(12;15.3,6.6)

while the probability of summer computed by the same algorithm is only 0.005.
Probabilistic inference becomes more involved in multiply connected networks,
networks where we can have multiple paths from one node to another. In the latter

case, we have to evaluate sums over large state spaces of groups of variables. In
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general, computation time and memory requirements grow exponentially with the size
of a general BN. Since more general and more useful BNs contain many variables, it is
important to develop techniques to curb the computational complexity of probabilistic

inference.

1.4 Overview of the thesis

Probabilistic inference is practically important and computationally intensive. Thus,
we need a better understanding and more efficient implementations of probabilistic
inference. We address these problems from two different directions: parallel process-
ing and approximation of probabilistic inference, which constitute the two parts of the
thesis. The first part (Chapters 2 and 3) deals with data intensity and parallelization
of probabilistic inference algorithm. The second part (Chapters 4 to 6) deals with
approximations in probabilistic inference that allow reduction of computation time
at the expense of small errors in the results.

Chapter 2 is a more detailed introduction to probabilistic inference. We take
an optimal factoring approach to describing probabilistic inference and show how
inference in BNs can be reduced to the summation of the joint probability distribution.
The algorithm analysis conducted in this chapter helps us to understand the structure
of computations and data dependencies. In particular, it helps to understand why
probabilistic inference is a very data intensive application. The amount of memory
and the amount of computations grow at the same rate and the average number of
processor operations per byte of memory is small.

In Chapter 3 we discuss multiprocessor implementations of probabilistic inference.
For a successful parallel implementation, we need to ensure load balance—an even
distribution of the workload between the processors—and data locality—reuse of the
processor’s cached data, as to avoid unnecessary interprocessor communication and
reduce memory system time. It is often very difficult to find an optimal tradeoff
between load balance and data locality [Stenstrém and Dahlgren, 1996]. As we show
in Chapter 3, probabilistic inference is a particularly interesting application from the

point of view of this tradeoff.
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Our multiprocessor implementation achieves an almost linear speedup with the
number of processors. However, we can achieve significantly greater speedup by
making approximations during probabilistic inference. To achieve the reduction in
memory requirements, inference time, and a better speedup we need to reason on a
new abstract level. We propose a new general mechanism for abstracting parts of the
problem. It approximates the details of the problem by concentrating on its most
important parts. Although approximating probabilistic inference is still NP-hard
[Dagum and Luby, 1993], we can obtain a substantial computation time reduction
due to proper approximations. This approach is discussed in detail in Chapter 4.

In the next two chapters we apply the above abstraction idea for two different
problems. We start with a static abstraction partitioning in Chapter 5 and show that
we can get substantial computation time savings at the expense of a small relative
error of the result in BN20O networks. In Chapter 6, we show a technique of choosing
proper abstraction dynamically by an iterative algorithm. We apply this technique
to hybrid networks containing continuous variables. As a result, we obtain the first
general purpose algorithm for hybrid networks with arbitrary dependence between
continuous and discrete variables.

Finally, in Chapter 7, we summarize our results and consider possible extensions

of the current work.

1.5 Contributions

The major contributions of the first part are:

e We show that data locality is extremely important for the efficiency of proba-
bilistic inference and show how to manage the data locality in general proba-
bilistic inference and for specific networks on commercially available computer

systems.

e We provide two multiprocessor implementations of probabilistic inference. The
first one exploits only one type of concurrency and the second tries to use

all of the available concurrency but compromises data locality. We analyze the
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performance of the two implementations and show that the first one outperforms

the second for practical networks due to better data locality.

e We show that there is enough concurrency in practical networks for medium
scale parallel computers. The best implementation achieves close to ideal speedup

for the CPCS medical diagnostic network.
The major contributions of the second part are:

e We develop a general approach to approximating probabilistic inference based
on the relative entropy or Kullback-Leibler (KL) distance and state space ab-

straction paradigm.

e We demonstrate how to statically apply the state space abstraction on the ex-
ample of BN20O networks and obtain a substantial computation time reductions

at the expense of a small relative error of the result.

e We demonstrate a general approach for dynamic state space abstraction based

on our notion of WKL distance and an iterative algorithm.

e We develop a general purpose algorithm for hybrid networks with arbitrary de-
pendence between continuous and discrete variables nodes in arbitrary topology

and demonstrate its performance.



Chapter 2

Probabilistic inference algorithms

“Now the rest of the acts of Basha and what he did
and his might, are they not written in the Book of the
Chronicles of the Kings of Israel?”

1 Kings 16:5

A probabilistic inference computation is a computation that finds a conditional
probability of the query random variable conditioned on the given evidence random
variable. In this chapter, we first analyze this computation from the optimal factoring
approach point of view first proposed by D’Ambrosio [Li and D’Ambrosio, 1994], then
compare it to the more traditional Lauritzen-Spiegelhalter approach which historically
appeared first [Jensen et al., 1990; Lauritzen and Spiegelhalter, 1988]. Finally, we
consider a spectrum of approaches to managing computational complexity by making

approximations in inference.

2.1 Probabilistic inference

Probabilistic inference can be reduced to evaluation of marginals over some variables.
Let us see how we can perform these computations efficiently on the example of
“Chest Clinique” BN.

14
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2.1.1 Optimal factoring

A conditional probability, which constitutes a probabilistic query, can be expressed
as a ratio of two probabilities. For example, the conditional probability that a patient
has cancer (z, = true) given that he has a positive X-ray result (xx = true) and does

not smoke (x5 = false) can be expressed as the ratio:

p(zp = true,xx = true,xs = false) (2.1)

p(zp = true|lzx = true,xs = false) = ’

p(zx = true,xs = false)

where p(z = true,zx = true,zs = false) is the probability that all three events
specified in the query are happening together and p(zx = true,zs = false) is the

probability of the findings only. Let us look at the “Chest Clinique” BN once again.

Visit to Asia Smoking

L C @
ung Cancer
Q)

Xray Dyspnea

(a) “Chest Clinique” BN (b) Join tree

Figure 2.1: The structure of the “Chest Clinique” BN also shown in Fig. 1.1 and one of
the possible join trees used to compute queries in the text. All conditional probabilities in
the original network, which are functions of the states of a node and its parents, are wholly
contained within one of the cliques in the join tree.

If we denote the nodes in the “Chest Clinique” BN by v, z7, T4, zx, 1, Zs,

zp, and zp as we did in the introduction, the above probabilities can be computed
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as sums of the joint probability distribution (1.2). The probability p(z; = true, zx =

true, xs = false) is:

p(zp = true,xx = true, xg = false) =

Z p(zy,xT, x5 = false,xp = true, x4, xx = true,xp,zp), (2.2)

{mv yZT T ALB 1wD}

i.e., the sum of the joint probability distribution over variables xy, 7, 4, g and

zp, and the probability p(zx = true, x5 = false) is:

p(zx = true,xs = false) =

> p(zv, a7, x5 = false,xp, x4, xx = true,zp, zp), (2.3)

{EV yZT L LATB ):BD}

i.e., the sum of the joint probability distribution over variables zv, z7, 1, T4, B
and zp. In both cases we sum over all variables which do not appear in the left hand
side.

Thus, an evaluation of a query is reduced to the summation of the joint probability
distribution. Given the complete table for the “Chest Clinique” joint probability
distribution, we need to sum 2° = 32 terms to evaluate (2.2) and 2% = 64 terms to
evaluate (2.3). The summations can be carried out more efficiently by exploiting the
structure of the joint probability decomposition (1.2). Let us see how it can be done.

We start with a simple computation of the probability p(D) = p(zp = true) to

demonstrate our ideas:

p(D) = Z p(zy, ..., Ta,xp = true) =

{zVamT7wA7$X7$L7zSa$B}
Z p(xp = true|lza, z5)p(xp|rs)p(Ts)
{zV yTT LA, X ’szerTB}

p(zx|ra)p(zalrr, zr)p(zL|zs)p(zr|Ty)p(Ty) (2.4)

which requires 27 — 1 = 127 summations. However, we might notice that the variable
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zy appears only in the two last terms: in the conditional probability p(zr|zy) of the
node zr conditioned on the node zy and in the probability p(xy) of the node zy
itself. None of the other terms contains the variable zy,. Thus, we can take all other
terms as a common multiplier out of the summation over xy and represent the sum
(2.4) as:

p(D) = Z p(xy, ... ,xa,2p = true) =

{zv,e7r,24,2x,2L,25,2B}

Z p(zp = true|lza, zp)p(xp|zs)p(zs)
{z7,24,2x,2L,25,2B}

p(ex|ea)p(@alzr, 20)p(zlzs) Y pler|zy)p(zy) (2.5)
Ty

which requires two summations for the sum over zy and 2% — 1 = 63 summations
for the sum over {zr,z4,zx,zr,zs,2p}. Thus, it will take only 65 summations
to compute the same result as in (2.4) if we take p(xr|zy)p(zy) out as a common
multiplier. The number of multiplications decreases also: (2.4) requires 27 x 7 = 896
and (2.5) requires 2% + 2% x 6 = 388 multiplications, which is more than a factor of
two speedup.

We say that the product p(zr|zy)p(xy) constitutes the clique potential of the
cligue Cy = {xr, vy} (see Fig. 2.1(b)).! More generally, we say that a clique potential
is a factor in the decomposition defined by one of the possible product decompositions,
and a clique is a subset of nodes of the original network given by the decomposition.

A clique potential summed over corresponding variables constitutes a message.
More generally, a message is a partial result during probabilistic inference compu-
tation. For example, the clique C; sends a message, which is C; potential summed
over the variable zy, to the rest of the network. This message contains all informa-

tion the rest of the network has to know about this part of the BN for probabilistic

!The term clique appeared for historical reasons. The groups of variables were obtained by
forming maximal cliques in a moralized and triangulated BN graph [Lauritzen and Spiegelhalter,
1988]. The cliques by themselves form a clique tree or a join tree. The algorithms to obtain the join
tree from the network structure are well described in [Neapolitan, 1990].
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inference—as we can see, the factors p(zr|zy) and p(xy) enter nowhere else in the
computation.

In other words, probabilistic inference can be viewed as local clique computations
and message passing in a graphical structure called a join tree. One of the possible

join trees, one that corresponds to the decomposition:

p(D) =" [p(xp = truelza, zp)] (Cs) (2.6)
{z4,78}
S ©) e

; [p(zaler, 71)] (Cy) (2.8)
TZ [p(zsles)p(zr|zs)p(zs)] (Cs) (2.9)
”’SZ [p(zx|2a)] (C2) (2.10)
’”sz [p(zr|zv)p(zv)], (C1) (2.11)

is shown in Fig. 2.1(b) (the clique numbers on the right correspond to the clique
numbers in the figure).? The above evaluation of p(zp = true) takes 19 summations
and 56 multiplications as opposed to 127 summations and 896 multiplications in the
original evaluation (2.4), producing a speedup of over 10. In general, the decomposi-
tion leads to substantial savings in sparse networks where variables appear only in a
few factors.

Alternatively, one can represent the computation (2.6 — 2.11) as propagation of
messages along the join tree edges up to the root, as shown in Fig. 2.2. Each clique
multiplies the incoming message(s) with the assigned conditional probabilities, if any,
and computes an outgoing message by the summation. Thus, the computation in (2.6
— 2.11) corresponds to propagating messages in the order C; — C4 (2.11), Cy — C4
(2.10), C3 — C5 (2.9), Cy — C5 (2.8), C5s — Cg (2.7).

2Note that the clique C5 does not have assigned conditional probabilities and its potential is
identically one.
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Let us look how these computations can be mapped to the join tree computa-
tions. The propagation starts at a leaf (C7, Ca, or Cs in our example). A leaf clique
computes its potential by multiplying the conditional probabilities assigned to it and
forms a message to the parent clique. An intermediate clique (C4 or Cs in our exam-
ple) receives the messages from the children, computes its potential by multiplying
the assigned conditional probabilities and the messages, and forms a message to its
parent. The propagation stops at the root (Cg in our example) which contains the

desired answer to a query (see (2.6)).

S
o e
= G

Figure 2.2: The clique propagation tree for the evaluation of probability of dyspnea p(D) in
the “Chest Clinique” BN. Messages are propagated from the leaves to the root of the tree.

In certain cases, the computation can be simplified further. For example, we might

notice that the sum in the clique C is identically one:
> plrx|za) =1 (2.12)
zx

due to the basic properties of conditional probabilities. Thus, the clique Cy can be
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completely eliminated from the propagation tree,® and one needs only 17 summations
and 56 multiplications to compute (2.4).
The savings also increase as the number of instantiated nodes increases. For

example, the evaluation of (2.2) can be decomposed as:

p(zp = true,xx = true,rs = false) =

Z p(zalzr, xr = true)p(zp = true|lzs = false)p(zs = false)p(zx = true|z,)

" S plarlev)plav), (2.13)

v

where we have to sum only over 3 variables x4, 7, and zy and need only 5 sum-
mations and 20 multiplications. The above decomposition is equivalent to message
propagation in the following order C; — Cy, Cy — C4, C5 — Cy4. To evaluate (2.3),
we need to sum (2.13) over zr, which results in four additional summations.

The query (2.1) computations, p(z; = true,xzx = true,xs = false) (2.2) and
p(zr = true, xx = true,xs = false) (2.3), can be efficiently combined in one join tree
propagation. For instance, the computations in the C] clique are completely identical
for the two propagations and differ only at the clique Cy. In other words, the results of
local computations can be cached and reused, resulting in further speedup compared

to direct evaluation of the joint probability sums.

2.1.2 LS algorithm

Let us look at the probabilistic inference from another prospective. The above op-
timal factoring algorithm constitutes only a part of the initialization step, the up
propagation, of a more general Lauritzen-Spiegelhalter (LS) algorithm [Jensen et al.,
1990]. The data structures in the LS algorithm might be reused for multiple queries.
Let us see how it can be done.

In the LS algorithm, we also build a join tree. Each clique in the join tree contains

3This reduction corresponds to barren node reduction used for qualitative probabilistic inference
in [Shachter, 1986].
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a data structure with a potential, which we denote ¥U(C}) here, and each edge (I, m)
in the join tree contains a data structure with a message between cliques C; and C,,
which we denote ®(C; N C,,) here, defined on the intersection C; N Cy, of the cliques
C; and C,,.

Each conditional probability p(z;|Pa(z;)) in the original network of a node z;
conditioned on its parents Pa(x;) is assigned to a clique which wholly contains the
union z; U Pa(z;) of the node z; itself and its parents Pa(z;). The clique potentials
U(Cy) in the cliques are initialized to the product of the conditional probabilities
that are assigned to cliques. The messages between cliques are initialized to one, i.e.,

®(Cy N Cp) =1, so that the following property holds:

Hall potentials \I,(Ck)
Hall messages (I)(Cl n Cm)

p(z1, 22, ... ,Tp) = (2.14)
The above property is just another form of the joint probability decomposition.
The potentials and messages are called self-consistent if for each clique C; and

each adjacent to the clique edge (I, m) the following equality holds:

Y ¥(C) =%(CiNCy). (2.15)

a:iECl\(ClﬂCm)

In this case, the marginals for any variable can be obtained from any clique as if they
were obtained from the whole joint probability distribution. For instance, if we want

to find the probability p(z;) of a node z; and z; € Cj, then:

plz) = > W) (2.16)

z;€C\z;

The marginals obtained from any potential ¥(C}) or message ®(C; N Cy,) are guar-
anteed to be consistent. It means that to obtain the posterior distribution over a
variable, we do not need to sum the whole joint probability distribution, but only
potentials of one clique with a much smaller state space.

The problem is that making the potentials and messages in the join tree self-

consistent is equivalent to doing as much work as in the optimal factoring approach.



CHAPTER 2. PROBABILISTIC INFERENCE ALGORITHMS 22

To make the potentials and messages self-consistent is the major purpose of the
wnitialization step which consists of the up propagation up the join tree to the root

and the down propagation from the root to the leaves.

ﬂ: build a join tree for the BN graph \
2: assign conditional probabilities to cliques
3: choose one of the cliques to be the root
4: for each clique starting from the leaves and up to the root do
5:  form clique potential by multiplying assigned conditional probabilities
6: multiply the potential by the messages from descendants, if any
7:  form a message to the parent, if any, by summing over variables which do not
appear in the parent

Q end for J

Figure 2.3: The up propagation algorithm.

The pseudo-code for the up propagation is shown in Fig. 2.3 and is identical to the
optimal factoring computation except that we store the potential and message arrays
in the data structures. The result of the up propagation is the correct probability

distribution in the root clique.

1: for each clique starting from the root down to the leaves do

2:  calibrate the potential by the message from the ancestor, if any

3:  form messages to the children, if any, by summing over variables which do not
appear in a child

4: end for

Figure 2.4: The down propagation algorithm.

To get the correct probability distribution in the rest of the cliques, we need to
propagate the missing information to the rest of the cliques in the tree. This is the
purpose of the down propagation, the pseudo-code for which is shown in Fig. 2.4. The
update rules for the down propagation are slightly different since the clique potential
have already incorporated all the information below the given clique.

The clique potential update operation on the down the tree propagation stage is
often called calibration. It differs from the optimal factoring or the up propagation

in the LS algorithm by an extra division of the incoming message by the stored
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message on the edge. The intrinsic reason for this is that the message coming from
the parent contains information about the whole tree, and we do not want to count
the information stored in the message twice.

For example, let us assume that the Cy clique needs to be calibrated by the Cj
clique (see Fig. 2.2). The new C4 clique potential ¥'(z 4, 2, z7) is obtained from the
old Cy clique potential ¥(z4,zr,x7), the stored old (4,5) message ®(z4,zr), and
the new (4,5) message ®'(z4, ) by:

\I,(-’L‘Aa XL, :L‘T)

o' 2.1
Q(xA,xL) X (‘TA’xL)a ( 7)

\I’,('TAa T, :L'T) ==

where ®'(z 4, 1) is computed in the clique C5 by summation:
(z4,21) = Y V(24,25 21). (2.18)
zB

The division is the “correction” not to take information from cliques C7, Cy and C4
into account twice while accounting for the information coming from clique Cj3, Cs
and Cg. After a complete update of the tree by the calibration operations the tree
becomes self-consistent (the new stored message on the edge (4,5) is ®'(z4,z1)).

After the whole tree is calibrated, we can introduce incremental evidence into any
of the cliques. To obtain posterior probability with this new evidence, we need to
calibrate the tree once again by propagating messages from the instantiated clique to
the rest of the network. For example, if we introduce evidence in the clique Cy, we
will need to execute calibration in the order Cy — C4, Cy — (5, Cy — C5, C5 — C},
Cs — Cs.

From the Bayesian point of view, the calibration can be viewed as an application
of the conditional probability rule (2.1) to the clique potentials. For example, if we in-
troduce evidence to the clique Cy = {x 4, x1, 27}, the new Cs probability distribution

p'(za,rp, 1) is obtained by:

p'(za,2B,71) = p(xB|Ta, 2L)p (24, 2L). (2.19)
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Given that the clique Cs potential represented a consistent probability distribution,
the conditional probability p(zg|za,zr) is readily available and can be computed

from the Cs potential and (4,5) message:

p(a:Aa TB, .’L‘L) _ \I’(.’L‘A, TB, xL)
p(mA)xL) ¢(xA;mL)

p(zplza,zr) = (2.20)
as well as the new probability p/(z 4, z1,), which can be obtained from the C4 potential

updated by the new evidence:
pl(an xL) = Zp,(an TL, mT) = Z lIII(an TL, :L.T)- (221)
T T

The final rule is identical to (2.17).

The advantage of the LS algorithm over the simple factoring is that we can reuse
the initialized clique potentials for subsequent queries. However, generality has its
cost. The join tree size is larger in the LS algorithm and thus computationally more
expensive.

The join tree in the LS algorithm might be substantially larger than the join tree in
the optimal factoring given enough evidence instantiations in the network. Given that
the cases with many evidence nodes are more frequent, the optimal factoring performs
much faster and requires much less memory than the LS algorithm in practice.

Despite the differences in the data structure organization in the optimal factoring
and LS algorithm (LS algorithm has to store potentials and messages which optimal
factoring doesn’t), the structure of computations, which we shall consider in more

detail in Chapter 3, is identical in both algorithms.

2.1.3 Exact inference complexity

Probabilistic inference has been proved to be NP-hard in general and thus is expen-

sive computationally [Cooper, 1990]. The inference time is determined by the total
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number of states in all cliques in the join tree:

D [Ck =D WM, (2.22)
k k

where we assumed for simplicity that all nodes have the same cardinality v. From
the practical point of view, the inference time is determined by the largest clique
size. The number of nodes in the largest clique depends on the BN graph, i.e., the
number of nodes and density of interconnections in the graph. Finding an optimal
factoring that gives a join graph with the smallest cliques is NP-complete [Arnborg
et al., 1987).

If we know that the largest clique size does not exceed k, there is an exact algorithm
that finds the optimal join tree with complexity O(n*), where n is the number of nodes
in the network [Arnborg et al., 1987]. This algorithm is not practical for k greater
than 5, however. Shoikhet and Geiger provide a modification of the above algorithm
that runs in O(R x n®), where R is the number of minimal separators in the graph
[Shoikhet and Geiger, 1997]. A minimal separator is defined as a minimal subset
of nodes that disconnects two given nodes in a graph. Unfortunately, R can grow
very fast and the authors found that already for £ = 10 and a relatively small BN
size of n = 100 nodes the computation might take up to 10 hours on a 100 MHz
HP /725 workstation (if done efficiently, the probabilistic inference time itself in such
a network is about several seconds).

Thus, for practical join tree construction people have to resort to less computation-
ally expensive methods like maximum cardinality search (see, for instance, [Neapoli-
tan, 1990]), simulated annealing [Kjeerulff, 1993], or heuristic guided search [Draper,
1995]. These methods do not provide rigid performance guarantees but work quite
well for practical problems. In general, the complexity of building the close to optimal
join tree increases very fast with the increase of the number of edges in the BN, as
does the computation time for probabilistic inference.

Given the join tree structure, which we assume in this thesis is given up front
before inference, the problem of computation cost can be attacked from different

directions. One of them is to optimize the structure of computations, for example to
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make approximations during inference.

2.2 Approximate inference

Due to the complexity of exact probabilistic inference, only fairly small models can
be computed exactly. The computation time and memory requirements blow up
exponentially with the size of a general network. Thus, we need to reduce computation
time by making approximations in inference for many practical networks.

Unfortunately, the classification of approximate techniques is much less transpar-
ent and clear cut than the classification of the exact inference techniques; there are
many more variations of the approximate inference algorithms as well. The algorithms
are often on a boundary between different classes.

In general, approximate probabilistic inference can be classified into model reduc-
tion and instance generation. In model reduction we reduce a BN structurally to
another BN, which is less expensive to compute. The reduction is made in a way to
minimize possible errors in the results. In instance generation we approximate the
full joint probability sum by a smaller some over some of the entries. The instances
are generated in a way to account for the most of the probability mass in the joint
probability distribution.

Model reduction can be either static or dynamic (instance generation is almost
always dynamic). Static reduction means that the simplification of the model does
not depend on the observed evidence or the required precision. Although it is likely
to generate large errors for some evidence cases, the reduced model can be statically
stored in the computer memory and inference can be done much faster. Dynamic
reduction means that the alterations to the original model depend on the observed
evidence and/or required precision. Thus, we can dynamically adjust problem com-
plexity to the required precision.

An approximate algorithm can guarantee either rigid bounds on the error, i.e.,
that the answer to a query is within a certain interval, or probabilistic bounds, i.e.,
that the answer to a query is within € with probability 1 — §, where € and § are small

parameters depending on the model.
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2.2.1 Model reduction

We can sometimes reduce a model to one that can be solved efficiently. We distinguish
two approaches. The first one is to reduce the size of the model by cutting some edges
or nodes. The second one is to reduce an arbitrary BN to one that may be structurally

complex but that has other properties that make it effectively solvable.

Structure pruning

The idea in structure pruning is to reduce complexity of the graphical structure of the
BN. For example, we can reduce the edges corresponding to weak dependencies in the
model [Kjeerulff, 1993; Kjeerulff, 1994] or remove the edges in certain contexts, i.e.,
given evidence about values of certain nodes [Boutilier et al., 1996]. Unfortunately,
not many dependencies can be removed without substantially affecting the precision
of the model, and the error estimation is impossible without a large computation
overhead.

Instead of modifying the structure of the BN, we might reduce the cardinality of
nodes and therefore the total computational complexity. Wellman and Liu reduce the
number of states per variable by merging several states together [Wellman and Liu,
1994]. We will describe this approach in more detail in Chapter 4.

Another technique to build a solvable model over a large set of random variables
is a single fault hypothesis [Heckerman et al., 1992]. The authors built a medical
diagnosis system for the diagnostic of the lymph node diseases based on pathological
analysis. Instead of considering the state space of all combinations of diseases, they
assume that only one disease can happen at a time. This assumption results in large
computation savings and is, in fact, almost true for the lymph node diseases.

The structure pruning can be done dynamically. For example, we know that
the influence of nodes in a BN decays exponentially with the distance between nodes.
Draper uses this well-known fact in the Localized Partial Evaluation (LPE) algorithm
[Draper and Hanks, 1994]. The inference is performed only on an active set of nodes
chosen in a special way around the query node.

Kjeerulff proposed to reduce the state space of the cliques by randomly choosing



CHAPTER 2. PROBABILISTIC INFERENCE ALGORITHMS 28

a subset of states in the cliques for probabilistic inference [Kjeerulff, 1995]. Once we
choose the subset, we can do probabilistic inference by propagating messages up and
down the tree computing the messages over the chosen states only. This technique is

close to random state space sampling which we will describe in Section 2.2.2.

Exactly solvable models

Reduction to the large but solvable models is very similar to the above technique,
except in this approach the user is after a certain kind of dependencies between
variables that facilitate probabilistic inference, not reducing the structure in general.
For example, one can effectively bound the joint probability distribution of some
networks (sigmoid or causally-independent BNs) by the joint probability of an exactly
solvable analytical model [Jaakkola and Jordan, 1996]. This method is often referred
to as a wvariational technique. Unfortunately, the variational technique works only for
networks with very weak dependencies between variables.

In [Kozlov and Singh, 1995] the authors simplify the structure of conditional
probability matrices by reducing them to two smaller matrices (which has the name
QR-decomposition in linear algebra). Unfortunately, we still lose some information
about dependencies in this reduction and the reduction itself can be more expensive

computationally than the exact probabilistic inference.

2.2.2 Instance generation

The idea of instance generation is to account for the largest terms in the joint prob-
ability sums. The rest of the terms can be treated as noise and, in some cases, effi-
ciently bound. The two main sub-categories are deterministic (search) and random

(stochastic simulation) instance generation.

Search

Search is a traditional application for artificial intelligence and many people con-
tributed to efficient search techniques. For instance, Poole developed a search tech-

nique based on very general principles. His algorithm looks for most likely partial
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instantiations with large probability mass in the joint probability distribution [Poole,
1993]. While the algorithm can quickly get a good estimate for networks with extreme
conditional probabilities, i.e., probabilities close to zero or one, it has to find many
instantiations in a general belief network without “extreme” conditional probabilities
to approximate an answer with a reasonable precision.

For the above mentioned BN20O network, Henrion developed a special purpose
search technique which he called TopN [Henrion, 1991]. It finds an approximate
answer and rigid error bounds using the monotonicity properties of conditional prob-
abilities in causally independent BN20 networks.? An extension of the TopN algo-
rithm to more complex multi layer causally independent networks exists and is called

TopEpsilon [Huang and Henrion, 1996].

Stochastic simulation

On the side of random instance generation we have a large class of algorithms that
go under the general name Markov Chain Monte Carlo (MCMC) simulation methods
[Rubinstein, 1981]. Stochastic simulation includes such methods as forward/backward
simulation [Henrion, 1988; Fung and Del Favero, 1994|, likelihood weighting [Shachter,
1990], and Gibbs sampling [Hastings, 1970], which differ by how we generate the values
for the variables in a BN.

While the deterministic search algorithms work well when there are only a few
entries with a substantial probability mass, MCMC works best in exactly the opposite
case when the probability mass only slightly depends on a specific instantiation. If
the probabilities are far from zero or one, i.e., are not “extreme”, we can prove
sub-exponential convergence of the stochastic simulation methods [Dagum and Luby,
1997].

“We will consider causal independence and causally independent noisy-OR networks in Chapter 5.
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2.3 Continuous variables

So far we considered probabilistic inference with discrete variables. However, many
variables in practical systems are continuous. For example, in the “Temperature” BN
in Fig. 1.2, the continuous variable temperature 7 depends on the season variable
xs. In general, we need continuous variables to model temperature, position, velocity,
altitude, fuel level, oil pressure, concentration of impurities, time, etc. The need to
adequately reason with BNs that contain continuous variables in rapidly increasing.

Probabilistic inference in BNs over continuous variables can be done in a very
similar fashion. The difference between continuous and discrete variables is that we
have to perform integration over continuous state spaces instead of summation over
the discrete ones. Like the summation, integration can be multidimensional, which is

known to be computationally expensive.

2.3.1 Continuous BNs

Let us consider probabilistic inference with continuous variables only first. In a con-
tinuous BN, nodes represent continuous variables and the dependencies between nodes
are given by conditional probability density functions. The continuous joint probabil-
1ty density is then given by a product of all conditional probability density functions.

Only a few continuous probability distributions can be integrated exactly. For
example, a BN is solvable if the nodes have a gaussian dependence: a node probability
density is a normal distribution where the mean is a linear function of parent values.
The joint probability density in the case of gaussian dependencies is known to be a

multivariate normal distribution:

1 (- p)"'S H(z - u))
N(xz|p, X :—exp(— , 2.23
(@lp, %) (2m)k det X 2 (2.23)
where x is the vector consisting of N continuous variables z1, ... ,zy, g is the mean

for each of these variables, and X is the covariance matrix:

p=(x); > = (zz") — (z) ()T . (2.24)
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The result of integration of a multivariate normal distribution is a multivariate normal
distribution, which can be computed in polynomial time.

The multivariate normal distribution has been used in practical systems, for ex-
ample in Kalman filters. A Kalman filter is a continuous BN defined on an infinite
sequence of time slices. A time slice causally depends on the previous one (the condi-
tional probability is a normal distribution). Each time slice represents a distribution
over unobservable variables, and we can have one or several noisy observations of the
variables in different time slices (with white noise, i.e., the conditional distribution
is also gaussian). We can do probabilistic inference since all potentials and messages
are multivariate normal functions (2.23).

In general, if a clique potential is a multivariate normal distribution, the marginal
of the potential is also a multivariate normal distribution. Thus, the property of
being a multivariate normal distribution is closed under the operations of probabilistic

inference and we can do inference by message passing as in the discrete belief networks.

2.3.2 Hybrid BNs

If a network has discrete variables also, we call such a network a hybrid network. The
join tree in a hybrid networks will contain cliques with mixed discrete and continuous
variables. While computing messages, we have to sum over discrete variables and to
integrate over continuous variables.

An important class of hybrid network is a Conditional Gaussian (CG) network
with dependencies between nodes expressed as a gaussian dependence conditioned on
discrete variables. The assumption is that all continuous variables have a gaussian
probability density: a node probability density is a normal distribution whose mean
is a linear combination of the continuous parents for any given state of the discrete
parents. However, the coefficients in the linear expansion as well as the variance can

depend on the state of the discrete parents [Lauritzen and Wermuth, 1989].
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CG BNs are exactly solvable®. Unfortunately, the “conditioned gaussian” depen-
dency is quite limiting: for example, we cannot model a discrete child of a continuous
variable with a CG dependency, which happen very often in practical models. For

example, we cannot model a switch which is turned on by temperature or pressure.

2.3.3 Approximate inference in hybrid BNs

An extension of the CG technique was to decompose an arbitrary functional depen-
dence as a mixture of CG functions; the clique potentials and messages are represented
by weighted mixtures of the multivariate normal distributions [Driver and Morrel,
1995; Alag and Agogino, 1996].

The major deficiency of this technique is that the number of terms in the mixtures
can increase exponentially with the propagation length and probabilistic inference
quickly becomes intractable. The decomposition of an arbitrary function as a sum of

weighted Gaussian also presents a challenging computational problem.

2.4 Conclusions

The major goal of this chapter was to give an introduction to the quickly developing
field of probabilistic inference methods. In this chapter, we have chosen an optimal
factoring approach to probabilistic inference. Based on the optimal factoring ap-
proach, we show that probabilistic inference in a discrete only BN can be reduced
to the summation of the joint probability distribution defined by the BN. Analo-
gously, probabilistic inference in networks with continuous variables can be reduced
to multidimensional integration.

We consider different techniques to approximate probabilistic inference and pro-

vide our classification of approximate probabilistic methods into model reduction and

5More exactly, one can exactly find the means and variances of all continuous variables and the
exact probabilities of the discrete variables. The up propagation in these networks is done by first
integrating over all continuous variables, and then by summing over all discrete variables. The down
propagation is done by approximating the mixtures of gaussians by one gaussian, which preserves
means and variances of the final distributions [Lauritzen and Wermuth, 1989; Lauritzen, 1992].
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instance generation. In the model reduction, we try to reduce the original model to
a smaller one or to the one that is known to be efficiently solvable. In the instance
generation, we look, either deterministically or stochastically, for the largest contri-
butions to the joint probability sums.

We show the relation of this summation/integration technique to the LS type
computations, the most popular algorithm in the past. We have shown why the
optimal factoring results in large computational speedup of probabilistic inference

and why probabilistic inference is still computationally expensive.



Chapter 3

Parallel implementations

“Although some of our representations, for example
differential equations, were developed for the human
mind to read, the same representation is now be-
ing used by parallel processors. If parallel processors
are going to solve this and other problems, the prob-
lems’ representation should be designed for these ma-

chines.”

Michael J. Flynn, IEEE Computer, Dec 1996, p152

One of the obvious ways to speed up probabilistic inference is to use fast parallel
computers in which we divide the inference computations between several processors.
In doing so, we need to reformulate the original algorithm and split the computer
workload into several almost independent tasks. The two critical issues for a suc-
cessful parallelization are load balance—how evenly the task workload is distributed
between processors, and data locality—how well the tasks reuse the data and avoid
interprocessor communication. Simultaneous optimization of the two requirements is
often infeasible and we have to find a compromise between the two issues depending
on the particular instance of the problem at hand.

Probabilistic inference is a particularly interesting application from the point of

34
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view of this tradeoff since it is very data intensive. In particular, it is different
from the traditional scientific applications, like linear algebra algorithms or hierarchi-
cal N-body methods, which were parallelized on the shared address space machines
[Rothberg, 1993; Singh, 1993]. While the number of operations per byte of data grows
as O(n%?) in many linear algebra algorithms and as O(n logn) in hierarchical N-body
methods with large constants, the number of operations in a probabilistic inference
algorithm grows at the same rate as the number of bytes in memory, and the ratio is
typically very small. Although there are potentially other applications—say sorting
and some grid solvers—that might do computations in direct proportion to memory
requirements, in most of them it is possible to avoid data intensity.! It is different
for probabilistic inference since we have to allocate the memory for the largest clique,
whose size is exponential in the number of nodes in a general BN. It may be that
exact probabilistic inference is unique in that it is not possible to reduce the memory
requirements.

As we have described in the previous chapter, during probabilistic inference the
clique potentials are multiplied by the incoming messages and then summed together
to form an outgoing message. It takes only about 2-8 multiplications and a summa-
tion per double precision number represented by 64 bits in the computer memory to
proceed to another clique. Thus, we are bound to have a large number of memory ac-
cesses per processor instruction. All problems associated with data locality, e.g., the
performance of hierarchical memory systems and the above tradeoff between data lo-
cality and load balance in a parallel implementation, are sharpened in a probabilistic
inference application.

In this chapter, which is an extended account of [Kozlov and Singh, 1996b], we
show that trading some forms of concurrency for enhanced data locality improves
the speedup on a multiprocessor and that small perturbations of the program data
locality often lead to a drastic degradation in the program speedup. We will notice

that parallel probabilistic requires an emphasis on the preservation of data locality,

!For example, sorting programs try to do sorting “in place” which makes sorting O(nlogn),
where n is the number of bytes of memory required by a program. Grid solvers tend to iterate over
the same data multiple times and thus perform many operations per byte of memory.
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even at the expense of load balance in some cases. Fortunately, a sufficiently good load
balance in probabilistic inference is easily achieved with a simple static partitioning
scheme for practical networks, say the CPCS network. If there is a practical network
in which dynamic scheme gives substantial advantages in terms of load balancing, it
is always possible to augment the proposed static partitioning scheme by dynamic

task scheduling and to exploit additional concurrency in the application.

3.1 Uniprocessor implementation

From the efficiency point of view, it is essential to start a multiprocessor implemen-
tation with a highly efficient uniprocessor code. For this reason, we start with the
description of our optimized uniprocessor code. The results in the rest of this chapter
are compared to the results obtained with this optimized code.

Our uniprocessor implementation was derived from an Ergo implementation pro-
vided to us.? In our original experiments for large BNs like CPCS, a processor (Sun
SPARC-20 workstation) spent about 50% of its execution time on memory stalls.
Thus, memory management proved to be important even for uniprocessor code. Let
us understand the structure of computations and how we can improve the memory

system performance.

3.1.1 Structure of computations

For example, let us examine the computation for the query p(D) in Egs. (2.6 — 2.11)
illustrated in Fig. 2.1. First, the C) clique potential is formed by multiplying the
conditional probabilities p(zr|zy) and p(zy ), which is a total of four entries. Then,
pairs of the C potential array entries, a pair for each fixed value of the variable zr,

are summed together to form a message to the clique C4 which is a function of zr

2The standard Ergo implementation of probabilistic inference is courtesy of Adam Galper from
Stanford Medical School.
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(see Fig. 2.1):

m(zr) = Zp(a:ﬂa:v)p(a:v). (3.1)

Analogous summation over the variable zx is carried out in the leaf Cj.
The clique C4 potential is formed by the conditional probability p(zal|zr,zr)
multiplied by the messages m(zr) and m(x,4) received from the cliques C; and C,

correspondingly and summed to form a message m(z4, ) to the next clique Cs:
m(za,zr) = Zp(a:A|a:T, zr)m(zr)m(za). (3.2)
zT

Now, clique C5 has to get the messages from C3 and Cjy children.
The clique C3 potential is formed by the product of conditional probabilities
p(zglzs), p(zr|zs), and p(zs). The clique C5 message to the clique Cj is:

m(zL, ) = Y p(es|zs)p(zr|es)p(zs), (3.3)

Ts

and the clique C; message to the clique C5 was given by (3.2) above.

In its turn, the clique C5 message to the clique Cy is the product of the Cy — Cs
and C3 — Cs messages (there are no conditional probabilities assigned to the clique
C5) summed over the variable z7,.

Finally, the clique Cg potential is formed by the conditional probability p(zp|z 4, z5)
multiplied by the message from the clique C3. The answer to the query, p(D), is
obtained by summing the clique Cg potential entries corresponding to the values

Trp = true:

p(D) = Z p(zp = true|lza, zg)m(za, p). (3.4)

{za,zB}

The structure of computations is schematically represented in Fig. 3.1, where the
potential array entries are denoted by squares and the message array entries are

denoted by circles.
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Figure 3.1: Structure of the p(D) query computation in the “Chest Clinique” BN. A clique
potential is shown by a rectangle; a message between cliques is shown by an oval. The
entries of the potential and message arrays are shown by squares and circles respectively. We
assume a row-major layout for the arrays and the following ordering of nodes in the cliques
C1 =A{zr,2v}, Co = {z4,vx}, C3 = {zB,21,%s}, C4 = {wa, 21,27}, C5 = {T4,7B, 7L},
Cs = {z4,zp,zp}. The number of nodes in the cliques is much larger in practical networks,
thus the array sizes are much bigger in practice.
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3.1.2 Data locality

Let us examine data locality for the computations shown in Fig. 3.1. In the left
branch of the tree, we first sum the C; clique potential over the variable zy. To
maximize data locality, we would like to place the potential entries that are summed
together close in memory space. We achieve the best data locality by placing the
entries corresponding to different values of the variable zy next to each other, i.e., by
making zy the last index in the array (we assume a row-major layout of the arrays).
To maximize the data locality for the C> — C4 message computation, we place the
variable zx last in the array indices for the clique Cs.

The problem is that there is no optimal ordering of nodes for the C, potential. If
we place the variable xr first, we achieve the best data locality for the update by the
message C; — Cy, but not for Cy, — C4. On the other hand, if we want to achieve
the best data locality for the Cy, — C4 update, we have to place the variable x4 first.
However, this compromises data locality for the Cy — C4 update. In other words,
there is no ordering of Cs potential array indices that maximizes data locality for
both updates. Moreover, computing the message Cy — C5 up the tree requires 7 to
be the last index of the clique potential array.

Formally speaking, given any two neighboring cliques, the optimal data locality
for the update between these two cliques is achieved by placing the variables in the
intersection of the node sets, or clique separators, first in both clique potential array
indices. Thus, we would like to place the nodes that appear in separators first in
the array indices, and it is obviously not possible to satisfy for all cliques and all
separators. However, we might optimize the data locality following this rule most of
the time. Let us consider the join tree structure once again.

One of the major join tree properties, which follows from the optimal factoring
approach, is that if a node appears in two cliques it should appear in every clique on
the path between these two cliques. Therefore, we can easily compute the number
of times a node appears in a separator: it is the number times it appears in cliques
minus one. Thus, if we order the nodes in each potential array according to the
number of times it appears in cliques—the more frequently a node appears in cliques,

the closer it is to the beginning of the potential array index set—we improve the data
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locality. This ordering of nodes was critical for obtaining the best performance in a
uniprocessor as well as multiprocessor implementation.

For example, for the “Chest Clinique” network and the join tree shown in Fig. 3.1,
such an ordering is (24, g, z1, 27,2y, Zx, s, Zp). Our ordering of nodes resulted in
approximately 50% reduction in memory system time compared to a random ordering
in the cliques for large networks (with average clique memory requirement bigger than

the processor cache size).

3.1.3 Offset evaluation

Another optimization of the original program involved optimization of computations
with array indices. To update a potential array entry, the program has to compute
the offset of the array entry relative to its base address. The offset is computed
based on the values of the array multidimensional indices.> Given that the number of
floating point operations per potential is small, the ratio of the number of operations
to compute the offset to the number of operations to do the multiplications and
summations of potentials is typically very large; our profiling has shown that up to
90% of clock cycles in the original program is spent on offset evaluation.

To optimize the offset evaluation, we notice that a message array entry updates
only those potential array entries of the parent clique that have the same values for
the separator variables. For example, the message C; — Cj in Fig. 3.1 depends on the
index z7, which is the separator between cliques C; and Cjy. Thus, the first message
array entry updates the first, third, fifth, and seventh C} potential, corresponding to
xr = false. Analogously, the second message array entry updates the second, forth,
sixth, and eighth Cy potential, corresponding to zr = true (see (3.2)).

Thus, the offset evaluation can be divided into two parts: the evaluation of the
offset due to the values of variables in the separator, which are also the variables
of the message, and the evaluation of the offset due to the rest of the variables in

the potential array. The correct final offset is the sum of the two offsets computed

30ffset evaluation can be done explicitly, as it was in our program, or by the compiler. We chose
to do this computation explicitly since we could optimize it by caching intermediate results.



CHAPTER 3. PARALLEL IMPLEMENTATIONS 41

separately. The computations for the two offsets are repeated for each separate array
entry, and the result of these computations can be cached and reused.

For example, in doing the update C; — Cy:

P (4,20, 27) = p(T 4, T, T7)M(2T), (3.5)

we first compute the offsets for the two message array entries (common variable z7),
which are 0 and 1 since index z7 is the last, and then compute the offsets due to
various combinations of values for x4 and zr, which are 0, 2, 4, and 6. The correct
offsets in the potential array are given by all possible combinations of these two offsets.

The first message, corresponding to offset 0, multiplies the 0, 2, 4, and 6-th poten-
tial. The second message, corresponding to offset 1, multiplies the 1, 3, 5, and 7-th
potentials. Note, that we do not have to recompute the the full expression for the
offset in the potential array in the latter case which would involve x4 and x values:
we reuse the former offsets and just add one to them. The number of times the offsets
are reused is exactly the size of the message array.

Since both offsets are reused, we do not need to reevaluate them for each array
entry. The evaluation of the array offset is reduced to the summation of two offsets,
both of which we can compute very efficiently. While the computation of offsets
contributed up to 90% percent of execution time for the original implementation, it
contributed only 20% for our optimized implementation as was measured by pixie

(i.e., by basic block counting).

3.2 Exploiting parallelism

There are two sources of concurrency in a probabilistic inference algorithm [Kozlov
and Singh, 1994]. The first is topological parallelism, which corresponds to concurrent
processing of different branches of a clique tree, and the second is in-clique parallelism,
which is due to concurrent processing of the same clique by several processors. Let
us give an example: if one processor is working on the clique C; and the second on

the clique Cs in Fig. 3.1, we call it topological parallelism. We could also assign the
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first half of the C; clique workload to one processor, and the second half of the C
clique workload to another processor, which we would call in-clique parallelism.

We construct and evaluate two parallel implementations of probabilistic inference
which exploit the two sources of concurrency at two different levels. One uses both
types of parallelism, the topological and in-clique parallelism. Since it is difficult
to find the optimal task partitioning in the first implementation that uses topologi-
cal parallelism—the problem of finding an optimal task partitioning in the join tree
topology is an NP-hard problem by itself—we select the task partitioning dynami-
cally during the actual propagation. The other implementation uses only in-clique
parallelism but significantly improves data locality due to better control over it. We
can easily find a sufficiently good task partitioning between processors for in-clique
parallelism that preserves good data locality, spatial as well as temporal, during com-

putations.

3.2.1 Task data dependencies

A data dependency means that if two computations are performed on two different
processors, the processors would have to exchange data. In the absence of data de-
pendencies the work load can be assigned to different processors arbitrarily to satisfy
load balance only; with the data dependencies we want to minimize interprocessor
data exchange also.

Consider the computation dependencies in Fig. 3.1. A few potential array entries
are summed to form a message array entry, which is then used to multiply a few
potential array entries of the parent clique. This computation associated with a
message array entry is represented by a circle in Fig. 3.2 and is an elementary task
that we consider.*

A data dependency carried through the clique potentials that computation tasks

read and write is represented by an edge. While different entries in the message

“Note that a circle in Fig. 3.1 had a completely different meaning, the message array entry by
itself. The circle if Fig. 3.2 represents a computation associated with a message array entry, which
involves message as well as potential array entries. Thus, the are no squares in Fig. 3.2, representing
a potential array entry in Fig. 3.1.
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Figure 3.2: The data dependencies between computations associated with message array
entries—summation and multiplication of clique potentials—for the evaluation of p(D)
shown in Fig. 3.1. A circle represents the computation associated with a single message
entry: the summation of the relevant source clique potential array entries to compute an
outgoing message entry and the multiplication of the relevant destination clique potential
array entries by that message entry (do not confuse with Fig. 3.1). A group of circles in
an oval represents a message array. An edge represents a data dependency between the
computations. For example, clique C; sends a message C7 — C4 consisting of two numbers
to clique C4, and all computations associated with the message C4 — C5 depend on the
computations associated with these numbers through the C4 clique potentials that they
both access. The dependencies between the C; — C4 and Cy — Cy messages as well as be-
tween the C4y — Cs and C3 — C5 messages are not shown for simplicity. The computations
within a message array are independent. One of the possible assignments of computations
to two processors is shown by different shading of the circles.
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between two cliques can be computed independently, two processors need to com-
municate data whenever they perform computations connected by a dependence arc.
For example, the computation associated with the first two message entries in the
C,; — (5 message is dependent on the computation associated with the first message
entry in the Cy — (4 message. This is because the C5 — Cy message entry multiplies
C, potentials which are then summed to form the C; — Cs message entries.

The data dependencies for the topological parallelism are simple: the tasks in
different branches of the join tree are completely independent until they converge
at a common parent. For example, the computations in the cliques C;, Cy, and Cj3
are completely independent. However, the computations for Cy — C4 and Cy — C4
messages become dependent as they come to the common parent Cj.

For the in-clique task partitioning, we can completely avoid interprocessor com-
munication only in special cases. For example, the interprocessor communication is
avoided on the path Cy — C; — (5 for only two processors if we assign the first
half of the message to the first processor and the second half to the second processor,
as shown by different shadings in Fig. 3.2. More exactly, the first message entry of
the message C> — (4 updates only the first half of the C4 clique potential, which
sum to the first two message entries of the message Cy — C'5, which update the first
four clique Cs potential array entries and sum to the first two entries of the message
Cs — Cs.

In fact, what we observe here is global conditioning [Shachter et al., 1994]. Let us
see what happens if we condition the “Chest Clinique” BN on variable x 4. Each of the
resulting subnetworks will contain nodes zvy, 7, x, 1, Ts, g, and xp; to compute
the probability p(D) for the subnetwork conditioned on x4 = false, we have to perform
computations only with potentials and messages for which x4 = false, which results
in removing the right half of the C5, C4, and C5 cliques arrays corresponding to the
x4 = true. Correspondingly, to compute the probability p(D) for the subnetwork
conditioned on x4 = true, we have to perform computations only with potentials and
messages for which x4 = true, which results in removing the left half of the Cs, Cy,
and Cj cliques corresponding to the z4 = false.

In this simple case global conditioning can be viewed as a partial case of our more
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general task partitioning scheme. Our scheme is equivalent to global conditioning
when all cliques on the propagation path contain the conditioning node. In a more
general case of propagation in the whole join tree, we get an additional speedup by
reusing the C; — C4 and C3 — (5 messages in our algorithm (which have to be
computed in both subnetworks for the global conditioning scheme). The [Shachter
et al., 1994] scheme has never been implemented in practice (for parallelization);
our implementation is the closest to his original ideas, but also provides significant

improvements.

3.2.2 Two task partitioning schemes

The absence of interprocessor communication in the global conditioning suggests a
very simple task partitioning. We assign contiguous chunks of the message arrays,
ordered according to our heuristic in Section 3.1.2, to different processors. All pro-
cessors work on each individual clique at a time, and the computations in different
cliques are separated by a global synchronization point (a barrier). Since the size of
the message arrays in large practical networks is in the thousands, we have enough
available parallelism even for this simple static partitioning.

Let us provide an example. To compute the message Cy — C5 in Fig. 3.2, we divide
the computation associated with this message between two processors by assigning
the first pair of the message array entries to one processor and the second pair to the
other processor, or between four processors, by assigning an entry to one individual
processor. If the number of processors is larger than four, the computation for each
message array entry can be further subdivided among a subset of processors: each
processor does an assigned part of the summation. The computation proceeds along
linear paths in the join tree, updating the clique potentials on its way. For example,
when the computation of the message Cy — C5 is completed, all processors meet at
a barrier and continue with the computation of the message C5 — Cs needed to get
the correct clique C'5 potential. After another barrier, all processors continue working
on the message Cs — Cs. The Cs clique potential is immediately reused, and the

temporal data locality is enhanced in this particular type of propagation.
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The amount of in-clique parallelism might be limited in small cliques, so in theory
certain networks may not perform well with in-clique parallelism only. Our next
scheme tries to exploit topological parallelism first and avoids global synchronization
at the cost of some data locality. A task in the next scheme is to compute a contiguous
chunk of potential/message array entries. When all entries from a potential /message
array are computed, we proceed to the next message/potential array up the join tree.

Thus, we can exploit topological parallelism in addition to the in-clique paral-
lelism. The computations with the cliques in different branches are independent and
we can assign processor to different branches of the join tree. Since the task load
in different branches can be substantially different for unbalanced trees and the join
trees are often unbalanced, we had to augment our task scheduling scheme by dynamic
load balancing and an initial task assignment heuristic.

The first goal is to assign all tasks in the leaves to individual processors (if this
cannot be done evenly then some processors share leaves by dividing the potential
array entries between them as in the static version). When a processors finishes with
the leave, it proceeds computations up the tree maintaining synchronization with the
other processors in the other branches while merging (each clique and each edge has
a separate event flag and a lock). If a processor becomes idle, it steals work (a chunk
of message entries) from other processors.

We try to preserve data locality in this dynamic scheme in three ways. First,
while a processor chooses messages (or potentials) from the front of its assigned set,
other processors steal messages from the end of the set, thus reducing false-sharing
of cache lines among processors. Second, as far as possible a processor steals work
from another processor which works on a clique in the same branch of the join tree,
thus ensuring that a group of processors is likely to work on a single branch. Third,
clique data are allocated in the local memories of the processors on which they are
most likely to be computed (this can be done deterministically for the leaves, but not
for the internal nodes of the join tree).

However, the processors eventually need to communicate data when one of them
steals work from another processor or when two or more processors update or access

the same parent clique during their traversal. For example, if entire children or
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subtrees of a parent clique are assigned to different processors—the best case for
topological parallelism—they don’t communicate at all until they reach the common
parent, but at that point many of them are likely to communicate when they update
the parent’s potential. This problem occurs quite often toward the root clique of the
join trees and is the main deficiency of the dynamic scheme since in many practical

networks workload in concentrated in the root clique.

3.3 Results

We first describe the multiprocessor platforms and the input belief networks we use,
and then discuss parallel performance results including the measurements of spatial

and temporal data locality.

3.3.1 Multiprocessor Platforms

We ran our multiprocessor experiments on three machines that support an implicit,
shared address space communication abstraction as well as coherent caching in hard-
ware. The shared address space abstraction greatly simplifies the parallel program-
ming task, particularly for applications with irregular data access patterns. Parallel
programs we developed are written in C using the parmacs macro package from Ar-

gonne National Laboratories for parallelism constructs.

The Stanford DASH Multiprocessor

The DASH machine [Lenoski et al., 1990] is an experimental multiprocessor built at
Stanford University. The machine we used has 32 processors (33 MHz clock speed)
organized in eight clusters.> A cluster comprises four MIPS R3000 processors and
32MB local memory connected by a shared bus, and clusters are connected together
in a mesh network. Every processor has a 64KB first-level cache memory and a 256 KB

second-level cache, and every cluster has an equal fraction of the physical memory

5The prototype actually has 64 processors in sixteen clusters, but is broken up into separate
machines in usual operation.
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on the machine. That is, memory is logically shared but physically distributed, and
four processors share a local main memory unit. The caches are kept coherent across
clusters in hardware using a distributed directory-based protocol [Lenoski et al., 1990).

A read miss in the first-level cache that is satisfied in the second-level cache has
a stall time of 12 processor clock cycles. A miss in the second-level cache satisfied in
the local clusters memory—which we call a local miss—results in a stall time of 29
cycles. Finally, if the data are in some remote cluster, the cluster initiates a request
on the mesh network and the processor stalls for 100 or more cycles depending on
the location of the data, the state of the directory, and contention. We call this miss

a remote miss.

The SGI Challenge Multiprocessor

We also examine the parallel speedups obtained on commercially available machines
with faster processors but centralized main memory. First, we used an SGI Challenge
XL machine with 512 MB of shared memory. It has sixteen MIPS R4400 processors
(100 MHz clock speed) connected to a shared bus. A snoopy bus protocol is used to
keep caches coherent. Compared to DASH, it has a bigger cache line size (128 bytes
as opposed to 16 bytes), smaller first-level caches (16 KB as opposed to 64 KB), and
larger second-level caches (1 MB as opposed to 256 KB for DASH) per processor.
Since all the processors are connected to a single bus, the difference between memory
latency due to a second-level cache miss satisfied in the main memory and one satisfied
in one of the other processor caches is not large (100 versus 130 processor cycles
without contention, respectively). There are no remote misses, data distribution is
not an issue, and interprocessor communication is not much more expensive than

capacity misses.

The SGI Origin 2000 server

Finally, we compute some of the largest BNs available for our experiments on the
Origin 2000 server. The architecture of the commercial Origin 2000 machine is very

close to the Stanford DASH except that the clusters have only 2 processors each.
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We used an SGI Origin 2000 machine with sixteen MIPS R10000 processors (195
MHz clock speed). It had 16 GB of shared memory and 4 MB of secondary unified
instruction/data cache. The size of the first-level level caches was 32 KB. The cost
of a local cache miss is 320 ns, while the cost of a remote cache miss depends on how
many routers are traversed (485 + n x 100 ns, where n is the number of routers). In
general, it has approximately the same as DASH ratio of remote to local miss cost of

1/3, which is quite representative of modern efficient cache-coherent machines.

3.3.2 Networks

[ network | n | e |v] ¢] []max|X;||max|X;nX;| [ Memory | Time |

RND1 | 54 |24 |2 | 30| 12 16 M 1M 164 | 260
RND2 | 54 |22 |2 | 32|16 512 K 256 K 23 33
RND3 |18 |22 |4 8| 4 1M 64 K 10 3
RND4 | 5420|230 14 512 K 64 K 8 8
TL8 |16 | 4 (4| 9| 7 256 K 64 K 16 10
MC8 |16 1454 9| 1 256 K 64 K 16 10

Table 3.1: Parameters of the BNs we used to test the multiprocessor implementation. n:
number of nodes, e: average number of edges per node, v: number of values per node, c:
number of cliques, I: number of leaves in the clique tree, max |X;|: maximum size of a
potential array in double precision numbers, max |X; N X;|: maximum size of a message
array in double precision numbers, Memory: global memory requirement in MB, Time:
uniprocessor (DASH) propagation time in seconds.

We used six BNs represented in Table 3.1 for our performance measurements.
The size of all but the RND1 network was chosen to fit in the memory of a single
DASH cluster. Larger networks tend to exhibit better speedups and can even have
super-linear speedup, i.e., more than the number of processors, when executed on
more than 4 processors on DASH. The first four networks—which we call the RND1
through RND4—were generated randomly. We first built a completely interconnected
graph of the given number of nodes and then removed edges randomly until it had
the required number of edges. The computation time for these networks with the

optimized uniprocessor program varies from 5 to 260 seconds and the global memory
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requirements range from 8 MB to 164 MB. As we will see later, the random networks
exhibit some common as well as some distinguishing data locality properties.

The two other networks have been constructed to resemble networks that are often
used in practice. The TL8 network is a two-layer network with eight four-valued nodes
in the first layer and eight four-valued nodes in the second layer. Each node in the
second layer has all eight nodes in the first layer as its parents. Two-layer networks
are often used in diagnosis problems, such as medical diagnosis in which one layer
consists of diseases and the other of findings. The MC8 network is a Markov chain
network consisting of sixteen four-valued nodes. The sixteen nodes form a chain.
However, each of the nodes additionally depend on its eight predecessors. The join
trees for the TL8 and MC8 networks consist of eight cliques with nine nodes in each,
requiring 262,144 potentials (2MB of RAM per clique when represented by double
precision numbers). While the join tree for the MC8 network is a linear chain of eight
cliques, the join tree for the TL8 network can be represented as a tree with seven
branches, thus exhibiting additional topological parallelism that can be exploited by

our dynamic scheme.

3.3.3 Speedups

Fig. 3.3 shows the parallel speedups on the DASH and SGI Challenge machines. The
speedup depends on the size and topology of a network, and is generally better for
larger networks with larger cliques.® The speedups are uniformly better for the static
task assignment scheme than for dynamic assignment. And for the static scheme,
they are better for the structured networks than for the random ones. To clearly
understand the reasons, we measured how the processors spend their time using UNIX
software profiling tools (pixie and prof). The resulting decomposition of execution
time in Fig. 3.4 indicates that the major difference in parallel performance in all cases
is due to the time spent stalled on the memory system. The static scheme was able
to reduce communication and exploit data locality at all levels much better than the

dynamic scheme, as discussed earlier, and is especially successful when cliques are

6The superlinear speedup for the RND1 network will be explained at the end of this section.
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Figure 3.3: Speedups on the DASH and SGI Challenge XL multiprocessors for both imple-
mentations.

large and dependences well-structured.

To explain the increase in memory system time, we measured the relative number
of locally versus remotely satisfied second-level cache misses on DASH using a hard-
ware performance monitor. This is a counter installed in the hardware that tracks
bus transactions without perturbing the program execution. It sees all second-level
cache misses coming from each processor in the cluster, and can tell whether misses
are satisfied within the cluster or have to be satisfied remotely (by another cluster).
The results for some networks are shown in Fig. 3.5. In the structured TL8 and
MCS8 networks (random networks have much less symmetry and more random clique
sizes) we were particularly successful. The program partitioned the networks with a
minimum of cross-processor dependencies and the ratio of local misses (# local / #
local + remote) stays close to 100% for these BNs.

For the dynamic partitioning, the ratio quickly becomes much lower, due both
to the inherent communication caused by processors picking up dependent tasks un-
predictably along the same path in the tree, and to the difficulty of placing data
appropriately given this unpredictability of which processors will perform what tasks.

Note that since there is one memory per cluster composed of four processors, data
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Figure 3.4: Breakdown of the computation time on DASH for the RND1, RND3, TLS,
and MC8 networks for both implementations. Busy-useful is the time that the sequential
program would spend executing instructions as well. Busy-overhead represents the extra
instructions executed in the parallel program. For the static scheme, synchronization time
is the time spent waiting at synchronization points. For the dynamic scheme, it includes
the time spent on the computations needed to steal tasks, so it does not reflect only load
imbalance. The memory time is the time the processors spend stalled on the memory
system.

placement and remote misses only become an issue after four processors (if everything
fits in one cluster’s memory when less than four processors are used). For the static
assignment program, the ratio still decreases for random networks like RND3 since
the random connectivity of these random networks prevents us from eliminating com-
munication or placing data very well at page granularity; however it decreases less
than in the dynamic case. Most real networks have a lot of structure, so we should be
able to partition them much better than the purely random networks we generated.

We performed two other experiments which show the importance of data locality
and data management in this application. As discussed in Section 3.1.2, our heuristic
for node ordering in the cliques improved data locality and decreased memory system

time by approximately 50%. In fact, the same ordering helps to avoid interprocessor
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Figure 3.5: Relative number of local misses in the second-level cache for the TL8, MCS,
and RND3 for both implementations.

communication for the static multiprocessor implementation (compared to another
ordering, say parent ordering). As was shown above, for the p(D) query evaluation
in Fig. 3.2, we completely avoid interprocessor communication on the path Cy —
Cy — Cf for two processors. As we discussed, the intrinsic reason for the absence of
communication is that x4 is the first index in the Cy, C4, and Cs clique arrays and
the program performs global conditioning as described in [Shachter et al., 1994]. Tt is
clear that if we perturbed the node ordering, we would have much more interprocessor
communication. This is confirmed by Fig. 3.6(a).

The other experiment shows the impact of data distribution across main memo-
ries on a distributed-memory machine like DASH. If message entries can indeed be
assigned so that there are few cross-processor dependence edges (see Fig. 3.2), and
if the entries in a message assigned to a processor are contiguous, pages of data can
be placed so that most of a processor’s cache misses are satisfied in its local memory.
Fig. 3.6(b) compares this allocation strategy with a random page allocation strategy,
showing a dramatic performance impact. In fact, the two figures 3.6(a) and 3.6(b) are

very similar, although they reflect different types of losses in locality. Proper page
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Figure 3.6: Speedups on DASH compared with those for an equivalent program that uses
a parent ordering of nodes within a clique (a) and with an equivalent program that places
pages of data randomly among the distributed memories (b). Random node ordering in-
creases communication and compromises data locality (see Fig. 3.1), while random page
placement increases the relative cost of capacity misses.

distribution was also implemented for the dynamic version in accordance with the
initial assignment of work. As might be expected, the effect is much less pronounced
since the dynamic program had worse data locality a priori.

The superlinear speedup on DASH for the large RND1 network (see Fig. 3.3(a)) is
also due to page placement (not cache effects, as is common). While the uniprocessor
execution has to use memory in multiple clusters (the generated data structures do
not fit into a single cluster memory), beyond a certain number of clusters the mul-
tiprocessor execution uses mostly local memory if pages are placed properly. The
reduction in memory stall time from 202 seconds to 160 seconds outweighs the extra
25 seconds spent on synchronization for the 32 processor program execution, resulting
in superlinear speedup.

The slightly better speedups on the SGI Challenge than on DASH can be explained
by the smaller ratio of latencies corresponding to communication and local capacity
misses (130/100 processor cycles for SGI as opposed to 100/29 cycles for DASH)
and the larger cache line size (128 bytes for SGI as opposed to 16 bytes for DASH)
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since, as we shall see, the programs have good spatial locality even for communication
(remote) misses due to our ordering heuristic discussed in section 3.1.2. The speedups
on DASH are similar to the speedups on the Challenge if the number of processors is

less than 4 and the computations are performed in a single DASH cluster.

3.3.4 Data locality

To understand how the temporal and spatial locality in the program scale with the
problem size and number of processors, which provides insights into how performance
might scale with different systems, we performed software simulations of the multi-
processor execution. The simulations with different cache parameters were done with
using Tango Light execution-driven reference generator coupled to a memory system
simulator [Goldschmidt, 1993]. We modeled a cache-coherent multiprocessor with a
physically distributed shared address space and a directory based cache-coherence
protocol. The simulator divided cache miss rates according to classification described
in [Woo et al., 1995]:

e (old — the first access to a cache line which is not in the processor cache; a

cache line must be brought into the cache for the first time.

e (Capacity — the access to a cache line previously replaced from the cache due

to limited cache size; a cache line is brought into the cache for the second time.

e True sharing — the access to a cache line which is currently in another processor
cache, the next memory request to the given cache line is also done by the same

Processor.

e False sharing — the access to a cache line which is currently in another processor
cache, the next memory request to the given cache line is done by another

processor causing the cache line to thrash between the processors.

To analyze temporal locality, we measure the working sets of the program by
plotting the miss rate versus the size of the per-processor cache used in the simulation,

assuming a 16-processor execution and 4-way set-associative caches with a 64-byte
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Figure 3.7: Read miss rate as a function of
cache size. Simulation for 16 processors and
64 byte cache line size with 4-way set asso-
ciative caches.
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cache line size. The results are shown in Fig. 3.7. For the TL8 and MC8 networks,
the working set sizes are approximately the size of one clique memory divided by the
number of processors, i.e., 2MB/16 = 128 KB. For randomly generated networks,
the dependence is not so distinct since we have a wider distribution over the sizes
of the cliques, except for the RND2 network, where we observe only one relatively
large clique in which all work turns out to be concentrated (see Table 3.1); the clique
size is 8 MB, which produces a sharp rise in the total execution time around 512 KB
cache (8 MB / 16 processors). The decrease in the capacity misses, which are the
replacements of cache lines due to limited cache capacity, in the decomposition in
Fig. 3.8 confirms that the size of the working sets is around 512 KB.

To analyze spatial locality, we measure the dependence of the miss rate on cache
line size (the sizes of the processor caches were kept constant at a relatively large size
of 512 MB). The results are shown in Fig. 3.9 and 3.10. The dependence characterizes
the spatial locality of the program and the amount of data sharing between processors.
All components of the miss rate decrease even for random networks as the cache
line size increases, including the true sharing or inherent communication miss rate.
False sharing of data among processors is insignificant compared to other sources of
misses for the randomly generated networks. For the TL8 or MC8 networks, its effect
becomes important only beyond a 128 byte cache line. In general, the application has

good spatial locality.

3.3.5 Practical applications

We tested our program on one of the largest medical diagnostic networks, the CPCS
network (see Fig. 1.3), used for internal medicine diagnosis (the author thanks Dong-
ming Jiang of Princeton University, a student of J.P. Singh, for the help with these
experiments).

The version of the CPCS network we used contains 422 binary nodes.” The join

"The full CPCS network contains 448 nodes (see Fig. 1.3), where some of the nodes have four
possible values. The version we had contained 422 binary nodes, and we converted all four-valued
nodes to binary. The 422 node CPCS network with four-valued nodes would require about 1 TB of
memaory.
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Figure 3.11: Histogram showing the distribution of the clique sizes in the CPCS medical
diagnostic network. Although the join tree has many cliques, small cliques contribute to
only a small portion of the total workload. For example, the 176 cliques of size 2 contribute
to less than 0.0001% of the total workload. Conversely, the six largest cliques—one of 23
nodes, four of 24 nodes, and one of 25 nodes—contribute to 99% of the total workload.
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Figure 3.12: Speedups on the SGI Origin 2000 server for static (upper curve) and dynamic
(lower curve) implementations.
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tree for this network has 350 cliques with total of 110,171,288 potentials. Fig. 3.11
shows the distribution of clique sizes and thus the workload in the cliques (which is
exponential in the number of nodes though).

Although we have many more branches and cliques in the join tree as compared
to our “artificial” networks and could have expected a high degree of topological par-
allelism, topological parallelism is still limited in this practical network. For instance,
the 176 small cliques of size 4 (2 binary nodes produce a state space of 4) contribute
less than 176 x 4/110,171,288 < 0.0001% to the total workload. Most of the work-
load is concentrated in a few large cliques, which does not provide enough topological
concurrency. The six largest cliques contain (223 +4 x 224 +225) /110, 171, 288 ~ 99%
of the total workload.

On the other hand, there is enough concurrency on the in-clique level for suffi-
ciently good speedup. Fig. 3.12 shows speedups of our static and dynamic program
with the binary CPCS networks. Since the six largest cliques contain 99% of the total
workload and the static program exploits this concurrency well, the static program
produces good results.

The dynamic program does not perform much worse, however. The join tree
has a large fanout: 3 nodes at the second level and 11 at the third. The dynamic
program uses the available concurrency on the topological level avoiding expensive
global synchronization of the static program. It also successfully exploits available
in-clique concurrency where possible.

Let us note that while both programs required about 1 GB of shared memory, the
final propagation time in the full CPCS network on 64 processors was less than 10
seconds with our static partitioning program. This low computation time in conjunc-
tion with high memory requirements is a direct consequence of the data intensity of

probabilistic inference.

3.4 Related work

We have not found any references with an actual implementation of parallel prob-

abilistic inference. Many people discussed possibilities of implementing inference in
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parallel. Shachter et. al. proposed to condition the BN on several nodes and comput-
ing several BNs in parallel [Shachter et al., 1994]. We have shown that our scheme is
actually better than the global conditioning scheme. It is exactly equivalent to global
conditioning when all cliques contain the conditioning node and is more efficient in

other cases.

3.5 Conclusions

We have presented two parallel implementations of exact probabilistic inference, which
exploit concurrency at different levels, and have measured and analyzed their perfor-
mance. The first implementation exploits only in-clique parallelism using static par-
titioning. The second exploits more of the available concurrency (topological as well
as in-clique), using dynamic assignment for load balancing; it avoids global synchro-
nization, but compromises some data locality. We found that the former produces
consistently better results than the latter over a wide range of input networks.

Detailed performance analysis shows that the main reason for the better per-
formance of the static scheme is less interprocessor communication and better data
locality. The critical forms of locality are data distribution in main memory and spa-
tial locality at cache line level (temporal locality during a single query propagation
is limited in optimized implementations). These and reduced communication are ob-
tained by careful ordering and assignment of in-clique computations, and have a large
impact on performance. This emphasis on communication and locality makes proba-
bilistic inference a good benchmark for the memory and communication architectures
of multiprocessors.

We studied the scalability of data locality with the problem size and the number
of processors. We found that important working sets are proportional to clique size
divided by number of processors, while good spatial locality persists for a wide range
of parameters. Analysis of the algorithm shows that the inherent communication to
computation ratio can also be kept low if we increase the clique sizes and the number

of processors proportionally.
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We ran our two programs on a practical CPCS medical diagnostic network. Al-
though we found that this practical network has much more topological parallelism
and that the dynamic program performs almost as well as the static, still about 99%
of the total workload is concentrated in six largest cliques. Since our static program
utilizes this available in-clique concurrency better, it produces better speedups.

Extensions of the current parallelization schemes are possible for more advanced
inference algorithms, for instance the approximate inference algorithms that we con-
sider in the second part of this thesis. These might benefit from extending our initial
static assignment with dynamic work stealing for load balance, since the workload
becomes somewhat unpredictable even for in-clique parallelism. Overall, the fact that
simple parallel implementations can produce good speedups opens up new possibilities

for the use of belief networks in decision-support systems.



Chapter 4

State space abstraction

ab-stract, 1542

Pronunciation: ab-’strakt, ’ab-" (usually in sense 3)
1: remove, separate; 2: to consider apart from appli-
cation to or association with a particular instance; 3:
to make an abstract of, summarize; 4: to draw away

the attention of; 5: steal, purloin.

Webster dictionary

In practice, it is rarely the case that we need the exact answer for our proba-
bilistic queries—the BNs themselves are often just an approximation of the original
underlying problem. The goal of the second part of the thesis is to study another way
of reducing the computation time of probabilistic inference through making approz-
1mations in the inference process. In this chapter, we develop a general approach to
making approximations in probabilistic inference based on abstraction.

Although approximate probabilistic inference as well as exact probabilistic infer-
ence was shown to be NP-hard in general and thus computationally expensive [Dagum
and Luby, 1993], the computation time to obtain an approximate answer is often much

lower than the computation time to obtain the exact answer to a probabilistic query.

62
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The speedup due to making abstractions in inference might be exponential in the size
of a general BN by itself (see Chapter 6). Furthermore, approximate methods are
often less data intensive, better exploit benefits of the hierarchical memory systems,
and thus are more readily accelerated on a multiprocessor.

We start with a formal review of the abstraction paradigm that has been used in
physical sciences and decision analysis. We show that similar techniques have been
applied to state space abstraction in BNs on the level of state spaces of nodes and
parent sets. Then, we describe our abstraction technique in general. The difference
between our technique and former ones is threefold. First, we tailor our abstraction to
simplify probabilistic inference: we abstract the state space of the whole cliques, not
the state spaces of nodes or conditional probabilities. Second, our abstraction is hi-
erarchical: the abstraction at the higher level is expressed in terms of the abstraction
at the lower level. Third, we provide a method to dynamically shift between differ-
ent levels of abstraction during probabilistic inference based on information-theoretic
measure of distance, the relative entropy or KL distance often used in the information

theory.

4.1 Examples of abstraction

By many accounts, abstraction has been one of the most powerful technique for scien-
tific analysis, particularly in physics and mathematics. For example, when scientists
reason about a macroscopic object, they do not need to consider quantum mechan-
ical properties of the macroscopic object parts. Had they had to consider the inner
quantum mechanics, they would not have been able to solve even simple mechani-
cal problems, not to mention a problem like satellite scheduling.! Fortunately, they
can make approximations in reasoning about macroscopic objects by neglecting the
lower levels of abstraction, i.e., the quantum mechanical properties of macroscopic
objects. In physics, we generally have abstractions on each and every level of the

world description.

L A cubic centimeter of a typical solid matter contains over 1022 electrons; to find an exact behavior
of each electron we would have to solve a differential equation in over 1023 dimensional space.
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4.1.1 Abstraction in decision making

People often use abstraction in everyday life to optimize their decision making. For
example, we say that a person “is sick” if he has some evidence of a disease, say fever.
At this level of abstraction we do not have to know the origin of the ailment—the sick
person is usually confined to bed and taken care of; the lower levels of abstraction
might determine patient treatment plan, but are not vital to the initial treatment
stage. This abstraction has a very intuitive meaning: when we say that a person is
sick we mean that the person has one of several diseases without specifying which
one.

Another example is of a car dealer estimating the price of a car. Let us say a
car dealer abstracts the car condition by four parameters: condition of the engine,
condition of the tires, condition of the interior, condition of the exterior paint, all
of which are graded on a scale from 0 to 5. To determine the price of the car, the
dealer sums the numerical values for the parameters and prices the car high if it is in
excellent condition (the sum is from 16 to 20), medium if the car is in good condition
(the sum is from 8 to 15), low if the car is in poor condition (the sum is from 0 to 7).

We have several levels of abstraction in the above example of a car dealer. On
the first level, the dealer abstracts the condition in each of the four separate areas
by a number from 0 to 5. On the second level, he abstracts the condition of the car
in general to price it high, medium, or low. The dealer assumes that all cars in the
corresponding range have approximately the same value disregarding the separate

contributions to the value.

4.1.2 Abstraction in BN structure

Certainly, abstraction has been used in computer science also. Hoare [Hoare, 1994]
writes: “The major achievement of modern science is to demonstrate the links between
phenomena at different levels of abstraction and generality, from quarks, particles,
atoms and molecules right through to stars, galaxies, and (more conjecturally) the
entire universe. On a less grand scale, the computer scientist has to establish such

links in every implementation of higher level concepts in terms of lower.”
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In BNs, abstraction has been most often used on the knowledge acquisition stage;
Horvitz & Klein developed a set of general principles for abstraction based on the
concepts of sensitivity and utility function [Horvitz and Klein, 1993]. They construct
generalizations about events and actions by considering losses associated with failing
to distinguish among detailed distinctions in a decision model. They provide an
approach to cluster distinctions into groups of distinctions at progressively higher
levels of abstraction and thus show how to transform detailed states of the world
into more abstract categories comprised of disjunctions of the states. Finally, they
describe rules for decision making with the abstractions.

Abstracting the distinctions between states of the variables has obvious benefits
for probabilistic inference: the computation time grows as a polynomial function of
the size of the variable domains. If the size of a node domain is v, the state space

size of a clique X; consisting of nodes z1, s, ... ,z, grows as:

X = ] Il = o, (4.1)
i=1n
as does the computation time. Reduction in the number of states per node reduces
the computation time.

Developing the node state space abstraction idea, Wellman and Liu provide an
anytime heuristic inference algorithm that combines the elementary states of variables
in superstates and performs probabilistic inference in the abstracted probabilistic net-
work where one or more variables have superstates [Wellman and Liu, 1994]. For
example, if we want to combine two states b; and by of a node z;, the new conditional
probability of a node z, conditioned on the superstate [by, bs] of the node z; can be

computed as:

(zalzy = b1)p(xs = b1) + p(xa|zs = b2)p(xp = by)
p(xp = b1) + p(zp = be)

p(xales = [br, ba]) = 2 . (42)

according to the definition of conditional probability, and the new conditional proba-

bility of the node z; to be in the a superstate [by, by] conditioned on some other node
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z. can be computed as:

p(x = [b1, bo] |zc) = p(zp = br1|2c) + P(7 = b2l2,), (4.3)

i.e., is the sum of the conditional probabilities for the corresponding states in the
superstate. Analogously, for any given superstate [S,] of the child and any given

superstate [Sp] of the parents, the new conditional probability can be found as:

> zac(Sal.enelsy) P(TalT)P(Ts)
2z sy P(20)

p(Ta = [So] 2o = [Sh]) = (4.4)
Probabilistic inference can be performed much faster with the new conditional prob-
abilities and superstates than with the original complete state space.

There are two problems with computing (4.4). First, the new model no longer
satisfies the original independencies and lacks some of the dependencies contained in
the original model.> Second, the marginals p(x;) might not be readily available—to
get these probabilities exactly we need to perform probabilistic inference in the whole
network in the first place. Thus, instead of (4.2), the authors propose to use another

approximation:

1 1
p(2q|Tp = [b1,b2]) = 510(%\% =b)+ §P($a|xb = by), (4.5)

where we find an arithmetic average of all conditional probabilities instead of the
weighted average.

As shown by Wellman and Liu, the results in an abstracted probabilistic network
can approximate the exact result in full networks with good precision. The authors
start with a very crude abstraction—one or two possible values per node, and proceed
by splitting the abstracted states further if time is available. Thus, one can incre-
mentally refine the superstates by introducing distinctions and get a better estimate

of the inference result in a BN. The process can be repeated until we either run out

2More strictly speaking, the new conditional probability is exact if and only if all original con-
ditional probabilities p(z,|zp) are the same for any z, € [S,] and zp € [Sy], which would make the
separation into the original finer states superfluous in the first place.
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of time or solve the original fine grained model. Thus, the algorithm is anytime: the

expected accuracy increases as the nodes are iteratively refined.

Car vandalized

P
false true
\Y
Car pushed

v 0.99
false true
5 / \
001 0.66
A
A
P(A) 0(A)
PV 0995 P+ | 099
PV | 0985 BV | 0.6
PV | 066 PV | 0.01
PV | 0.01

Figure 4.1: The context-specific independence (CSI) abstraction for the probability of a car
alarm going off. The latter CSI conditional probability can be represented by a decision
tree in the upper right corner. The decision tree might be much more compact than the
full conditional probability table.

Another proposed way to abstract the state space in a BN is to abstract the
states in the conditional probability tables. We can collapse the entries that have
almost the same value. This leads to the notion of context-specific independence
(CSI) introduced in [Boutilier et al., 1996]. In the CSI conditional probability we
have entries that are the same for some different parent values given other parents in
certain states, or in certain contexts.

For example, the probability of the car alarm going off, as shown in Fig. 4.1,
depends on whether somebody pushes or vandalizes the car with the conditional
probabilities given by the table in the lower left corner. We might notice that the
first two entries are almost identical, i.e., the probability of a car alarm going off

almost does not depend on whether the car is being vandalized if someone is pushing
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the car. We say that the value of the conditional probability of the car alarm going
off is independent of the node xy in the context that the node zp in the state true.

Thus, the conditional probability p(za|zp, zy) can be represented by a decision
tree shown in the upper right corner (see Fig. 4.1). To find out the conditional
probability, the first question we ask is whether the car was pushed, i.e., the value of
the variable zp. If zp is true, we know the answer already (0.99) and do not need to
check the value of the other variable zv; if zp is false, we proceed to ask the value
of the variable zy,. The answer depends on the state of xy and is either 0.66 for
xy = true or 0.01 for zy = false. As a result, we end up with smaller data structure
to represent conditional probabilities.

Unfortunately, the evidence of computational advantage of the both above schemes
is only preliminary. Even though we must have computational advantages due to a
smaller state space, the process of abstraction by itself also takes some computation

time. Furthermore, finding the error bounds in the above schemes is complicated.

4.2 Clique state space abstraction

Our ultimate goal is to make probabilistic inference more efficient and faster. Thus,
instead of reducing the state space of either nodes or conditional probabilities, we
propose to reduce the state space of the cliques directly since it is the clique state
spaces that determine the computation time of probabilistic inference.

We achieve two major advantages in doing the abstraction on the higher clique
level as opposed to the level of separate nodes or parent sets. First, the state space
of an average clique is much larger than the state space of a node, and thus we can
find more states with similar properties to combine into superstates. Second, there
are fewer cliques than nodes or conditional probabilities in a BN—the former are the
products of the latter—and we make fewer approximations by abstracting the clique
potentials directly.

Just as in the node state abstraction and the CSI abstraction, we combine states

with similar characteristics—potential, probability, or conditional probability—into
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cligue state space abstracted cligue state space

*

elementary state superstate

Figure 4.2: The abstraction of the clique state spaces. We combine the states in the
clique with similar properties and represent them by superstates. The superstates hold
all information about the underlying states and represent the properties of the underlying
states on average.

a superstate. The superstate stores the value of the average potential and the infor-
mation about the states it is comprised of. We will try to modify the probabilistic
inference algorithm so that we can perform probabilistic inference operations, the
marginalization and multiplication, in terms of the new constructed entities.

We will try to make the abstraction structure convenient for the communication
between cliques, i.e., for passing and receiving messages in the join tree. In the node
state abstraction this goal was achieved by collapsing the states together across all
the cliques. We would like to relax this requirement and make abstraction as flexible

as possible in our approach.

4.2.1 Hierarchical abstraction

The simplest way to define a superstate is to assign a subset of states to the superstate
denoted as [condition|, where the condition might be any condition on the states in
a clique. For example, in Fig. 4.1 the condition to combine the states of the parents
was xp = true, thus we would denote the superstate corresponding to the two states
{PV,PV} as [zp = true]. In many cases, such as BN20 networks considered in the
next chapter, we can find a simple condition to partition the states.

The conditions might be organized into a hierarchy very similar to a decision tree.
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-

Figure 4.3: A tree representation of hierarchical abstraction.

For example, if we have a state space of two variables, the “top” superstate might
contain all possible states for both variables. On the next level, we might split on
one of the variables and on the second level on the second of the variable (compare
to Fig. 4.1).

A general case of tree hierarchy is presented in Fig. 4.3. We have a few levels of
abstraction. The first level abstracts the whole state space in one superstate. The last
level of abstraction represents the abstraction in Fig. 4.2. Each parent collapses the
superstates of the children into one larger superstate. We find the tree representation

of abstraction very convenient for computational purposes.

4.2.2 Dynamic abstraction

While working with a given abstraction, we might find that a given superstate needs
to be refined and represented as a collection of smaller superstates. Conversely, if the
distinction between different superstates is small, we might combine the superstates
and represent them by one superstate on a higher level of abstraction. The hierarchical
tree abstraction representation is particularly convenient for such dynamic changes
during probabilistic inference since the changes can be localized in one particular
branch of the tree.
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4.3 Relative entropy, KL and WKL distance

To implement the dynamic abstraction during probabilistic inference, we have to mea-
sure the quality of the given hierarchy to see if it needs to be expanded or compressed.
The simplest measure of quality is a rigid bound on the difference between the true
and abstracted potentials. In a more general setting, we measure the quality by a
metric reflecting the quality of the resulting decisions [Horvitz and Klein, 1993].

Measuring the quality of the decisions exactly is a formidable task and is difficult to
carry out in practical systems. A simpler metric is the Kullback-Leibler (KL) distance
[Cover and Thomas, 1991], an information-theoretic measure of quality. Although
both the interval bound and KL distance have been used for estimating the quality
of approximation, the KL distance is closer to the real world measure of quality.

In statistics, KL distance arises as an expected logarithm of the likelihood ratio.
In encoding theory, it is the difference between the message length ideally encoded
according to the true probability distribution p and the message length encoded ac-
cording to some guessed probability distribution p 4. In many other problems, relative
entropy translates directly to the expected difference of our utility function due to

the changes in probability distributions.

Definition 4.3.1: The relative entropy or Kullback-Leibler distance D (p||pa) be-
tween two probability distributions p(x) and p4(x) is defined as:

p(@) _ /150 P2)
D (plipa) = Zp )log x)—<1gpA(m)>, (4.6)

where (x) denotes the statistical average of the variable z. i

The KL distance is not a distance in the geometrical sense since it does not satisfy
the triangle inequality and is not symmetrical; however its properties are similar to

the properties of the £, distance squared [Cover and Thomas, 1991].

Definition 4.3.2: The conditional relative entropy D (p(z2|x1)||pa(x2|z1)) is the

average of the relative entropies between the conditional probability mass functions
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p(z2]z1) and py(z2|x1) averaged over the probability mass function p(z;). More

precisely:

D (p(z2|z1)|lpa(z2lz:1)) =

S o) Y plaafer)tog L2 — (log PO 4

pA($2|$1 pA($2\331)

1 2

Relative entropy of a probability distribution is conveniently decomposable into a
sum of relative entropy and a conditional relative entropy. Suppose that we have a
probability distribution p(z1,z2) = p(z2|z1)p(x1) defined in a two-dimensional state
space {z1,zs}. The relative entropy over the two-dimensional space can be decom-

posed as follows:

D (p(z1, 23)[pa(21,22)) = D (p(z1)[[pa(21)) + D (p(2]21)|lpalz2|z1)),  (4.8)

where p(x1,z2) and pa(x1,22) are some probability distributions, and p(x;) and
pa(x1) are the probability distributions over z; obtained by marginalization p(z;) =
>z, P(T1,22) and pa(z1) = 3, pa(@1, 2).

The relative entropy decomposition has been applied to the task of searching for
edges to be removed in the weak-dependencies removal approach discussed earlier
in Section 2.2.1. A conditional probability is approximated by another conditional

probability with some of the parents removed. The conditional relative entropy:

D (p'(xi| Pa(z:))||p(xi| Pa(:)))

between the new and the old probabilities conditioned on the parents Pa(z;) proba-
bility distribution is exactly the additive measure of error we introduce in the joint
probability distribution as a result of this substitution. The weak dependency removal
has a disadvantage that we have to abstract each of the conditional probabilities and
then to combine them to clique potentials which are actually used for probabilistic

inference.
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Our goal is to do abstraction on the clique level from the start. The clique poten-
tials, however, are not necessarily conditional probabilities and the relative entropy
decomposition cannot be applied directly to clique potentials. Thus, we need a new

metric to abstract the clique potentials.

4.3.1 Weighted KL distance

Let us see how we can generalize the decomposition (4.8) to a more general case of a

joint probability distribution represented as a product of clique potentials:

P,z - zn) =[] (). (4.9)

all potentials

Let us assume that we approximate each clique potential ¥(C}) by an abstracted
potential ¥ 4(C}) defined over superstates in the clique Cy. The KL distance between
the original joint probability distribution p(z1, 2, ... , ) in (4.9) and an abstracted
probability distribution p(x1, 2, ... ,Z,) represented as a product of abstracted

clique potentials ¥ 4(Cy) is

LU (Cy
D (p(z1, ..., zn)|lpalzy, .-, me 1;[ ¥(Cy)log 1% \P:(CZ)
B 1. %(C) _
_m;znp(:rl,... ,z,) log Hk‘IfA(Ck) Z p(zy, ..., Zl
> e, Ck -731, cee Xy) \I/(Ck)
—ZZ : VGl g ¢y 10

where the second sum is over all variables in a clique C;. The above expression can

be rewritten as:

D (p(zy, ..., zn)||pa(z1, ... ,2,)) =

ZW (\I’(C’k)H‘I’A(Ck); Zz,-gck 11171((12;) — ,wn)) , (4.11)

k
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where we introduced a new notation:

W (@) lpale); w(@) = 3 w(z)p(z) log 2L (4.12)

pa(z)

Z

Expression (4.12) differs from (4.6) only by the weight function w(z), which was
Y wigc, P(E1, -, 2n)/¥(Cy) for the join tree decomposition. Thus, we call it Weighted
Kullback-Leibler (WKL) distance between arbitrary positive functions p(z) and p4(z)
with the weight w(z).

4.3.2 WKL distance properties

Let us look at the properties of the WKL distance. First, if the clique potentials
U (Cy) are conditional probabilities, the decomposition (4.11) is reduced to the relative
entropy decomposition (4.8). Let us see how it can be done.

Consider clique Cj, and assume that ¥(Cy) = p(z;|Pa(z;)), i.e., each clique is
assigned exactly one conditional probability. The marginal 3, ... p(z1, ..., ;) used

in the weight:

w(Ci) = > pl@1, ..., 20)/¥(Cr) (4.13)

z;¢Cy

is exactly the prior probability distribution for the variables in the clique. If z; € Cy,
then the ratio szgzck p(z1, ..., 2y)/p(x;|Pa(z;)) is the prior probability distribution
p(Pa(z;)) for the parents of the clique. The weight is reduced to the prior probability
distribution for the parents of z;, and thus the weighted relative entropy (4.12) is
reduced to conditional relative entropy (4.7) where z; = Pa(z;) and z5 = ;.

Our final goal is to improve the quality of our decisions or to bound the KL error
of our results. The following lemma shows the relation between the WKL and KL

distance.

Lemma 4.3.1: Given the original potential U(C}), a piecewise constant abstracted
potential potential ¥ 4(Cy) which is equal to the average of ¥(Cy) in each of the

abstracted subspaces [i] where it is constant, and a piecewise constant positive function
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w(Cy) which is also constant in all [i], the following bounds hold:

W ((Ci)||®4(Cr); w(Cr))
|[¥(Cy)|| min; w(C;)

W (W(C)[[ ¥ 4(C); w(Ch))
[W(Cy)l| max; w(C;)  —

> D (p(Ck)|lpa(Cr));

D (p(C)llpa(Ck)) ,

where p(Cy) and pa(Cy) are the normalized probability distributions:

p(Cr) = W(Ci)/I[¥(Cy)l[;
pa(Cr) = WA(Cr)/|[®A(Ci)l]

and the norm ||[¥(Cy)|| = ||¥4(Ck)|| is the total probability mass:

1E(C)l[ = ) ¥(Ck).

z;€Cy,
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(4.14)

(4.15)

(4.18)

Proof: To prove a bound on the sum, we have first to show that the contribution

to the WKL distance from each group of the abstracted states [¢] is positive. The

abstracted potential W 4(Cy) is the average of the original potential ¥(C%) in each

group [i] of the abstracted states:

ald) = Z‘I’ )/11d]

where |[i]| is the number of primitive states in [i]. Due to the convexity properties of

the function xlog x, we have:

wZ\I/ )log ¥(s) > wZ\IIA ) log U 4(s);

wZ\II Ylog¥(s) > wZ\II )log U 4(s

wZ\I’(s)log\Il(s)/\I!A(s) > 0,

s€[i]
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where we used the fact that ¥ 4(Cy) as well as the weight w is constant within an
abstracted state [].

Let us first replace the function w(Cy) by a constant min; w(C;):
W (H(CIA(C): w(Ch) = W (UG minw(C) (4.19)

since we can bound the contribution from each separate w;. Now:

W (T (Ci) ¥ a(Ck); min; w(C5))

min; w(C})
> zicc, min; w(C;) ¥(C) log ¥ (Cy) /¥ 4(Ch)
B min; w(C})
= D U(Cy)log ¥(Ci)/Ta(Cr)- (4.20)

To convert the last sum to the KL distance, we have to normalize the potentials since
the KL distance is defined only on the probability mass functions whose total mass
is one. We divide ¥(Cy) and ¥ 4(Cy) by a constant:

T(C)ll= D T(Cr) = Y Tu(Ch). (4.21)
We have:
1 V(Cy)
el 22 YOy G,
U(Cy, T(Cy)/||%(Ch)||

) log =
[(Cll ™ Y a(Cr)/|[¥a(Ch)l

D (p(C)|lpa(Cr)), (4.22)

z;€Cy,

where we introduced the notations (4.16) and (4.17). Combining the above expres-
sions, we result in the bound (4.14). Analogously, replacing the weight function w(C})
by the maximum of the weight max; w(C;), we come to the bound (4.15).
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Thus, the error corresponding to the KL distance decreases as we increase the

weight and/or multiply the potential by a constant factor greater than one.

4.3.3 Weight assignment

To have the correct WKL measure of approximation, we have to know the joint
probability marginal (4.13) for each clique, which is typically not readily available
during the abstraction process. In general, obtaining the marginal is equivalent to
performing probabilistic inference. There are two possible solutions which we consider

in the next two chapters.

e Have a guess about the marginals and build our abstraction based on this guess.
We use this strategy in Chapter 5 to reduce an arbitrary BN20 network to a
polynomially solvable model which produces inference results of good quality.
We show that given the assumption of the low prior probability of faults, which
is a valid assumption in BN20O diagnostic networks, we can substantially reduce

computation time at the expense of a small error.

e Iterate our abstraction and inference mechanism getting better quality guess
about the posterior and required abstraction with each iteration. We study the
second approach in Chapter 6. We assign an initial guess about the weights
on the first iteration and iteratively improve the quality of our marginals and
weights on subsequent iterations. We show that the iterative algorithm con-
verges to the correct values and chooses the correct abstraction over the clique

state spaces.

4.4 Related work

Trading the precision of the model for computation time in BNs has been proposed,
for example, [Horvitz and Klein, 1993]. While the approach the authors suggested
is ideal in principle, practical implementation of the proposed approach requires the
exact knowledge of modeling choice effects on computation time, a task that might

be just as hard as inference itself.
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All previous work on reducing the precision of the model was done on the level of
nodes (state-space abstraction [Wellman and Liu, 1994]), or conditional probabilities
(weak dependencies removal [Kjeerulff, 1994] or CSI [Boutilier et al., 1996]). This
thesis is the first work that studies how we can lift the approximation, abstraction in
this particular case, to the level of cliques, the level where the state space size directly
affects probabilistic inference time.

Like in [Kjeerulff, 1994] and [Boutilier et al., 1996], we use an information theoretic
measure of distance, the KL distance. However, to make it useful for the case of clique
potentials, which might or might not be conditional probabilities, we had to generalize

the KL distance to the KL distance with weights.

4.5 Conclusions

The contribution of this Chapter is twofold. First, we propose to do abstraction on
the clique level as opposed to the level of nodes or conditional probabilities. Second,
we generalize the KL distance to WKL distance which can be directly applied to the
join tree factoring decomposition.

We generalize the approaches to abstraction in BNs and develop a methodology to
abstract states at the clique level, the level which is directly involved in probabilistic
inference. We propose to represent such an abstraction by a hierarchical structure on
which we will do the probabilistic inference operations, the propagation of messages
in the join tree by summation and multiplication, directly. Since there are fewer
superstates than elementary states, probabilistic inference can be carried out much
faster with the superstates.

We describe a flat and hierarchical abstraction; flat abstraction can be imple-
mented more efficiently in static models while hierarchical abstraction allows to ef-
ficiently shift between different levels of abstraction dynamically. We analyze the
quality of possible state space partitioning in terms of the information-theoretic mea-
sure of distance, the relative entropy or KL distance, and describe techniques to
choose the weights in the WKL distance.



Chapter 5

Static abstraction in BN20O

networks

“It is of highest importance in the art of detection to
recognize, out of a number of facts, which are inci-

dental and which are vital.”

Sherlock Holmes

The first of our trial cases for abstraction is a two layer BN with a noisy-OR in-
teraction between nodes, which is often called a BN20 type network. Many networks
of this type are used in practical systems for diagnosis. For instance, the QMR-DT
medical diagnostic networks we described in the introduction is a BN20O network with
over 4,600+ nodes and is used in practice. The BN2O structure provides a convenient
paradigm for knowledge modeling; it makes it easy to construct and use this type of
BNs in a diagnostic system.

In this chapter, we develop an approach for static state space partitioning of clique
states into superstates and test it on two BN2O networks: one randomly generated
and the other generated with the parameters of the practical CPCS network.! Al-

though we can define as many superstates as we want, here we explore the use of

!The QMR-DT network is proprietary and was not available to us for publication.

79
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only one superstate. Given the analytical properties of the noisy-OR interaction, one
superstate per clique results in a polynomial time approximate algorithm for proba-
bilistic inference in the BN20 networks. [Kozlov and Singh, 1996a] provides a slightly

different description of this approach based on the concept of similarity of states.

5.1 BN20O networks

The structure of a BN20O BN facilitates network construction and probabilistic infer-
ence. A simple BN20 network is shown in Fig. 5.1; it consists of two layers of nodes.
The nodes in the first layer (“Flu”, “Cold”, and “Sunburn” in our example) are faults
or diseases and usually are unobservable. The nodes in the second layer (“Running
nose” and “Fever” in our example) are observable evidence or symptoms. The nodes
in the second layer depend on the nodes in the first layer via noisy-OR conditional

probabilities.

Figure 5.1: Structure of a BN20 network. Flu and cold, but not sunburn, cause running
nose; all three diseases might cause high temperature.

A noisy-OR conditional probability is the result of a noisy disjunctive interaction
between nodes [Pearl, 1988]; it assumes that the ability of any single disease to cause
a symptom is independent of the presence of other diseases. Thus, any probability
can be expressed given only a few parameters, which is the number of parents plus

one.
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5.1.1 Structure of noisy-OR dependencies

Let us start with the simplest example where we assume that the probability of a
node when all causes are absent, called the leak probability, is zero. For example, we
assume that the probability of running nose p(R|F,C) is zero in the absence of flu
and cold (see the notations description in Appendix A). Then, two probabilities, the
probability p(R|F, C) of running nose given flu only and the probability p(R|F, C) of
running nose given cold only, completely define the dependence between the symptom
and the diseases. The fourth probability, the probability p(R|F,C) of running nose
given both, the flu and cold, can be expressed through the previous two ones.
Numerically, it is simpler to write it in terms of the probabilities of running nose

being false:
p(R|F,C) =1—-p(R|F,C) =1-p(R|F,C) x p(R|F,C). (5.1)

The conditional probability p(R|Pa(zg)) of “Running nose” to be true is a mono-
tonically increasing function: the larger the number of diseases present, the more
probable it is for the symptom to appear. Noisy-OR dependence can be expressed
more formally based on noisy-OR coefficients.

A noisy-OR dependence between a symptom node z,; and its n parents zg; is
characterized by n + 1 real numbers between 0 and 1: a leak and n coefficients. The
leak, which we denote Leak(s;), is the probability of the symptom being present in
the absence of any of the diseases described by the network. A coefficient, which we
denote c;;, describes the ability of a disease d; to cause a symptom s; in the absence of

the other diseases. The rest of conditional probabilities are given by the expression:

p(si\xdl, Tdyy - - - ,.’Edn) =1- [1 — Leak(si)] X H[l — Cijxdj], (52)
J

where we assume x4, to be zero if z4, = false and one if x4, = true.
Trivially, if ¢;; is zero, the state of the parent does not affect the probability of the
child—there is no edge between z4; and z;. Alternatively, if c;; is one, the true state

of the parent forces the child to be true with probability one—it is a deterministic
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disjunctive dependence. The noisy-OR interaction model was extended to a noisy-
MAX suitable for multivalued nodes [Pradhan et al., 1994].

5.1.2 Inference

Inference in a BN20 BN is polynomial for negative (x = false) evidence about nodes
and is exponential only in the number of positively (z = true) instantiated nodes.
Let us demonstrate this.

We consider only evidence in the second layer nodes since evidence in the first
layer results in global conditioning of the whole network which can be computed
in linear time. If a BN20O network has only negative evidence about symptoms,
x5, = false, the disease random variables remain mutually independent (we denote

posterior probabilities with a prime):

P (Ta, Tay, -, 7a,) = [[ [1— Leak(s;)] XH[I—cijwdj]p(:L‘dj), (5.3)

i:xs, =false
1

where the first product is over the negatively instantiated symptoms. The new pos-

terior disease probability p'(d;) of a disease d; can be computed in linear time:

_ p(dl) Hz’:zsi:false[l - cil]
p(El) + p(dl) Hi:zsi:false[l - cil]

P (di) (5.4)
since we can easy marginalize the product (5.3) representing the joint probability
distribution over the disease nodes.

On the other hand, if a BN20 network has only positive evidence about symptoms

xs; = true, the posterior probability distribution over the disease nodes is:

P (@ Tag, - 70) = ][ [1—[1—Leak(si)]XH[I—cijxdj]p(:cdj)] (5.5)

11T, =true

and is not decomposable. Thus, the posterior disease probability p’(d;) can be com-

puted only in time exponential in the number of positively instantiated nodes.
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Finally, if the evidence is mixed, we have two types of terms. The terms corre-
sponding to negative evidence can be easily factored out, and the terms corresponding
to positive evidence cannot. One of the ways to compute the posterior disease prob-
ability in the case of mixed (or positive) evidence is to expand the product as a sum

of terms according to the expression:

(1—a))(1—az)--(1—ap)=1— (a1 +as+---+ay)

+ (all possible pairs) — (all possible combinations of three a’s) + - - |

where the a’s are some coefficients and we sum over all possible singlets, pairs, triplets,
etc. The resulting expression for the new posterior disease probability p'(d;) can be
computed in time exponential in the number of positively instantiated nodes and
linear in the number of negatively instantiated nodes. If we denote the set of positively

instantiated nodes by Xg, the final expression looks like:

dl P alsel_cil
Pd)= ) (—1)2%[ PUD) o g ] (5.6)

2, €XE p(El) + p(dl) Hi:a:si:false[l - Cz’l]i| ’

where we sum over all possible combinations of values for z,, € Xg, which grows as
an exponent of N(Xg).

In noisy-OR networks with multiple layers, probabilistic inference can also be
sometimes simplified. For example, we can use structural transformations based
on the noisy-OR properties as suggested in [Heckerman and Breese, 1994]. These
transformations can help to decompose the joint probability distributions into factors

for sparsely connected BN20 networks.

5.2 k-fault hypothesis

As shown in equation (5.6), even if we account for the special properties of the noisy-
OR, the complexity of probabilistic inference is still exponential in the number of the
first-layer nodes (given that we have positive evidence in a general case). Let us see
what the join tree for a BN20 network looks like.
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For simplicity of presentation, we assume a high interconnectivity of the BN20O
network so that the largest clique in the join tree has a size close to the number of
nodes in the first layer. The largest clique in a join tree is always larger than the
largest parent set; given that the BN20 network is densely interconnected, we might
assume that several nodes have most of the first layer nodes as parents. Thus, the
largest clique in the resulting tree in a highly interconnected BN20 network includes
most of the first layer nodes.

To deal with this and similar situations when the nodes form large cliques, people
often use the k-fault hypothesis. The simplest case of the k-fault hypothesis is a single
fault hypothesis, which assumes that the faults or diseases are mutually exclusive and
thus we assign probability zero to all states s in which ). x4, > 1. A more general
k-fault hypothesis states that the probability of all states in which ). x4, > k is zero.

This assumption greatly simplifies the computations: we need to count only the
states with ). x4, < k. Thus, the posterior probability of a disease is computed by
summing only the “base” states and can be done in polynomial time O(m xn*), where
m is the number of findings and n is the number diseases. The posterior probability

p'(d;) of a disease d; is:

Z p(xdmwdza ’xdn)

s:zj T4, <k and zq,=true

Z p(xdvxdza ’xdn)

D 4, <k

p'(d) = (5.7)

The computational complexity is determined by the number of terms in the above
expression which is O(n*). The single fault hypothesis is a special case of the k-fault

hypothesis where k& = 1.

5.3 Abstraction structure

We choose our abstraction over the state space of the disease nodes Xp, the largest
clique in the most general join tree for a densely connected BN20O network. We

generalize each conditional probability p(s;|Pa(xs,)) to p(s;|Xp). Even though Xp
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might contain more nodes than Pa(z;,), we do not increase the computation task in

a general case since in a general case all first layer nodes are in one clique.

5.3.1 Computation structure

Let us look first how we can perform probabilistic inference with a superstate which
we denote [o]. We suppose here that all our conditional probabilities are abstracted,
or have the same value for all states s € [o]. First, we compute the contribution of

the “base” states s’ & [o] to the probability of the disease being present:

cll(dl) = Z pl(xdla‘rdza )xdn)

s':s'¢[o] and =g, =true

= [ #6ilXo)p(ea)p(@s) - pla,).

s':s'¢lo] and zq, =true jizs;=true

Analogously, we can compute the contribution of the “base” states to the probability

that a disease is absent:

cll(zl) = Z pl(mdwxdz: R 7xdn)

§':s'¢[o] and zq,=false

= > II #(si1Xo)p(ea)p(@a) - - - plea,).

s':s'¢[o] and zq =false jixs;=true
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The contributions from the superstate could be computed by summing over the un-

derlying states s € [o] in the superstate:

cl2(dl) = Z pl(xdl)xdza s )xdn)

s:5€[o] and z4,=true

= ) I1 »(si1X0)p(ea)p(@s) - -pla,)

s:s€[o] and x4, =true jizs;=true

CIZ(E) = Z p,(xdu Tdyy - - - 7mdn)

s:s€[o] and z4,=false

= D [T #(si1Xo)p(za)p(@as) - - pla,).

s:s€lo] and x4, =false j:Ts;=true

The final normalized posterior probability p'(d;) of the disease d; is computed as:

o () + ed)
PU) = ) T () + () + b)) (58)

So far, our computation is not different from the exact computation and does not
have any computational advantage. We still have to sum over an exponential number
of states in Xp.

The advantage becomes apparent if we consider that the conditional probability
p(si|Xp) is the same for all states in the superstate [o]. In this case, the condi-
tional probability can be carried out of the summation over the states as a common

multiplier. For example:

)= ] plsilXo=10]) > p(€a)p(zay) - - p(2a,),  (5.9)

i1z, =true s:s€[o] and zq4,=true
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where the second sum can be usually evaluated in polynomial time. As we might
notice, this sum does not depend on the BN instantiation and thus does not depend

on evidence. Thus, we define a coefficient a(d;):

Zs:se[a] and z4,=true p(a:dl )p(xdz) o 'p(a:dn)
Zs:se[a'] p(xdl )p($d2) o .p(mdn)

a(dy) = , (5.10)
which is the sum of prior probabilities over the group of similar states. The coefficients
(5.10) can be computed by either performing the summation over the abstracted states

directly, or, if there is only one abstracted state, by the summation over the “base”

states:
> p(za,) - p(zg,) = pldi) — > p(za) - p(2d,);
s:s€[o] and z4, =true s:s¢[o] and z4,=true
> pa)--plea) = 1= > pl@a) - -p(za,).
s:5€[o] s:5¢[o]

Since we want to group as many states as possible in the abstracted state, the number
of “base” states might be much smaller, and thus the latter summation can be much
more efficient to perform.

Using (5.10), the evaluation of the c}’s is simplified to:

() = ald) [[ »lsilXo = [o)p(lo));

Ts; €Xp

(d) = (1—a(d) [ p(silXo = loDp(o]).

1781; EXE

Thus, the model is specified by a few coefficients which determine the contribution

of the superstate to each of the disease probability.

5.3.2 Partitioning

Since we know now how to perform probabilistic inference with similar state, let us

try to find a simple state space partitioning that provides an abstraction structure
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that minimizes the error of a general diagnostic query. We can use the WKL decom-
position (4.11) for this purpose. The WKL distance between the true p(s;|Xp) and
the abstracted pa(s;|Xp) clique potential is:

W (p(si|Xp)llpa(s:| Xp); p'(Xp)/p(silXp)) =
p(si|Xp)

piA(SAXD)’ (5.11)

————"-p(s;|Xp) log
D)

where Xp is the joint state space of all disease nodes and p'(Xp) is the posterior
probability distribution.

In making the partitioning, we have to consider two subgoals:

e To combine states with almost the same potentials, i.e., conditional probabili-

ties, so that we do not alter the original dependencies much.

e To combine states that have a low posterior probability since the sum in (5.11)

contains the posterior as a factor.

One obvious way to satisfy both of the above subgoals is to use the monotonic prop-
erties of the noisy-OR interaction. The conditional probability of a symptom can
only increase with the number of disease present. Since the probability cannot be
larger than one, it is likely to be one for many diseases present. Also, like the k-fault
hypothesis assumption, we might assume that the posterior for such states is likely
to be small (the diseases are unlikely to be present together).

Thus, we combine all states in which the number of disease is larger than & into one
superstate [Y _, x4, > k|. The k-fault hypothesis then becomes a special case where we
assign the prior probability of the similar state p([o]) value zero. We consider another
assignment strategy for the BN20O networks with “extreme” probabilities.

The k-fault hypothesis and our abstraction based on the k-fault hypothesis does
not take into account the structure of the problem. If some of the edges between the
first and the second layer are missing, i.e., the corresponding noisy-OR coefficient is

zero, we can explicitly search for the Xp states that satisfy the above two conditions.
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ﬂ: assign all states to the superstate \
2: for each state s do
for each symptom node do
if p(z,, = true|lXp = s) < A then
retrieve state s from the superstate
end if
end for

3
4
5
6
7:
Q end for J

Figure 5.2: Algorithm for the CPCS superstate selection.

An alternative algorithm for choosing the states in a superstate, which we use
in the following section for selecting the abstracted states in a CPCS-like network,
is shown in Fig. 5.2. First, we assign all of the Xp states to the superstate. Then,
we retrieve the states for which at least one of the conditional probabilities p(z,, =
true|Xp = s) is less than some parameter A. Thus, we ensure that the states in the
superstate have almost the same conditional probability and thus can be abstracted
with a better precision (it did not matter much for the randomly generated network

since they had no structure in the values of the noisy-OR coefficients).

5.4 Results

We generated two random 20 x 20 BN20 networks (20 nodes in the first layer and
20 nodes in the second layer). The parameter 20 was picked to be able to traverse
all possible instantiations by an exhaustive search over all possible diagnostic queries.
The complete traversal time for larger BN20O networks increases exponentially with
the number of nodes.

In the first generated network, the noisy-OR coefficients, leaks, and prior prob-
abilities of the nodes in the first layer were generated from a beta(2,4) distribution
(with the expected value (c;;) = 1/3 and variance (cZ;) — (cij)* = 2/63), accounting
for a skew in the prior symptom probabilities towards the absence.

Although the statistical parameters, the mean and variance, of the beta coeffi-

cients are close to what we observed in the CPCS network, the actual values of the
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Figure 5.3: Histogram showing the distribution of the noisy-OR coefficients in the CPCS
BN. Many coefficients are concentrated around numbers 0 (almost independent nodes), 0.2,
0.5, 0.8, or 1 (deterministic dependence).

noisy-OR coefficients in the CPCS BN are concentrated around some fixed numbers
like 0, 0.2, 0.5, and 1 (see Fig. 5.3). To make our experiments more realistic, we also
constructed a BN20 network based on the CPCS network. We assigned the parame-
ters of randomly chosen CPCS noisy-OR interactions to the nodes in our 20 x 20 BN.
We used algorithm shown in Fig. 5.2 for the latter network to select the abstracted
states. The final number of states in the superstate, and thus the computation time
to perform inference, is given by Table 5.1. We call the latter network a CPCS-like
network.

We compare the error bounds (absolute and relative) of our model to the k-fault
hypothesis model, the best approximate model which has the same computational
complexity. For each of the networks we went through all possible positive instanti-
ations of the nodes in the second layer (queries with negative instantiations can be
solved using the noisy-OR properties in linear time). We computed the exact pos-

terior probability of each of the diseases and the approximate answer for our model
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Figure 5.4: Maximum and average absolute errors Ap = [p'(d;) — p/4(d;)| of an answer to a
query about a disease probability for the abstraction (lower surface) and A-fault hypothesis
(upper surface). Maximum as well as average error in the abstraction model is an order of
magnitude lower (notice the logarithmic scale along the vertical axis).
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Figure 5.5: The probability of the superstate p(Xp = [o]) and the maximum relative error
Ap/p = |p'(dr) — p'4(d1)|/P'(di) of a query result over all possible queries as a function of
the parameter k in the k-fault hypothesis method and static abstraction method. All three
curves have the same asymptotic behavior. The error in the abstraction method is smaller
since it partially accounts for the probability mass that is completely ignored in the k-fault
hypothesis method.
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and for the k-fault hypothesis.

The maximum and average absolute error for the final disease probabilities in our
random networks is about an order of magnitude smaller for our model as compared
to the k-fault hypothesis (see Fig. 5.4). The error increases as the amount of positive
evidence k increases. As the probability of the abstracted state becomes larger, the
abstraction errors become more pronounced. We also notice that the error for the in-
stantiations with the large number of findings present—the region where probabilistic
inference is computationally very expensive—is almost independent of the number of
instantiated nodes. Thus, we can expect that the approximation scales well to larger
problems.

The maximum relative error for the final disease probabilities p(d;) is also an
order of magnitude smaller for our model (see Fig. 5.5). The relative error measure
of accuracy might be more appropriate for practical problems. For example, the
probability of a life-threatening disease being 103 is substantially better than the
probability of it being 1072, and the relative error of 10 shows this more clearly than
the absolute error of 0.099. The error in the state space abstraction method is about
an order of magnitude lower than in the k-fault hypothesis method for high values of
k. Our method gives superior precision in more refined models as it partially accounts
for the states completely ignored in the k-fault hypothesis method. The maximum
relative error is less than 0.01 for £ > 6 over all possible instantiations of the nodes
in the second layer.

The maximum absolute and relative errors for the abstracted CPCS-like network
are shown in Table 5.1 for different parameters A. As we increase A, the computation
time and precision increase. For a relative error of 5% we need to account exactly for
only 10% of the total number of states, thus reducing the computation time of the

diagnosis by a factor of ten.

5.5 Related work

BN20O networks are practically important; thus, a number of approximate algorithms

has been developed for this type of networks. The TopN algorithm [Henrion, 1991] is a
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A X,/ Xp| Ap Ap/p
03| 955% 44x1072 1.8 x 10°
04| 89.4% 6.2x 1073 5.4 x 1072
0.5 82.6% 58x107% 1.0x 1072
06| 724% 13x10™* 1.7x 1073

Table 5.1: Relative reduction in the largest clique state space (|X,|/|Xp|), maximum ab-
solute (Ap) and relative (Ap/p) errors in the abstracted CPCS-like BN20 network for
different threshold selection parameters .

search algorithm tailored to the BN20O networks. It looks for the largest contributions
to the joint probability sum and gives an upper bound on the error of the final
diagnosis. The algorithm got its name since its goal is to determine the N most
likely diseases. Since the TopN algorithm does the search during runtime, it is more
computationally expensive during runtime than inference in an abstracted network.
We believe that a combination of TopN and abstraction is possible where we account
exactly for the states found by the TopN algorithm and approximate the contribution
from the rest with our technique.

Very often BN20 networks are simulated to obtain the posterior disease proba-
bilities. Stochastic simulation methods have been specifically extended to sample the
joint probability distribution of BN20 networks [Henrion, 1988]. In these networks,
instance generation can be done very efficiently. The error estimation, on the other
hand, is difficult, particularly as BN20 networks often contain probabilities very
close to zero. Again, we believe that a combination of the abstraction and stochastic

simulation is possible.

5.6 Conclusions

In this chapter, we use general properties of the BN20 model and come to an effec-

tive approximate inference algorithm inference. We choose a fixed static state space
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abstraction that produces small error for the most practical queries. Our abstraction
guarantees a sub-exponential computation time.

The model we consider is close to the k-fault hypothesis model used previously. It
differs from the latter by how we account for the states with a large number of faults.
The k-fault hypothesis discarded them; we try to partially account for them.

We show that by a small additional computation we can significantly improve the
precision of the k-fault hypothesis. On the practical side, we show that a reduced
model that has only 5% maximum relative error of the diagnosis requires only 10%
of the computation time. These results can probably be extended to other BNs with
similar structure.

Our work leaves a lot of space for further experimentation. Here, we developed a
formalism for one abstracted state (superstate) only. Extension to multiple abstracted
states is certainly possible. Our technique can also benefit from a different superstate

selection model.



Chapter 6

Dynamic abstraction in hybrid

networks

In Chapter 5, we statically constructed an abstracted state in a BN20O network. We
assigned a constant value of the clique potential to all states in this abstracted state.
Since the potential value was constant, we could efficiently compute the contribution
of the abstracted state to a disease probability. The computation was reduced to
multiplication of the combined probability mass of the abstracted state by a constant
coefficient a.

In the exact model, the contribution from the individual states in the group of
abstracted states depends on the evidence. As the probability of the abstracted states
becomes larger, the discrepancy between the exact and approximate models becomes
more pronounced.

Let us express the above statement formally through the relative entropy decom-
position (4.8). We assume that the KL distance between the original and abstracted
probability distributions is:

A =D (p(z,e)llpa(z,e)) = D (p(e)llpale)) + D (p(zle)llpalzle)) . (6.1)

95
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The second term, the conditional relative entropy, is represented as a sum (see (4.7)):

D (p(alo)llpa(zle)) = 3 p(e) Y plale) log L) (6.2
- . pa(zle)
It is exactly the last sum in the above expression, the KL distance between the
original joint probability distribution and the abstracted joint probability distribution
conditioned on the evidence e, that we would like to minimize. If the probability of
evidence is close to one, the last term can be effectively bound by A divided by the
probability of evidence.

If the probability of evidence p(e) is small, i.e., the query is unlikely, the bound
on the error diverges as A/p(e). In practical cases, the answer to a query often has
a large error for an unlikely evidence with small p(e).

In this chapter we study another type of abstraction: dynamic abstraction that
can adjust itself to evidence and required precision. An unlikely evidence can increase
the relative contribution of the subsets of the state space which were abstracted very
poorly in the original model. We need to refocus our attention on the abstracted
states as they become more and more probable. At some point, as the abstracted
state becomes more probable, we want to break it into two or more substates.

We decide whether to break a state using the WKL distance and the weights
mechanism developed in Chapter 4. We condition all clique potentials on evidence
and abstract the conditioned potentials trying to minimize the WKL distance in each
clique. Given that the WKL distance in each clique is less than §, the error of the
final answer is guaranteed to be less than N x § relative to the exact answer, where
N is the number of cliques in the join tree (see (4.11)), and does not depend on p(e).

We have chosen to apply this technique to hybrid BNs, BNs that contain continu-
ous as well as discrete variables. Probabilistic inference in hybrid networks is known
to be hard; only a few continuous models can be solved exactly without abstraction,
e.g., CG networks in which we assume a specific gaussian dependence between nodes
(see Chapter 1). If the dependence is far from a gaussian or if we have discrete
children of a continuous variable, we have to discretize each and every variable in

the network and to perform direct summation (which can also be viewed as direct
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multidimensional integration).!

This approach leads us to one of the most common inference algorithms in hybrid
networks with arbitrary dependencies between nodes: to discretize every continuous
variable in the network, and corresponds to static state space abstraction on the
level of node state spaces. In this chapter, we extend this idea in three ways. First,
we perform the discretization on the fly during probabilistic inference. Second, we
discretize the whole clique domains at once, not each variable separately. Third,
we propose to represent the discretization as a hierarchical structure which greatly

simplifies computations with the abstracted potentials.

6.1 Abstraction in hybrid networks

In a discrete network, a superstate represents a subset of discrete states. Likewise,
in a network with continuous variables, a superstate represents a continuous interval
a < z < bdenoted [a, b] of the continuous variable domain. Without loss of generality,
we assume that every continuous variable has domain from zero to one and a clique

multidimensional domain is a rectangular n-dimensional hypercube Q = [0, 1]".

6.1.1 BSP tree

We represent a hierarchical abstraction for continuous clique potential f({2) using a
tree data structure which we called a Binary Split Partition (BSP) tree. The idea
of a BSP tree was borrowed from recursive hierarchical space decomposition used in
graphics (see [Samet and Webber, 1988]), where the corresponding data structures
are called quadtree and octree in two- and three-dimensional spaces correspondingly.
Both of the above data structures have proved to be very efficient computationally
in graphics. We extend the idea from two- and three-dimensional space partitioning

to multidimensional domains and tailor the techniques for our purposes.

!Discrete children happen quite often in practical modeling. For example, we might need to
model a thermostat switch turned on by temperature or a fire alarm sensor turned on by smoke
concentration. Some other examples will be given later in this chapter.
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In a BSP tree a node represents a subspace of the original space. The children of a
node represent a decomposition of the original subspace into smaller subspaces. In a
BSP tree, we restrict the decompositions to subdivisions of the space into two halves
by a plane orthogonal to one of the axes. For example, Fig. 6.1 shows one possible
BSP tree for a function f(z,y) of two variables z and y. On the first level, we split
the function domain by a line orthogonal to y. Each of the resulting states represents
a half of the original state space [0 < y < 0.5] and [0.5 < y < 1]. On the second level,
we leave the left node as a leaf representing the abstracted state [0 < y < 0.5], the
lower half of the zy plane. We split the right one, representing the abstracted state
[0.5 <y < 1] (the upper half of the zy plane) by a line orthogonal to z. Each of the
children on the third level is split even further. The splitting continues from the root
of the tree, representing the whole function domain Q = {z,y}, to the leaves, that
carry information about the abstracted function f4(z,y) in a particular subregion w;.

A leaf of the tree stores the clique specific information: the value of the abstracted
function f4(w;) and the weight w(w;), both of which are constant in the subregion

w; defined by the leaf. BSP trees can be readily used for probabilistic inference. A
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BSP tree is closed under operations for probabilistic inference: summation, multipli-
cation, and integration (the algorithms for doing these operations are described in
Appendix B). Thus probabilistic inference—local clique computations and message
passing—can be carried out in terms of BSP trees, i.e., all intermediate results can

be represented as BSP trees.

6.1.2 Partitioning algorithm

Fig. 6.2 describes our BSP tree construction algorithm, which is a greedy algorithm
trying to minimize the total WKL distance. The leaves of the BSP tree are kept in
a priority queue based on the estimate of WKL distance contribution from this leaf.
The leaf with the largest WKL distance is split first, and the two resulting leaves are
put back into the queue. Correspondingly, the leaf contribution to the total WKL
distance is replaced by the sum of the two contributions from the two leaves resulting

from the split.

ﬂ: place a BSP tree node representing the whole region €2 in a priority queue \
repeat

take a BSP node out of the priority queue

find the optimal split direction for the given BSP node

form two new BSP tree nodes and place them in the priority queue

estimate the change in the total WKL distance for the BSP tree

estimate the new WKL distance for the BSP tree abstraction
until the tree size is larger than M or the precision of the cumulative BSP tree
abstraction error is less than §
9: return the resulting BSP tree structure, reestimating the abstracted potentials and

k WKL errors in the leaves J

Figure 6.2: Partitioning algorithm.

First, we need to have a method to estimate the contribution of each leaf to
the total WKL distance in order to prioritize the leaves in the priority queue. To
estimate the error we would ideally perform a multidimensional integration over the
leaf subregion w; (since the weights are constant in the leaves, the WKL distance

computed over a leaf is also the KL distance over the same leaf multiplied by the
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constant weight). Multidimensional integration is not acceptable since it is very
expensive computationally. Thus, we resort to an estimation of the WKL distance
based on the function f mean f, which is equal to f4, the function maximum fmas,

and the function minimum f,,;, in the given subregion w;:

fmaz - f

fmin f - fmm fm_a:c
fmaw - .fmm

fminlo — + fmawlo —= | |Wil,
8 f fmaz_fmin & f | |

w/flog%dﬁgw[
l (6.3)

where |w;| denotes the volume of a subregion w;. We derive this bound in Appendix C.
The parameters f, fmaz, fmin are estimated by randomly sampling f at several points.

To estimate the direction of the optimal split we would optimally try to estimate
the WKL metric gains due to each possible split, which is also expensive. Instead,
we draw a line parallel to one of the axes through the center of 2 and sample several
points on this line. We choose a split plane to be orthogonal to the direction along
which the function changes most within €, i.e., the ratio fiez/fmin along the line
is maximum among all possible directions. For the sampling, we use 10 equidistant
points per direction.

After the structure of the BSP tree is fully determined, the new clique potential—
the average of the function over the leaf subregion—is estimated by a Monte Carlo
integration technique. While we used 16 function evaluations per leaf for estimating
parameters f, fmaz, and fmin (see (6.3)), we used 128 function evaluations per leaf
for estimating the final averaged clique potential and the final leaf contribution to the
WKL distance. The weight for the two children was set to the weight of the parent.

The result for the one-dimensional 2 abstraction of a normal probability distribu-
tion (1.3) with u = 0.5 and ¢ = 0.05 and a constant weight is shown in Fig. 6.3. We
also show the “optimal” abstraction in which we do not limit the location of the splits
and which was found by a gradient descent method to minimize the KL distance. As
we can see, the abstraction we obtained with a BSP tree is very close to the “optimal”
abstraction.

Fig. 6.4 shows the KL distance as a function of the number of subregions for the

BSP tree and “optimal” abstraction obtained with a gradient descent method of a
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Figure 6.3: BSP tree (solid line) and “optimal” (dashed line) discretization of a normal
distribution N(z;0.5,0.0025) (dotted line). The number of abstraction subregions is 16 in

both cases. The “optimal” abstraction was found by the gradient descent method.
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tion. The error of the BSP tree and gradient descent abstraction are almost identical for
large number of subregions. The error of the equidistant abstraction is about a factor of

ten larger.
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Figure 6.5: Number of subregions in an abstracted function as a function of the dimen-
sionality for BSP tree (solid line) and uniform (dashed line) abstraction given the same
precision measured by KL distance. The abstraction was performed to approximate a mul-
tivariate normal distribution proportional to N(3.77 z;/(n — 1) — 2,;0,0.0025) with fixed
KL distances of 0.02, 0.05, and 0.1. For a large number of dimensions, the BSP abstraction
performs much better (notice the logarithmic scale for the number of subregions).

normal distribution. The resulting KL distance for these two abstractions is virtually
the same for the number of intervals larger than 16. On the other hand, an equidistant
abstraction corresponding to an equidistant subdivision of the interval [0, 1] requires
about a factor of 5 more splits to reach the same accuracy.

Fig. 6.5 shows the dependence of the number of subregions to abstract a function
(for a fixed precision) on the function domain dimensionality. Abstraction with BSP
tree might require exponentially fewer subregions since we save a constant factor in
each dimension (see Fig. 6.4). For a given accuracy, the number of subregions grows
much slower for a BSP tree abstraction than for a uniform abstraction. We save
about a factor of 10 in 5 dimensions. The shape of this function, a ridge along the
hypercube diagonal, was much harder to fit with a BSP tree in the multidimensional

case than in the one-dimensional.
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6.1.3 Iterative inference algorithm

To efficiently bound the final error of probabilistic inference we have to minimize the

WKL distance in each clique:

W (f(Co)ll fa(Cr); w(Cr)) (6.4)

where the weights are the posterior divided by the prior (see (4.13)). To get the
correct posterior we have to have the result of probabilistic inference which is clearly

not available to us to begin with.

ﬂ: build a join tree (factoring) for the BN graph \
2: assign continuous functions to cliques that completely contain all their arguments
3: assign a guess about the weight (uniform weight) to all cliques
4: find a clique that contains the query node and make it the root of the tree
5: repeat
6: for each clique starting from the leaves and up to the root do
T multiply all messages from descendants
8: multiply the previous result by the assigned functions
9: build a BSP tree abstraction of the resulting product
10: form a message up by marginalizing over variables that do not appear in the
parent
11:  end for
12:  for each clique starting from the root and down to the leaves do
13: calibrate the product of the weight and potential to the message from the
parent, if any
14: form messages down by marginalizing over variables that do not appear in a
child
15:  end for
@: until the posterior probability density converges /

Figure 6.6: An iterative BSP tree algorithm for hybrid networks.

We resolve this circularity problem by an iterative algorithm shown in Fig. 6.6.
First, we assign a constant weight, for example one, to all cliques. Then we iterate
over up and down propagations. On the way up we compute an approximate posterior
for the root clique (compare to the up propagation in Fig. 2.3). On the way down,

we propagate the information about the posterior down the tree.
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The only substantial difference between the down propagation in the iterative
algorithm and the algorithm in Fig. 2.4 is that we adjust the weight rather than the
potential in each clique, so that the product of the weight and potential is calibrated.
We multiply the weight in the clique to be calibrated by the ratio of the old and the

new message on the edge (k,[):

m'(Ck N Cl)

'UJI(CZ) - m(C’k M Cl)

X w(Cy), (6.5)
where the new message m'(CxNC)) is computed by integrating the product of potential

and weight of the clique C}:

m(Ce N Cy) = f £(C) w(Cy) d2 (6.6)

Cr\(CrNCy)

(compare to (2.17)).

6.2 Networks

As we described in the introduction, a hybrid network is a BN that contains con-
tinuous variables. One of the simplest examples of a hybrid network was shown in

Fig. 1.2. Let us present more practical and complex hybrid network examples.

6.2.1 Object monitoring

Let us assume that we can make discrete observations of a one-dimensional continuous
robot position on an interval from zero to one. The observations are noisy—we will
describe the specific conditional probabilities below—and the robot moves randomly
between the observations. The hybrid BN corresponding to this problem is shown in
Fig. 6.7.

The first two observations, variables o; and o, are noisy observations of the robot

position. If the robot position is z, the first and the second sensor readings are o with
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Figure 6.7: A simple hybrid BN and its join tree.
probability:

p(olz) = N(o — z;0,0.01), (6.7)

where N(z; u, 0?) is a normal density function (1.3). The third observation is a noisy
observation of the robot in the left half-space z < 0.5. If the robot position is x, the

sensor is likely to give a reading o of true with probability:

1
1 + exp(40(z — 0.5))

(6.8)

Note that the last observation is a discrete variable. The dependence between succes-
sive time slices was a normal probability distribution p(z,|z,—1) = N(2,—2,-1;0,0.01).

Although we do not know the robot’s position at the beginning of the observation
chain, we might have a good idea where the robot is after a sequence of observa-
tions. However, the importance of the first observation is smeared out since the robot
might have traveled between the observations. The problem is to find the probability
distribution over the values of the robot position, i.e., the conditional probability
p(z3]o1, 09, 03) of the robot position z3 at the last step in the chain given all three
observations o1, 02, and o3.

While the answer to a query in discrete only networks can be found by a summa-

tion over joint probability states, the answer to a query in a hybrid network can be
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found by a multidimensional integration. A join tree for the above network is shown

in Fig. 6.7 and corresponds to the following query factoring:

p(xs|o1, 02, 03) = p(x3, 01,09, 03)/p(01, 02, 03)

=ax [ [ posdaptaslepoledp(elepolmpe@) dnds (g

= a x p(oz|z3) /0120(133|$2)p(02|$2) </01P($2\331)P(01\$1)P($1) dm1> d.

We picked the example so as to allow us to compare the results of our program to
the exact analytical answers. The exact analytical solution for the observations oy,

02, 03 = false is:

N (z3; (01 + 202)/3,1/60)

~ 6.10
P(E3) ~ (= 20(zs — 0.5)) (6.10)
and the solution for the observations o1, 09, 03 = true is:
N (z3; 2 3,1/60
p($3) ~ (.’L‘3, (01 + 02)/ ’ / ) (611)

1+ exp(40(z3 — 0.5)) ’

where the answer was obtained by integrating (6.9) over z; and z.

6.2.2 Damper diagnosis

A more practical problem with which we have experimented, is diagnosis of air duct
dampers.? A damper is a part of commercially available damper box, which regulates
air flow in a building. Almost any commercial building contains at least one damper
box. The location of the damper boxes makes it often difficult to directly observe the
damper functioning.

Thus, we need a method to be able to derive damper internal status variables

2The model is the courtesy of Robert Dodier of University of Colorado at Boulder and represents
a real practical problem he was working on. We highly appreciate his cooperation in providing us
with the data.
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Figure 6.8: A damper diagnosis BN.

through the external observations. An instance of a typical damper diagnostic prob-
lem is shown in Fig. 6.8. The figure shows one time slice out of a sequence of damper
observations. The observations are: “Observed temperature difference t”—the differ-
ence between the desired temperature and the actual room temperature; “Observed
pressure t”—pressure in the air duct; and “Observed damper position t”—the quan-
titative measure of how much the damper is open. We abbreviate the observed nodes
as Tortp, Top, and zopp and the corresponding hidden variables as xTp, xp, and zpp
correspondingly.

The observations xoTp, Top, and zopp are made at a discrete time intervals; given
a sequence of these observations, we would like to infer the probability of four inter-
nal status variables: “Damper status t”, describing the working mode of the damper;
“Temperature difference status t”, describing the condition of the temperature dif-
ference sensor status; “Pressure status t”, describing the condition of the pressure
sensor; and “Damper position status t”, describing the status of the damper position

sensor. We abbreviate the status nodes as zps, Tps, Zps, and zpps correspondingly.
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The specific instantiations of the conditional probabilities we used for this prob-
lem can be found in Appendix D. Although none of the observations is discrete, the
dependence p(zpp|rrp) of damper position on temperature difference is a stepwise
dependence and thus cannot be modeled by a gaussian function. Given all three ob-
servations, the time slice represents a clique with 4 discrete and 3 continuous variables,

which makes it quite difficult to integrate with traditional methods.

6.3 Results

We tested our algorithm on the two problems described above. The object monitoring
problem (see Section 6.2.1) has the exact solution (6.10) and (6.11). The damper
diagnosis problem (see Section 6.2.2) can be solved exactly only by multidimensional

integration and we provide the comparison of the two techniques.

6.3.1 Object monitoring

IS

posterior density
posterior density
()

N

" " " 0 gttt . L L iy L L L
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Figure 6.9: Posterior probability p(x3) for a network shown in Fig. 6.7 for similar (a) and
contradictory (b) evidence. The results of the inference are shown by a solid line, the exact
result is shown by a dotted line. Evidence o3 is true in both cases.
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First, we checked how the algorithm performs on the first iteration. In many cases,
even the first iteration produced good enough results. For example, as we see in
Fig. 6.9, if our first two observations are the same—o0; = 0o = 0.2—the results of the
inference are very close to the exact solution, computed analytically in (6.11). How-
ever, as our observations become more and more unlikely, the accuracy of the results
of the first iteration begins to deteriorate. If, for example, the second observation
is changed to 0o, = 0.65, the results of the inference contain only a single bump (see

Fig. 6.9) and are very different from the exact answer.

Weight reassignment

The poor results for unlikely evidence are easy to understand: the greedy BSP con-
struction algorithm spends too much time refining the regions which do not contribute
much to the precision of the final answer. To make the algorithm work well with the
unlikely evidence, we have to guide the discretization program and to force it to
discretize the regions which are more important for the final precision.

In the next experiment we used a very unlikely evidence 0, = 0.2, 0, = 0.8, and
03 = true, which resulted in the BSP tree with only one leaf on the first iteration,
reflecting a very poor initial abstraction granularity which was done with uniform
weights. Already on the second iteration, after only one phase of weight propagation,
the cliques had a very good estimate of the posterior distribution and therefore the
weights. The BSP tree on the second iteration had 11 leaves, and the posterior prob-
ability distribution differed from the true probability distribution by a KL distance
of 0.03. The BSP tree after the third round of propagation had 20 leaves, and the
posterior probability distribution differed from the true probability distribution by a
KL distance of 0.01 (see Fig. 6.10).

The BSP tree splits before and after the first weight update are shown in Fig. 6.11.
While at the initial propagation the N(z1;0.2,0.01) multivariate normal distribution
in the clique C; = {01, 1} corresponding to the product p(o;|z;)p(z1) is abstracted
with uniform weight, the weight is substantially nonuniform for the second round of
propagation as shown in Fig. 6.11(b). The new BSP tree structure takes into account

much larger weights on the right slope and rediscretizes it more finely.
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Figure 6.10: Posterior probability p(z3) for a network shown in Fig. 6.7 with the dynamic
algorithm for two successive iterations. The result of the inference is shown by a solid line,
the exact result is shown by a dotted line. Evidence is 01 = 0.2, 09 = 0.8, and o3 = true.
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Figure 6.11: Original and rediscretized prior probabilities p(x1). The dashed line shows
the estimate of the posterior over x; that the clique has after the first weight propagation.
Notice the change in the granularity of the discretization. Evidence is 01 = 0.2, 05 = 0.8,
and o3 = true.
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Convergence

We provide only empirical convergence results here. The algorithm converged by
the third iteration for our first problem. Figure 6.12 shows the KL distance of the
final answer p'(z3) as a function of the iteration number for several goal precision
parameters 0. The KL distance dropped very abruptly after the first iteration and
again after the second, after which it experienced small oscillations up and down
around the final answer.

Let us compare the efficiency of our approach to the integration on a uniform
grid. Since we can effectively focus on the most important parts of the problem, we
expect to get a better precision given the same number of function exp() evaluations.
Our abstraction method gets a factor of 4 better precision as compared to the case
of standard integration as shown in Fig. 6.13, which compares the relative entropy
error of our algorithm compared to a standard integration on a uniform grid given the
same number of function evaluations. In practice, the savings grow with the required

precision and the dimensionality of the clique state space.

6.3.2 Damper diagnosis

Let us show the results for a more complex damper problem which includes cliques of
dimension seven (three of which are continuous). We constructed a test problem of
four time slices with observations of all three variables in the second and the third time
slices. In each of the two time slices we observed temperature difference, pressure,
and damper position. We converged to the goal precision of less than 0.005 in each
clique within 6-8 iterations.

Fig. 6.14 shows the resulting probabilities for the status of different sensors to be in
normal condition given observations in the first two time slices zotp1 = 0.5, ToTp2 =
0.5, zop1 = 0.5, zop2 = 0.5, zopp1 = 01, Topp2 = 02, where we varied 0, and 0s on
the interval [0,1]. The probabilities p(zTpse = “normal”) and p(zpsy = “normal”)
only slightly depend on 0; and o, since the damper position observations are unlikely
to tell us much about the temperature and pressure status variables. On the other

hand, the observations of damper position are provide much more information about
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Figure 6.12: Relative entropy error as a function of the iteration number and the precision
parameter §. Evidence is 0 = 0.6, 0o, = 0.9 (solid line) and 0; = 0.2, 0o, = 0.8 (dashed
line). o3 is always true.
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Figure 6.14: Probability of different sensors working correctly for two subsequent observa-
tions of the damper position. The temperature difference and pressure difference observa-
tions are fixed and are 0.5.
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The two probabilities compete around 01 = 02 = 0.95 causing a slow convergence of both
the direct integration and the dynamic abstraction algorithms.
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Figure 6.16: Convergence of the probability of the damper status to be ”stuck open” for
integration on a uniform grid (dashed line) and abstraction (solid line). Abstraction out-

performs direct integration by an order of magnitude. Horizontal axis shows the number of
threshold function evaluations (see text).
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the damper status and damper position status variables.

Let us examine the efficiency of our algorithm. We compare the amount of work
required to achieve a certain precision with two methods: our abstraction and direct
integration on a uniform grid. We plot the achieved results for the probability p(zps =

“stuck open”) on the number of threshold function:

f(z) = p(zpp|2zTD, ZDS, TP), (6.12)

which was the most expensive part of the evaluation, for 0, = 0, = 0.95, where the
convergence seemed to be particularly slow. We found that our abstraction technique
requires about an order of magnitude less work than the standard integration tech-
nique (see Fig. 6.16). For example, to reach the final precision of .005 our algorithm
required only about 107 function evaluations, while the standard integration on a

uniform grid required 10® function evaluations.

6.4 Related work

The most popular algorithm for inference in hybrid networks remains the one based on
CG networks [Lauritzen and Wermuth, 1989; Lauritzen, 1992]. It has two deficiencies:
the dependencies in CG networks are very restrictive (gaussian) and one is not able
to model discrete children of a continuous variable (a discrete sensor triggered by a
continuous parameter).

The authors in [Driver and Morrel, 1995; Alag and Agogino, 1996] try to deal with
the latter deficiency by representing an arbitrary function between two continuous
variables as a mixture of CG functions. If this is done, probabilistic inference is
possible, but is limited to very small network sizes. The decompositions often involve
many terms and the number of terms in the sums increases exponentially with the
propagation length. The only way to deal with the second deficiency, the discrete
child of a continuous node, is to discretize all ancestors of the discrete variable.

In connection with our technique, we also have to mention the numerical integra-

tion on an adjustable grid used in many fields including hydrodynamics. The BSP
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tree integration is equivalent to integration of a function on an adjustable multidi-
mensional grid. Thus, our construction is a way to target the grid structure to our

goals based on the results of previous less detailed computations.

6.5 Conclusions

Continuous variables are practically important since many real-world variables such
as temperature, pressure, fluid level, velocity, location and others are continuous.
In practice, continuous variables are typically discretized before probabilistic infer-
ence. Unfortunately, any discretization lacks some of the information in the original
dependencies.

Any discretization into fixed intervals cannot completely account for the future
evidence and the demands of the future task(s). In particular, if we had to guarantee
the same uniform precision over a wide range of evidence cases, we would have to
discretize each variable into many fine intervals. The model would quickly become
very large and computationally intractable.

We developed a new discretization algorithm based on our abstraction approach.
The algorithm dynamically adjusts the abstraction structure to the required task and
precision. In other words, if we get an evidence that was improbable, we are able to
refine the abstraction granularity that delivers the result of high quality in a limited
amount of time.

Our approach results in the first practical algorithm for hybrid networks with
arbitrary dependence between nodes in arbitrary topology. Previous algorithms could
deal only with either a CG network or a mixture of CG networks. In particular, they
could not solve a network where continuous variables have discrete children, which is
possible in our algorithm.

The internode dependencies can be completely arbitrary as long as we can provide
a computable function that can be computed during the runtime (even one written
in C++). The algorithm performs evaluations of this function as often as it considers
necessary to obtain the required abstraction and precision. To optimize the abstrac-

tion and thus to minimize the number of function calls, it uses our information-based
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WKL distance metric.

We expect the abstraction approach to be significant in problems where both
evidence and required precision vary widely in different circumstances. The algorithm
can efficiently adjust to the new requirements without much computation or memory
overhead. The abstraction structure can be efficiently stored in memory and reused.
Moreover, it adapts to different circumstances, placing emphasis on right regions,
unlike the straightforward integration.

As a result, we can get large computation time savings. For example, to compute
one point in Fig. 6.14 with the standard technique (to achieve required precision of
0.005), we will need to perform about 10® function (6.12) evaluations, which translates
to about one day of computation on an 200 MHz R10000 processor. To achieve the
same precision with our technique, we need to perform about an order of magnitude
less function evaluations. In fact, we computed the whole set of points for the plots
6.14 - 6.15 within a week.



Chapter 7

Conclusions

7.1 Summary

Probabilistic inference in BNs is NP-hard and computationally expensive [Cooper,
1990; Dagum and Luby, 1993]. Thus, it is important to develop techniques to speed
up probabilistic inference. In this thesis, we tried to address this problem from two
directions. First, we explored the idea of parallelizing the exact inference algorithm.
Second, we studied the possibilities of speeding up probabilistic inference by doing
approximations. Although interrelated, these two approaches focus on completely
different aspects of probabilistic inference.

Parallelism is a powerful technique to speed up a computation by using several
processors. When parallelizing an application, we have to divide the computation into
a set of almost independent computational tasks. The issues here are load balance and
data locality. Load balance characterizes how evenly the processors are loaded with
work so that one does not have to wait for another. Load balance often competes with
data locality, i.e., how much communication these subtasks need. The independent
subtasks are often of different size and do not satisfy load balance. Thus, we need to
make compromises.

In this thesis we show that the tradeoff between load balance and data locality is
sharpened in probabilistic inference. The number of operations for probabilistic infer-

ence is roughly proportional to the number of memory accesses with a small constant,
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unlike other traditional scientific applications for parallel processing. This property
leads to the intensity of data accesses during a probabilistic inference computation.
We show that techniques to preserve data locality are important for obtaining good
performance in a uniprocessor as well as in a multiprocessor implementation.

Specifically, in Chapter 3 we show that we might sacrifice some forms of load bal-
ance to achieve better data locality. One of our implementations that uses only one
form of concurrency, i.e., only in-clique but not the topological parallelism, produces
better speedups than an implementation that uses both types of parallelism but sac-
rifices some data locality. Data access pattern of our programs was carefully analyzed
with on-chip performance counters also showing the effects of the data intensity of
probabilistic inference. Thus, probabilistic inference can serve as a benchmark for
testing the memory architectures of new machines.

Parallelism still cannot and does not help us to solve large networks that have very
large cliques. For example, to compute the full CPCS medical diagnostic network, we
would need about 1 TB of memory. To deal with problems of this size we propose to
use approximations in inference. Although even approximate inference is NP-hard,
we can hope to get computational savings for reasonable error bounds on the results.

We chose a general approach to approximate inference based on state space ab-
straction. We proposed an approach where we abstract states at the clique level.
The number of states at the clique level directly affects the probabilistic inference
time and abstraction at the clique level is most beneficial for probabilistic inference.
We describe a metric, the WKL distance, to choose the best approximation, which is
based on relative entropy or KL distance. The optimal weights for the WKL distance
require knowledge of the posterior distribution, which is not known up front and can
be obtained only by probabilistic inference. We solve this problem by either trying to
minimize the abstraction error for a “typical” query or by an iterative algorithm that
iteratively improves its guess about the posterior and the weights. We demonstrate
these techniques on two important classes of networks.

In Chapter 5 we apply the static state space partitioning (abstraction) to BN20
networks. In such networks, the nodes in the first layer are the query nodes and the

nodes in the second layer are evidence nodes. We know that the prior probabilities
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of the nodes in the first layer are low in practical networks. This information helps
us to choose a partitioning that minimizes the diagnosis error for all possible queries.
The above partitioning is very close to the single (or more general k-fault) hypothesis
used for such networks in the past, but is much more precise.

In Chapter 6 we extend the idea of static partitioning to a hierarchical dynamic
partitioning, an abstraction which adjusts itself with the inference task and preci-
sion. In this approach, we do not have to constrain ourselves to any assumptions
about probabilities or the type of queries in a BN. We apply this technique to hybrid
networks, where the presence of continuous variables makes probabilistic inference
particularly hard due to the continuous state space and possibility of very unlikely
evidence. We start with a very coarse partitioning and iteratively improve our guess
about the posterior, the weights, and the partitioning. We show that the procedure
converges in practice and produces good quality results. We show that hierarchi-
cal abstraction can save an exponential factor in the running time. An important
byproduct of the above technique is the first general purpose algorithm for hybrid

networks with arbitrary dependencies for nodes in an arbitrary topology.

7.2 Future work

In this dissertation we addressed the question of managing computational complexity
of probabilistic inference. Although probabilistic inference remains a hard problem,
we managed to substantially reduce computation time for several classes of prac-
tical networks. Two major approaches for doing this were parallel processing and
approximation by abstraction.

There are many avenues along which the results of this dissertation might be ex-
tended. Although the data locality turned out to be relatively more important than
load balance for exact probabilistic inference because of data intensity, the approxi-
mate inference algorithms are usually less data intensive. Thus, the tradeoff between
load balance and data locality might be solved the other way, with the preference for

better load balance.
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In particular, our hierarchical abstraction structure allows the same kind of “topo-
logical” parallelism as the join tree: the computations in different branches of the BSP
tree are independent. These computations involve multidimensional integration and
are computationally intensive. Moreover, the workload in different branches of the
BSP tree as well as in different cliques of the join tree is unpredictable, which makes
the dynamic load balancing preferable over the static task partitioning we used in
this thesis.

In this thesis we have shown only empirical convergence of the iterative algorithm
on two examples. In the future, we would like to study the general convergence prop-
erties of hierarchical abstraction. The problem here seems to be of the “circularity”
nature: to prove a bound on the result of inference we have to prove a bound on
weights, which are observed from the results of inference on the previous iteration.

The approach based on approximation by abstraction can also be extended by
itself. In particular, we would like to extend our dynamic approach to BN with dis-
crete only variables. Although the general approach developed in Chapter 4, the one
based on WKL distance, remains valid for discrete only networks, it is much harder
to come up with an efficient state space partitioning like the BSP tree partitioning
which we used for hybrid networks.

Our iterative inference algorithm in hybrid networks can be viewed as an efficient
integration technique of a continuous function on a self-adjustable grid. Such integra-
tion technique can prove to be beneficial for other fields requiring multidimensional

integration and we would like to apply it to other problems.



Appendix A
Notations

In this thesis, I prefer to use notations that are slightly different from the standard
ones. Let me describe my notations here in detail.

A BN is a collection of random variables with dependencies between them ex-
pressed as a DAG. I denote a random variable as well as a node in the DAG by small
Latin letter = with a possible subscript, say x;, when further distinction between vari-
ables is required. The subscript corresponds to the label the node has in the figure
that shows the BN.

The probability that a variable z; is in one of its states, say state “value”, is
denoted as p(z; = “value”). In many cases, the variable is binary and can take only
two values false or true. In such cases I use a shortcut and denote p(z; = false) or
p(x; = true) as p(i) or p(i) correspondingly. In a general case, a variable, like the
season variable xg in Fig. 1.2, can take many possible values. I denote a variable
with multiple values or a set of variables by a capital Latin latter X with a possible
subscript when further distinction is required.

A very special set of variables is the set of clique nodes. It denotes the variables of
one of the partial results in the decomposition (2.6 — 2.11). To emphasize this fact, I
denote a set of clique variables as C;. Thus, the clique potential p(C;) depends on the
variable C; = {21, 3, ... ,2,}, and the message between cliques C; and C; depends
on the intersection C; N Cj, or the separator between the cliques C; and Cj.

I denote the number of simple nodes in the set X; as N(X;) and the size of the
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state space as |X;|. For example, the state space of a set of variables is a direct

product of the state spaces of the variables in the set. Thus:

Xi = {xlaw2’ "/Bn} = |X1| = H |$z|,

i=1,n

and the state space size of a set of variable X; is exponential in the size of the set
N(X5).

Finally, T denote a set of variable states, or a superstate, as [condition]|, where
condition can be any condition on the values of the variables. For instance a super-
state with the values of z; between a and b is denoted as [a < z; < b]. A probability
distribution or density function with superstates is called an abstracted probabil-

ity distribution or density function and is denoted with a subscript A, for instance

fA(a?l,.’Ez, Ce ,:L‘n).



Appendix B

Operations on BSP trees

Let us start with a binary operation ¢ on two BSP trees where ¢ can be either
summation or multiplication in our examples. Let us call the structures of two trees
aligned if the trees have exactly the same splits on the same levels. If the structures
of the operands are aligned, the operation ¢ is reduced to performing ¢ at the leaf
level, i.e., the values stored at the leaves are summed or multiplied together, and the

total operation complexity is O(NN), where N is the number of leaves in a tree.

Figure B.1: Adjusting the structure of the BSP tree in Fig. 6.1 to another BSP tree that
has a root split on variable z.

Now, let us look what happens if the trees are not aligned. In this case, we need
to adjust the abstraction structure of one of them by inserting additional nodes. For

example, if we want to sum the tree in Fig. 6.1 with another tree that has a root
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split on variable z, we adjust the structure of the first tree as shown in Fig. B.1
by moving the x split in the right branch up and by making two additional leaves
in the corresponding branches. Complete alignment of the trees takes O(N; X Nj)
operations in the worst case, where N; and N, are the number of leaves in the first

and the second trees respectively.!

=)

input: two nodes of a tree representing the same subregion w; \

2: output: a node of a tree representing the result of the operation ¢
3: if both nodes are leaves then
4: return a leaf with result of ¢ on the values in the leaves
5: else if the second node is a leaf then
6: ¢ the constant value from the second node to all leaves of the first subtree
7:  return the first node
8: else
9:  if split on different variables then
10: adjust the structure of the first tree
11:  end if
12: ¢ left subtrees of both operands
13: o right subtrees of both operands
14: return a node with the result of the previous two operations as its children

g: end if J

Figure B.2: Algorithm for performing a binary operation ¢ on two BSP trees.

The general algorithm for performing a binary operation ¢ on two BSP trees is
shown in Fig. B.2. The algorithm takes O(N; + N) operations in the best and
O(N; x Ny) operations in the worst case. Intuitively, if all the splits in both operands
are on the same variable, the computational complexity is linear. If the trees are
completely misaligned, for example if all the splits in the first tree are on variable x
and in the second tree are on variable y, then the computational complexity as well
as the size of the resulting tree is quadratic O(N; x Ny).

Let us consider integration of a function represented by a BSP tree over some

variable. This is the operation that, in the discrete BN case, corresponds to variable

'We assume that the BSP trees are encoded as a tree structure that uses pointers. Other im-
plementations that might be more computationally efficient are possible, but are out of the scope
of this thesis. We refer the reader to [Samet and Webber, 1988] for a comprehensive review on this
subject.
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=)

input: a node of a tree and the i-th variable to be integrated over \
output: a node of the tree representing the result of the integration
if the node is a leaf then

return the node itself
else if split on i-th variable then

integrate left subtree

integrate right subtree

return the sum of the left and the right subtrees divided by two
else

return the node itself

Qz end if J

Figure B.3: Algorithm for integrating a function represented as a BSP tree over a variable.

p_\
e

elimination by summation. Since a leaf represents a constant value of an abstracted
function with a constant value in the corresponding subregion, the integration of a
leaf is reduced to multiplication of the value stored in the leaf by the corresponding
multidimensional volume. Since the volume of a subregion represented by a child
is always half the size of the subregion represented by its parent, we can compute
the subregion volume during tree traversal. The integration algorithm is presented
in Fig. B.3. Integration is linear in the size of the BSP tree, i.e., it takes O(N)
operations.

Many other algorithms, for such tasks as computing the expected value of a func-
tion, the cross entropy, or the differential entropy, can be expressed as a simple

traversal of the tree, thus taking only linear time with respect to the size of the tree.



Appendix C
Bound proof

Here we derive a bound on the KL distance integral fwi flog f/f dQ for a continuous

function f(2) over some subregion w;:

fmaz - f

fmin f B fmzn fm_a:c
fmaw - .fmm

fminlo — + fmawlo —= | |Wi|,
8 f fmaz_.fmin 8 f | |

w/flog%dﬁgw[

that we used in Section 6.1.2. The parameters f, fmaz, and fmin are the function
average, maximum, and minimum correspondingly.
Let us divide w; into small subvolumes A so that the function f(A) is approxi-

mately constant in each of them. Now, let us construct function g in the following

way: g equals to foin I (finae — F(A))/(fimae — fmin) part of A and equals fpq, in
the rest of the A. The average of the function g in A is equals f(A):

fmaa: - fmm fmaa: - fmm
f(A) fmaz - fminfmaa: + fmaa:fmin - f(A) fmm _F fmaa: - fmm _F
fmaz - fmzn B f(A) fmam - fmm B f(A)

Since the function zlogx is concave, the contribution from A to the full integral of

flog f over w; is always smaller than the contribution from A to the full integral of
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glog g over w;. Since we can make the subvolumes A arbitrary small (thus the errors
due to the fact that f is not actually constant in A can be made arbitrary small)
and all contributions from the subvolumes A are smaller for flog f, the full integral
fw,— flog f d€2 has to be smaller than the integral fwi glog g d). The two integrals are
the same if and only if f(£2) is constant.

Note that the averages over w; for both functions are equal, i.e., f = fwi fdQ/ |w;| =

fw,— 9dQ/|w;| = g, since the averages are equal in each A. Given the above, we have:

/w‘flogédQ=/w'flogfd9—/wf10gfd92

2 2 2

/flogfdﬂ—/glogfdﬁg/glogng—/glogfdQ:
g fmaaz - f fmm f_ fmm fmaa:
glog =dQ) = | ——— fminlog — + fmaz 108 — | |wi],
/wi f |:fmcuz: - fmin f fmaa: - fmm f ‘ |

which is the same bound we gave in (6.3). In the last equation we used the fact

that ¢g(Q) is equal to foin i (fmaz — f)/(fmaz — fmin) part of the w; and to fpe, in
(f = fmin)/(fmaz — fmin) Part of the w; (otherwise, the functions f and g do not have

the same average overall).



Appendix D

Damper problem conditional

probabilities

The cardinality of the variables and their stationary probability distributions, which
are also the distributions in the first time slice, are given by Table D.1. The variable
“Damper status” has four possible values, all other status variables have two possi-
ble values. The variables “Temperature difference”, “Pressure”, “Damper position”,
“Observed temperature difference”, “Observed pressure”, and “Observed damper po-
sition” are continuous.

” on the variable “Damper

The dependence of the variable “Damper status ¢(7)
status t(¢ — 1)” is given by Table D.2 where the parameter a was 0.005 in our ex-
periments. The dependence of the rest of the status variables is given by Table D.3
where the parameter b was also 0.005 in our experiments.

The “Temperature difference” and “Pressure” variables in different time slices
are independent (in the absence of the sensor information). The sensor conditional
probabilities are given by the Table D.4 where ootp, 0op, dopp, 0o Were 0.1 and ¢
was 0.5 in our experiments.

Finally, the dependence of the damper position on the temperature difference and

pressure for the normal damper status is given by:

p(zpp|ZTD, TP, s = normal) = N(zpp — F(zp, zp)|0, 0']2313)
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name values initial probability
Damper status normal 27/57
stuck open 10/57
stuck close 10/57
stuck in between 10/57
Temperature difference status normal 2/3
faulty 1/3
Pressure status normal 2/3
faulty 1/3
Damper position status normal 2/3
faulty 1/3
Temperature difference [0, 1] uniform
Pressure [0, 1] uniform
Damper position [0,1]
Observed temperature difference [0, 1]
Observed pressure [0, 1]
Observed damper position [0, 1]
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Table D.1: Cardinality of the variables and their initial values in the first time slice for the
damper diagnostic problem shown in Fig. 6.8

Damper status ¢(¢ — 1) | normal | stuck open | stuck close | stuck in between
normal l—a a/3 a/3 a/3
stuck open 9a/10 l—a a/20 a/20
stuck close 9a/10 a/20 l1—a a/20
stuck in between 9a/10 a/20 a/20 1-a

Table D.2: Conditional probability p(zps2|zpsi) of the variable “Damper status ¢ + 17
depending on the variable “Damper status ¢”. Parameter ¢ was 0.005 in our experiments.
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Obs. temp. diff. t <—(  Temp. difference t

Damp. pos. status t
Y / /
Obs. damper position t "
Damper position t

Figure D.1: “Damper” BN also shown in Fig. 6.8.

Status ¢(¢ — 1) | normal | faulty
normal 1-b/2| b/2
faulty b 1-0

Table D.3: Dependence of all other status variables besides “Damper status” in two con-
secutive time slices. Parameter b was 0.005 in our experiments.

Observed variable normal faulty
ZoTD N(zorp — 1p;0,041p) | ¢+ (1 — ¢)N(zorp;0,05)
Top N(zop — zp;0,03p) c+ (1 —c)N(zop;0,02)
Topp N(zopp — xpp; 0,08pp) | ¢+ (1 — ¢)N(zopp; 0, 03)

Table D.4: Dependence of observed sensor variables: temperature p(zoTp|zTp), pressure
p(zop|zp), and position p(zopp|zpp). Parameter ¢ was 0.005 and the corresponding stan-
dard deviations o were 0.1 in our experiments.
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where the function F(z7p,zp) was fit to experimental data and is given by a mixture

of threshold tanh() functions:

F(zrp,ap) = + 0.656195 x tanh(—4.83073 + 9.30677zrp — 1.282945zp)
—0.357311 X tanh(6.27819 — 12.0383zrp — 0.0327363zp)
— 0.422305 X tanh(—3.72830 + 7.3815521p — 0.7748152p)
+ 0.501486 x tanh(0.107028 — 0.560008zp — 0.0208127zp)
— 0.470692 x tanh(—4.10404 + 7.03819z1p + 0.05501zp)
— 0.590046 X tanh(1.11134 — 1.44575z1p — 0.0181029zp)
+0.940161,

and opp was 0.04 in our experiments. For the “stuck open” and “stuck close” the
damper position is N (zpp|0, 03p) and N(zpp|1,03p) correspondingly. Finally, for the
“stuck in between” status variable, the damper position probability distribution was
a stepwise distribution with two steps at 0.45 and 0.92. The probability density value
was 0.06 for zpp < 0.45 and zpp > 0.92 and 0.94/0.47 = 2 for 0.45 < zpp < 0.92.
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