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Abstract

The problem of approximating a given probability distribution using a simpler dis-
tribution plays an important role in several areas of machine learning, for example
variational inference and classification. Within this context, we consider the task
of learning a mixture of tree distributions. Although mixtures of trees can be
learned by minimizing theKL-divergence using anEM algorithm, its success de-
pends heavily on the initialization. We propose an efficientstrategy for obtaining
a good initial set of trees that attempts to cover the entire observed distribution by
minimizing theα-divergence withα = ∞. We formulate the problem using the
fractional covering framework and present a convergent sequential algorithm that
only relies on solving a convex program at each iteration. Compared to previous
methods, our approach results in a significantly smaller mixture of trees that pro-
vides similar or better accuracies. We demonstrate the usefulness of our approach
by learning pictorial structures for face recognition.

1 Introduction
Probabilistic models provide a powerful and intuitive framework for formulating several problems
in machine learning and its application areas, such as computer vision and computational biology. A
critical choice to be made when using a probabilistic model is its complexity. For example, consider
a system that involvesn random variables. A probabilistic model that defines a clique of sizen
has the ability to model any distribution over these random variables. However, the task of learning
and inference on such a model becomes computationally intractable. The other extreme case is to
define a tree structured model that allows for efficient learning [3] and inference [23]. However, tree
distributions have a restrictive form. Hence, they are not suitable for all applications.

A natural way to alleviate the deficiencies of tree distributions is to use a mixture of trees [21].
Mixtures of trees can be employed as accurate models for several interesting problems such as pose
estimation [11] and recognition [5, 12]. In order to facilitate their use, we consider the problem
of learning them by approximating an observed distribution. Note that the mixture can be learned
by minimizing the Kullback-Leibler (KL) divergence with respect to the observed distribution using
an expectation-maximization (EM) algorithm [21]. However, there are two main drawbacks of this
approach: (i) minimization ofKL divergence mostly tries to explain the dominant mode of the
observed distribution [22], that is it does not explain the entire distribution; and (ii) as theEM
algorithm is prone to local minima, its success depends heavily on the initialization. An intuitive
solution to both these problems is to obtain an initial set oftrees that covers as much of the observed
distribution as possible. To this end, we pose the learning problem as that of obtaining a set of trees
that minimize a suitableα-divergence [25].

Theα-divergence measures are a family of functions over two probability distributions that measure
the information gain contained in them: that is, given the first distribution, how much information
is obtained by observing the second distribution. They forma complete family of measures, in that
no other function satisfies all the postulates of information gain [25]. When used as an objective
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function to approximate an observed distribution, the value ofα plays a significant role. For exam-
ple, whenα = 1 we obtain theKL divergence. As the value ofα keeps increasing, the divergence
measure becomes more and moreinclusive[8], that is it tries to cover as much of the observed dis-
tribution as possible [22]. Hence, a natural choice for our task of obtaining a good initial estimate
would be to setα =∞.

We formulate the minimization ofα-divergence withα = ∞ within the fractional covering frame-
work [24]. However, the standard iterative algorithm for solving fractional covering is not readily
applicable to our problem due to its small stepsize. In orderto overcome this deficiency we adapt
this approach specifically for the task of learning mixturesof trees. Each iteration of our approach
adds one tree to the mixture and only requires solving a convex optimization problem. In practice,
our strategy converges within a small number of iterations thereby resulting in a small mixture of
trees. We demonstrate the effectiveness of our approach by providing a comparison with state of the
art methods and learning pictorial structures [6] for face recognition.

2 Related Work
The mixture of trees model was introduced by Meila and Jordan[21] who highlighted its appeal
by providing simple inference and sampling algorithms. They also described anEM algorithm that
learned a mixture of trees by minimizing theKL divergence. However, the accuracy of theEM
algorithm is highly dependent on the initial estimate of themixture. This is evident in the fact
that their experiments required a large mixture of trees to explain the observed distribution, due to
random initialization.

Several works have attempted to obtain a good set of trees by devising algorithms for minimizing
the KL divergence [8, 13, 19, 26]. In contrast, our method usesα = ∞, thereby providing a set of
trees that covers the entire observed distribution. It has been shown that mixture of trees admit a
decomposable prior [20]. In other words, one can concisely specify a certain prior probability for
each of the exponential number of tree structures for a givenset of random variables. Kirschner and
Smyth [14] have also proposed a method to handle a countably infinite mixture of trees. However,
the complexity of both learning and inference in these models restricts their practical use.

Researchers have also considered mixtures of trees in the log-probability space. Unlike a mixture in
the probability space considered in this paper (which contains a hidden variable), mixtures of trees
in log-probability space still define pairwise Markov networks. Such mixtures of trees have been
used to obtain upper bounds on the log partition function [27]. However, in this case, the mixture is
obtained by considering subgraphs of a given graphical model instead of minimizing a divergence
measure with respect to the observed data. Finally, we note that semi-metric distance functions can
be approximated to a mixture of tree metrics using the fractional packing framework [24]. This
allows us to approximate semi-metric probabilistic modelsto a simpler mixture of (not necessarily
tree) models whose pairwise potentials are defined by tree metrics [15, 17].

3 Preliminaries
Tree Distribution. Consider a set ofn random variablesV = {v1, · · · , vn}, where each variable
va can take a valuexa ∈ Xa. We represent a labeling of the random variables (i.e. a particular
assignment of values) as a vectorx = {xa|a = 1, · · · , n}. A tree structured model defined over the
random variablesV is a graph whose nodes correspond to the random variables andwhose edgesE
define a tree. Such a model assigns a probability to each labeling that can be written as

Pr(x|θT ) =
1

Z(θT )

∏

(va,vb)∈E θT
ab(xa, xb)

∏

va∈V θT
a (xa)deg(a)−1

. (1)

HereθT
a (·) refers to unary potentials whose values depend on one variable at a time, andθT

ab(·, ·)
refers to pairwise potentials whose values depend on two neighboring variables at a time. The vector
θ

T is the parameter of the model (which consists of all the potentials) andZ(θT ) is the partition
function which ensures that the probability sums to one. Thetermdeg(a) denotes the degree of the
variableva.
Mixture of Trees. As the name suggests, a mixture of trees is defined by a set of trees along with
a probability distribution over them, that isθM = {(θT , ρT )} such that mixture coefficientsρT > 0
for all T and

∑

T ρT = 1. It defines the probability of a given labeling as

Pr(x|θM ) =
∑

T

ρT Pr(x|θT ). (2)

2



α-Divergence. The α-divergence between distributionsPr(·|θ1) (say the observed distribution)
andPr(·|θ2) (the simpler distribution) is given by

Dα(θ1||θ2) =
1

α− 1
log

(

∑

x

Pr(x|θ1)α

Pr(x|θ2)α−1

)

. (3)

Theα-divergence measure is strictly non-negative and is equal to 0 if and only if θ1 is a reparame-
terization ofθ2. It is a generalization ofKL divergence which corresponds toα = 1, that is

D1(θ
1||θ2) =

∑

x

Pr(x|θ1) log
Pr(x|θ1)

Pr(x|θ2)
. (4)

As mentioned earlier, we are interested in the case whereα =∞, that is

D∞(θ1||θ2) = max
x

log
Pr(x|θ1)

Pr(x|θ2)
. (5)

The inclusive property ofα = ∞ is evident from the above formula. Since we would like to
minimize the maximum ratio of probabilities (i.e. the worstcase), we need to ensure that no value of
Pr(x|θ2) is very small, that is the entire distribution is covered. Incontrast, theKL divergence can
admit very small values ofPr(x|θ2) since it is concerned with the summation shown in equation (4)
(and not the worst case). To avoid confusion, we shall refer to the case whereα = 1 asKL divergence
and theα =∞ case asα-divergence throughout this paper.

The Learning Problem. Given a set of samples{xi, i = 1, · · · , m} along with their probabilities
P̂ (xi), our task is to learn a mixture of treesθM∗

such that

θM∗

= argmin
θM

(

max
i

log
P̂ (xi)

Pr(xi|θ
M )

)

= argmax
θM

(

min
i

Pr(xi|θ
M )

P̂ (xi)

)

. (6)

We will concentrate on the second form in the above equation (where the logarithm has been
dropped). We defineT = {θTj} to be the set of allt tree distributions that are defined overn
variables. It follows that the probability of a labeling forany mixture of trees can be written as

Pr(x|θM ) =
∑

j

ρj Pr(x|θTj ), (7)

for suitable values ofρj . Note that the mixing coefficientsρ should define a valid probability
distribution. In other words,ρ belongs to the polytopeP defined as

ρ ∈ P ⇒
∑

j

ρj = 1, ρj ≥ 0, ∀j = 1, · · · , t. (8)

Our task is to find a sparse vectorρ that minimizes theα-divergence with respect to the observed dis-
tribution. In order to formally specify the minimization ofα-divergence as an optimization problem,
we define anm× t matrixA and anm× 1 vectorb such that

A(i, j) = Pr(xi|θ
Tj ) andbi = P̂ (xi). (9)

We denote theith row of A asai and theith element ofb asbi. Using the above notation, the
learning problem can be specified as

max
ρ

λρ,

s.t. aiρ ≥ λρbi, ∀i

ρ ∈ P , (10)

whereλρ = mini aiρ/bi due to the form of the aboveLP. The above formulation suggests that a
natural way to attack the problem would be to use the fractional covering framework [24]. We begin
by briefly describing fractional covering in the next section.
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4 Fractional Covering
Given anm×t matrixA and anm×1 vectorb > 0, the fractional covering problem is to determine
whether there exists a vectorρ ∈ P such thatAρ ≥ b. The only restriction on the polytopeP is
that Aρ ≥ 0 for all ρ ∈ P , which is clearly satisfied by our learning problem (sinceaiρ is the
probability ofxi specified by the mixture of trees corresponding toρ). Let

λ∗ = max
ρ

min
i

aiρ

bi

. (11)

If λ∗ < 1 then clearly there does not exist aρ such thatAρ ≥ b. However, ifλ∗ ≥ 1, then the
fractional covering problem requires us to find anǫ-optimal solution, that is find aρ such that

Aρ ≥ (1− ǫ)λ∗b, (12)

whereǫ > 0 is a user-specified tolerance factor. Using the definitions of A, b andρ from the
previous section, we observe that in our caseλ∗ = 1. In other words, there exists a solution such
thatAρ = b. This can easily be seen by considering a tree with parameterθTj such that

Pr(xi|θ
Tj ) =

{

1 if i = j,
0 otherwise, (13)

and settingρj = P̂ (xj). The above solution provides anα-divergence of0 but at the cost of
introducingm trees in the mixture (wherem is the number of samples provided). We would like
to find anǫ-optimal solution with a smaller number of trees by solving the LP (10). However, we
cannot employ standard interior point algorithms for optimizing problem (10). This is due to the
fact that each of itsm constraints is defined over an infinite number of unknowns (specifically, the
mixture coefficients for each of the infinite number of tree distributions defined over then random
variables). Fortunately, Plotkinet al. [24] provide an iterative algorithm for solving problem (10)
that can handle arbitrarily large number of unknowns in every constraint.
The Fractional Covering Algorithm. In order to obtain a solution to problem (10), we solve the
following related problem:

min
ρ∈P

Φ(y) ≡ y⊤b,

s.t. yi =
1

bi

exp

(

−β
aiρ

bi

)

. (14)

The objective functionΦ(y) is called the potential function for fractional covering. Plotkin et al.
[24] showed that minimizingΦ(y) solves the original fractional covering problem. The termβ is a
parameter that is inversely proportional to the stepsizeσ of the algorithm. The fractional covering
algorithm is an iterative strategy. At iterationt, the variableρt is updated asρt ← (1−σ)ρt−1+σρ′

such that the update attempts to decrease the potential function. Specifically, the algorithm proposed
in [24] suggests using the first order approximation ofΦ(y), that is

ρ′ = arg min
ρ

(

∑

i

y′
i(bi − βσaiρ)

)

= argmax
ρ

y′⊤Aρ. (15)

where

y′
i =

1

bi

exp

(

−β
(1 − σ)aiρ

bi

)

. (16)

Typically, the above problem is easy to solve (including forour case, as will be seen in the next
section). Furthermore, for a sufficiently large value ofβ (∝ log m) the above update rule decreases
Φ(y). In more detail, the algorithm of [24] is as follows:

• Definew = maxρ maxi aiρ/bi to be thewidthof the problem.
• Start with an initial solutionρ0.
• Defineλρ

0
= mini aiρ0/bi, andσ = ǫ/(4βw).

• While λρ < 2λρ
0
, at iterationt:

– Definey′ as shown in equation (16).
– Findρ′ = argmaxρ∈P y′⊤Aρ.
– Updateρt ← (1− σ)ρt−1 + σρ∗.
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Plotkin et al. [24] suggest starting with a tolerance factor ofǫ0 = 1/6 and dividing the value ofǫ0
by 2 after every call to the above procedure terminates. This process is continued until a sufficiently
accurate (i.e. anǫ-optimal) solution is recovered. Note that during each callto the above procedure
the potential functionΦ(y) is both upper and lower bounded, specifically

exp(−2βλρ
0
) ≤ Φ(y) ≤ m exp(−βλρ

0
). (17)

Furthermore, we are guaranteed to decrease the value ofΦ(y) at each iteration. Hence, it follows
that the above algorithm will converge. We refer the reader to [24] for more details.

5 Modifying Fractional Covering
The above algorithm provides an elegant way to solve the general fractional covering problem.
However, as will be seen shortly, in our case it leads to undesirable solutions. Nevertheless, we
show that appropriate modifications can be made to obtain a small and accurate mixture of trees. We
begin by identify the deficiencies of the fractional covering algorithm for our learning problem.

5.1 Drawbacks of the Algorithm
There are two main drawbacks of fractional covering. First,the value ofβ is typically very large,
which results in a small stepsizeσ. In our experiments,β was of the order of103, which resulted
in slow convergence of the algorithm. Second, the update step providessingletontrees, that is trees
with a probability of1 for one labeling and0 for all others. This is due to the fact that, in our case,
the update step solves the following problem:

max
ρ∈P

∑

j

(

∑

i

y′
iρj Pr(xi|θ

Tj )

)

. (18)

Note that the above problem is anLP in ρ. Hence, there must exist an optimal solution on the vertex
on the polytopeP . In other words, we obtain a single tree distributionθT∗

such that

θ
T∗

= argmax
θT

(

∑

i

y′
i Pr(xi|θ

T )

)

. (19)

The optimal tree distribution for the above problem concentrates the entire mass on the sample
xi′ where i′ = argmaxi y′

i. Such singleton trees are not desirable as they also result in slow
convergence of the algorithm. Furthermore, the learned mixture only provides a non-zero probability
for the samples used during training. Hence, the mixture cannot be used for previously unseen
samples, thereby rendering it practically useless. Note that the method of Rosset and Segal [26]
also faces a similar problem during their update steps for minimizing theKL divergence. In order to
overcome this difficulty, they suggest approximating problem (18) by

θT∗

= arg max
θT

∑

i

y′
i log

(

Pr(xi|θ
T )
)

, (20)

which can be solved efficiently using the Chow-Liu algorithm[3]. However, our preliminary exper-
iments (accuracies not reported) indicate that this approach does not work well for minimizing the
potential functionΦ(y).

5.2 Fixing the Drawbacks
We adapt the original fractional covering algorithm for ourproblem in order to overcome the draw-
backs mentioned above. The first drawback is handled easily.We start with a small value ofβ and
increase it by a factor of 2 if we are not able to reduce the potential functionΦ(y) at a given itera-
tion. Since we are assured that the value ofΦ(y) decreases for a finite value ofβ, this procedure is
guaranteed to terminate. In our experiments, we initialized β = 1/w and its value never exceeded
32/w. Note that choosingβ to be inversely proportional tow ensures that the initial values ofy′

i in
equation (16) are sufficiently large (at leastexp(−(1 − σ))).

In order to address the second drawback, we note that our aim at an iterationt of the algorithm is to
reduce the potential functionΦ(y). That is, given the current distribution parameterized byθMt we
would like to add a new treeθTt to the mixture that solves the following problem:

θTt = arg min
θT

[

Φ(y) ≡
∑

i

y′
i exp

(

−β
σ Pr(xi|θ

T )

P̂ (xi)

)]

(21)
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s.t.
∑

i

Pr(xi|θ
T ) ≤ 1, Pr(xi|θ

T ) ≥ 0, ∀i = 1, · · · , m, (22)

θT ∈ T . (23)

Here,T is the set of all tree distributions defined overn random variables. Note that the algorithm
of [24] optimizes the first order approximation of the objective function (21). However, as seen pre-
viously, for our problem this results in an undesirable solution. Instead, we directly optimizeΦ(y)
using an alternative two step strategy. In the first step, we drop the last constraint from the above
problem. In other words, we obtain the values ofPr(xi|θ

T ) that form a valid (but not necessarily
tree-structured) distribution and minimize the functionΦ(y). Note that since theΦ(y) is not linear
in Pr(xi|θ

T ), the optimal solution provides a dense distributionPr(·|θT ) (as opposed to the first
order linear approximation which provides a singleton distribution). In the second step, we project
these values to a tree distribution. It is easy to see that dropping constraint (23) results in a convex
relaxation of the original problem. We solve the convex relaxation using a log-barrier method [1].
Briefly, this implies solving a series of unconstrained optimization problems until we are within a
user-specified tolerance value ofτ from the optimal solution. Specifically,

• Setf = 1.
• Solvemin

Pr(·|θT
)

(

fΦ(y)−
∑

i log(Pr(xi|θ
T ))− log(1−

∑

i Pr(xi|θ
T ))
)

.
• If m/f ≤ τ , then stop. Otherwise, updatef = µf and repeat the previous step.

We usedµ = 1.5 in all our experiments, which was sufficient to obtain accurate solutions for
the convex relaxation. At each iteration, the unconstrained optimization problem is solved using
Newton’s method. Recall that Newton’s method minimizes a functiong(z) by updating the current
solution as

g(z)← g(z)−
(

∇2g(z)
)−1
∇g(z), (24)

where∇2g(·) denotes the Hessian matrix and∇g(·) denotes the gradient vector. Note that the most
expensive step in the above approach is the inversion of the Hessian matrix. However, it is easy to
verify that in our case all the off-diagonal elements of the Hessian are equal to each other. By taking
advantage of this special form of the Hessian, we compute itsinverse inO(m2) time using Gaussian
elimination (i.e. linear in the number of elements of the Hessian).

Once the values ofPr(xi|θ
T ) are computed in this manner, they are projected to a tree distribution

using the Chow-Liu algorithm [3]. Note that after the projection step we are no longer guaranteed to
decrease the functionΦ(y). This would imply that the overall algorithm would not be guaranteed to
converge. In order to overcome this problem, if we are unableto decreaseΦ(y) then we determine
the samplexi′ such that

i′ = argmax
i

Pr(xi|θ
Mt)

P̂ (xi)
, (25)

that is the sample best explained by the current mixture. We enforcePr(xi′ |θ
T ) = 0 and solve

the above convex relaxation again. Note that the solution tothe new convex relaxation (i.e. the one
with the newly introduced constraint for samplexi′ ) can easily be obtained from the solution of the
previous convex relaxation using the following update:

Pr(xi|θ
T )←

{

Pr(xi|θ
T ) + P̂ (xi) Pr(xi′ |θ

T )/s if i 6= i′,
0 otherwise,

(26)

wheres =
∑

i P̂ (xi). In other words, we do not need to use the log-barrier method to solve the
new convex relaxation. We then project the updated values ofPr(xi|θ

T ) to a tree distribution. This
process of eliminating one sample and projecting to a tree isrepeated until we are able to reduce
the value ofΦ(y). Note that in the worst case we will eliminate all but one sample (specifically, the
one that corresponds to the update scheme of [24]). In other words, we will add a singleton tree.
However, in practice our algorithm converges in a small number (≪ m) of iterations and provides an
accurate mixture of trees. In fact, in all our experiments wenever obtained any singleton trees. We
conclude the description of our method by noting that once the new tree distributionθTt is obtained,
the value ofσ is easily updated asσ = arg minσ Φ(y).

6 Experiments
We present a comparison of our method with the state of the artalgorithms. We also use it to learn
pictorial structures for face recognition. Note that our method is efficient in practice due to the
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Dataset TANB MF Tree MT [26] + MT Our + MT

Agaricus 100.0± 0 99.45± 0.004 98.65± 0.32 99.98± 0.04 100.0± 0 100.0± 0
Nursery 93.0± 0 98.0± 0.01 92.17± 0.38 99.2± 0.02 98.35± 0.30 99.28± 0.13
Splice 94.9± 0.9 - 95.7± 0.2 95.5± 0.3 95.6± 0.42 96.1± 0.15

Table 1:Classification accuracies for the datasets used in [21]. Thefirst column shows the name of the dataset.
The subsequent columns show the mean accuracies and the standard deviation over 5 trials of tree-augmented
naive Bayes [10], mixture of factorial distributions [2], single tree classifier [3], mixture of trees with random
initialization (i.e. the numbers reported in [21]), initialization with [26] and initialization with our approach.
Note that our method provides similar accuracies to [21] while using a smaller mixture of trees (see text).

special form of the Hessian matrix (for the log-barrier method) and the Chow-Liu algorithm [3, 21]
(for the projection to tree distributions). In all our experiments, each iteration takes only 5 to 10
minutes (and the number of iterations is equal to the number of trees in the mixture).

Comparison with Previous Work. As mentioned earlier, our approach can be used to obtain a
good initialization for theEM algorithm of [21] since it minimizesα-divergence (providing comple-
mentary information to theKL-divergence used in [21]). This is in contrast to the random initial-
izations used in the experiments of [21] or the initialization obtained by [26] (that also attempts to
minimize theKL-divergence). We consider the task of using the mixture of trees as a classifier, that
is given training data that consists of feature vectorsxi together with the class valuesci, the task
is to correctly classify previously unseen test feature vectors. Following the protocol of [21], this
can be achieved in two ways. For the first type of classifier, weappend the feature vectorxi with
its class valueci to obtain a new feature vectorx′

i. We then learn a mixture of tree that predicts the
probability ofx′

i. Given a new feature vectorx we assign it the classc that results in the highest
probability. For the second type of classifier, we learn a mixture of trees for each class value such
that it predicts the probability of a feature vector belonging to that particular class. Once again,
given a new feature vectorx we assign it the classc which results in the probability.

We tested our approach on the three discrete valued datasetsused in [21]. In all our experiments,
we initialized the mixture with a single tree obtained from the Chow-Liu algorithm. We closely
followed the experimental setup of [21] to ensure that the comparisons are fair. Table 1 provides the
accuracy of our approach together with the results reportedin [21]. For ‘Splice’ the first classifier
provides the best results, while ‘Agaricus’ and ‘Nursery’ use the second classifier. Note that our
method provides similar accuracies to [21]. More importantly, it uses a smaller mixture of trees to
achieve these results. Specifically, the method of [21] uses12, 30 and 3 trees for the three datasets
respectively. In contrast our method uses 3-5 trees for ‘Agaricus’, 10-15 trees for ‘Nursery’ and 2
trees for Splice (where the number of trees in the mixture wasobtained using a validation dataset,
see [21] for details). Furthermore, unlike [21, 26], we obtain better accuracies by using a mixture
of trees instead of a single tree for the ‘Splice’ dataset. Itis worth noting that [26] also provided a
small set of initial trees (with comparable size to our method). However, since the trees do not cover
the entire observed distribution, their method provides less accurate results.

Face Recognition. We tested our approach on the task of recognizing faces usingthe publicly
available dataset1 containing the faces of 11 characters in an episode of ‘Buffythe Vampire Slayer’.
The total number of faces in the dataset is 24,244. For each face we are provided with the location
of 13 facial features (see Fig. 1). Furthermore, for each facial feature, we are also provided with
a vector that represents the appearance of that facial feature [5] (using the normalized grayscale
values present in a circular region of radius7 centered at the facial feature). As noted in previous
work [5, 18] the task is challenging due to large intra-classvariations in expression and lighting
conditions.

Given the appearance vector, the likelihood of each facial feature belonging to a particular character
can be found using logistic regression. However, the relative locations of the facial features also
offer important cues in distinguishing one character from the other (e.g. the width of the eyes or the
distance between an eye and the nose). Typically, in vision systems, this information is not used.
In other words, the so-called bag of visual words model is employed. This is due to the somewhat
counter-intuitive observation made by several researchers that models that employ spatial prior on
the features, e.g. pictorial structures [6], often provideworse recognition accuracies than those that
throw away this information. However, this may be due to the fact that often the structure and
parameters of pictorial structures and other related models are set by hand.

1Available at http://www.robots.ox.ac.uk/˜vgg/research/nface/data.html
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Figure 1:The structure of the seven trees learned for 3 of the 11 characters using our method. The red squares
show the position of the facial features while the blue linesindicate the edges. The structure and parameters of
the trees vary significantly, thereby indicating the multimodality of the observed distribution.

0 1 2 3 4 5 6 7
[26] 65.68% 66.05% 66.01% 66.01% 66.08% 66.08% 66.16% 66.20%
Our 65.68% 66.05% 66.65% 66.86% 67.25% 67.48% 67.50% 67.68%

Table 2:Accuracy for the face recognition experiments. The columnsindicate the size of the mixture, ranging
from 0 (i.e. the bag of visual words model) to 7 (where the results saturate). Note that our approach, which
minimizes theα-divergence, provides better results than the method of [26], which minimizesKL -divergence.
In order to test whether a spatial model can help improve recognition, we learned a mixture of trees
for each of the characters. The random variables of the treescorrespond to the facial features and
their values correspond to the relative location of the facial feature with respect to the center of the
nose. The unary potentials of each random variable is specified using the appearance vectors (i.e.
the likelihood obtained by logistic regression). In order to obtain the pairwise potentials (i.e. the
structure and parameters of the mixture of trees), the facesare normalized to remove global scaling
and in-plane rotation using the location of the facial features. We use the faces found in the first 80%
of the episode to learn the mixture of trees. The faces found in the remaining 20% of the episode
were used as test data. Splitting the dataset in this manner (i.e. a non-random split) ensures that we
do not have any trivial cases where a face found in framet is used for training and a (very similar)
face found in framet + 1 is used for testing.

Fig. 1 shows the structure of the trees learned for 3 characters. The structures differ significantly
between characters, which indicates that different spatial priors are dominant for different characters.
Although the structure of the trees for a particular character are similar, they vary considerably in
the parameters. This suggests that the distribution is in fact multimodal and therefore cannot be
represented accurately using a single tree. Although vision researchers have tried to overcome this
problem by using more complex models, e.g. see [4], their useis limited by a lack of efficient
learning algorithms. Table 2 shows the accuracy of the mixture of trees learned by the method
of [26] and our approach. In this experiment, refining the mixture of trees using theEM algorithm
of [21] did not improve the results. This is due to the fact that the training and testing data differ
significantly (due to non-random splits, unlike the previous experiments which used random splits of
theUCI datasets). In fact, when we split the face dataset randomly,we found that theEM algorithm
did help. However, classification problems simulated usingrandom splits of video frames are rare
in real-world applications. Since [26] tries to minimize the KL divergence, it mostly tries to explain
the dominant mode of the observed distribution. This is evident in the fact that the accuracy of the
mixture of trees does not increase significantly as the size of the mixture increases (see table 2, first
row). In contrast, the minimization ofα-divergence provides a diverse set of trees that attempt to
explain the entire distribution thereby providing significantly better results (table 2, second row).

7 Discussion
We formulated the problem of obtaining a small mixture of trees by minimizing theα-divergence
within the fractional covering framework. Our experimentsindicate that the suitably modified frac-
tional covering algorithm provides accurate models. We believe that our approach offers a natural
framework for addressing the problem of minimizingα-divergence and could prove useful for other
classes of mixture models, for example mixtures of trees in log-probability space for which there
exist several efficient and accurate inference algorithms [16, 27]. There also appears to be a connec-
tion between fractional covering (proposed in the theory community) and Discrete AdaBoost [7, 9]
(proposed in the machine learning community) that merits further exploration.
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