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Abstract

The problem of approximating a given probability distrilamtusing a simpler dis-
tribution plays an important role in several areas of maeléarning, for example
variational inference and classification. Within this ait we consider the task
of learning a mixture of tree distributions. Although mirts of trees can be
learned by minimizing th&L -divergence using aBm algorithm, its success de-
pends heavily on the initialization. We propose an efficerategy for obtaining
a good initial set of trees that attempts to cover the entiseosed distribution by
minimizing thea-divergence withh = co. We formulate the problem using the
fractional covering framework and present a convergenteetjal algorithm that
only relies on solving a convex program at each iterationm@ared to previous
methods, our approach results in a significantly smalletunéof trees that pro-
vides similar or better accuracies. We demonstrate theulrsefs of our approach
by learning pictorial structures for face recognition.

1 Introduction

Probabilistic models provide a powerful and intuitive frawork for formulating several problems
in machine learning and its application areas, such as ctanpision and computational biology. A
critical choice to be made when using a probabilistic moslékicomplexity. For example, consider
a system that involves random variables. A probabilistic model that defines a digfi sizen
has the ability to model any distribution over these randamiables. However, the task of learning
and inference on such a model becomes computationallyctatrke. The other extreme case is to
define a tree structured model that allows for efficient learfi3] and inference [23]. However, tree
distributions have a restrictive form. Hence, they are miteble for all applications.

A natural way to alleviate the deficiencies of tree distiibns is to use a mixture of trees [21].
Mixtures of trees can be employed as accurate models foraémteresting problems such as pose
estimation [11] and recognition [5, 12]. In order to facitié their use, we consider the problem
of learning them by approximating an observed distributibiote that the mixture can be learned
by minimizing the Kullback-Leibler{L) divergence with respect to the observed distributiongisin
an expectation-maximizatio ) algorithm [21]. However, there are two main drawbacks df th
approach: (i) minimization okL divergence mostly tries to explain the dominant mode of the
observed distribution [22], that is it does not explain thire distribution; and (ii) as th&m
algorithm is prone to local minima, its success dependsilyean the initialization. An intuitive
solution to both these problems is to obtain an initial seteds that covers as much of the observed
distribution as possible. To this end, we pose the learninglpm as that of obtaining a set of trees
that minimize a suitable-divergence [25].

Thea-divergence measures are a family of functions over two glhdly distributions that measure
the information gain contained in them: that is, given thst fitistribution, how much information
is obtained by observing the second distribution. They faraomplete family of measures, in that
no other function satisfies all the postulates of infornmatiain [25]. When used as an objective
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function to approximate an observed distribution, the galfi plays a significant role. For exam-
ple, whena = 1 we obtain thexL divergence. As the value of keeps increasing, the divergence
measure becomes more and mimigusive[8], that is it tries to cover as much of the observed dis-
tribution as possible [22]. Hence, a natural choice for agktof obtaining a good initial estimate
would be to setv = oc.

We formulate the minimization af-divergence withh = oo within the fractional covering frame-
work [24]. However, the standard iterative algorithm fohog fractional covering is not readily
applicable to our problem due to its small stepsize. In otdevercome this deficiency we adapt
this approach specifically for the task of learning mixtuoésrees. Each iteration of our approach
adds one tree to the mixture and only requires solving a coapémization problem. In practice,
our strategy converges within a small number of iteratidreseby resulting in a small mixture of
trees. We demonstrate the effectiveness of our approaclhobiding a comparison with state of the
art methods and learning pictorial structures [6] for fageagnition.

2 Related Work

The mixture of trees model was introduced by Meila and Jof@ahwho highlighted its appeal
by providing simple inference and sampling algorithms. yralso described aam algorithm that
learned a mixture of trees by minimizing thke divergence. However, the accuracy of the
algorithm is highly dependent on the initial estimate of thixture. This is evident in the fact
that their experiments required a large mixture of treesduan the observed distribution, due to
random initialization.

Several works have attempted to obtain a good set of treegWgidg algorithms for minimizing
thekL divergence [8, 13, 19, 26]. In contrast, our method uses oo, thereby providing a set of
trees that covers the entire observed distribution. It feenbshown that mixture of trees admit a
decomposable prior [20]. In other words, one can concige@ciy a certain prior probability for
each of the exponential number of tree structures for a gge¢nf random variables. Kirschner and
Smyth [14] have also proposed a method to handle a countafihté mixture of trees. However,
the complexity of both learning and inference in these mededtricts their practical use.

Researchers have also considered mixtures of trees inghgrabability space. Unlike a mixture in
the probability space considered in this paper (which dosta hidden variable), mixtures of trees
in log-probability space still define pairwise Markov netk®. Such mixtures of trees have been
used to obtain upper bounds on the log partition functiof.[Ribwever, in this case, the mixture is
obtained by considering subgraphs of a given graphical iodeead of minimizing a divergence
measure with respect to the observed data. Finally, we hatesemi-metric distance functions can
be approximated to a mixture of tree metrics using the fometi packing framework [24]. This
allows us to approximate semi-metric probabilistic modela simpler mixture of (not necessarily
tree) models whose pairwise potentials are defined by tregan§ls, 17].

3 Preliminaries

Tree Distribution. Consider a set o, random variable® = {v1,-- -, v,}, where each variable
v, can take a value, € X,. We represent a labeling of the random variables (i.e. aqudat
assignment of values) as a vectoe {z,]a = 1,---,n}. A tree structured model defined over the
random variable® is a graph whose nodes correspond to the random variablesfzosk edges
define a tree. Such a model assigns a probability to eachingltalt can be written as

__1 H(vawb)es HaTb(iCa,CCb)
= Z(07) [, ey 07 () des@—1"

Here 67 (-) refers to unary potentials whose values depend on one \ewddla time, and?, (-, -)
refers to pairwise potentials whose values depend on twghbering variables at a time. The vector
6" is the parameter of the model (which consists of all the k) andZ(OT) is the partition
function which ensures that the probability sums to one. fEhadeg(a) denotes the degree of the
variablev,.

Mixture of Trees. As the name suggests, a mixture of trees is defined by a setesf &dlong with

a probability distribution over them, thatés? = {(BT, p™)} such that mixture coefficients” > 0
forall T andy" . p = 1. It defines the probability of a given labeling as

Pr(x|0™) =Y p" Pr(x|07). 2)
T

Pr(x|07) 1)
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a-Divergence. The a-divergence between distributiofs(-|@") (say the observed distribution)
andPr(-|6?) (the simpler distribution) is given by

r(x|01)
Da(01||02) _ ﬁ log <Z %) . 3)

The a-divergence measure is strictly non-negative and is equalftand only if 8' is a reparame-
terization of@?. It is a generalization ofL divergence which correspondsdo= 1, that is

1(6116%) = 3 Pr(xif’) 1o EX:ZQ) @)

As mentioned earlier, we are interested in the case wheteo, that is

Pr(x|6")

Pr(x|6%) ®)

D..(0')|6%) = m):cixlog

The inclusive property ofr = oo is evident from the above formula. Since we would like to
minimize the maximum ratio of probabilities (i.e. the worase), we need to ensure that no value of
Pr(x|6?) is very small, that is the entire distribution is coveredctmtrast, thexL divergence can
admit very small values dPr(x|6?) since it is concerned with the summation shown in equatipn (4
(and not the worst case). To avoid confusion, we shall reftéré case where = 1 askL divergence
and then = oo case as-divergence throughout this paper.

The Learning Problem. Given a set of samplei;,i = 1, - - -, m} along with their probabilities
P(x;), our task is to learn a mixture of tre@4!" such that
. P(x; Pr(x;|0
M = argmin [ maxlog (7X)M = arg max | min & . (6)
oM i Pr(x;|0™) oM i P(xi)

We will concentrate on the second form in the above equatidme(e the logarithm has been
dropped). We defind = {677} to be the set of alt tree distributions that are defined over
variables. It follows that the probability of a labeling fany mixture of trees can be written as

Pr(x|0M) = ij Pr(x|6% @)

for suitable values op;. Note that the mixing coefficientp should define a valid probability
distribution. In other wordsp belongs to the polytopP defined as

J

Ourtask s to find a sparse vecothat minimizes the-divergence with respect to the observed dis-
tribution. In order to formally specify the minimization efdivergence as an optimization problem,
we define ann x t matrix A and anm x 1 vectorb such that

A(i, j) = Pr(x;|077) andb; = P(x;). 9)

We denote the!” row of A asa; and theit® element ofb asb;. Using the above notation, the
learning problem can be specified as

mgx Aps

S.t. a;p > )\pbi,Vi
peP, (10)

where)p = min; a;p/b; due to the form of the abowver. The above formulation suggests that a
natural way to attack the problem would be to use the fraetioavering framework [24]. We begin
by briefly describing fractional covering in the next sentio
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4 Fractional Covering

Given anm x t matrix A and anmn x 1 vectorb > 0, the fractional covering problem is to determine
whether there exists a vectpre P such thatAp > b. The only restriction on the polytoge is
that Ap > 0 for all p € P, which is clearly satisfied by our learning problem (sirge is the
probability ofx; specified by the mixture of trees correspondingjolL et

« . ap
AF = . 11
maxmin =~ (11)
If A* < 1 then clearly there does not exisjpasuch thatAp > b. However, if\* > 1, then the
fractional covering problem requires us to findaaptimal solution, that is find @ such that

Ap > (1—€)\b, (12)

wheree > 0 is a user-specified tolerance factor. Using the definitiodh&.pb and p from the
previous section, we observe that in our case= 1. In other words, there exists a solution such

thatAp = b. This can easily be seen by considering a tree with pararfiétesuch that

[ 1 if i=j,
Pr(xi|07) = { 0 otherwise, (13)
and settingp; = P(x;). The above solution provides andivergence of0 but at the cost of
introducingm trees in the mixture (where: is the number of samples provided). We would like
to find ane-optimal solution with a smaller number of trees by solvihg tp (10). However, we
cannot employ standard interior point algorithms for optimg problem (10). This is due to the
fact that each of itsn constraints is defined over an infinite number of unknownedgieally, the
mixture coefficients for each of the infinite number of trestdbutions defined over the random
variables). Fortunately, Plotkiet al. [24] provide an iterative algorithm for solving problem (10
that can handle arbitrarily large number of unknowns in gwenstraint.

The Fractional Covering Algorithm. In order to obtain a solution to problem (10), we solve the
following related problem:

ind®(y)=vy'b
glelg(Y) y b,

s.t. Y = %exp <—ﬁag()) . (14)

The objective functionb(y) is called the potential function for fractional coveringlofRin et al.
[24] showed that minimizing (y) solves the original fractional covering problem. The tefns a
parameter that is inversely proportional to the stepsizd the algorithm. The fractional covering
algorithm is an iterative strategy. At iterati¢sthe variablep! is updated ap’ < (1—o)p'~ 1 +op’
such that the update attempts to decrease the potentigidan8pecifically, the algorithm proposed
in [24] suggests using the first order approximatior®g§ ), that is

! = arg min "(b; — Boa; = argmaxy’' Ap. 15
p = argmi <Zv( G p)) gmaxy’ Ap (15)
where ) a )
—0)a;
Lo o=l "

Typically, the above problem is easy to solve (includingdor case, as will be seen in the next
section). Furthermore, for a sufficiently large valuedofx log m) the above update rule decreases
®(y). In more detail, the algorithm of [24] is as follows:
e Definew = maxp max; a; p/b; to be thewidth of the problem.
o Start with an initial solutiorp,.
e Define)p = min;a;p,/b;, ando = ¢/(4pw).
e While Ap < 2, , at iterationt:
— Definey’ as shown in equation (16).
— Find p’ = argmaxpepy’ ' Ap.
— Updatep’ — (1 —0)p'~! + op*.



Plotkin et al. [24] suggest starting with a tolerance factoregf= 1/6 and dividing the value of,
by 2 after every call to the above procedure terminates. Thisgs®is continued until a sufficiently
accurate (i.e. ap-optimal) solution is recovered. Note that during each twathe above procedure
the potential functio®(y) is both upper and lower bounded, specifically

exp(—2BAp,) < (y) < mexp(—LAp,). (17)

Furthermore, we are guaranteed to decrease the val®¢yof at each iteration. Hence, it follows
that the above algorithm will converge. We refer the readg24] for more details.

5 Modifying Fractional Covering

The above algorithm provides an elegant way to solve the rgéfractional covering problem.
However, as will be seen shortly, in our case it leads to unalele solutions. Nevertheless, we
show that appropriate modifications can be made to obtairedl amd accurate mixture of trees. We
begin by identify the deficiencies of the fractional covgraigorithm for our learning problem.

5.1 Drawbacks of the Algorithm

There are two main drawbacks of fractional covering. Fitts¢, value off3 is typically very large,
which results in a small stepsize In our experiments? was of the order o103, which resulted

in slow convergence of the algorithm. Second, the updaemividessingletontrees, that is trees
with a probability of1 for one labeling and for all others. This is due to the fact that, in our case,
the update step solves the following problem:

Lo Prix: 107) | .
max j (;yng r(x;|0 )) (18)

Note that the above problem s anin p. Hence, there must exist an optimal solution on the vertex
on the polytopéP. In other words, we obtain a single tree distribut#dh such that

o7 — argrré:%x <Z Y Pr(xi|0T)> _ (19)

The optimal tree distribution for the above problem concates the entire mass on the sample
x; Wherei’ = argmax;y}. Such singleton trees are not desirable as they also resslow
convergence of the algorithm. Furthermore, the learnedur&only provides a non-zero probability
for the samples used during training. Hence, the mixturanotibe used for previously unseen
samples, thereby rendering it practically useless. Nade tte method of Rosset and Segal [26]
also faces a similar problem during their update steps foinmizing thekL divergence. In order to
overcome this difficulty, they suggest approximating peobi(18) by

07" = arg I%%XZ y: log (Pr(xi|0T)) , (20)

which can be solved efficiently using the Chow-Liu algoritf8h However, our preliminary exper-
iments (accuracies not reported) indicate that this agpra@es not work well for minimizing the
potential functiond(y).

5.2 Fixing the Drawbacks

We adapt the original fractional covering algorithm for quoblem in order to overcome the draw-
backs mentioned above. The first drawback is handled e&¥dystart with a small value of and
increase it by a factor of 2 if we are not able to reduce them@kfunction®(y) at a given itera-
tion. Since we are assured that the valu@¢§) decreases for a finite value 6f this procedure is
guaranteed to terminate. In our experiments, we initidliZze= 1/w and its value never exceeded
32/w. Note that choosing to be inversely proportional ta ensures that the initial values gf in
equation (16) are sufficiently large (at leasb(—(1 — 0))).

In order to address the second drawback, we note that ourtaamiteratiort of the algorithm is to
reduce the potential functiob(y). That is, given the current distribution parameterizedB¥ we
would like to add a new tre@’* to the mixture that solves the following problem:

07 =  arg Ingn l‘ﬁ(}’) = Z:y; oxp (_ﬁ%ﬁﬂ (21)

5



s.t. ZPr(xi|0T) <1, Pr(x;|07)>0,Vi=1,---,m, (22)

0l cT. (23)

Here,7 is the set of all tree distributions defined overandom variables. Note that the algorithm
of [24] optimizes the first order approximation of the objeetfunction (21). However, as seen pre-
viously, for our problem this results in an undesirable fiolu Instead, we directly optimizé(y)
using an alternative two step strategy. In the first step, w@ the last constraint from the above
problem. In other words, we obtain the valuesfafx;|6”) that form a valid (but not necessarily
tree-structured) distribution and minimize the functibfy). Note that since thé(y) is not linear

in Pr(x;|0"), the optimal solution provides a dense distributior(-|#”) (as opposed to the first
order linear approximation which provides a singletonrilsition). In the second step, we project
these values to a tree distribution. It is easy to see thatping constraint (23) results in a convex
relaxation of the original problem. We solve the convexxatéon using a log-barrier method [1].
Briefly, this implies solving a series of unconstrained oytiation problems until we are within a
user-specified tolerance valueofrom the optimal solution. Specifically,

e Setf =1.
« Solvemin,,  gr ( FO(y) — 3, log(Pr(x,]07)) — log(1 — 3, Pr(xi|0T))).
o Ifm/f <7, then stop. Otherwise, updafe= 1.f and repeat the previous'step.
We usedy, = 1.5 in all our experiments, which was sufficient to obtain acteirsolutions for

the convex relaxation. At each iteration, the unconstiiogtimization problem is solved using
Newton’s method. Recall that Newton’s method minimizesrecfiong(z) by updating the current

solution as .
9(z) — 9(z) = (V9(2))  Vy(2), (24)

whereV?¢(-) denotes the Hessian matrix aRig(-) denotes the gradient vector. Note that the most
expensive step in the above approach is the inversion of @ssibin matrix. However, it is easy to
verify that in our case all the off-diagonal elements of thesklan are equal to each other. By taking
advantage of this special form of the Hessian, we compuivésse inO(m?) time using Gaussian
elimination (i.e. linear in the number of elements of the sias).

Once the values d?r(xi|0T) are computed in this manner, they are projected to a tregluisbn
using the Chow-Liu algorithm [3]. Note that after the prdjen step we are no longer guaranteed to
decrease the functiob(y). This would imply that the overall algorithm would not be gaisteed to
converge. In order to overcome this problem, if we are unabiecreas®(y) then we determine
the samplex;, such that

Pr(x;|0""
i’ = argmax %, (25)

¢ P(x)
that is the sample best explained by the current mixture. WereePr(xi/|0T) = 0 and solve
the above convex relaxation again. Note that the solutidghéaew convex relaxation (i.e. the one
with the newly introduced constraint for samplg) can easily be obtained from the solution of the
previous convex relaxation using the following update:

T D T . . .
pr<xi|eT>H{ Pral0”) + POx) PrGe[07)/s i (26)

wheres = ). P(x;). In other words, we do not need to use the log-barrier methablve the

new convex relaxation. We then project the updated valu®s ©f;|0”) to a tree distribution. This
process of eliminating one sample and projecting to a treepeated until we are able to reduce
the value of®(y). Note that in the worst case we will eliminate all but one sknigpecifically, the
one that corresponds to the update scheme of [24]). In otbedsywe will add a singleton tree.
However, in practice our algorithm converges in a small nanfk m) of iterations and provides an
accurate mixture of trees. In fact, in all our experimentsngeer obtained any singleton trees. We
conclude the description of our method by noting that oneentbw tree distributio”* is obtained,
the value ofs is easily updated as = arg min, ®(y).

6 Experiments
We present a comparison of our method with the state of thelgaotithms. We also use it to learn
pictorial structures for face recognition. Note that ourthuagl is efficient in practice due to the



Dataset TANB MF Tree MT [26] + mT Our +MT

Agaricus | 100.0+ 0 | 99.45+ 0.004 | 98.65+ 0.32 | 99.98+ 0.04 | 100.0£0 100.0+0
Nursery | 93.0+0 98.0+0.01 | 92.174+0.38 | 99.24+0.02 | 98.35+ 0.30 | 99.28+ 0.13
Splice | 94.94+0.9 - 95.7+ 0.2 95.5+ 0.3 95.6+0.42 | 96.1+0.15

Table 1:Classification accuracies for the datasets used in [21]. flisecolumn shows the name of the dataset.
The subsequent columns show the mean accuracies and tldestaleviation over 5 trials of tree-augmented
naive Bayes [10], mixture of factorial distributions [2]ingle tree classifier [3], mixture of trees with random
initialization (i.e. the numbers reported in [21]), inifiaation with [26] and initialization with our approach.
Note that our method provides similar accuracies to [21] hising a smaller mixture of trees (see text).

special form of the Hessian matrix (for the log-barrier nwethand the Chow-Liu algorithm [3, 21]
(for the projection to tree distributions). In all our expeents, each iteration takes only 5 to 10
minutes (and the number of iterations is equal to the numbteees in the mixture).

Comparison with Previous Work. As mentioned earlier, our approach can be used to obtain a
good initialization for theem algorithm of [21] since it minimizea-divergence (providing comple-
mentary information to th&L-divergence used in [21]). This is in contrast to the randaoitial-
izations used in the experiments of [21] or the initialipatiobtained by [26] (that also attempts to
minimize thekL-divergence). We consider the task of using the mixtureadgras a classifier, that
is given training data that consists of feature vectorsogether with the class values, the task

is to correctly classify previously unseen test featuredmec Following the protocol of [21], this
can be achieved in two ways. For the first type of classifierapgend the feature vectsr with

its class value; to obtain a new feature vectaf. We then learn a mixture of tree that predicts the
probability of x,. Given a new feature vector we assign it the classthat results in the highest
probability. For the second type of classifier, we learn atorix of trees for each class value such
that it predicts the probability of a feature vector belanggto that particular class. Once again,
given a new feature vecterwe assign it the classwhich results in the probability.

We tested our approach on the three discrete valued datasedsin [21]. In all our experiments,
we initialized the mixture with a single tree obtained frone tChow-Liu algorithm. We closely
followed the experimental setup of [21] to ensure that thepgarisons are fair. Table 1 provides the
accuracy of our approach together with the results reparnt¢@ll]. For ‘Splice’ the first classifier
provides the best results, while ‘Agaricus’ and ‘Nursergeuthe second classifier. Note that our
method provides similar accuracies to [21]. More impottgiit uses a smaller mixture of trees to
achieve these results. Specifically, the method of [21] 80 and 3 trees for the three datasets
respectively. In contrast our method uses 3-5 trees forrigga’, 10-15 trees for ‘Nursery’ and 2
trees for Splice (where the number of trees in the mixture el#ained using a validation dataset,
see [21] for details). Furthermore, unlike [21, 26], we abtaetter accuracies by using a mixture
of trees instead of a single tree for the ‘Splice’ dataseis Worth noting that [26] also provided a
small set of initial trees (with comparable size to our mehdlowever, since the trees do not cover
the entire observed distribution, their method providss laccurate results.

Face Recognition. We tested our approach on the task of recognizing faces usagublicly
available datasétontaining the faces of 11 characters in an episode of ‘BinVampire Slayer’.
The total number of faces in the dataset is 24,244. For eaehvia are provided with the location
of 13 facial features (see Fig. 1). Furthermore, for eacihafdeature, we are also provided with
a vector that represents the appearance of that facialréefli (using the normalized grayscale
values present in a circular region of radiusentered at the facial feature). As noted in previous
work [5, 18] the task is challenging due to large intra-claagations in expression and lighting
conditions.

Given the appearance vector, the likelihood of each faemtiire belonging to a particular character
can be found using logistic regression. However, the reddbcations of the facial features also
offer important cues in distinguishing one character frbva dther (e.g. the width of the eyes or the
distance between an eye and the nose). Typically, in visistems, this information is not used.
In other words, the so-called bag of visual words model islegga. This is due to the somewhat
counter-intuitive observation made by several reseasctigt models that employ spatial prior on
the features, e.g. pictorial structures [6], often providese recognition accuracies than those that
throw away this information. However, this may be due to thet that often the structure and
parameters of pictorial structures and other related nsogl@ set by hand.

Available at http://www.robots.ox.ac.uk/"vgg/resedntace/data.html
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Figure 1:The structure of the seven trees learned for 3 of the 11 chamrmasing our method. The red squares

show the position of the facial features while the blue limelicate the edges. The structure and parameters of
the trees vary significantly, thereby indicating the muttitality of the observed distribution.

0 1 2 3 4 5 6 7
[26] | 65.68% | 66.05% | 66.01% | 66.01% | 66.08% | 66.08% | 66.16% | 66.20%
Our | 65.68% | 66.05% | 66.65% | 66.86% | 67.25% | 67.48% | 67.50% | 67.68%

Table 2:Accuracy for the face recognition experiments. The coluimtisate the size of the mixture, ranging
from O (i.e. the bag of visual words model) to 7 (where theltesaturate). Note that our approach, which
minimizes thew-divergence, provides better results than the method df [26ich minimizexL -divergence.

In order to test whether a spatial model can help improvegeition, we learned a mixture of trees
for each of the characters. The random variables of the ttegespond to the facial features and
their values correspond to the relative location of thedbf@ature with respect to the center of the
nose. The unary potentials of each random variable is spdaifing the appearance vectors (i.e.
the likelihood obtained by logistic regression). In orderobtain the pairwise potentials (i.e. the
structure and parameters of the mixture of trees), the fameaormalized to remove global scaling
and in-plane rotation using the location of the facial feasu\We use the faces found in the first 80%
of the episode to learn the mixture of trees. The faces fouorttlé remaining 20% of the episode
were used as test data. Splitting the dataset in this maneeanon-random split) ensures that we
do not have any trivial cases where a face found in franseused for training and a (very similar)
face found in frame + 1 is used for testing.

Fig. 1 shows the structure of the trees learned for 3 charsacene structures differ significantly
between characters, which indicates that different sijaiiars are dominant for different characters.
Although the structure of the trees for a particular chaaare similar, they vary considerably in
the parameters. This suggests that the distribution isdhrfaultimodal and therefore cannot be
represented accurately using a single tree. Although wigésearchers have tried to overcome this
problem by using more complex models, e.g. see [4], theirisidinited by a lack of efficient
learning algorithms. Table 2 shows the accuracy of the méxaf trees learned by the method
of [26] and our approach. In this experiment, refining the tomi& of trees using them algorithm

of [21] did not improve the results. This is due to the facttttie training and testing data differ
significantly (due to non-random splits, unlike the prexaedperiments which used random splits of
theucl datasets). In fact, when we split the face dataset randamlypund that theem algorithm

did help. However, classification problems simulated usarglom splits of video frames are rare
in real-world applications. Since [26] tries to minimizestkL divergence, it mostly tries to explain
the dominant mode of the observed distribution. This is ewidn the fact that the accuracy of the
mixture of trees does not increase significantly as the dii@eomixture increases (see table 2, first
row). In contrast, the minimization af-divergence provides a diverse set of trees that attempt to
explain the entire distribution thereby providing sigréfitly better results (table 2, second row).

7 Discussion

We formulated the problem of obtaining a small mixture okgdy minimizing thex-divergence
within the fractional covering framework. Our experimeimdicate that the suitably modified frac-
tional covering algorithm provides accurate models. Weebelthat our approach offers a natural
framework for addressing the problem of minimizinedivergence and could prove useful for other
classes of mixture models, for example mixtures of tree®gagrobability space for which there
exist several efficient and accurate inference algorithts27]. There also appears to be a connec-
tion between fractional covering (proposed in the theomgwnity) and Discrete AdaBoost [7, 9]
(proposed in the machine learning community) that merith&r exploration.
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