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Abstract
In many prediction tasks, selecting relevant fea-
tures is essential for achieving good generaliza-
tion performance. Most feature selection algo-
rithms consider all features to be a priori equally
likely to be relevant. In this paper, we use trans-
fer learning — learning on an ensemble of related
tasks — to construct an informative prior on fea-
ture relevance. We assume that features them-
selves have meta-features that are predictive of
their relevance to the prediction task, and model
their relevance as a function of the meta-features
using hyperparameters (called meta-priors). We
present a convex optimization algorithm for si-
multaneously learning the meta-priors and fea-
ture weights from an ensemble of related predic-
tion tasks that share a similar relevance struc-
ture. Our approach transfers the meta-priors
among different tasks, allowing it to deal with
settings where tasks have non-overlapping fea-
tures or where feature relevance varies over the
tasks. We show that transfer learning of feature
relevance improves performance on two real data
sets which illustrate such settings: (1) predicting
ratings in a collaborative filtering task, and (2)
distinguishing arguments of a verb in a sentence.

1. Introduction
In many prediction tasks, we are faced with a huge num-

ber of features. The use of effective feature selection al-
gorithms or regularization method is critical for achiev-
ing good performance. Much effort has been devoted to
the topic of feature selection, and many approaches have
been proposed (see Kaelbling (2003) for examples). Most
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feature selection algorithms treat all candidate features as
equally likely, a priori, to be relevant, and use the data
alone to select among them. In many cases, however, we
may have reason to believe that some features may innately
be more or less likely to be relevant. For example, con-
sider a collaborative filtering task, where we predict a user’s
preference for one product p based on his observed prefer-
ences for others. Here, the preferences for certain products
— e.g., those similar or related to p — are more likely to
be relevant to p than others. In another example, consider
inferring protein function from a set of motifs (short seg-
ments) in its sequence. Here, conserved motifs, or those on
the surface of the protein, are more likely to be relevant.

In these examples, and in many others, a feature k can
be characterized by a set of meta-features fk that describe
both the properties of the feature and its potential relation-
ship to the prediction problem. In the collaborative filter-
ing example, a product serving as a feature may be charac-
terized by meta-features such as its price range or its sim-
ilarity (along different dimensions) to the target product.
In the protein prediction example, a motif may be charac-
terized by meta-features such as its conservation score or
the composition of hydrophilic amino acids. We may wish
to utilize these meta-features to construct a more informed
prior over feature relevance. In most cases, however, we
do not have enough prior knowledge to determine exactly
how much effect, or even in which direction, each of these
meta-features has on feature relevance. Thus, a key prob-
lem is to learn the hyperparameters (a meta-level prior) that
characterize our prior on the relevance of a feature in terms
of its meta-features. While cross-validation is often used
to estimate meta-parameters such as these, the number of
meta-features in many applications can be quite large, ren-
dering a standard cross-validation regime intractable.

In this paper, we describe a transfer-learning approach
for estimating these hyperparameters. In the transfer learn-
ing paradigm, first proposed by Baxter (1997); Caruana
(1997); Thrun (1996), one aims to achieve better general-
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ization by considering multiple related learning tasks, and
transferring information among them. Here, we use an en-
semble of prediction tasks where similar types of features
tend to be relevant. Although information about the actual
values of parameters is commonly transferred in this set-
ting, the problem of learning informed models of feature
relevance has been largely unexplored; see Sec. 6 for a dis-
cussion of prior work.

Our approach applies to the class of generalized lin-
ear models (McCullagh & Nelder, 1989), where the pre-
dicted target is a function of a weighted linear combina-
tion of the features. Typically, all features are assumed to
have a zero mean Gaussian prior with the same variance.
In our case, we take the prior variance to be a weighted
linear combination of the feature’s meta-features, where
the weights are the model hyperparameters (called meta-
priors). These meta-priors are shared both across features
and across tasks, allowing transfer of learned relevance in-
formation across different features, both within a task and
between tasks. Thus, our approach can handle situations
where tasks have non-overlapping features or where fea-
ture relevance can vary over the tasks. The objective func-
tion used in our formulation is jointly convex in the fea-
ture weights in each task and the meta-priors. Moreover,
we show that two well-known feature selection methods,
i.e., L1-regularization (Tibshirani, 1996) and group Lasso
(Yuan & Lin, 2006), are special cases of our general ap-
proach.

We apply our method to two real world data sets. The
first is a collaborative filtering task, where we predict user
ratings for movies in (a subset of) the Netflix data. The
second is the natural language task of semantic role label-
ing (Gildea & Jurafsky, 2002), where we aim to identify
which words in the sentence correspond to which seman-
tic argument of a verb (e.g., for the verb “throw” who is
the thrower and what was thrown). We show that, by ty-
ing together the feature selection decisions in our ensemble
of tasks, we obtain better generalization to unseen test data
in all of them. Even more interestingly, we show that our
method also allows us to transfer prior knowledge on fea-
ture relevance, in the form of β, to new prediction tasks, al-
lowing us to achieve significantly better performance with
small amounts of training data.

2. Transfer Learning Formulation
Our problem formulation assumes the existence of an

ensemble of R supervised learning tasks. Each task r =
1, . . . , R is associated with a response variable yr and a
set of Kr features, denoted xr1, . . . , xrKr . The features
themselves may or may not be shared among the prediction
problems. We use xr to denote the feature vector associ-
ated with problem r.

We aim to learn the parameters of a probabilistic model

that defines P (yr | xr). Our framework applies to the class
of generalized linear models, where this conditional distri-
bution is defined in terms of g(w>

r xr), for some vector
of task-r parameters wr = (wr1, . . . , wrKr ) ∈ RKr and
some pre-selected gating function g. For example, we can
consider the case where the yr’s are discrete binary-valued
variables and g is the logit function:

P (yr = 1 | xr, wr) =
1

1 + exp(−w>
r xr)

, (1)

where, for simplicity of notation, we ignore the bias (inter-
cept) term, under the assumption that one of the features is
always set to 1. Alternatively, yr could be continuous with
a Gaussian distribution whose mean is w>

r xr. We can also
consider the case where yr is continuous and its distribu-
tion is a linear Gaussian whose mean is w>

r xr.
As is typically done, we associate each feature weight

wrk with a a Gaussian prior with mean zero and variance
γ: P (w | γ) = 1√

2πγ
exp(−w2

2γ ). In most applications,
all parameters in a model are taken to have the same prior,
encoding a similar bias towards 0. In our setting, we allow
a different γrk for each weight wrk. In order to achieve
effective generalization performance, we model γrk as a
weighted linear combination of meta-features of the fea-
ture xrk. More precisely, we assume that each feature xrk

is associated with a meta-feature vector frk ∈ R`, which
encodes certain characteristics of the feature that may be
predictive of its relevance to the prediction task. The meta-
features may depend either on the feature alone, or on the
feature and on the prediction task.

Given a meta-feature vector frk, we take the prior
P (wrk) to be a Gaussian distribution with variance γrk =
β>frk (constrained to be positive), where β is the set of
model hyperparameters:

P (wrk | β, frk) =
1√

2πβ>frk

exp(− w2
rk

β>frk

). (2)

We also define a prior distribution over the variance γrk

(= β>frk) to be the gamma distribution:

P (γrk) ∝ γD−1
rk exp(−Cγrk) γrk ≥ 0, (3)

for constants C and D whose selection we discuss below.
This prior distribution over the γrk’s serves to bias their
values towards zero, which helps prevent the overfitting
that can occur when the variance of the weight prior is too
high. We note that the meta-features should be chosen so
that the feasible set {β : ∀r, k β>frk > 0} is nonempty.
We can guarantee this feasibility condition by restricting
the meta-features to have non-negative values or by adding
a “bias” meta-feature with a large enough positive value.

Now, consider a data set X,Y consisting of M train-
ing instances for each of our R tasks (where we assume,
purely for simplicity of notation, that all tasks have the
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same number of instances). Thus, X is a set of vectors
xr[1], . . . , xr[M ], for r = 1 . . . , R, where each xr[m] ∈
RKr ; and Y is a set of responses yr[1], . . . , yr[M ]. Denot-
ing by W the vector of all of the parameters w1, . . . , wR,
overall we can define a joint conditional distribution:

P (Y , W , β | X,F) =
R∏

r=1

M∏
m=1

P (yr[m] | xr[m], wr)

·
R∏

r=1

Kr∏

k=1

P (wrk | β, frk)P (γrk), (4)

where γrk = β>frk. Here, the first term is our generalized
linear model, and the two terms in the second product are
defined in Eq. (2) and Eq. (3).

3. Optimization Algorithm
We choose to address our learning problem by finding

the joint maximum a posteriori (MAP) assignment to all of
the parameters wr, r = 1, . . . , R and the hyperparameters
β, in the objective Eq. (4). To simplify the objective func-
tion, we fix D in Eq. (3), so that γD−1

rk in Eq. (3) cancels
out 1/

√
2πγrk in Eq. (2). With this assignment, we take

the logarithm of Eq. (4), and obtain a joint log-likelihood
function:

log P (Y , W , β | X,F) (5)

=
R∑

r=1

M∑
m=1

log P (yr[m] | xr[m], wr)

−
R∑

r=1

Kr∑

k=1

(
w2

rk

β>frk

+ Cβ>frk + Const
)

,

where Const does not depend on the optimization parame-
ter. The other hyper-parameter, C, will be estimated using
cross-validation.

Critically, this objective function is jointly convex over
the optimization variables W and β. Therefore, it can be
solved using a range of efficient convex optimization algo-
rithms, any of which is guaranteed to find the unique global
optimum. We choose to use a coordinate ascent procedure
over the two sets of parameters W and β.

For optimizing W given the current β(t), we solve:

arg min
W

R∑
r=1

M∑
m=1

− log P (yr[m] | xr[m], wr) (6)

+
R∑

r=1

Kr∑

k=1

w2
rk

β>frk

.

This equation has the same form as a generalized linear
model with a weighted L2 regularization penalty, and can
be solved using standard gradient methods (or factorization
methods in the case of linear regression).

To optimize β given W (t), we solve:

arg min
β

R∑
r=1

K∑

k=1


 w

(t)
rk

2

β>frk

+ Cβ>frk


 (7)

subject to β>frk > 0.

This objective is convex in β, and can therefore be opti-
mized efficiently using standard methods.

4. Sparse Norm Equivalence
A certain special case of our approach is equivalent to a

standard L1-regularization (Tibshirani, 1996), and another
to group Lasso regularization (Yuan & Lin, 2006). As a
reminder, group Lasso regularization partitions the set of
features into mutually exclusive and exhaustive setsFn, for
n = 1, . . . , N . The regularization term then takes the form∑

n

√∑
i∈Fn

w2
i . This has the effect of driving the param-

eters in each group towards 0 together.
Group Lasso arises as a special case in our frame-

work if we associate a single shared meta-feature for each
group of features Fn, which (for simplicity) takes the
value 1. Letting βn be the meta-prior corresponding to
Fn, the weight prior for the features from Eq. (5) is now∑

n

∑
(r,k)∈Fn

(w2
r,k

βn
+Cβn). Applying the optimality con-

dition for β, we can show that the above weight prior term
is equivalent to:

∑
n 2

√
C|Fn|

√∑
(r,k)∈Fn

w2
r,k. In the

extreme case, when each feature is modeled with a unique
identity meta-feature, i.e. |Fn| = 1 for all n, the prior re-
duces to a standard L1-regularization.

5. Experimental Results
We train our model over an ensemble of R prediction

tasks, jointly learning both the weights w1, . . . , wR and
the hyper-parameters β. We then evaluate the results rela-
tive to two different types of learning setups. In the Gen-
Test setup, we evaluate the generalization of the learned
weights w1, . . . , wR to new instances from the training
tasks. This setup tests the ability of our approach to utilize
the meta-level information on the features in order to select
more relevant, better generalizing features. In the Trans-
Test setup, we use the β learned on these R tasks as a prior
for new, previously unseen tasks. We then learn only W
on each new test task, using β as a prior, and evaluate gen-
eralization performance on new test-task instances. This
setup evaluates whether information learned from previous
learning tasks can be used to allow learning of new tasks
using a lot less data.

5.1. Collaborative Filtering
We applied our algorithm to the task of collaborative fil-

tering for movie ratings. Specifically, we considered the
problem of predicting ratings assigned to movies by view-
ers in the Netflix movie rating dataset.The full dataset con-
sists of nearly 100 million discrete ratings from 1 to 5 that
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480189 users assigned to 17770 movies. For our experi-
ments, we selected the 5000 users with the highest number
of ratings, as well as the 600 movies with the highest num-
ber of ratings, and normalized the ratings for each movie
so that they have 0 mean and unit variance.

As often done in collaborative filtering (Marlin, 2004),
we view each movie as a separate prediction task, in which
the instances are users, and the features are the ratings that
the user has assigned to other movies that he has seen.
More precisely, in the prediction task for movie m, user
u’s ratings are mapped to a feature vector xm[u], in which
the ith entry is either the (normalized) rating the user gave
to the ith movie, or 0 if the user has not rated the ith movie
which is equivalent to treating a missing rating as the mean
rating over the movie since movie ratings have mean 0. The
response variable is the rating ym[u] that the user gave to
movie m. We performed feature selection for each predic-
tion task by discarding feature movies whose ratings have
a Pearson correlation coefficient with absolute value of less
than 0.20 with the target movie’s ratings.

We use a linear regression model: ym ∼ N(w>
mxm, ε).

For our baseline model, we add a Gaussian prior over
the weights wm with mean 0 and variance γ, resulting
in a standard ridge regression model that treats all fea-
tures as equally likely to be relevant (we also experimented
with L1-regularized regression, but the performance was
slightly worse, so we omit those results). While our fea-
ture representation ignores the information present in the
mere presence of movie ratings, in our experience with
the full Netflix dataset, the ridge regression model is com-
petitive with other collaborative filtering approaches such
as memory-based methods and generative models. Note,
however, that we do not aim to compete with all state-of-
the-art collaborative filtering algorithms, but rather to eval-
uate our approach on this real-world data set.

Table 1. Meta-features used in our collaborative filtering domain
1.Genre: Whether the movies share a particular genre.
2.Decade:Whether both movies were released in
2000s, 1990s, 1980s, 1970s or a previous decade.
4.Actors/Directors: How many and which
actors/directors the movies have in common.
5.Keywords: How many and which keywords
the movies have in common.

In this domain, the features for rating one movie m are
ratings for other movies m′. Intuitively, the rating for m′ is
more likely to be relevant to predicting m when m′ and
m are similar, in some sense. To capture this intuition,
we model the relevance of features using meta-features
that are based on shared attributes of the feature movie
and prediction task movie. We associated each Netflix
movie title with a corresponding entry in the Internet Movie
Database (IMDB),1 and extracted a rich set of attributes:

1Downloadable in text format from www.imdb.com.

movie genre, actors, director, and many descriptive key-
words about the movie (such as “cult movie”, “violence”,
“organized crime” etc.). We discarded actors with fewer
than 25 movies in the full Netflix dataset, directors with
fewer than 5 movies, and keywords which appear in fewer
than 80 movies. We defined a meta-feature vector fmm′

for each prediction movie m and feature movie m′ pair, as
shown in Table 1. Notice that these meta-features represent
properties of the combination of a feature and a prediction
task movie, and thus illustrate the ability of our model to
have a feature’s relevance vary depending on the prediction
task. Altogether, this set consists of around 1400 meta-
features, from which selected the 200 most correlated with
the magnitude of the weights of a ridge regression baseline
model learned over a random subset of the training data.
In addition, for each task we also include a unique “bias”
meta-feature whose value is always 1.

In our Gen-Test experiment, we used all 600 movies in
our dataset as tasks, each with a training set of fixed size
M (M ranging from 100 to 2000). We split the remain-
ing ratings for each movie into a validation set, consisting
of 10% of the ratings, and a test set. We trained the fea-
ture weights W and meta-feature weights β on the training
set, and used the validation set to select the optimal ridge
penalty parameter for the baseline model. The reported re-
sults are averaged over 5 trials. Our measure of error is root
mean squared error (RMSE).

The meta-feature weights learned by the model are intu-
itive: the meta-features with the highest weights are those
corresponding to specific popular actors such as Adam San-
dler, Arnold Schwartzeneger and many others. Certain di-
rectors such as Quentin Tarantino and Richard Donner also
have meta-features with high weights suggesting that view-
ers who liked some of their movies tend to like all. From
the shared descriptive keyword meta-features, some of the
ones with the highest weights are whether the two movies
contain vulgarity or whether they involve sword-fights or
warriors. Among the shared genre meta-features the most
predictive ones are the Sports and Musical genres.

From this discussion, it is clear that not all prediction
tasks in this domain are associated with high-weight meta-
features. For example, when a prediction task movie does
not have any of these significant actors, directors, or key-
words, its associated meta-features are likely to have fairly
low weights. In this case, the range of relevance weights for
different features will be fairly narrow, giving rise to an un-
differentiated relevance prior. Indeed, Figure 1 shows the
relative RMSE improvement the meta-prior model gives
over the baseline model (when training over 100 examples),
as a function of the range of learned relevance of its fea-
tures. When the learned relevance of the features lies in
a narrow range, we see little improvement. Importantly,
however, the meta-level prior model is robust and never
leads to a significant reduction in RMSE. When the fea-
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ture relevance range is wider, we see that the improvement
of the model is most dramatic, reaching as high as 10% for
some movies. We therefore focused the remainder of our
evaluation to those tasks which exhibit an average feature
relevance range greater than 0.005.
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Figure 1. Relative RMSE improvement over a ridge regression
baseline of the meta-level prior model with a training set of 100
examples from each movie. Each point is a movie task m. The x-
axis is the range of the learned feature relevances for each movie:
maxm′ β

>fm,m′ −minm′ β
>fm,m′ . The results are averaged

over 5 random splits of training and test sets.
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Figure 2. Improvement in RMSE of the meta-prior model over the
baseline for the Gen-test with varying training set sizes.

In Figure 2, we show the effect of training set size on
generalization performance in the Gen-Test experiment.
As more training examples are available, the performance
gains over the baseline model diminish. This is to be ex-
pected since, in such cases, there is usually sufficient in-
formation in the training set, reducing the importance of
regularization.

We also performed a Trans-Test experiment, in which
we used 60% of the movies in our dataset and 500 training
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Figure 3. Improvement in RMSE of the meta-prior model over the
baseline for the Trans-test with varying training set sizes.

examples per movie, to learn the meta-feature weights β.
We then tested the relevance transfer ability of the meta-
prior on the remaining 40% of the movies, by using the
learned meta-feature weights β to construct the feature rel-
evance prior for each unseen movie, and estimating the
weights w from the movie’s training set. We set the weight
for the bias meta-feature for the unseen task to the optimal
baseline inverse ridge penalty, as determined using the val-
idation set. Figure 3 shows the generalization ability of the
meta-prior model for training set sizes ranging from 10 to
300. We can see that the transferred prior improves per-
formance significantly. The improvement peaks at a train-
ing set size of 50; this indicates that, when using fewer
examples, the noise in the training set overwhelms the ben-
efit of the transferred prior, whereas for very large numbers
of training instances, the baseline model does an adequate
job of selecting relevant features, even without an informed
prior. This result validates the usefulness of our algorithm
in the transfer learning setting, where a new prediction task
has a relatively small number of training instances.

5.2. Verb Argument Classification

S

NP VP

VP

NP

PP

Tom wants S

a

to

eat

VP

NP

NPsalad

croutons

with

Tom: NP S(NP) VPVP VPS T

NP1
croutons:

VP
PP(with)

Tsalad: 
NP1 VP T

Figure 4. Example of parse tree features for semantic role labeling

We applied our algorithm to the natural language task of
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semantic role labeling. Given a sentence containing a target
verb, we want to label the semantic arguments, or roles, of
that verb. For example, for the verb “eat”, a correct labeling
of the sentence “Tom wants to eat a salad with croutons” is
{ARG0(Eater)=“Tom”,ARG1(Food)=“salad”}. In the full
semantic role labeling task, every phrase in the sentence
must be labeled as a being an argument to the verb or not,
and then labeled with a role from a set of approximately 30
different roles. In these experiments we tested on a some-
what simpler task: we first extracted all phrases which were
either ARG0 (Agent) or ARG1 (Patient/Theme), and then
attempted to classify each phrase as either ARG0 or ARG1.

We train and test on the PropBank corpus (Kingsbury
et al., 2002), which labels the arguments of every verb in
approximately 50000 sentences. Hand-labeled parses are
also available for this corpus; we take these parses as given.
As usual, we considered each verb (frame) as a different
task. There were a total of 4216 verbs with at least one
argument labeled either ARG0 or ARG1. We filtered out
tasks that did not have at least 3 instances, resulting in 2610
tasks. For each task, we randomly split the instances into a
training set, validation set, and test set, ensuring that each
set had at least one instance for each set.

A variety of features of the sentence and the phrase be-
ing classified are used for semantic role labeling (Pradhan
et al., 2005). The most important features are the head word
of the phrase (e.g., “Tom” or “salad” above), and the path
from the verb to the phrase being classified; these features
are illustrated in Figure 4 for our example sentence.

For our results we consider a set of features that at-
tempts to take advantage of structure within the paths from
the verb to the phrase. In Figure 4, “Tom” has a fairly
complicated path to the verb. In the sentence “Tom ate a
salad.” the path from “Tom” to “eat” is simpler, NP ←
S(NP ) → V P → T . However, in both cases the path
contains the segment NP ← S(NP ) → V P . This ex-
ample suggests that we take subsequences of the path as
features in order to generalize between different paths with
common elements. To keep the number of features from
becoming too large, we restricted to segments containing
exactly 3 nodes. Note that previous work (Moschitti, 2004)
has used string or tree kernels to find common structure
between paths; our feature set is somewhat similar to the
implicit feature set encoded in these kernels. The differ-
ence here is that we will regularize each feature separately,
which kernels are not able to do.

In order to increase the discriminative power of
these features, we also include a number of generaliza-
tions/specializations of these features. Specifically, for
each node we allow three choices: completely general
(“*”), part-of-speech only (e.g., “NP”), or part-of-speech
plus head word (“NP:Tom”). For each edge, we have two
choices: general (“–”) or specific (e.g. “→”). Thus, an
example feature is “NP:Tom – * → VP”. We generate

all possible combinations of these choices; for a total of
3*2*3*2*3 = 108 different representations for a given se-
quence of 3 nodes (and 2 edges). Note that this set of fea-
tures includes the head word of the phrase being classified,
using features of the form “NP:Tom – * – *”. This task il-
lustrates the situation where there is very little feature shar-
ing over the tasks: 80% of the 1154673 features appear in
<10 tasks and 21% appear in only one task. We have one
meta-feature for each feature, which specifies which of the
108 types it is, and therefore its degree of specificity. Thus,
the information being transferred between tasks is not the
relevance of individual features, but rather the appropriate
level of abstraction in this complex feature space.

We compared two models: a baseline model — logistic
regression with input features as described; and our meta-
feature model using the same feature set and the meta-
features described above. Both models include, for each
feature, a global, unregularized mean parameter µk which
allows feature means to be shared across tasks; we modify
Eq.( 2),

P (wrk | β, µk,frk) =
1√

2πβ>frk

exp
(
− (wrk − µk)2

β>frk

)
.

Thus, we learn for each feature two pieces of informa-
tion: the bias of the feature towards ARG0 vs. ARG1, and
how relevant the feature is for distinguishing ARG0 from
ARG1. This allows us to distinguish between features that
always indicate a particular class (for example, some words
are usually ARG0) and thus have high global mean but
low variance; and features that are very relevant for decid-
ing ARG0 vs. ARG1, but have different means for differ-
ent tasks. For example, whether a phrase is the subject of
the sentence is highly relevant for determining whether the
phrase is the ARG0 or ARG1; but the subject can map to
different arguments for different verbs: for “say”, the sub-
ject is nearly always ARG0, while for “increase” it is often
ARG1 (“stocks increased”). The meta-features allow us to
choose these variances by, for example, indicating that fea-
tures which include the direction of the edges tend to be
more informative about whether the phrase is the subject
of the sentence, and thus have high variances.

Figure 5 shows the results of these two models on a
Gen-Test experiment, applied to a random subset of 500 of
the 2610 tasks. The tasks are grouped into buckets based on
the number of training examples. For tasks with few train-
ing examples, our model significantly improves over the
baseline, decreasing error by 25% for verbs with 1-2 train-
ing examples. As we would expect, as the amount of train-
ing data increases the effect of the prior decreases, and the
meta-features have less effect. However, as labeled training
data is scarce in most language problems, improvement for
sparse-data cases can be quite important in practice.

Figure 6 shows the results for a Trans-Test regime,
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Figure 5. Gen-test for semantic role labeling. Blue(left) is base-
line, Red(right) is the meta-feature model.
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Figure 6. Trans-test for semantic role labeling

where the model is trained on the same 500 tasks above,
and the learned β is then used for each of the remaining
2110 tasks. We again improve over the baseline model, al-
though here the largest improvements are for tasks with a
moderate amount of training data.

6. Related Work
This paper focuses on estimating the relevance of input

features from an ensemble of related tasks, with the un-
derlying assumption that similar features have similar rel-
evance. Our algorithm lies at the intersection of two lines
of research: feature selection and multi-task (or transfer)
learning.

Traditionally, a prior for feature relevance is selected
by hand, or via cross-validation. This approach is feasi-
ble only for a very small number of parameters, and hence,
in most cases, all features are taken to be equally relevant,
a priori. The best-known approach for automatically in-
ferring the relevance of features is automatic relevance de-
termination (ARD) (Neal, 1995; MacKay, 1992). As in

our model, it models the distribution over a feature weight
wi to be a Gaussian with mean 0 and variance αi. Given
a classification data set (xm, ym)m=1..N , it chooses fea-
ture relevances α that maximize the marginal likelihood
p(y|α). ARD-based methods also aim to estimate the vari-
ance of each feature, while there are significant differences
with our method. Our approach jointly optimizes the fea-
ture weights and the metaprior from multiple related tasks
using the meta-features, while the ARD-based models es-
timate the relevance based on the marginal likelihood in-
tegrated over the weights with non-informative prior for a
single task. Thus, our model identifies relevant features by
looking for features with different biases for different tasks.
The learned β’s for the meta-features can also give insight
about the domain. Additionally, our formulation is a con-
vex optimization problem over both the weights and the
metaprior, which allows efficient optimization techniques
guaranteed to converge to the global optimum.

The concept of transfer learning was introduced by Bax-
ter (1997), Caruana (1997) and Thrun (1996). Multiple
approaches to transfer learning have been defined, includ-
ing (Heskes, 2000; Evgeniou et al., 2005; Baxter, 2000;
Teh et al., 2005). They vary in the model they use for how
different tasks are related, which induces different types of
information transfer between the tasks.

Somewhat related to our approach is the transfer of sim-
ilarity between actual feature weights, as commonly done,
for example, in a hierarchical Bayesian framework (Mc-
Callum et al., 1998). Most simply, the weights are asserted
to be similar between classes, but some work defines the
weights in different tasks to be a linear combination of
the same set of components. For example, Taskar et al.
(2003) and Fink et al. (2006) both define the weights as-
sociated with a feature (albeit using very different models
and learning algorithms) as a linear combination of the fea-
ture’s meta-features. Zhang et al. (2005) uses a similar de-
composition of the feature weights, but automatically infers
the components in the weight decomposition using tech-
niques based on independent component analysis (ICA);
this approach avoids the need for a set of pre-defined meta-
features, but (conversely) does not take advantage of this
prior knowledge when available. All of these approaches
focus on modeling the similarity between the values of the
feature weights, whereas we focus on transferring infor-
mation regarding their relevance. More formally, in our
probabilistic setting, we learn a model for the variance of a
weight rather than its mean.

Some recent works considered the variance in multiple
related tasks. Yu et al. (2005) proposed an EM-based al-
gorithm for learning a Gaussian process from multiple re-
lated tasks based on a hierarchical Bayesian framework.
Argyriou et al. (2006) learned the covariance matrix of
a Gaussian prior over the features. However, none of
these approaches generalize the relevance of the features,
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and thus are not applicable to problems where tasks have
(largely) non-overlapping features or where the relevance
varies across the tasks.

Closest to our approach is the work of Raina et al.
(2006), who proposed the use of transfer learning for con-
structing a multivariate Gaussian prior with a full covari-
ance matrix for a given supervised learning task. Their
task formulation is similar to ours, in that a parameter
prior, involving both variances and covariances, is learned
as a linear function of a set of meta-features. However,
their approach first estimates covariances empirically, us-
ing a computationally expensive bootstrap procedure, then
learns a prior from those estimates, and only then uses
the prior for prediction. By contrast, in our approach,
the prior is learned as part of a single, coherent objective,
which encompasses both the data likelihood and the prior,
and jointly optimizes over both parameters and hyper-
parameters. Moreover, this objective is convex, allowing
efficient optimization and convergence to a unique global
optimum.

7. Discussion
In this paper, we propose a probabilistic approach for

learning an informed prior about feature relevance from
an ensemble of related tasks. Specifically, our approach
learns a variance for each feature as a function of its meta-
features. Therefore, our framework can be viewed as a
“paired” prediction problem: (1) predicting relevance of
features using meta-features and (2) predicting the tasks
using features. Our approach allows tranfer between tasks
with completely different feature sets and allows the fea-
ture relevance to vary over different tasks.

Our work raises several interesting directions for future
work. First, the framework we defined applies without
change to learning relationships between parameter values
in related tasks, by modeling their mean as a linear function
of meta-features. As we discussed above, other approaches
with the same goal have been proposed; but ours is a sim-
ple and efficient convex formulation, which may have ben-
efits in practice. In a different direction, one could follow
the work of Raina et al. (2006), and jointly learn a prior
of both the variances and the covariances of the weights,
thereby modeling not only their relevance, but also the re-
lationships between them. We believe that our formulation
could easily be extended to cover this case, without losing
convexity. Finally, it would be interesting to generalize our
methods to apply to cases where we do not have (enough)
pre-defined meta-features, by inducing factors in a decom-
position; this approach was taken by Zhang et al. (2005)
when modeling a prior over the mean of the weights, but
the application to modeling variance is far from obvious.
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