
Learning Structured Prediction Models: A Large Margin Approach

Ben Taskar taskar@cs.berkeley.edu

Computer Science, UC Berkeley, Berkeley, CA 94720

Vassil Chatalbashev vasco@cs.stanford.edu

Daphne Koller koller@cs.stanford.edu

Computer Science, Stanford University, Stanford, CA 94305

Carlos Guestrin guestrin@cs.cmu.edu

Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract
We consider large margin estimation in a
broad range of prediction models where infer-
ence involves solving combinatorial optimiza-
tion problems, for example, weighted graph-
cuts or matchings. Our goal is to learn pa-
rameters such that inference using the model
reproduces correct answers on the training
data. Our method relies on the expressive
power of convex optimization problems to
compactly capture inference or solution op-
timality in structured prediction models. Di-
rectly embedding this structure within the
learning formulation produces concise convex
problems for efficient estimation of very com-
plex and diverse models. We describe exper-
imental results on a matching task, disulfide
connectivity prediction, showing significant
improvements over state-of-the-art methods.

1. Introduction

Structured prediction problems arise in many tasks
where multiple interrelated decisions must be weighed
against each other to arrive at a globally satisfactory
and consistent solution. In natural language process-
ing, we often need to construct a global, coherent anal-
ysis of a sentence, such as its corresponding part-of-
speech sequence, parse tree, or translation into an-
other language. In computational biology, we analyze
genetic sequences to predict 3D structure of proteins,
find global alignment of related DNA strings, and rec-
ognize functional portions of a genome. In computer
vision, we segment complex objects in cluttered scenes,

Appearing in Proceedings of the 22 nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

reconstruct 3D shapes from stereo and video, and track
motion of articulated bodies.

Many prediction tasks are modeled by combinato-
rial optimization problems; for example, alignment
of 2D shapes using weighted bipartite point match-
ing (Belongie et al., 2002), disulfide connectivity pre-
diction using weighted non-bipartite matchings (Baldi
et al., 2004), clustering using spanning trees and graph
cuts (Duda et al., 2000), and other combinatorial and
graph structures. We define a structured model very
broadly, as a scoring scheme over a set of combina-
torial structures and a method of finding the highest
scoring structure. The score of a model is a function of
the weights of vertices, edges, or other parts of a struc-
ture; these weights are often represented as parametric
functions of a set of input features. The focus of this
paper is the task of learning this parametric scoring
function. Our training data consists of instances la-
beled by a desired combinatorial structure (matching,
cut, tree, etc.) and a set of input features to be used to
parameterize the scoring function. Informally, the goal
is to find parameters of the scoring function such that
the highest scoring structures are as close as possible
to the desired structures on the training instances.

Following the lines of the recent work on maximum
margin estimation for probabilistic models (Collins,
2002; Altun et al., 2003; Taskar et al., 2003), we
present a discriminative estimation framework for
structured models based on the large margin princi-
ple underlying support vector machines. The large-
margin criterion provides an alternative to proba-
bilistic, likelihood-based estimation methods by con-
centrating directly on the robustness of the decision
boundary of a model. Our framework defines a suite of
efficient learning algorithms that rely on the expressive
power of convex optimization problems to compactly
capture inference or solution optimality in structured

Learning Structured Prediction Models: A Large Margin Approach

models. We present extensive experiments on disulfide
connectivity in protein structure prediction showing
superior performance to state-of-the-art methods.

2. Structured models

As a particularly simple and relevant example, con-
sider modeling the task of assigning reviewers to pa-
pers as a maximum weight bipartite matching prob-
lem, where the weights represent the “expertise” of
each reviewer for each paper. More specifically, sup-
pose we would like to have R reviewers per paper, and
that each reviewer be assigned at most P papers. For
each paper and reviewer, we have a score sjk indicat-
ing the qualification level of reviewer j for evaluating
paper k. Our objective is to find an assignment for
reviewers to papers that maximizes the total weight.
We represent a matching using a set of binary vari-
ables yjk that are set to 1 if reviewer j is assigned to
paper k, and 0 otherwise. The score of an assignment
is the sum of edge scores: s(y) =

∑
jk sjkyjk. We de-

fine Y to be the set of bipartite matchings for a given
number of papers, reviewers, R and P . The maximum
weight bipartite matching problem, arg max

y∈Y s(y),
can be solved using a combinatorial algorithm or the
following linear program:

max
∑

jk

sjkyjk (1)

s.t.
∑

j

yjk = R,
∑

k

yjk ≤ P, 0 ≤ yjk ≤ 1.

This LP is guaranteed to have integral (0/1) solutions
(as long as P and R are integers) for any scoring func-
tion s(y) (Schrijver, 2003).

The quality of the assignment found depends criti-
cally on the choice of weights that define the objective.
A simple scheme could measure the “expertise” as the
percent of word overlap in the reviewer’s home page
and the paper’s abstract. However, we would want
to weight certain words more heavily (words that are
relevant to the subject and infrequent). Constructing
and tuning the weights for a problem is a difficult and
time-consuming process to perform by hand.

Let webpage(j) denote the bag of words occurring in
the home page of reviewer j and abstract(k) denote
the bag of words occurring in the abstract of paper
k. Then let xjk denote the intersection of the bag of
words occurring in webpage(j)∩abstract(k). We can let
the score sjk be simply sjk =

∑
d wd1I(wordd ∈ xjk), a

weighted combination of overlapping words (where 1I(·)
is the indicator function). Define fd(xjk) = 1I(wordd ∈
xjk) and fd(x,y) =

∑
jk yjk1I(wordd ∈ xjk), the num-

ber of times word d was in both the web page of
a reviewer and the abstract of the paper that were

matched in y. We can represent the objective s(y) as
a weighted combination of a set of features w>f(x,y),
where w is the set of parameters, f(x,y) is the set
of features. We develop a large margin framework for
learning the parameters of such a model from train-
ing data, in our example, paper-reviewer assignments
from previous years.

In general, we consider prediction problems in which
the input x ∈ X is an arbitrary structured object and
the output is a vector of values y = (y1, . . . , yLx

), for
example, a matching or a cut in the graph. We assume
that the length Lx and the structure of y depend deter-
ministically on the input x. In our bipartite matching
example, the output space is defined by the number of
papers and reviewers as well as R and P . Denote the
output space for a given input x as Y(x) and the entire
output space is Y =

⋃
x∈X Y(x). We assume that we

can define the output space for a structured example x
using a set of constraint functions: gd(x,y) : X ×Y 7→
IR such that Y(x) = {y : g(x,y) ≤ 0}.

The class of structured prediction models H we con-
sider is the linear family:

hw(x) = arg max
y : g(x,y)≤0

w>f(x,y), (2)

where f(x,y) is a vector of functions f : X ×Y 7→ IRn.
This formulation is very general; clearly, for many f ,g
pairs, finding the optimal y is intractable. We focus
our attention on models where this optimization prob-
lem can be solved in polynomial time. Such problems
include: probabilistic models such as certain types of
Markov networks and context-free grammars; combi-
natorial optimization problems such as min-cut and
matching; and convex optimization problems such as
linear, quadratic and semi-definite programming. In
intractable cases, such as certain types of matching
and graph cuts, we can use an approximate polyno-
mial time optimization procedure that provides up-
per/lower bounds on the solution.

3. Max-margin estimation

Our input consists of a set of training instances
S = {(x(i),y(i))}m

i=1, where each instance consists of
a structured object x(i) (such as a graph) and a tar-
get solution y(i) (such as a matching). We develop
methods for finding parameters w such that:

arg max
y∈Y(i)

w>f(x(i),y) ≈ y(i), ∀i,

where Y(i) = {y : g(x(i),y) ≤ 0}. Note that the solu-
tion space Y(i) depends on the structured object x(i);
for example, the space of possible matchings depends
on the precise set of nodes and edges in the graph, as
well as on the parameters R and P .

Learning Structured Prediction Models: A Large Margin Approach

We describe two general approaches to solving this
problem, and apply them to bipartite and non-
bipartite matchings. Both of these approaches define a
convex optimization problem for finding such param-
eters w. This formulation provides an effective and
exact polynomial-time algorithm for many variants of
this problem. Moreover, the reduction of this task to a
standard convex optimization problem allows the use
of highly optimized off-the-shelf software.

Our framework extends the max-margin formula-
tion for Markov networks (Taskar et al., 2003; Taskar
et al., 2004a) and context free grammars (Taskar et al.,
2004b), and is similar to other formulations (Altun
et al., 2003; Tsochantaridis et al., 2004).

As in the univariate prediction, we measure the er-
ror of prediction using a loss function `(y(i),y). In
structured problems, where we are jointly predicting
multiple variables, the loss is often not just the simple
0-1 loss. For structured prediction, a natural loss func-
tion is a kind of Hamming distance between y(i) and
h(x(i)): the number of variables predicted incorrectly.

We can express the requirement that the true struc-
ture y(i) is the optimal solution with respect to w for
each instance i as:

min
1

2
||w||2 (3)

s.t. w>fi(y
(i)) ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y(i),

where `i(y) = `(y(i),y), and fi(y) = f(x(i),y).

We can interpret 1
||w||w

>[fi(y
(i))− fi(y)] as the mar-

gin of y(i) over another y ∈ Y(i). The constraints en-
force w>fi(y

(i))−w>fi(y) ≥ `i(y), so minimizing ||w||
maximizes the smallest such margin, scaled by the loss
`i(y). We assume for simplicity that the features are
rich enough to satisfy the constraints, which is analo-
gous to the separable case formulation in SVMs. We
can add slack variables to deal with the non-separable
case; we omit details for lack of space.

The problem with Eq. (3) is that it has
∑

i |Y
(i)| lin-

ear constraints, which is generally exponential in Li,
the number of variables in yi. We present two equiva-
lent formulations that avoid this exponential blow-up
for several important structured models.

4. Min-max formulation

We can rewrite Eq. (3) by substituting a single max
constraint for each i instead of |Y (i)| linear ones:

min
1

2
||w||2 (4)

s.t. w>fi(y
(i)) ≥ max

y∈Y(i)
[w>fi(y) + `i(y)], ∀i.

The above formulation is a convex quadratic program
in w, since max

y∈Y(i) [w>fi(y) + `i(y)] is convex in w
(maximum of affine functions is a convex function).

The key to solving Eq. (4) efficiently is the loss-
augmented inference max

y∈Y(i) [w>fi(y)+`i(y)]. This
optimization problem has precisely the same form as
the prediction problem whose parameters we are try-
ing to learn — max

y∈Y(i) w>fi(y) — but with an ad-
ditional term corresponding to the loss function. Even
if max

y∈Y(i) w>fi(y) can be solved in polynomial time
using convex optimization, tractability of the loss-
augmented inference also depends on the form of the
loss term `i(y). In this paper, we assume that the loss
function decomposes over the variables in y(i). A nat-
ural example of such a loss function is the Hamming
distance, which simply counts the number of variables
in which a candidate solution y differs from the target
output y(i).

Assume that we can reformulate loss-augmented in-
ference as a convex optimization problem in terms of a
set of variables µi, with an objective f̃i(w, µi) concave
in µi and subject to convex constraints g̃i(µi):

max
y∈Y(i)

[w>fi(y) + `i(y)] = max
µi :̃gi(µi)≤0

f̃i(w, µi). (5)

We call such formulation concise if the number
of variables µi and constraints g̃i(µi) is polyno-
mial in Li, the number of variables in y(i). Note
that max

µi :̃gi(µi)≤0
f̃i(w, µi) must be convex in w,

as Eq. (4) is. Likewise, we can assume that it is feasi-
ble and bounded if Eq. (4) is.

For example, the Hamming loss for bipartite match-
ings counts the number of different edges in the match-
ings y and y(i):

`H
i (y) =

∑

jk

1I(yjk 6= y
(i)
jk) = RN (i)

p −
∑

jk

yjky
(i)
jk ,

where the last equality follows from the fact that any
valid matching for training example i has R reviewers

for N
(i)
p papers. Thus, the loss-augmented matching

problem can be then written as an LP in µi similar

to Eq. (1) (without the constant term RN
(i)
p):

max
∑

jk

µi,jk[w>f(x
(i)
jk) − y

(i)
jk]

s.t.
∑

j

µi,jk = R,
∑

k

µi,jk ≤ P, 0 ≤ µi,jk ≤ 1.

In terms of Eq. (5), f̃i and g̃i are affine in µi:

f̃i(w, µi) = RN
(i)
p +

∑
jk µi,jk[w>f(x

(i)
jk) − y

(i)
jk] and

g̃i(µi) ≤ 0 ⇔
∑

j µi,jk = R,
∑

k µi,jk ≤ P, 0 ≤
µi,jk ≤ 1.

Learning Structured Prediction Models: A Large Margin Approach

Generally, when we can express
max

y∈Y(i) w>f(x(i),y) as an LP, we have a sim-
ilar LP for the loss-augmented inference:

di + max (Fiw + ci)
>µi s.t. Aiµi ≤ bi, µi ≥ 0, (6)

for appropriately defined di,Fi, ci,Ai,bi, which de-
pend only on x(i), y(i), f(x,y) and g(x,y). Note that
w appears only in the objective.

In cases (such as these) where we can formulate
the loss-augmented inference as a convex optimization
problem as in Eq. (4), and this formulation is concise,
we can use Lagrangian duality (see (Boyd & Vanden-
berghe, 2004) for an excellent review) to define a joint,
concise convex problem for estimating the parameters
w. The Lagrangian associated with Eq. (4) is

Li,w(µi, λi) = f̃i(w, µi) − λ>
i g̃i(µi), (7)

where λi ≥ 0 is a vector of Lagrange multipliers, one
for each constraint function in g̃i(µi). Since we assume

that f̃i(w, µi) is concave in µi and bounded on the non-
empty set {µi : g̃i(µi) ≤ 0}, we have strong duality :

max
µi :̃gi(µi)≤0

f̃i(w, µi) = min
λi≥0

max
µi

Li,w(µi, λi).

For many forms of f̃ and g̃, we can write the La-
grangian dual minλi≥0 maxµi

Li,w(µi, λi) explicitly as:

min hi(w, λi) s.t. qi(w, λi) ≤ 0, (8)

where hi(w, λi) and qi(w, λi) are convex in both w
and λi. (We folded λi ≥ 0 into qi(w, λi) for brevity.)
Since the original problem had polynomial size, the
dual is polynomial size as well. For example, the dual
of the LP in Eq. (6) is

di + minb>
i λi s.t. A>

i λi ≥ Fiw + ci, λi ≥ 0, (9)

where hi(w, λi) = di + b>
i λi and qi(w, λi) ≤ 0 is

{Fiw + ci − A>
i λi ≤ 0,−λi ≤ 0}.

Plugging Eq. (8) into Eq. (4), we get

min
1

2
||w||2 (10)

s.t. w>fi(y
(i)) ≥ min

qi(w,λi)≤0
hi(w, λi), ∀i.

We can now combine the minimization over λ with
minimization over w. The reason for this is that if the
right hand side is not at the minimum, the constraint
is tighter than necessary, leading to a suboptimal solu-
tion w. Optimizing jointly over λ as well will produce
a solution to w that is optimal.

min
1

2
||w||2 (11)

s.t. w>fi(y
(i)) ≥ hi(w, λi), ∀i;

qi(w, λi) ≤ 0, ∀i.

Hence we have a joint and concise convex optimiza-
tion program for estimating w. The exact form of this
program depends strongly on f̃ and g̃. For our LP-
based example, we have a QP with linear constraints:

min
1

2
||w||2 (12)

s.t. w>fi(y
(i)) ≥ di + b>

i λi, ∀i;

A>
i λi ≥ Fiw + ci, ∀i; λi ≥ 0, ∀i.

This formulation generalizes the idea used by Taskar
et al. (2004a) to provide a polynomial time estimation
procedure for a certain family of Markov networks; it
can also be used to derive the max-margin formula-
tions of Taskar et al. (2003); Taskar et al. (2004b).

5. Certificate formulation

In the previous section, we assumed a concise con-
vex formulation of the loss-augmented max in Eq. (4).
There are several important combinatorial problems
which allow polynomial time solution yet do not have
a concise convex optimization formulation. For exam-
ple, a maximum weight spanning tree and perfect non-
bipartite matching problems can be expressed as linear
programs with exponentially many constraints, but no
polynomial formulation as a convex optimization prob-
lem is known (Schrijver, 2003). Both of these prob-
lems, however, can be solved in polynomial time using
combinatorial algorithms. In some cases, though, we
can find a concise certificate of optimality that guaran-
tees that y(i) = arg max

y
[w>fi(y)+`i(y)] without ex-

pressing loss-augmented inference as a concise convex
program. Intuitively, verifying that a given assignment
is optimal can be easier than actually finding one.

As a simple example, consider the maximum weight
spanning tree problem. A basic property of a spanning
tree is that cutting any edge (j, k) in the tree creates
two disconnected sets of nodes (Vj [jk],Vk[jk]), where
j ∈ Vj [jk] and k ∈ Vk[jk]. A spanning tree is opti-
mal with respect to a set of edge weights if and only if
for every edge (j, k) in the tree connecting Vj [jk] and
Vk[jk], the weight of (j, k) is larger than (or equal to)
the weight of any other edge (j ′, k′) in the graph with
j′ ∈ Vj [jk], k′ ∈ Vk[jk] (Schrijver, 2003). These con-
ditions can be expressed using linear inequality con-
straints on the weights.

More generally, suppose that we can find a concise
convex formulation of these conditions via a polyno-
mial (in Li) set of functions qi(w, νi), jointly con-
vex in w and auxiliary variables νi such that for
fixed w, ∃νi : qi(w, νi) ≤ 0 ⇔ ∀y ∈ Y(i) :
w>fi(y

(i)) ≥ w>fi(y)+`i(y). Then min 1
2 ||w||2 such

that qi(w, νi) ≤ 0 for all i is a joint convex program
in w, ν that computes the max-margin parameters.

Learning Structured Prediction Models: A Large Margin Approach

Expressing the spanning tree optimality does not re-
quire additional variables νi, but in other problems,
such as in perfect matching optimality (see below),
such auxiliary variables are needed.

Consider the problem of finding a matching in a
non-bipartite graph; we begin by considering perfect
matchings, where each node has exactly one neighbor,
and then provide a reduction for the non-perfect case
(each node has at most one neighbor). Let M be
a perfect matching for a complete undirected graph
G = (V, E). In an alternating cycle/path in G with
respect to M , the edges alternate between those that
belong to M and those that do not. An alternating
cycle is augmenting with respect to M if the score of
the edges in the matching M is smaller that the score
of the edges not in the matching M .

Theorem 5.1 (Edmonds, 1965) A perfect matching
M is a maximum weight perfect matching if and only
if there are no augmenting alternating cycles.

The number of alternating cycles is exponential in the
number of vertices, so simply enumerating all of them
is infeasible. Instead, we can rule out such cycles by
considering shortest paths.

We begin by negating the score of those edges not
in M . In the discussion below we assume that each
edge score sjk has been modified this way. We also
refer to the score sjk as the length of the edge jk. An
alternating cycle is augmenting if and only if its length
is negative. A condition ruling out negative length
alternating cycles can be stated succinctly using a type
of distance function. Pick an arbitrary root node r.
Let de

j , with j ∈ V, e ∈ {0, 1}, denote the length of the
shortest distance alternating path from r to j, where
e = 1 if the last edge of the path is in M , 0 otherwise.
These shortest distances are well-defined if and only if
there are no negative alternating cycles. The following
constraints capture this distance function.

sjk ≥ d0
k − d1

j , sjk ≥ d0
j − d1

k, ∀ jk /∈ M ; (13)

sjk ≥ d1
k − d0

j , sjk ≥ d1
j − d0

k, ∀ jk ∈ M.

Theorem 5.2 There exists a distance function {de
j}

satisfying the constraints in Eq. (13) if and only if no
augmenting alternating cycles exist.

The proof is presented in Taskar (2004), Chap. 10.

In our learning formulation, assuming Hamming

loss, we have the loss-augmented edge weights s
(i)
jk =

(2y
(i)
jk − 1)(w>f(xjk)+1− 2y

(i)
jk), where the (2y

(i)
jk − 1)

term in front negates the score of edges not in the
matching. Let di be a vector of distance variables de

j ,
Fi and Gi be matrices of coefficients and qi be a vector
such that Fiw + Gidi ≥ qi represents the constraints

in Eq. (13) for example i. Then the following joint
convex program in w and d (with di playing the role
of νi) computes the max-margin parameters:

min
1

2
||w||2 s.t. Fiw + Gidi ≥ qi, ∀i. (14)

If our features are not rich enough to predict the train-
ing data perfectly, we can introduce a slack variable
vector to allow violations of the constraints.

The case of non-perfect matchings can be handled by
a reduction to perfect matchings as follows (Schrijver,
2003). We create a new graph by making a copy of the
nodes and the edges and adding edges between each
node and the corresponding node in the copy. We
extend the matching by replicating its edges in the
copy and for each unmatched node, introduce an edge
to its copy. We define f(xjk) ≡ 0 for edges between
the original and the copy. Perfect matchings in this
graph projected onto the original graph correspond to
non-perfect matchings in the original graph.

6. Duals and kernels

Both the min-max formulation and the certificate
formulation produce primal convex optimization prob-
lems. Rather than solving them directly, we consider
their dual versions. In particular, as in SVMs, we can
use the kernel trick in the dual to efficiently learn in
high-dimensional feature spaces.

Consider, for example, the primal problem
in Eq. (14). In the dual, each training example

i has Li(Li − 1) variables, two for each edge (α
(i)
jk and

α
(i)
kj), since we have two constraints per edge in the

primal. Let α(i) be the vector of dual variables for
example i. The dual quadratic problem is:

min
∑

i

q>
i α(i) +

1

2

∣∣∣∣∣

∣∣∣∣∣
∑

i

F>
i α(i)

∣∣∣∣∣

∣∣∣∣∣

2

s.t. Giα
(i) = 0, α(i) ≥ 0, ∀i.

The only occurrence of feature vectors is in the expan-
sion of the squared-norm term in the objective:

F>
i α(i) =

∑

j<k

(α
(i)
jk + α

(i)
kj)(2y

(i)
jk − 1)f(x

(i)
jk) (15)

Therefore, we can apply the kernel trick and let

f(x
(i)
jk)>f(x

(t)
mn) = K(x

(i)
jk ,x

(t)
mn). At prediction time,

we can also use the kernel trick to compute:

w>f(xmn) =
∑

i

∑

j<k

(α
(i)
jk +α

(i)
kj)(2y

(i)
jk −1)K(x

(i)
jk ,xmn).

The dual of min-max Eq. (12) is also kernelizable.

Learning Structured Prediction Models: A Large Margin Approach

1

2 3

4

5 6

1

2 3

4

5 6

RSCCPCYWGGCPWGQNCYPEGCSGPKV
1 2 3 4 5 6

Figure 1. PDB protein 1ANS: amino acid sequence, 3D
structure, and graph of potential disulfide bonds. Actual
disulfide connectivity is shown in yellow in the 3D model
and the graph of potential bonds.

7. Experiments

We apply our framework to the task of disulfide
connectivity prediction. Proteins containing cysteine
residues form intra-chain covalent bonds known as
disulfide bridges. Such bonds are a very important
feature of protein structure, as they enhance confor-
mational stability by reducing the number of configu-
rational states and decreasing the entropic cost of fold-
ing a protein into its native state (Baldi et al., 2004).
Knowledge of the exact disulfide bonding pattern in a
protein provides information about protein structure
and possibly its function and evolution. Furthermore,
as the disulfide connectivity pattern imposes structural
constraints, it can be used to reduce the search space
in both protein folding prediction as well as protein
3D structure prediction. Thus, the development of effi-
cient, scalable and accurate methods for the prediction
of disulfide bonds has important practical applications.

Recently, there has been increasing interest in apply-
ing computational techniques to the task of predict-
ing disulfide connectivity (Fariselli & Casadio, 2001;
Baldi et al., 2004). Following the lines of Fariselli and
Casadio (2001), we predict the connectivity pattern by
finding the maximum weighted matching in a graph in
which each vertex represents a cysteine residue, and
each edge represents the “attraction strength” between
the cysteines it connects. For example, 1ANS protein
in Fig. 1 has six cysteines, and three disulfide bonds.

We parameterize the attraction scoring function via a
linear combination of features, which include the pro-
tein sequence around the two residues, evolutionary
information in the form of multiple alignment profiles,
secondary structure or solvent accessibility informa-
tion, etc. We then learn the weights of the different
features using a set of solved protein structures, in
which the disulfide connectivity patterns are known.

Datasets. We used two datasets containing sequences
with experimentally verified bonding patterns: SP39

(used in Baldi et al. (2004); Vullo and Frasconi (2004);
Fariselli and Casadio (2001)) and DIPRO2.1

We report results for two experimental settings:
when the bonding state is known (that is, for each cys-
teine, we know whether it bonds with some other cys-
teine) and when it is unknown. The known state set-
ting corresponds to prefect non-bipartite matchings,
while the unknown to imperfect matchings. For the
case when bonding state is known, in order to com-
pare to previous work, we focus on proteins containing
between 2 and 5 bonds, which covers the entire SP39
dataset and over 90% of the DIPRO2 dataset.

In order to avoid biases during testing, we adopt the
same dataset splitting procedure as the one used in
previous work (Fariselli & Casadio, 2001; Vullo & Fras-
coni, 2004; Baldi et al., 2004).2

Models. The experimental results we report use
the dual formulation of Eq. (15) and an RBF kernel

K(xjk,xst) = exp
(

‖xjk−xst‖
2

2σ2

)
, with σ ∈ [1, 2]. We

used commercial QP software (CPLEX) to train our
models. Training time took around 70 minutes for 450
examples.

The set of features xjk for a candidate cysteine pair
jk is based on local windows of size n centered around
each cysteine (we use n = 9). The simplest approach
is to encode for each window, the actual sequence as
a 20 × n binary vector, in which the entries denote
whether or not a particular amino acid occurs at the
particular position. However, a common strategy is
to compensate for the sparseness of these features by
using multiple sequence alignment profile information.
Multiple alignments were computed by running PSI-
BLAST using default settings to align the sequence
with all sequences in the NR database (Altschul et al.,
1997). Thus, the input features for the first model,
PROFILE, consist of the proportions of occurrence of
each of the 20 amino-acids in the alignments at each
position in the local windows.

The second model, PROFILE-SS, augments the
PROFILE model with secondary structure and
solvent-accessibility information. The DSSP program

1The DIPRO2 dataset was made publicly available
by Baldi et al. (2004). It consists of 1018 non-redundant
proteins from PDB (Berman et al., 2000) as of May 2004
which contain intra-chain disulfide bonds. The sequences
are annotated with secondary structure and solvent acces-
sibility information from DSSP (Kabsch & Sander, 1983).

2We split SP39 into 4 different subsets, with the con-
straint that proteins with sequence similarity of more than
30% belong to different subsets. We ran all-against-all
rigorous Smith-Waterman local pairwise alignment (using
BLOSUM65, with gap penalty/extension 12/4) and consid-
ered pairs with less than 30 aligned residues as dissimilar.

Learning Structured Prediction Models: A Large Margin Approach

K SVM PROFILE DAG-RNN

2 0.63/0.63 0.77/0.77 0.74/0.74
3 0.51/0.38 0.62/0.52 0.61/0.51
4 0.34/0.12 0.51/0.36 0.44/0.27
5 0.31/0.07 0.43/0.13 0.41/0.11

PROFILE PROFILE-SS

0.76/0.76 0.78/0.78
0.67/0.59 0.74/0.65
0.59/0.42 0.64/0.49
0.39/0.13 0.46/0.22

PROFILE DAG-RNN

0.57/0.59/0.44 0.49/0.59/0.40
0.48/0.52/0.28 0.45/0.50/0.32
0.39/0.40/0.14 0.37/0.36/0.15
0.31/0.33/0.07 0.31/0.28/0.03

(a) (b) (c)

Table 1. Numbers indicate Precision/Accuracy for known bonded state setting in (a) and (b) and Preci-
sion/Recall/Accuracy for unknown bonded state in (c). K denotes the true number of bonds. Best results in each
row are in bold. (a) PROFILE vs. SVM and DAG-RNN model (Baldi et al., 2004) on SP39 . (b) PROFILE vs.
PROFILE-SS models on the DIPRO2 dataset. (c) PROFILE vs. DAG-RNN model on SP39 (unknown state).

produces 8 types of secondary structure, so we aug-
ment each local window of size n with an additional
length 8×n binary vector, as well as a length n binary
vector representing the solvent accessibility at each po-
sition. Because DSSP utilizes true 3D structure in-
formation in assigning secondary structure, the model
cannot be used in for unknown proteins. Rather, its
performance is useful as an upper bound of the poten-
tial prediction improvement using features derived via
accurate secondary structure prediction algorithms.

Known Bonded State. When bonding state is
known, we evaluate our algorithm using two metrics:
accuracy measures the fraction of entire matchings
predicted correctly, and precision measures fraction of
correctly predicted individual bonds.

We apply the model to the SP39 dataset by us-
ing 4-fold cross-validation, which replicates the exper-
imental setup of Baldi et al. (2004); Vullo and Fras-
coni (2004). First, we evaluate the advantage that
our learning formulation provides over a baseline ap-
proach, where we use the features of the PROFILE
model, but ignore the constraints in the learning phase
and simply learn w using an SVM by labeling bonded
pairs as positive examples and non-bonded pairs as
negative examples. We then use these SVM-learned
weights to score the edges. The results are summa-
rized in Table 1(a) in the column SVM. The PROFILE
model uses our certificate-based formulation, directly
incorporating the matching constraint in the learning
phase. It achieves significant gains over SVM for all
bond numbers, illustrating the importance of explic-
itly modelling structure during parameter estimation.
We also compare our model to the DAG-RNN model
of Baldi et al. (2004), the current top-performing sys-
tem, which uses recursive neural networks also with
the same set of input features. Our performance is
better for all bond numbers.

As a final experiment, we examine the role that sec-
ondary structure and solvent-accessibility information
plays in the model PROFILE-SS. Table 1(b) shows

that the gains are significant, especially for sequences
with 3 and 4 bonds. This highlights the importance of
developing even richer features, perhaps through more
complex kernels.

Unknown Bonded State. We also evaluated our
learning formulation for the case when bonding state
is unknown using the graph-copy reduction described
in Sec. 5. Here, we use an additional evaluation metric:
recall, which measures correctly predicted bonds as a
fraction of the total number of bonds. We apply the
model to the SP39 dataset for proteins of 2-5 bonds,
without assuming knowledge of bonded state. Since
some sequences contain over 50 cysteines, for compu-
tational efficiency during training, we only take up to
14 bonded cysteines by including the ones that par-
ticipate in bonds, and randomly selecting additional
cysteines from the protein (if available). During test-
ing, we used all the cysteines.

The results are summarized in Table 1(c), with a
comparison to the DAG-RNN model, which is cur-
rently the only other model to tackle this more chal-
lenging setting. Our results compare favorably having
better precision and recall for all bond numbers, but
our connectivity pattern accuracy is slightly lower for
3 and 4 bonds.

8. Discussion and Conclusion

We present a framework for learning a wide range
of structured prediction models where the set of out-
comes is a class of combinatorial structures such as
matchings and graph-cuts. We present two formula-
tions of structured max-margin estimation that define
a concise convex optimization problem. The first for-
mulation, min-max, relies on the ability to express in-
ference in a model as a concise convex optimization
problem. The second one, certificate, only requires ex-
pressing optimality of a desired solution according to a
model. We illustrate how to apply these formulations
to the problem of learning to match, with bipartite
and non-bipartite matchings. These formulations can

Learning Structured Prediction Models: A Large Margin Approach

be also applied to min-cuts, max-flows, trees, colorings
and many other combinatorial problems.

Beyond the closely related large-margin methods
for probabilistic models, our max-margin formula-
tion has ties to a body of work called inverse com-
binatorial and convex optimization (for a recent sur-
vey, see Heuberger (2004)). An inverse optimiza-
tion problem is defined by an instance of an opti-
mization problem maxy∈Y w>f(y), a set of nominal
weights w0, and a target solution yt. The goal is
to find the weights w closest to the nominal w0 in
some p-norm, which make the target solution optimal.
min ||w − w0||p s.t. w>f(yt) ≥ w>f(y), ∀y ∈ Y.
The solution w depends critically on the choice of nom-
inal weights; for example, if w0 = 0, then w = 0 is
trivially the optimal solution. In our approach, we
have a very different goal, of learning a parameterized
objective function that depends on the input x and
will generalize well in prediction on new instances.

Our approach attempts to find weights that obtain
a particular target solution for each training instance.
While a unique solution is a reasonable assumption
in some domains (e.g., disulfide bonding), in others
there may be several “equally good” target solutions.
It would be interesting to extend our approach to ac-
commodate multiple target solutions.

The estimation problem is tractable and exact when-
ever the prediction problem can be formulated as a
concise convex optimization problem or a polynomial
time combinatorial algorithm with concise convex opti-
mality conditions. For intractable models (e.g., tripar-
tite matching, quadratic assignment, max-cut, etc.),
we can use our framework to learn approximate param-
eters by exploiting approximations that only provide
upper/lower bounds on the optimal structure score or
provide a certificate of optimality in a large neighbor-
hood around the desired structure.

Using off-the-shelf convex optimization code for our
learning formulation is convenient and flexible, but it
is likely that problem-specific methods that use com-
binatorial subroutines will outperform generic solvers.
Design of such algorithms is an open problem.

We have addressed estimation of models with dis-
crete output spaces. Similarly, we can consider a
whole range of problems where the prediction vari-
ables are continuous. Such problems are a natural gen-
eralizations of regression, involving correlated, inter-
constrained real-valued outputs. Examples include
learning models of metabolic flux in cells, which obeys
stoichiometric constraints, and learning game payoff
matrices from observed equilibria strategies.

Our learning framework addresses a large class of
prediction models with rich and interesting structure.

We hope that continued research in this vein will help
tackle evermore sophisticated prediction problems.

Acknowledgements. This work was supported by NSF

grant DBI-0345474. and by DARPA’s EPCA program un-

der subcontract to SRI.

References
Altschul, S., Madden, T., Schaffer, A., Zhang, A., Miller,

W., & Lipman (1997). Gapped BLAST and PSI-
BLAST: a new generation of protein database search
programs. Nucleid Acids Res., 25, 3389–3402.

Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hid-
den markov support vector machines. Proc. ICML.

Baldi, P., Cheng, J., & Vullo, A. (2004). Large-scale pre-
diction of disulphide bond connectivity. Proc. NIPS.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape match-
ing and object recognition using shape contexts. IEEE
Trans. Pattern Anal. Mach. Intell., 24.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T., Weissig, H., Shindyalov, I., & Bourne, P. (2000). The
protein data bank.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization.
Cambridge University Press.

Collins, M. (2002). Discriminative training methods for
hidden markov models: Theory and experiments with
perceptron algorithms. Proc. EMNLP.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). Pat-
tern classification. New York: Wiley Interscience. 2nd
edition.

Edmonds, J. (1965). Maximum matching and a polyhedron
with 0-1 vertices. Journal of Research at the National
Bureau of Standards, 69B, 125–130.

Fariselli, P., & Casadio, R. (2001). Prediction of disulfide
connectivity in proteins. Bioinformatics, 17, 957–964.

Heuberger, C. (2004). Inverse combinatorial optimization:
A survey on problems, methods, and results. Journal of
Combinatorial Optimization, 8.

Kabsch, W., & Sander, C. (1983). Dictionary of protein
secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features.

Schrijver, A. (2003). Combinatorial optimization: Polyhe-
dra and efficiency. Springer.

Taskar, B. (2004). Learning structured prediction models:
A large margin approach. Doctoral dissertation, Stan-
ford University.

Taskar, B., Chatalbashev, V., & Koller, D. (2004a). Learn-
ing associative Markov networks. Proc. ICML.

Taskar, B., Guestrin, C., & Koller, D. (2003). Max margin
Markov networks. Proc. NIPS.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning,
C. (2004b). Max margin parsing. Proc. EMNLP.

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun,
Y. (2004). Support vector machine learning for interde-
pendent and structured output spaces. Proc. ICML.

Vullo, A., & Frasconi, P. (2004). Disulfide connectivity pre-
diction using recursive neural networks and evolutionary
information. Bioinformatics, 20, 653–659.

