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One of the key challenges for statistical relational learning is the design of a repre-
sentation language that allows flexible modeling of complex relational interactions.
Many of the formalisms presented in this book are based on the directed graph-
ical models (probabilistic relational models, probabilistic entity-relationship mod-
els, Bayesian logic programs). In this chapter, we present a probabilistic modeling
framework that builds on undirected graphical models (also known as Markov ran-
dom fields or Markov networks). Undirected models address two limitations of the
previous approach. First, undirected models do not impose the acyclicity constraint
that hinders representation of many important relational dependencies in directed
models. Second, undirected models are well suited for discriminative training, where
we optimize the conditional likelihood of the labels given the features, which gen-
erally improves classification accuracy. We show how to train these models effec-
tively, and how to use approximate probabilistic inference over the learned model
for collective classification and link prediction. We provide experimental results on
hypertext and social network domains, showing that accuracy can be significantly
improved by modeling relational dependencies.1

6.1

Introduction

We focus on supervised learning as a motivation for our framework. The vast
majority of work in statistical classification methods has focused on “flat” data
— data consisting of identically structured entities, typically assumed to be i.i.d.
However, many real-world data sets are innately relational: hyperlinked webpages,
cross-citations in patents and scientific papers, social networks, medical records,
and more. Such data consists of entities of different types, where each entity type is

1. This chapter is based on work in [21, 22].
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characterized by a different set of attributes. Entities are related to each other via
different types of links, and the link structure is an important source of information.

Consider a collection of hypertext documents that we want to classify using
some set of labels. Most naively, we can use a bag-of-words model, classifying each
webpage solely using the words that appear on the page. However, hypertext has a
very rich structure that this approach loses entirely. One document has hyperlinks
to others, typically indicating that their topics are related. Each document also
has internal structure, such as a partition into sections; hyperlinks that emanate
from the same section of the document are even more likely to point to similar
documents. When classifying a collection of documents, these are important cues
that can potentially help us achieve better classification accuracy. Therefore, rather
than classifying each document separately, we want to provide a form of collective
classification, where we simultaneously decide on the class labels of all of the entities
together, and thereby can explicitly take advantage of the correlations between the
labels of related entities.

Another challenge arises from the task of predicting which entities are related to
which others and what are the types of these relationships. For example, in a data
set consisting of a set of hyperlinked university webpages, we might want to predict
not just which page belongs to a professor and which to a student, but also which
professor is which student’s advisor. In some cases, the existence of a relationship
will be predicted by the presence of a hyperlink between the pages, and we will have
only to decide whether the link reflects an advisor-advisee relationship. In other
cases, we might have to infer the very existence of a link from indirect evidence,
such as a large number of coauthored papers.

We propose the use of a joint probabilistic model for an entire collection of
related entities. Following the work of Lafferty et al. [13], we base our approach on
discriminatively trained undirected graphical models, or Markov networks [17]. We
introduce the framework of relational Markov networks (RMNs), which compactly
defines a Markov network over a relational data set. The graphical structure of
an RMN is based on the relational structure of the domain, and can easily model
complex patterns over related entities. For example, we can represent a pattern
where two linked documents are likely to have the same topic. We can also capture
patterns that involve groups of links: for example, consecutive links in a document
tend to refer to documents with the same label. As we show, the use of an undirected
graphical model avoids the difficulties of defining a coherent generative model for
graph structures in directed models. It thereby allows us tremendous flexibility in
representing complex patterns.

Undirected models lend themselves well to discriminative training, where we op-
timize the conditional likelihood of the labels given the features. Discriminative
training, given sufficient data, generally provides significant improvements in clas-
sification accuracy over generative training (see [23]). We provide an effective pa-
rameter estimation algorithm for RMNs which uses conjugate gradient combined
with approximate probabilistic inference (belief propagation [17, 14, 12]) for esti-
mating the gradient. We also show how to use approximate probabilistic inference
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over the learned model for collective classification and link prediction. We provide
experimental results on a webpage classification and social network task, showing
significant gains in accuracy arising both from the modeling of relational depen-
dencies and the use of discriminative training.

6.2

Relational Classification and Link Prediction

Consider hypertext as a simple example of a relational domain. A relational domain
is defined by a schema, which describes entities, their attributes, and the relations
between them. In our domain, there are two entity types: Doc and Link. If a webpage
is represented as a bag of words, Doc would have a set of Boolean attributes
Doc.HasWordy, indicating whether the word k occurs on the page. It would also
have the label attribute Doc. Label, indicating the topic of the page, which takes on
a set of categorical values. The Link entity type has two attributes: Link.From and
Link. To, both of which refer to Doc entities.

In general, a schema specifies of a set of entity types &€ = {F1,..., E,}. Each
type E is associated with three sets of attributes: content attributes E.X (e.g.,
Doc.HasWordy,), label attributes E.Y (e.g., Doc.Label), and reference attributes
E.R (e.g. Link.To). For simplicity, we restrict label and content attributes to take
on categorical values. Reference attributes include a special unique key attribute
FE.K that identifies each entity. Other reference attributes E.R refer to entities of
a single type E' = Range(E.R) and take values in Domain(E’.K).

An instantiation T of a schema & specifies the set of entities Z(E) of each entity
type E € £ and the values of all attributes for all of the entities. For example, an
instantiation of the hypertext schema is a collection of webpages, specifying their
labels, the words they contain, and the links between them. We will use Z.X, Z.Y,
and Z.R to denote the content, label, and reference attributes in the instantiation
Z; I.x, I.y, and Z.r to denote the values of those attributes. The component Z.r,
which we call an instantiation skeleton or instantiation graph, specifies the set of
entities (nodes) and their reference attributes (edges). A hypertext instantiation
graph specifies a set of webpages and links between them, but not their words or
labels.

To address the link prediction problem, we need to make links first-class citizens
in our model. Following Getoor et al. [7], we introduce into our schema object
types that correspond to links between entities. Each link object ¢ is associated
with a tuple of entity objects (o1,..., o) that participate in the link. For example,
a Hyperlink link object would be associated with a pair of entities — the linking
page, and the linked-to page, which are part of the link definition. We note that
link objects may also have other attributes; e.g., a hyperlink object might have
attributes for the anchor words on the link.

As our goal is to predict link existence, we must consider links that exist and
links that do not. We therefore consider a set of potential links between entities.
Each potential link is associated with a tuple of entity objects, but it may or may
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not actually exist. We denote this event using a binary ezistence attribute Ezists,
which is true if the link between the associated entities exists and false otherwise.
In our example, our model may contain a potential link ¢ for each pair of webpages,
and the value of the variable ¢. Ezists determines whether the link actually exists or
not. The link prediction task now reduces to the problem of predicting the existence
attributes of these link objects.

6.3

Graph Structure and Subgraph Templates

The structure of the instantiation graph has been used extensively to infer its
importance in scientific publications [5] and hypertext [10]. Several recent papers
have proposed algorithms that use the link graph to aid classification. Chakrabarti
et al. [2] use system-predicted labels of linked documents to iteratively relabel
each document in the test set, achieving a significant improvement compared to a
baseline of using the text in each document alone. A similar approach was used
by Neville and Jensen [16] in a different domain. Slattery and Mitchell [19] tried to
identify directory (or hub) pages that commonly list pages of the same topic, and
used these pages to improve classification of university webpages. However, none
of these approaches provide a coherent model for the correlations between linked
webpages. Thus, they apply combinations of classifiers in a procedural way, with
no formal justification.

Taskar et al. [20] suggest the use of probabilistic relational models (PRMs) for the
collective classification task. PRMs [11, 6] are a relational extension to Bayesian net-
works [17]. A PRM specifies a probability distribution over instantiations consistent
with a given instantiation graph by specifying a Bayesian network-like template-
level probabilistic model for each entity type. Given a particular instantiation graph,
the PRM induces a large Bayesian network over that instantiation that specifies
a joint probability distribution over all attributes of all of the entities. This net-
work reflects the interactions between related instances by allowing us to represent
correlations between their attributes.

In our hypertext example, a PRM might use a naive Bayes model for words,
with a directed edge between Doc.Label and each attribute Doc. Had Wordy,; each of
these attributes would have a conditional probability distribution P(Doc.HasWordy, |
Doc. Label) associated with it, indicating the probability that word k appears in the
document given each of the possible topic labels. More importantly, a PRM can
represent the interdependencies between topics of linked documents by introducing
an edge from Doc.Label to Doc.Label of two documents if there is a link between
them. Given a particular instantiation graph containing some set of documents
and links, the PRM specifies a Bayesian network over all of the documents in the
collection. We would have a probabilistic dependency from each document’s label
to the words on the document, and a dependency from each document’s label to
the labels of all of the documents to which it points. Taskar et al. [20] show that
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this approach works well for classifying scientific documents, using both the words
in the title and abstract and the citation-link structure.

However, the application of this idea to other domains, such as webpages, is
problematic since there are many cycles in the link graph, leading to cycles in the
induced “Bayesian network,” which is therefore not a coherent probabilistic model.
Getoor et al. [8] suggest an approach where we do not include direct dependencies
between the labels of linked webpages, but rather treat links themselves as random
variables. Each two pages have a “potential link,” which may or may not exist
in the data. The model defines the probability of the link existence as a function
of the labels of the two endpoints. In this link existence model, labels have no
incoming edges from other labels, and the cyclicity problem disappears. This model,
however, has other fundamental limitations. In particular, the resulting Bayesian
network has a random variable for each potential link — N? variables for collections
containing N pages. This quadratic blowup occurs even when the actual link graph
is very sparse. When N is large (e.g., the set of all webpages), a quadratic growth is
intractable. Even more problematic are the inherent limitations on the expressive
power imposed by the constraint that the directed graph must represent a coherent
generative model over graph structures. The link existence model assumes that the
presence of different edges is a conditionally independent event. Representing more
complex patterns involving correlations between multiple edges is very difficult. For
example, if two pages point to the same page, it is more likely that they point to
each other as well. Such interactions between many overlapping triples of links do
not fit well into the generative framework.

Furthermore, directed models such as Bayesian networks and PRMs are usually
trained to optimize the joint probability of the labels and other attributes, while the
goal of classification is a discriminative model of labels given the other attributes.
The advantage of training a model only to discriminate between labels is that
it does not have to trade off between classification accuracy and modeling the
joint distribution over nonlabel attributes. In many cases, discriminatively trained
models are more robust to violations of independence assumptions and achieve
higher classification accuracy than their generative counterparts.

In our experiments, we found that the combination of a relational language with
a probabilistic graphical model provides a very flexible framework for modeling
complex patterns common in relational graphs. First, as observed by Getoor et al.
[7], there are often correlations between the attributes of entities and the relations
in which they participate. For example, in a social network, people with the same
hobby are more likely to be friends.

We can also exploit correlations between the labels of entities and the relation
type. For example, only students can be teaching assistants in a course. We can
easily capture such correlations by introducing cliques that involve these attributes.
Importantly, these cliques are informative even when attributes are not observed
in the test data. For example, if we have evidence indicating an advisor-advisee
relationship, our probability that X is a faculty member increases, and thereby our
belief that X participates in a teaching assistant link with some entity Z decreases.
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We also found it useful to consider richer subgraph templates over the link graph.
One useful type of template is a similarity template, where objects that share a
certain graph-based property are more likely to have the same label. Consider, for
example, a professor X and two other entities Y and Z. If X’s webpage mentions Y
and Z in the same context, it is likely that the X-Y relation and the Y-Z relation are
of the same type; for example, if Y is Professor X’s advisee, then probably so is Z.
Our framework accomodates these patterns easily, by introducing pairwise cliques
between the appropriate relation variables.

Another useful type of subgraph template involves transitivity patterns, where
the presence of an A-B link and of a B-C link increases (or decreases) the likelihood
of an A-C link. For example, students often assist in courses taught by their advisor.
Note that this type of interaction cannot be accounted for by just using pairwise
cliques. By introducing cliques over triples of relations, we can capture such patterns
as well. We can incorporate even more complicated patterns, but of course we are
limited by the ability of belief propagation to scale up as we introduce larger cliques
and tighter loops in the Markov network.

We note that our ability to model these more complex graph patterns relies on
our use of an undirected Markov network as our probabilistic model. In contrast,
the approach of Getoor et al. [8] uses directed graphical models (Bayesian networks
and PRMs [11]) to represent a probabilistic model of both relations and attributes.
Their approach easily captures the dependence of link existence on attributes of
entities. But the constraint that the probabilistic dependency graph be a directed
acyclic graph makes it hard to see how we would represent the subgraph patterns
described above. For example, for the transitivity pattern, we might consider simply
directing the correlation edges between link existence variables arbitrarily. However,
it is not clear how we would then parameterize a link existence variable for a link
that is involved in multiple triangles. See [20] for further discussion.

6.4

Undirected Models for Classification

As discussed, our approach to the collective classification task is based on the use
of undirected graphical models. We begin by reviewing Markov networks, a “flat”
undirected model. We then discuss how Markov networks can be extended to the
relational setting.

6.4.1 Markov Networks

We use V to denote a set of discrete random variables and v an assignment of
values to V. A Markov network for V defines a joint distribution over V. It consists
of a qualitative component, an undirected dependency graph, and a quantitative
component, a set of parameters associated with the graph. For a graph G, a clique
is a set of nodes V. in G, not necessarily maximal, such that each V;,V; € V. is
connected by an edge in G. Note that a single node is also considered a clique.
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Definition 6.1

Let G = (V, E) be an undirected graph with a set of cliques C(G). Each ¢ € C(G)
is associated with a set of nodes V. and a cligue potential ¢.(V.), which is a non-
negative function defined on the joint domain of V.. Let ® = {¢.(V¢)}cec (). The
Markov net (G, ®) defines the distribution P(v) = [ecc(q) @e(ve), where Z is
the partition function — a normalization constant given by Z = 3", [T ¢c(v.). 11

Each potential ¢, is simply a table of values for each assignment v, that defines
a “compatibility” between values of variables in the clique. The potential is often
represented by a log-linear combination of a small set of features:

¢c(vc) = GXP{Z wifi(vc)} = G‘XP{WC : fc(vc)}’ .

The simplest and most common form of a feature is the indicator function
f(V.) =6(V. = v.). However, features can be arbitrary logical predicates of the
variables of the clique, V.. For example, if the variables are binary, a feature might
signify the parity or whether the variables are all the same value. More generally,
the features can be real-valued functions, not just binary predicates. See further
discussion of features at the end of section 6.4.

We will abbreviate log-linear representation as follows:

log P(v) = ch fo(ve) —logZ =w-f(v) —log Z;

where w and f are the vectors of all weights and features.

For classification, we are interested in constructing discriminative models using
conditional Markov nets which are simply Markov networks renormalized to model
a conditional distribution.

Definition 6.2

Let X be a set of random variables on which we condition and Y be a set of target
(or label) random variables. A conditional Markov network is a Markov network
(G, ®) which defines the distribution P(y | x) = ﬁ [lecc(e) Pe(xc,ye), where
Z(x) is the partition function, now dependent on x: Z(x) = 3", [[ ¢c(xc, y¢)- 11

Logistic regression, a well-studied statistical model for classification, can be
viewed as the simplest example of a conditional Markov network. In standard form,
forY =+1land X € {0,1}" (or X € R"), P(y | x) = ﬁ exp{yw-x}. Viewing the
model as a Markov network, the cliques are simply the edges ¢, = {Xg, Y} with
potentials ¢ (x,y) = exp{ywizr}. In this example, each feature is of the form

fe(@r, y) = yog.
6.4.2 Relational Markov Networks

We now extend the framework of Markov networks to the relational setting. A
relational Markov network specifies a conditional distribution over all of the labels
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Figure 6.1 An unrolled Markov net over linked documents. The links follow a
common pattern: documents with the same label tend to link to each other more
often.

of all of the entities in an instantiation given the relational structure and the content
attributes. (We provide the definitions directly for the conditional case, as the
unconditional case is a special case where the set of content attributes is empty.)
Roughly speaking, it specifies the cliques and potentials between attributes of
related entities at a template level, so a single model provides a coherent distribution
for any collection of instances from the schema.

For example, suppose that pages with the same label tend to link to each other,
as in figure 6.1. We can capture this correlation between labels by introducing,
for each link, a clique between the labels of the source and the target page. The
potential on the clique will have higher values for assignments that give a common
label to the linked pages.

To specify what cliques should be constructed in an instantiation, we will define
a notion of a relational clique template. A relational clique template specifies tuples
of variables in the instantiation by using a relational query language. For our link
example, we can write the template as a kind of SQL query:

SELECT docl.Category, doc2.Category
FROM Doc docl, Doc doc2, Link link
WHERE link.From = docl.Key and link.To = doc2.Key

Note the three clauses that define a query: the FROM clause specifies the cross
product of entities to be filtered by the WHERE clause and the SELECT clause
picks out the attributes of interest. Our definition of clique templates contains the
corresponding three parts.

Definition 6.3
A relational clique template C' = (F, W, S) consists of three components:

m F = {F;} — a set of entity variables, where an entity variable F; is of type E(F}).
= W(F.R) — a Boolean formula using conditions of the form F;.R; = Fy.R;.
s F.SCF.XUF.Y — a selected subset of content and label attributes in F. [
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For the clique template corresponding to the SQL query above, F consists
of docl, doc2, and link of types Doc, Doc, and Link, respectively. W(F.R) is
link.From = docl.Key A link.To = doc2.Key and F.S is docl.Category and
doc2.Category.

A clique template specifies a set of cliques in an instantiation Z:

CIT)={c=fS:feI(F) AN W(fr)},

where f is a tuple of entities {f;} in which each f; is of type E(F;); Z(F) =
IZ(E(F1))x...xZ(E(F,)) denotes the cross product of entities in the instantiation;
the clause W (f.r) ensures that the entities are related to each other in specified
ways; and finally, f.S selects the appropriate attributes of the entities. Note that
the clique template does not specify the nature of the interaction between the
attributes; that is determined by the clique potentials, which will be associated
with the template.

This definition of a clique template is very flexible, as the WHERE clause of
a template can be an arbitrary predicate. It allows modeling complex relational
patterns on the instantiation graphs. To continue our webpage example, consider
another common pattern in hypertext: links in a webpage tend to point to pages of
the same category. This pattern can be expressed by the following template:

SELECT docl.Category, doc2.Category

FROM Doc docl, Doc doc2, Link linkl, Link link2
WHERE linkl.From = link2.From and link1.To = docl.Key
and link2.To = doc2.Key and not docl.Key = doc2.Key

Depending on the expressive power of our template definition language, we
may be able to construct very complex templates that select entire subgraph
structures of an instantiation. We can easily represent patterns involving three (or
more) interconnected documents without worrying about the acyclicity constraint
imposed by directed models. Since the clique templates do not explicitly depend on
the identities of entities, the same template can select subgraphs whose structure
is fairly different. The RMN allows us to associate the same clique potential
parameters with all of the subgraphs satisfying the template, thereby allowing
generalization over a wide range of different structures.

Definition 6.4
A relational Markov network M = (C, ®) specifies a set of clique templates C and
corresponding potentials ® = {¢¢c}cec to define a conditional distribution:

1
PZy|Ix,Ir)=—oFF— I.x:,L.yc
Ty |IxTIr) Z(ZI.x,I.r) cl;[c egz) dollxe Lye).

where Z(Z.x,Z.r) is the normalizing partition function:

ZZx,Zx)=> [] [l ¢c@xeZyl). 1

Z.y' CeCceC(T)
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Using the log-linear representation of potentials, pc (V) = exp{we-fc(Ve)},
we can write

log P(Ty | Ix,Zx) =Y Y wc fo(lxe,Ty.)—logZ(Ix,Tr)
CeC ceC(T)
= Z wo - fo(Z.x,Z.y,Z.r) —log Z(Z.x,Z.r)
ceC
=w-f(Z.x,Z.y,Z.r)—logZ(Zx,I.r),

where

fe(Zx,TZ.y,Z.r)= Z fo(Z.x,Z.yc)
ceC(T)

is the sum over all appearances of the template C(Z) in the instantiation, and f is
the vector of all fo.

Given a particular instantiation Z of the schema, the RMN M produces an
unrolled Markov network over the attributes of entities in Z. The cliques in the
unrolled network are determined by the clique templates C'. We have one clique for
each ¢ € C(Z), and all of these cliques are associated with the same clique potential
¢c. In our webpage example, an RMN with the link feature described above would
define a Markov net in which, for every link between two pages, there is an edge
between the labels of these pages. Figure 6.1 illustrates a simple instance of this
unrolled Markov network.

Note that we leave the clique potentials to be specified using arbitrary sets of
feature functions. A common set is the complete table of indicator functions, one
for each instantiation of the discrete-valued variables in the clique. However, this
results in a large number of parameters (exponential in the number of variables).
Often, as we encounter in our experiments, only a subset of the instantiations is
of interest or many instantiations are essentially equivalent because of symmetries.
For example, in an edge potential between labels of two webpages linked from a
given page, we might want to have a single feature tracking whether the two labels
are the same. In the case of triad cliques enforcing transitivity, we might constrain
features to be symmetric functions with respect to the variables. In the presence of
continuous-valued variables, features are often a predicate on the discrete variables
multiplied by a continuous value. We do not prescribe a language for specifying
features (as does Markov logic; see chapter 11), although in our implementation,
we use a combination of logical formulae and custom-designed functions.

6.5

Learning the Models

We focus here on the case where the clique templates are given; our task is to
estimate the clique potentials, or feature weights. Thus, assume that we are given a
set of clique templates C which partially specify our (relational) Markov network,
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and our task is to compute the weights w for the potentials ®. In the learning task,
we are given some training set D where both the content attributes and the labels
are observed. Any particular setting for w fully specifies a probability distribution
Py, over D, so we can use the likelihood as our objective function, and attempt to
find the weight setting that maximizes the likelihood (ML) of the labels given other
attributes. However, to help avoid overfitting, we assume a prior over the weights
(a zero-mean Gaussian), and use maximum a posteriori (MAP) estimation. More
precisely, we assume that different parameters are a priori independent and define
p(w;) = Vﬁexp{—w%/Zﬁ}. Both the ML and MAP objective functions are
concave and there are many methods available for maximizing them. Our experience

is that conjugate gradient performs fairly well for logistic regression and relational
Markov nets. However, recent experience with conditional random fields (CRF's)
suggests the L-BFGS method might be somewhat faster [18].

6.5.1 Learning Markov Networks

We first consider discriminative MAP training in the flat setting. In this case D
is simply a set of i.i.d. instances; let d index over all labeled training data D. The
discriminative likelihood of the data is [, Pw(ya | Xa). We introduce the parameter
prior, and maximize the log of the resulting MAP objective function:

w3

952 +C.

L(w,D) =Y (w-f(x4,ya) — log Z(xa))
deD

The gradient of the objective function is computed as

VLW, D) = 3 (£ va) — B, [fxa Ya))) - 75 -
deD

The last term is the shrinking effect of the prior and the other two terms are the
difference between the expected feature counts and the empirical feature counts,
where the expectation is taken relative to Py:

Ep, [f(xa, Ya)] = > £(xXa, y) Pu (Y} | Xa) -

Thus, ignoring the effect of the prior, the gradient is zero when empirical and
expected feature counts are equal.2 The prior term gives the smoothing we expect
from the prior: small weights are preferred in order to reduce overfitting. Note that
the sum over ¥’ is just over the possible categorizations for one data sample every
time.

2. The solution of ML estimation with log-linear models is also the solution to the dual
problem of maximum entropy estimation with constraints that empirical and expected
feature counts must be equal [4].
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6.5.2 Learning RMNs

The analysis for the relational setting is very similar. Now, our data set D is actually
a single instantiation Z, where the same parameters are used multiple times — once
for each different entity that uses a feature. A particular choice of parameters w
specifies a particular RMN, which induces a probability distribution Py over the
unrolled Markov network. The product of the likelihood of Z and the parameter
prior define our objective function, whose gradient V.L(w,Z) again consists of the
empirical feature counts minus the expected feature counts and a smoothing term
due to the prior:

f(Z.y,I.x,I.x) — Ew[f(Z.Y,T.x,T.r)] — %

where the expectation Ep, [f(Z.Y,Z.x,Z.r)] is

> Ty, Ix,Ir)Py(Ty |Ix,TIx).
Iy’

This last formula reveals a key difference between the relational and the flat
case: the sum over Z.y’ involves the exponential number of assignments to all the
label attributes in the instantiation. In the flat case, the probability decomposes
as a product of probabilities for individual data instances, so we can compute the
expected feature count for each instance separately. In the relational case, these
labels are correlated — indeed, this correlation was our main goal in defining this
model. Hence, we need to compute the expectation over the joint assignments to all
the entities together. Computing these expectations over an exponentially large set
is the expensive step in calculating the gradient. It requires that we run inference
on the unrolled Markov network.

6.5.3 Inference in Markov Networks

The inference task in our conditional Markov networks is to compute the pos-
terior distribution over the label variables in the instantiation given the content
variables. Exact algorithms for inference in graphical models can execute this pro-
cess efficiently for specific graph topologies such as sequences, trees, and other low
treewidth graphs. However, the networks resulting from domains such as our hy-
pertext classification task are very large (in our experiments, they contain tens
of thousands of nodes) and densely connected. Exact inference is completely in-
tractable in these cases.

We therefore resort to approximate inference. There is a wide variety of approxi-
mation schemes for Markov networks, including sampling and variational methods.
We chose to use belief propagation(BP) for its simplicity and relative efficiency and
accuracy. BP is a local message passing algorithm introduced by Pearl [17] and
later related to turbo-coding by McEliece et al. [14]. It is guaranteed to converge to
the correct marginal probabilities for each node only for singly connected Markov
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networks. Empirical results [15] show that it often converges in general networks,
and when it does, the marginals are a good approximation to the correct posteriors.
As our results in section 6.6 show, this approach works well in our domain. We refer
the reader to chapter 2 in this book for a detailed description of the BP algorithm.

6.6

Experimental Results

We present experiments with collective classification and link prediction, in both
hypertext and social network data.

6.6.1 Experiments on WebKB

We experimented with our framework on the WebKB data set [3], which is an
instance of our hypertext example. The data set contains webpages from four dif-
ferent computer science departments: Cornell, Texas, Washington, and Wisconsin.
Each page has a label attribute, representing the type of webpage which is one of
course, faculty, student, project, or other. The data set is problematic in that the
category other is a grab bag of pages of many different types. The number of pages
classified as other is quite large, so that a baseline algorithm that simply always
selected other as the label would get an average accuracy of 75%. We could restrict
attention to just the pages with the four other labels, but in a relational classifi-
cation setting, the deleted webpages might be useful in terms of their interactions
with other webpages. Hence, we compromised by eliminating all other pages with
fewer than three outlinks, making the number of other pages commensurate with
the other categories.3 For each page, we have access to the entire HTML of the
page and the links to other pages. Our goal is to collectively classify webpages into
one of these five categories. In all of our experiments, we learn a model from three
schools and test the performance of the learned model on the remaining school,
thus evaluating the generalization performance of the different models.

Unfortunately, we cannot directly compare our accuracy results with previous
work because different papers use different subsets of the data and different train-
ing/test splits. However, we compare to standard text classifiers such as naive Bayes,
logistic regression, and support vector machines, which have been demonstrated to
be successful on this data set [9].

3. The resulting category distribution is: course (237), faculty (148), other (332), research-
project (82), and student (542). The number of remaining pages for each school are: Cornell
(280), Texas (292), Washington (315), and Wisconsin (454). The number of links for each
school are: Cornell (574), Texas (574), Washington (728) and Wisconsin (1614).
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Figure 6.2 (a) Comparison of Naive Bayes, Svm, and Logistic on WebKB, with
and without metadata features. (Only averages over the four schools are shown
here.) (b) Flat versus collective classification on WebKB: flat logistic regression
with metadata, and three different relational models: Link, Section, and a combined
Section+Link. Collectively classifying page labels (Link, Section, Section+Link)
consistently reduces the error over the flat model (logistic regression) on all schools,
for all three relational models.

6.6.1.1 Flat Models

The simplest approach we tried predicts the categories based on just the text content
on the webpage. The text of the webpage is represented using a set of binary
attributes that indicate the presence of different words on the page. We found that
stemming and feature selection did not provide much benefit and simply pruned
words that appeared in fewer than three documents in each of the three schools
in the training data. We also experimented with incorporating metadata: words
appearing in the title of the page, in anchors of links to the page, and in the
last header before a link to the page [24]. Note that metadata, although mostly
originating from pages linking into the considered page, are easily incorporated as
features, i.e., the resulting classification task is still flat feature-based classification.
Our first experimental setup compares three well-known text classifiers — Naive
Bayes, linear support vector machines 4 (Svm), and logistic regression (Logistic)
— using words and metawords. The results, shown in figure 6.2(a), show that the
two discriminative approaches outperform Naive Bayes. Logistic and Svm give very
similar results. The average error over the four schools was reduced by around 4%
by introducing the metadata attributes.

4. We trained one-against-others SVM for each category and during testing, picked the
category with the largest margin.
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6.6.1.2 Relational Models

Incorporating metadata gives a significant improvement, but we can take additional
advantage of the correlation in labels of related pages by classifying them collec-
tively. We want to capture these correlations in our model and use them for trans-
mitting information between linked pages to provide more accurate classification.
We experimented with several relational models. Recall that logistic regression is
simply a flat conditional Markov network. All of our relational Markov networks
use a logistic regression model locally for each page.

Our first model captures direct correlations between labels of linked pages. These
correlations are very common in our data: courses and research projects almost
never link to each other; faculty rarely link to each other; students have links to
all categories but mostly to courses. The Link model, shown in figure 6.1, captures
this correlation through links: in addition to the local bag of words and metadata
attributes, we introduce a relational clique template over the labels of two pages
that are linked.

A second relational model uses the insight that a webpage often has internal
structure that allows it to be broken up into sections. For example, a faculty
webpage might have one section that discusses research, with a list of links to
all of the projects of the faculty member, a second section might contain links to
the courses taught by the faculty member, and a third to his advisees. This pattern
is illustrated in figure 6.3. We can view a section of a webpage as a fine-grained
version of Kleinberg’s hub [10] (a page that contains a lot of links to pages of a
particular category). Intuitively, if we have links to two pages in the same section,
they are likely to be on similar topics. To take advantage of this trend, we need
to enrich our schema with a new relation Section, with attributes Key, Doc (the
document in which it appears), and Category. We also need to add the attribute
Section to Link to refer to the section it appears in. In the RMN, we have two new
relational clique templates. The first contains the label of a section and the label
of the page it is on:

SELECT doc.Category, sec.Category
FROM Doc doc, Section sec
WHERE sec.Doc = doc.Key

The second clique template involves the label of the section containing the link and
the label of the target page.

SELECT sec.Category, doc.Category
FROM Section sec, Link link, Doc doc
WHERE link.Sec = sec.Key and link.To = doc.Key

The original data set did not contain section labels, so we introduced them using
the following simple procedure. We defined a section as a sequence of three or more
links that have the same path to the root in the HTML parse tree. In the training
set, a section is labeled with the most frequent category of its links. There is a sixth
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Figure 6.3 An illustration of the Section model.

category, none, assigned when the two most frequent categories of the links are less
than a factor of 2 apart. In the entire data set, the breakdown of labels for the
sections we found is: course (40), faculty (24), other (187), research.project (11),
student (71), and none (17). Note that these labels are hidden in the test data, so
the learning algorithm now also has to learn to predict section labels. Although not
our final aim, correct prediction of section labels is very helpful. Words appearing
in the last header before the section are used to better predict the section label by
introducing a clique over these words and section labels.

We compared the performance of Link, Section, and Section+Link (a combined
model which uses both types of cliques) on the task of predicting webpage labels,
relative to the baseline of flat logistic regression with metadata. Our experiments
used MAP estimation with a Gaussian prior on the feature weights with standard
deviation of 0.3. Figure 6.2(b) compares the average error achieved by the different
models on the four schools, training on three and testing on the fourth. We see
that incorporating any type of relational information consistently gives significant
improvement over the baseline model. The Link model incorporates more relational
interactions, but each is a weaker indicator. The Section model ignores links outside
of coherent sections, but each of the links it includes is a very strong indicator. In
general, we see that the Section model performs slightly better. The joint model
is able to combine benefits from both and generally outperforms all of the other
models. The only exception is for the task of classifying the Wisconsin data. In
this case, the joint Section+Link model contains many links, as well as some large
tightly connected loops, so belief propagation did not converge for a subset of nodes.
Hence, the results of the inference, which was stopped at a fixed arbitrary number
of iterations, were highly variable and resulted in lower accuracy.

6.6.1.3 Discriminative vs. Generative

Our last experiment illustrates the benefits of discriminative training in relational
classification. We compared three models. The Exists+Naive Bayes model is a com-
pletely generative model proposed by Getoor et al. [8]. At each page, a naive Bayes
model generates the words on a page given the page label. A separate generative
model specifies a probability over the existence of links between pages conditioned
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Figure 6.4 Comparison of generative and discriminative relational models. Ex-
ists+Naive Bayes is completely generative. Exists+Logistic is generative in the links,
but locally discriminative in the page labels given the local features (words, meta-
words). The Link model is completely discriminative.

on both pages’ labels. We can also consider an alternative Exists+Logistic model that
uses a discriminative model for the connection between page label and words —
i.e., uses logistic regression for the conditional probability distribution of page label
given words. This model has equivalent expressive power to the naive Bayes model
but is discriminatively rather than generatively trained. Finally, the Link model is
a fully discriminative (undirected) variant we have presented earlier, which uses a
discriminative model for the label given both words and link existence. The results,
shown in figure 6.4, show that discriminative training provides a significant im-
provement in accuracy: the Link model outperforms Exists+Logistic which in turn
outperforms Exists+Naive Bayes.

As illustrated in table 6.1, the gain in accuracy comes at some cost in training
time: for the generative models, parameter estimation is closed form while the
discriminative models are trained using conjugate gradient, where each iteration
requires inference over the unrolled RMN. On the other hand, both types of
models require inference when the model is used on new data; the generative
model constructs a much larger, fully connected network, resulting in significantly
longer testing times. We also note that the situation changes if some of the data
is unobserved in the training set. In this case, generative training also requires an
iterative procedure (such as the expectation macimation algorihtm (EM)) where
each iteration uses the significantly more expressive inference.

6.6.2 Experiments on extended WebKB

We collected and manually labeled a new relational data set inspired by WebKB [3].
Our data set consists of computer science department webpages from three schools:
Stanford, Berkeley, and MIT. A total of 2954 pages are labeled into one of eight
categories: faculty, student, research scientist, staff, research group, research project,
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Table 6.1 Average train/test running times (seconds). All runs were done on a
700Mhz Pentium III. Training times are averaged over four runs on three schools
each. Testing times are averaged over four runs on one school each.

Links | Links+Section | Exists+NB
Training | 1530 6060 1
Testing 7 10 100

course, and organization (organization refers to any large entity that is not a
research group). Owned pages, which are owned by an entity but are not the main
page for that entity, were manually assigned to that entity. The average distribution
of classes across schools is: organization (9%), student (40%), research group (8%),
faculty (11%), course (16%), research project (7%), research scientist (5%), and
staff (3%).

We established a set of candidate links between entities based on evidence of a
relation between them. One type of evidence for a relation is a hyperlink from an
entity page or one of its owned pages to the page of another entity. A second type
of evidence is a wvirtual link: We assigned a number of aliases to each page using
the page title, the anchor text of incoming links, and email addresses of the entity
involved. Mentioning an alias of a page on another page constitutes a virtual link.
The resulting set of 7161 candidate links were labeled as corresponding to one of
five relation types — advisor (faculty, student), member (research group/project,
student /faculty /research scientist), teach (faculty/research scientist/staff, course),
TA (student, course), part-of (research group, research project) — or “none,”
denoting that the link does not correspond to any of these relations.

The observed attributes for each page are the words on the page itself and the
“metawords” on the page — the words in the title, section headings, anchors to the
page from other pages. For links, the observed attributes are the anchor text, text
just before the link (hyperlink or virtual link), and the heading of the section in
which the link appears.

Our task is to predict the relation type, if any, for all the candidate links. We
tried two settings for our experiments: with page categories observed (in the test
data) and page categories unobserved. For all our experiments, we trained on two
schools and tested on the remaining school.

Observed entity labels We first present results for the setting with observed
page categories. Given the page labels, we can rule out many impossible relations;
the resulting label breakdown among the candidate links is: none (38%), member
(34%), part-of (4%), advisor (11%), teach (9%), TA (5%).

There is a huge range of possible models that one can apply to this task. We
selected a set of models that we felt represented some range of patterns that
manifested in the data.

Link-Flat is our baseline model, predicting links one at a time using multinomial
logistic regression. This is a strong classifier, and its performance is competitive
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Figure 6.5 (a) Relation prediction with entity labels given. Relational models on
average performed better than the baseline Flat model. (b) Entity label prediction.
Relational model Neigh performed significantly better.

with other classifiers (e.g., support vector machines). The features used by this
model are the labels of the two linked pages and the words on the links going from
one page and its owned pages to the other page. The number of features is around
1000.

The relational models try to improve upon the baseline model by modeling the
interactions between relations and predicting relations jointly. The Section model
introduces cliques over relations whose links appear consecutively in a section on a
page. This model tries to capture the pattern that similarly related entities (e.g.,
advisees, members of projects) are often listed together on a webpage. This pattern
is a type of similarity template, as described in section 6.3. The Triad model is a
type of transitivity template, as discussed in section 6.3. Specifically, we introduce
cliques over sets of three candidate links that form a triangle in the link graph. The
Section & Triad model includes the cliques of the two models above.

As shown in figure 6.2(a), both the Section and Triad models outperform the flat
model, and the combined model has an average accuracy gain of 2.26%, or 10.5%
relative reduction in error. As we only have three runs (one for each school), we
cannot meaningfully analyze the statistical significance of this improvement.

As an example of the interesting inferences made by the models, we found a
student-professor pair that was misclassified by the Flat model as none (there is only
a single hyperlink from the student’s page to the advisor’s) but correctly identified
by both the Section and Triad models. The Section model utilizes a paragraph on the
student’s webpage describing his or her research, with a section of links to research
groups and the link to his or her advisor. Examining the parameters of the Section
model clique, we found that the model learned that it is likely for people to mention
their research groups and advisors in the same section. By capturing this trend, the
Section model is able to increase the confidence of the student-advisor relation. The
Triad model corrects the same misclassification in a different way. Using the same
example, the Triad model makes use of the information that both the student and
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Figure 6.6 Relation prediction without entity labels. Relational models performed
better most of the time, even though there are schools in which some models
performed worse.

the teacher belong to the same research group, and the student TAed a class taught
by his advisor. It is important to note that none of the other relations are observed
in the test data, but rather the model bootstraps its inferences.

Unobserved entity labels When the labels of pages are not known during
relations prediction, we cannot rule out possible relations for candidate links based
on the labels of participating entities. Thus, we have many more candidate links that
do not correspond to any of our relation types (e.g., links between an organization
and a student). This makes the existence of relations a very low-probability event,
with the following breakdown among the potential relations: none (71%), member
(16%), part-of (2%), advisor (5%), teach (4%), TA (2%). In addition, when we
construct a Markov network in which page labels are not observed, the network
is much larger and denser, making the (approximate) inference task much harder.
Thus, in addition to models that try to predict page entity and relation labels
simultaneously, we also tried a two-phase approach, where we first predict page
categories, and then use the predicted labels as features for the model that predicts
relations.

For predicting page categories, we compared two models. The Entity-Flat model
is a multinomial logistic regression that uses words and “metawords” from the page
and its owned pages in separate “bags” of words. The number of features is roughly
10,000. The Neighbors model is a relational model that exploits another type of
similarity template: pages with similar URLs often belong to the same category or
tightly linked categories (research group/project, professor/course). For each page,
two pages with URLs closest in edit distance are selected as “neighbors,” and we
introduced pairwise cliques between “neighboring” pages. Figure 6.5(b) shows that
the Neighbors model clearly outperforms the Flat model across all schools, by an
average of 4.9% accuracy gain.
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Figure 6.7 (a) Average precision-recall breakeven point for 10%, 25%, 50% observed links. (b)
Average precision-recall breakeven point for each fold of school residences at 25% observed links.

Given the page categories, we can now apply the different models for link
classification. Thus, the Phased (Flat/Flat) model uses the Entity-Flat model to
classify the page labels, and then the Link-Flat model to classify the candidate
links using the resulting entity labels. The Phased (Neighbors/Flat) model uses the
Neighbors model to classify the entity labels, and then the Link-Flat model to classify
the links. The Phased (Neighbors/Section) model uses the Neighbors to classify the
entity labels and then the Section model to classify the links.

We also tried two models that predict page and relation labels simultaneously.
The Joint + Neighbors model is simply the union of the Neighbors model for page
categories and the Flat model for relation labels given the page categories. The Joint
+ Neighbors + Section model additionally introduces the cliques that appeared in
the Section model between links that appear consecutively in a section on a page.
We train the joint models to predict both page and relation labels simultaneously.

As the proportion of the “none” relation is so large, we use the probability
of “none” to define a precision-recall curve. If this probability is less than some
threshold, we predict the most likely label (other than none); otherwise we predict
the most likely label (including none). As usual, we report results at the precision-
recall breakeven point on the test data. Figure 6.6 shows the breakeven points
achieved by the different models on the three schools. Relational models, both
phased and joint, did better than flat models on the average. However, performance
varies from school to school and for both joint and phased models, performance on
one of the schools is worse than that of the flat model.

6.6.3 Social Network Data

The data set we used has been collected by a portal website at a large university that
hosts an online community for students [1]. Among other services, it allows students
to enter information about themselves, create lists of their friends, and browse the
social network. Personal information includes residence, gender, major, and year, as
well as favorite sports, music, books, social activities, etc. We focused on the task of
predicting the “friendship” links between students from their personal information
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and a subset of their links. We selected students living in sixteen different residences
or dorms and restricted the data to the friendship links only within each residence,
eliminating interresidence links from the data to generate independent training/test
splits. Each residence has about fifteen to twenty-five students and an average
student lists about 25% of his or her housemates as friends.

We used an eight-fold train-test split, where we trained on fourteen residences and
tested on two. Predicting links between two students from just personal information
alone is a very difficult task, so we tried a more realistic setting, where some
proportion of the links is observed in the test data, and can be used as evidence for
predicting the remaining links. We used the following proportions of observed links
in the test data: 10%, 25%, and 50%. The observed links were selected at random,
and the results we report are averaged over five folds of these random selection
trials.

Using just the observed portion of links, we constructed the following flat features:
for each student, the proportion of students in the residence that list him/her and
the proportion of students he/she lists; for each pair of students, the proportion of
other students they have as common friends. The values of the proportions were
discretized into four bins. These features capture some of the relational structure
and dependencies between links: Students who list (or are listed by) many friends
in the observed portion of the links tend to have links in the unobserved portion as
well. More importantly, having friends in common increases the likelihood of a link
between a pair of students.

The Flat model uses logistic regression with the above features as well as personal
information about each user. In addition to the individual characteristics of the two
people, we also introduced a feature for each match of a characteristic; for example,
both people are computer science majors or both are freshmen.

The Compatibility model uses a type of similarity template, introducing cliques
between each pair of links emanating from each person. Similarly to the Flat model,
these cliques include a feature for each match of the characteristics of the two
potential friends. This model captures the tendency of a person to have friends
who share many characteristics (even though the person might not possess them).
For example, a student may be friends with several computer science majors, even
though he is not a CS major himself. We also tried models that used transitivity
templates, but the approximate inference with 3-cliques often failed to converge or
produced erratic results.

Figure 6.7(a) compares the average precision-recall breakpoint achieved by the
different models at the three different settings of observed links. Figure 6.7(b) shows
the performance on each of the eight folds containing two residences each. Using
a paired t-test, the Compatibility model outperforms Flat with p-values 0.0036,
0.00064, and 0.054 respectively.
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6.7 Discussion and Conclusions

We propose an approach for collective classification and link prediction in relational
domains. Our approach provides a coherent probabilistic foundation for the process
of collective prediction, where we want to classify multiple entities and links,
exploiting the interactions between the variables. We have shown that we can
exploit a very rich set of relational patterns in classification, significantly improving
the classification accuracy over standard flat classification.

We show that the use of a probabilistic model over link graphs allows us to
represent and exploit interesting subgraph patterns in the link graph. Specifically,
we have found two types of patterns that seem to be beneficial in several places.
Similarity templates relate the classification of links or objects that share a certain
graph-based property (e.g., links that share a common endpoint). Transitivity
templates relate triples of objects and links organized in a triangle.

Our results use a set of relational patterns that we have discovered to be useful
in the domains that we have considered. However, many other rich and interesting
patterns are possible. Thus, in the relational setting, even more so than in simpler
tasks, the issue of feature construction is critical. It is therefore important to explore
the problem of automatic feature induction, as in [4].

Finally, we believe that the problem of modeling link graphs has numerous
other applications, including analyzing communities of people and the hierarchical
structure of organizations, identifying people or objects that play certain key roles,
predicting current and future interactions, and more.
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