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Abstract

Most questions require more than just true-false or multiple-choice answers. Yet super-
vised learning, like standardized testing, has placed the heaviest emphasis on complex
guestions with simple answers. The acquired expertise must now be used to address tasks
that demand answers as complex as the questions. Such complex answers may consist of
multiple interrelated decisions that must be weighed against each other to arrive at a glob-
ally satisfactory and consistent solution to the question. In natural language processing, we
often need to construct a global, coherent analysis of a sentence, such as its corresponding
part-of-speech sequence, parse tree, or translation into another language. In computational
biology, we analyze genetic sequences to predict 3D structure of proteins, find global align-
ment of related DNA strings, and recognize functional portions of a genome. In computer
vision, we segment complex objects in cluttered scenes, reconstruct 3D shapes from stereo
and video, and track motion of articulated bodies.

We typically handle the exponential explosion of possible answers by building mod-
els that compactly capture the structural properties of the problem: sequential, grammat-
ical, chemical, temporal, spatial constraints and correlations. Such structured models in-
clude graphical models such as Markov networks (Markov random fields), recursive lan-
guage models such as context free grammars, combinatorial optimization problems such as
weighted matchings and graph-cuts. This thesis presents a discriminative estimation frame-
work for structured models based on the large margin principle underlying support vector
machines. Intuitively, the large-margin criterion provides an alternative to probabilistic,
likelihood-based estimation methods by concentrating directly on the robustness of the de-
cision boundary of a model. Our framework defines a suite of efficient learning algorithms
that rely on the expressive power of convex optimization to compactly capture inference or
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solution optimality in structured models. For some of these models, alternative estimation
methods are intractable.

The largest portion of the thesis is devoted to Markov networks, which are undirected
probabilistic graphical models widely used to efficiently represent and reason about joint
multivariate distributions. We use graph decomposition to derive an exact, compact, con-
vex formulation for large-margin estimation of Markov networks with sequence and other
low-treewidth structure. Seamless integration of kernels with graphical models allows ef-
ficient, accurate prediction in real-world tasks. We analyze the theoretical generalization
properties of max-margin estimation in Markov networks and derive a novel type of bound
on structured error. Using an efficient online-style algorithm that exploits inference in the
model and analytic updates, we solve very large estimation problems.

We define an important subclass of Markov networks, associative Markov networks
(AMNSs), which captures positive correlations between variables and permits exact infer-
ence which scales up to tens of millions of nodes and edges. While likelihood-based meth-
ods are believed to be intractable for AMNs over binary variables, our framework allows
exact estimation of such networks of arbitrary connectivity and topology. We also intro-
duce relational Markov networks (RMNSs), which compactly define templates for Markov
networks for domains with relational structure: objects, attributes, relations.

In addition to graphical models, our framework applies to a wide range of other models:
We exploit context free grammar structure to derive a compact max-margin formulation that
allows high-accuracy parsing in cubic time by using novel kinds of lexical information. We
use combinatorial properties of weighted matchings to develop an exact, efficient formu-
lation for learning to match and apply it to prediction of disulfide connectivity in proteins.
Finally, we derive a max-margin formulation for learning the scoring metric for clustering
from clustered training data, which tightly integrates metric learning with the clustering
algorithm, tuning one to the other in a joint optimization.

We describe experimental applications to a diverse range of tasks, including handwrit-
ing recognition, 3D terrain classification, disulfide connectivity prediction in proteins, hy-
pertext categorization, natural language parsing, email organization and image segmen-
tation. These empirical evaluations show significant improvements over state-of-the-art
methods and promise wide practical use for our framework.
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Chapter 1
Introduction

The breadth of tasks addressed by machine learning is rapidly expanding. Major appli-
cations include medical diagnosis, scientific discovery, financial analysis, fraud detection,
DNA sequence analysis, speech and handwriting recognition, game playing, image analy-
sis, robot locomotion and many more. Of course, the list of things we would like a computer
to learn to do is much, much longer. As we work our way down that list, we encounter the
need for very sophisticated decision making from our programs.

Some tasks, for example, handwriting recognition, are performed almost effortlessly
by a person, but remain difficult and error-prone for computers. The complex synthesis
of many levels of signal processing a person executes when confronted by a line of hand-
written text is daunting. The reconstruction of an entire sentence from the photons hitting
the retina off of each tiny patch of an image undoubtedly requires an elaborate interplay of
recognition and representation of the pen-strokes, the individual letters, whole words and
constituent phrases.

Computer scientists, as opposed to, say, neuroscientists, are primarily concerned with
achieving acceptable speed and accuracy of recognition rather than modeling this compli-
cated process with any biological verity. Computational models for handwriting recogni-
tion aim to capture the salient properties of the problem: typical shapes of the letters, likely
letter combinations that make up words, common ways to combine words into phrases, fre-
guent grammatical constructions of the phrases, etc. Machine learning offers an alternative
to encoding all the intricate details of such a model from scratch. One of its primary goals
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2 CHAPTER 1. INTRODUCTION

is to devise efficient algorithms for training computers to automatically acquire effective
and accurate models from experience.

In this thesis, we present a discriminative learning framework and a novel family of effi-
cient models and algorithms for complex recognition tasks in several disciplines, including
natural language processing, computer vision and computational biology. We develop the-
oretical foundations for our approach and show a wide range of experimental applications,
including handwriting recognition, 3-dimensional terrain classification, disulfide connec-
tivity in protein structure prediction, hypertext categorization, natural language parsing,
email organization and image segmentation.

1.1 Supervised learning

The most basic supervised learning task is classification. Suppose we wish to learn to
recognize a handwritten character from a scanned image. This is a classification task,
because we must assigns a class (an English letter from ‘a’ through ‘z’) to an observation of
an object (an image). Essentially, a classifier is a function that maps an input (an image) to
an output (a letter). In the supervised learning setting, we construct a classifier by observing
labeled training examples, in our case, sample images paired with appropriate letters. The
main problem addressed by supervised learning is generalization. The learning program is
allowed to observe only a small sample of labeled images to produce an accurate classifier
on unseen images of letters.

More formally, letx denote an input. For example, a black-and-white imagan be
represented as a vector of pixel intensities. We Aistd denote the space of all possible
inputs. Lety denote the output, any be the discrete space of possible outcomes (e.g.,
26 letters ‘a’-'z"). A classifier (or hypothesig) is a function fromX to ), h : X — ).

We denote the set of all classifiers that our learning program can prod&t¢hggothesis
class). Then given a set of labeled exam{dle®, 4"}, i = 1,...,m, a learning program
seeks to produce a classifier= H that will work well on unseen examples usually by
finding & that accurately classifies training data. The diagram in Fig. 1.1 summarizes the
supervised learning setting.
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Hypotheses H Labeled data
] find h e H
Learning | ., @~ nx®)

-ﬂ New data

Prediction | y=h(x) <:| x

Figure 1.1: Supervised learning setting

The problem of classification has a long history and highly developed theory and prac-
tice (see for example, Mitchell [1997]; Vapnik [1995]; Dudaal. [2000]; Hastieet al.
[2001]). The two most important dimensions of variation of classification algorithms is the
hypothesis class and the criterion for selection of a hypothekifom H given the train-
ing data. In this thesis, we build upon the generalized linear model family, which underlies
standard classifiers such as logistic regression and support vector machines. Through the
use of kernels to implicitly define high-dimensional and even infinite-dimensional input
representations, generalized linear models can approximate arbitrarily complex decision
boundaries.

The task of selecting a hypothegiseduces to estimating model parameters. Broadly
speaking, probabilistic estimation methods associate a joint distribptiary) or condi-
tional distributionp(y | x) with h and select a model based on the likelihood of the data
[Hastieet al, 2001]. Joint distribution models are often called generative, while condi-
tional models are called discriminative. Large margin methods, by contrast, select a model
based on a more direct measure of confidence of its predictions on the training data called
the margin [Vapnik, 1995]. The difference between these two methods is one of the key
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Figure 1.2:Examples of complex prediction problems (inputs-top, outputs-bottom):

(a) handwriting recognition [image> word];

(b) natural language parsing [senteregarse tree];

(c) disulfide bond prediction in proteins [amino-acid sequendsond structure (shown in yellow)];
(d) terrain segmentation [3D image segmented objects (trees, bushes, buildings, ground)]

themes in this thesis.

Most of the research has focused on the analysis and classification algorithms for the
case of binary outcomdd’| = 2, or a small number of classes. In this work, we focus
on prediction tasks that involve not a single decision with a small set of outcomes, but a
complex, interrelated collection of decisions.

1.2 Complex prediction problems

Consider once more the problem of character recognition. In fact, a more natural and useful
task is recognizing words and entire sentences. Fig. 1.2(a) shows an example handwritten
word “brace.” Distinguishing between the second letter and fourth letter (‘r' anh' @S-

lation is actually far from trivial, but in the context of the surrounding letters that together
form a word, this task is much less error-prone for humans and should be for computers
as well. It is also more complicated, as different decisions must be weighed against each
other to arrive at the globally satisfactory prediction. The space of all possible outcomes
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Y is immense, usually exponential in the number of individual decisions, for example, the
number of 5 letter sequencez{). However, most of these outcomes are unlikely given
the observed input. By capturing the most salient structure of the problem, for example the
strong local correlations between consecutive letters, we will construct compact models
that efficiently deal with this complexity. Below we list several examples from different
fields.

e Natural language processing
Vast amounts of electronically available text have spurred a tremendous amount of
research into automatic analysis and processing of natural language. We mention
some of the lower-level tasks that have received a lot of recent attention [Charniak,
1993; Manning & Schtze, 1999]. Part-of-speech tagging involves assigning each
word in a sentence a part-of-speech tag, suchoas) verb, pronoun etc. As with
handwriting recognition, capturing sequential structure of correlations between con-
secutive tags is key. In parsing, the goal is to recognize the recursive phrase structure
of a sentence, such as verbal, noun and prepositional phrases and their nesting in
relation to each other. Fig. 1.2(b) shows a parse tree corresponding to the sentence:
“The screen was a sea of red” (more on this in Ch. 9). Many other problems, such as
named-entity and relation extraction, text summarization, translation, involve com-
plex global decision making.

e Computational biology
The last two decades have yielded a wealth of high-throughput experimental data,
including complete sequencing of many genomes, precise measurements of protein
3D structure, genome-wide assays of mMRNA levels and protein-protein interactions.
Major research has been devoted to gene-finding, alignment of sequences, protein
structure prediction, molecular pathway discovery [Gusfield, 1997; Dwbil.,
1998]. Fig. 1.2(c) shows disulfide bond structure (shown in yellow) we would like to
predict from the amino-acid sequence of the protein (more on this in Ch. 10).

e Computer vision
As digital cameras and optical scanners become commonplace accessories, medical
imaging technology produces detailed physiological measurements, laser scanners
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capture 3D environments, satellites and telescopes bring pictures of Earth and distant
stars, we are flooded with images we would like our computer to analyze. Example
tasks include object detection and segmentation, motion tracking, 3D reconstruction
from stereo and video, and much more [Forsyth & Ponce, 2002]. Fig. 1.2(d) shows a
3D laser range data image of the Stanford campus collected by a roving robot which
we would like to segment into objects such as trees, bushes, buildings, ground, etc.
(more on this in Ch. 7).

1.3 Structured models

This wide range of problems have been tackled using various models and methods. We
focus on the models that compactly capture correlation and constraint structure inherent to
many tasks. Abstractly, a model assigns a score (or likelihood in probabilistic models) to
each possible input/output pdit, y), typically through a compact, parameterized scoring
function. Inference in these models refers to computing the highest scoring output given
the input and usually involves dynamic programming or combinatorial optimization.

e Markov networks
Markov networks (a.k.a. Markov random fields) are extensively used to model com-
plex sequential, spatial, and relational interactions in prediction problems arising in
many fields. These problems involve labeling a set of related objects that exhibit
local consistency. Markov networks compactly represent complex joint distributions
of the label variables by modeling their local interactions. Such models are encoded
by a graph, whose nodes represent the different object labels, and whose edges rep-
resent and quantify direct dependencies between them. The graphical structure of
the models encodes tly@alitativeaspects of the distribution: direct dependencies as
well as conditional independencies. Tipgantitativeaspect of the model is defined
by thepotentialsthat are associated with nodes and cliques of the graph. The graph-
ical structure of the network (more precisely, the treewidth of the graph, which we
formally define in Ch. 3) is critical to efficient inference and learning in the model.

e Context free grammars
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Context-free grammars are one of the primary formalisms for capturing the recur-
sive structure of syntactic constructions [Manning & &ze, 1999]. For example,

in Fig. 1.2, the non-terminal symbols (labels of internal nodes) correspond to syntac-
tic categories such as noun phrase (NP), verbal phrase (VP) or prepositional phrase
(PP) and part-of-speech tags like nouns (NN), verbs (VBD), determiners (DT) and
prepositions (IN). The terminal symbols (leaves) are the words of the sentence. A
CFG consists of recursive productions (egP — VP PP, DT — The) that

can be applied to derive a sentence of the language. The productions define the set
of syntactically allowed phrase structures (derivations). By compactly defining a
probability distribution over individual productions, probabilistic CFGs construct a
distribution over parse trees and sentences, and the prediction task reduces to finding
the most likely tree given the sentence. The context free restriction allows efficient
inference and learning in such models.

e Combinatorial structures
Many important computational tasks are formulated as combinatorial optimization
problems such as the maximum weight bipartite and perfect matching, spanning
tree, graph-cut, edge-cover, and many others [Lawler, 1976; Papadimitriou & Stei-
glitz, 1982; Cormeret al., 2001]. Although the term ‘model’ is often reserved for
probabilistic models, we use the term model very broadly, to include any scheme
that assigns scores to the output spcand has a procedure for finding the opti-
mal scoringy. For example, the disulfide connectivity prediction in Fig. 1.2(c) can
be modeled by maximum weight perfect matchings, where the weights define po-
tential bond strength based on the local amino-acid sequence properties. The other
combinatorial structures we consider and apply in this thesis include graph cuts and
partitions, bipartite matchings, and spanning trees.

The standard methods of estimation for Markov networks and context free grammars
are based on maximum likelihood, both joint and conditional. However, maximum like-
lihood estimation of scoring function parameters for combinatorial structures is often in-
tractable because of the problem of defining a normalized distribution over an exponential
set of combinatorial structures.
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1.4 Contributions

This thesis addresses the problem of efficient learning of high-accuracy models for complex
prediction problems. We consider a very large class of structured models, from Markov
networks to context free grammars to combinatorial graph structures such as matchings
and cuts. We focus on those models where exact inference is tractable, or can be efficiently
approximated.

o Learning framework for structured models

We propose a general framework for efficient estimation of models for structured
prediction. An alternative to likelihood-based methods, this framework builds upon
the large margin estimation principle. Intuitively, we find parameters such that in-
ference in the model (dynamic programming, combinatorial optimization) predicts
the correct answers on the training data with maximum confidence. We develop gen-
eral conditions under which exact large margin estimation is tractable and present
two formulations for structured max-margin estimation that define compact convex
optimization problems, taking advantage of prediction task structure. The first for-
mulation relies on the ability to express inference in the model as a compact convex
optimization problem. The second one only requires compactly expressing optimal-
ity of a given assignment according to the model and applies to a broader range of
combinatorial problems. These two formulations form the foundation which the rest
of the thesis develops.

o Markov networks
The largest portion of the thesis is devoted to novel estimation algorithms, represen-
tational extensions, generalization analysis and experimental validation for Markov
networks, a model class of choice in many structured prediction tasks in language,
vision and biology.

> Low-treewidth Markov networks
We use graph decomposition to derive an exact, compact, convex learning for-
mulation for Markov networks with sequence and other low-treewidth structure.
The seamless integration of kernels with graphical models allows us to create
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very rich models that leverage the immense amount of research in kernel de-
sign and graphical model decompositions for efficient, accurate prediction in
real-world tasks. We also use approximate graph decomposition to derive a
compact approximate formulation for Markov networks in which inference is
intractable.

> Scalable online algorithm
We present an efficient algorithm for solving the estimation problem called
Structured SMO. Our online-style algorithm uses inference in the model and
analytic updates to solve extremely large estimation problems.

> Generalization analysis
We analyze the theoretical generalization properties of max-margin estimation
in Markov networks and derive a novel margin-based bound for structured pre-
diction. This bound is the first to address structured error (e.g. proportion
of mislabeled pixels in an image) and uses a proof that exploits the graphical
model structure.

> Learning associative Markov networks (AMNS)

We define an important subclass of Markov networks that captures positive cor-
relations present in many domains. We show that for AMNs over binary vari-
ables, our framework allows exact estimation of networks of arbitrary connec-
tivity and topology, for which likelihood methods are believed to be intractable.
For the non-binary case, we provide an approximation that works well in prac-
tice. We present an AMN-based method for object segmentation from 3D range
data. By constraining the class of Markov networks to AMNSs, our models are
learned efficiently and, at run-time, scale up to tens of millions of nodes and
edges.

> Representation and learning of relational Markov networks
We introduce relational Markov networks (RMNSs), which compactly define
templates for Markov networks for domains with relational structure objects,
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attributes, relations. The graphical structure of an RMN is based on the rela-
tional structure of the domain, and can easily model complex interaction pat-
terns over related entities. We use approximate inference in these complex mod-
els, in which exact inference is intractable, to derive an approximate learning
formulation. We apply this class of models to classification of hypertext using
hyperlink structure to define relations between webpages.

o Broader applications: parsing, matching, clustering
The other large portion the thesis addresses a range of prediction tasks with very di-
verse models: context free grammars for natural language parsing, perfect matchings
for disulfide connectivity in protein structure prediction, graph partitions for cluster-
ing documents and segmenting images.

> Learning to parse
We exploit context free grammar structure to derive a compact max-margin
formulation and show high-accuracy parsing in cubic time by exploiting novel
kinds of lexical information. We show experimental evidence of the model's
improved performance over several baseline models.

> Learning to match
We use combinatorial properties of weighted matchings to develop an exact,
efficient algorithm for learning to match. We apply our framework to predic-
tion of disulfide connectivity in proteins using perfect non-bipartite matchings.
The algorithm we propose uses kernels, which makes it possible to efficiently
embed the features in very high-dimensional spaces and achieve state-of-the-art
accuracy.

> Learning to cluster
We derive a max-margin formulation for learning the affinity metric for clus-
tering from clustered training data. In contrast to algorithms that learn a metric
independently of the algorithm that will be used to cluster the data, we describe
a formulation that tightly integrates metric learning with the clustering algo-
rithm, tuning one to the other in a joint optimization. Experiments on synthetic
and real-world data show the ability of the algorithm to learn an appropriate
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clustering metric for a variety of desired clusterings, including email folder or-
ganization and image segmentation.

1.5 Thesis outline

Below is a summary of the rest of the chapters in the thesis:

Chapter 2. Supervised learning: We review basic definitions and statistical framework
for classification. We define hypothesis classes, loss functions, risk. We consider
generalized linear models, including logistic regression and support vector machines,
and review estimation methods based on maximizing likelihood, conditional likeli-
hood and margin. We describe the relationship between the dual estimation problems
and kernels.

Chapter 3. Structured models: In this chapter, we define the abstract class of structured
prediction problems and models addressed by the thesis. We compare probabilistic
models, generative and discriminative and unnormalized models. We describe repre-
sentation and inference for Markov networks, including dynamic and linear program-
ming inference. We also briefly describe context free grammars and combinatorial
structures as models.

Chapter 4. Structured maximum margin estimation: This chapter outlines the main prin-
ciples of maximum margin estimation for structured models. We address the expo-
nential blow-up of the naive problem formulation by deriving two general equivalent
convex formulation. These formulations, min-max and certificate, allow us to ex-
ploit decomposition and combinatorial structure of the prediction task. They lead
to polynomial size programs for estimation of models where the prediction problem
is tractable. We also discuss approximations, in particular using upper and lower
bounds, for solving intractable or very large problems.

Chapter 5. Markov networks: We review maximum conditional likelihood estimation
and present maximum margin estimation for Markov networks. We use graphical
model decomposition to derive a convex, compact formulation that seamlessly in-
tegrates kernels with graphical models. We analyze the theoretical generalization
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properties of max-margin estimation and derive a novel margin-based bound for
structured classification.

Chapter 6. M3N algorithms and experiments: We present an efficient algorithm for solv-
ing the estimation problem in graphical models, called Structured SMO. Our online-
style algorithm uses inference in the model and analytic updates to solve extremely
large quadratic problems. We present experiments with handwriting recognition,
where our models significantly outperform other approaches by effectively capturing
correlation between adjacent letters and incorporating high-dimensional input repre-
sentation via kernels.

Chapter 7. Associative Markov networks: We define an important subclass of Markov
networks, associative Markov networks (AMNS), that captures positive interactions
present in many domains. We show that for associative Markov networks of over bi-
nary variables, max-margin estimation allows exact training of networks of arbitrary
connectivity and topology, for which maximum likelihood methods are believed to
be intractable. For the non-binary case, we provide an approximation that works
well in practice. We present an AMN-based method for object segmentation from
3D range data that scales to very large prediction tasks involving tens of millions of
points.

Chapter 8. Relational Markov networks: We introduce the framework of relational Mar-
kov networks (RMNs), which compactly defines templates for Markov networks in
domains with rich structure modeled by objects, attributes and relations. The graph-
ical structure of an RMN is based on the relational structure of the domain, and can
easily model complex patterns over related entities. As we show, the use of an undi-
rected, discriminative graphical model avoids the difficulties of defining a coherent
generative model for graph structures in directed models and allows us tremendous
flexibility in representing complex patterns. We provide experimental results on a
webpage classification task, showing that accuracy can be significantly improved by
modeling relational dependencies.

Chapter 9. Context free grammars: We present max-margin estimation for natural lan-
guage parsing on the decomposition properties of context free grammars. We show
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that this framework allows high-accuracy parsing in cubic time by exploiting novel
kinds of lexical information. We show experimental evidence of the model’s im-
proved performance over several baseline models.

Chapter 10. Perfect matchings: We apply our framework to learning to predict disulfide
connectivity in proteins using perfect matchings. We use combinatorial properties of
weighted matchings to develop an exact, efficient algorithm for learning the param-
eters of the model. The algorithm we propose uses kernels, which makes it possible
to efficiently embed the features in very high-dimensional spaces and achieve state-
of-the-art accuracy.

Chapter 11. Correlation clustering: In this chapter, we derive a max-margin formula-
tion for learning affinity scores for correlation clustering from clustered training data.
We formulate the approximate learning problem as a compact convex program with
quadratic objective and linear or positive-semidefinite constraints. Experiments on
synthetic and real-world data show the ability of the algorithm to learn an appro-
priate clustering metric for a variety of desired clusterings, including email folder
organization and image segmentation.

Chapter 12. Conclusions and future directions: We review the main contributions of the
thesis and summarize their significance, applicability and limitations. We discuss ex-
tensions and future research directions not addressed in the thesis.

1.6 Previously published work

Some of the work described in this thesis has been published in conference proceedings.
The min-max and certificate formulations for structured max-margin estimation have not
been published in their general form outlined in Ch. 4, although they underly several pa-
pers mentioned below. The polynomial formulation of maximum margin Markov networks
presented in Ch. 5 was published for a less general case, using a dual decomposition tech-
nigue [Taskaet al, 2003a]. Work on associative Markov networks (Ch. 7) was published
with experiments on hypertext and news-wire classification [Taskak, 2004a]. A paper
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on 3D object segmentation using AMNS, which presents a experiments on terrain classifi-
cation and other tasks, is currently under review (joint work with Drago Anguelov, Vassil
Chatalbashev, Dinkar Gupta, Geremy Heitz, Daphne Koller and Andrew Ng). Tetsiiar
[2002] and Taskaet al. [2003b] defined and applied the Relational Markov networks
(Ch. 8), using maximum (conditional) likelihood estimation. Natural language parsing
in Ch. 9 was published in Taskat al. [2004b]. Disulfide connectivity prediction using
perfect matchings in Ch. 10 (joint work with Vassil Chatalbashev and Daphne Koller) is
currently under review. Finally, work on correlation clustering in Ch. 11, done jointly with
Pieter Abbeel and Andrew Ng, has not been published.
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Chapter 2
Supervised learning

In supervised learning, we seek a function X — ) that maps inputg € X to outputs

y € Y. The input spaceX is an arbitrary set (ofted = IR"), while the output spacg’

we consider in this chapter discrete. A supervised learning problem with discrete outputs,
Y ={w,...,ur}, wherek is the number of classes, is callgdssification In handwritten
character recognition, for exampl&, is the set of images of letters apdis the alphabet

(see Fig. 2.1).

The input to an algorithm igsaining data, a set ofn i.i.d. (independent and identically
distributed) samples = {(x®, y®)}™, drawn from a fixed but unknown distributiai
overX x Y. The goal of a learning algorithm is to output a hypothésgich thati(x)
will approximatey on new samples from the distributidr, y) ~ D.

Learning algorithms can be distinguished among several dimensions, chief among them
is thehypothesis class+ of functionsh the algorithm outputs. Numerous classes of func-
tions have been well studied, including decision trees, neural networks, nearest-neighbors,
generalized log-linear models and kernel methods (see Quinlan [2001]; Bishop [1995];
Hastieet al. [2001]; Dudaet al. [2000], for in-depth discussion of these and many other
models). We will concentrate on the last two classes, for several reasons we discuss be-
low, including accuracy, efficiency, and extensibility to more complex structured prediction
tasks will consider in the next chapter.

The second crucial dimension of a learning algorithm is the criterion for selectibn of
from H. We arrive at such a criterion by quantifying what it meangifit) to approximate

16
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y. Therisk functional R%[(h)] measures the expected error of the approximation:
Rp[h] = Bxy)nnll(x,y, h(x))], (2.1)

where theloss function? : X x ) x Y — IR™ measures the penalty for predictih¢x)
on the sampléx, y). In general, we assume thdi, y, y) = 0 if y = .

A common loss function for classification(gl loss

O (x,y,h(x)) = Uy # h(x)),

where 1-) denotes the indicator function, that igtilie) = 1 and Xfalse) = 0.

Since we do not generally know the distributidbn we estimate the risk of using its
empirical risk RY%, computed on the training sampe

m

Ryl = — > x50 n(x")) = — > 6(h(x)), (2.2)
=1 =1
where we abbreviaté(x® y® h(x®)) = £;(h(x®)). For0/1 loss,R%[h] is simply the
proportion of training examples that misclassifies. R4[h] is often called theraining
error ortraining loss.

If our set of hypothese${, is large enough, we will be able to firidthat has zero or
very small empirical risk. However, simply selecting a hypothesis with lowest risk

h* = arg min R5[h],
heH

is generally not a good idea. For exampleYit= IR, Y = IR andH includes all polynomi-
als of degreen — 1, we can always find a polynomialthat passes through all the sample
points (2, 4@), i = (1,...,m) assuming that all the”) are unique. This polynomial is
very likely to overfit the training data, that is, it will have zero empirical risk, but high ac-
tual risk. The key to selecting a good hypothesis is to trade-off complexity of Eldssy.
the degree of the polynomial) with the error on the training data as measured by empirical
risk RS. For a vast majority of supervised learning algorithms, this fundamental balance is
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achieved by minimizing the weighted combination of the two criteria:

h* = argmin (D[h] + CRE[H]) (2.3)
heH
whereD|[h] measures the inherent dimension or complexityyondC' > 0 is a trade-
off parameter. We will not go into derivation of various complexity meas@rgg here,
but simply adopt the standard measures as needed and refer the reader to Vapnik [1995];
Devroyeet al. [1996]; Hastieet al. [2001] for details. The ternD[h] is often called
regularization.

Depending on the complexity of the clagg the search for the optimal* in (2.3)
may be a daunting task For many classes, for example decision trees and multi-layer
neural networks, it is intractable [Bishop, 1995; Quinlan, 2001], and we must resort to
approximate, greedy optimization methods. For these intractable classes, the search pro-
cedure used by the learning algorithm is crucial. Below however, we will concentrate on
models where the optimal* can be found efficiently using convex optimization in poly-
nomial time. Hence, the learning algorithms we consider are completely characterized by
the hypothesis clas¥, the loss functiorf, and the regularizatio®|h|.

In general, we consider hypothesis classes of the following parametric form:

hw(x) = argmax f(w, x,y), (2.4)
yey

wheref(w,x, y) is afunctionf : W x X x ) — IR, wherew € )V is a set of parameters,
usually withY¥ C IR". We assume that ties in theg max are broken using some arbitrary

but fixed rule. As we discuss below, this class of hypotheses is very rich and includes
many standard models. The formulation in (2.4) of the hypothesis class in terms of an
optimization procedure will become crucial to extending supervised learning techniques to
cases where the output spaies more complex.

IFor classification, minimizing the objective with the usQél training error is generally a very difficult
problem with multiple maxima for most realisti¢. See discussion in the next section about approaches to
dealing with0/1 loss.
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Figure 2.1: Handwritten character recognition: sample letters from Kassel [1995] data set.

2.1 Classification with generalized linear models

For classification, we consider tlgeneralized linear family of hypothese${. Givenn
real-valued basis functions : X x Y — IR, a hypothesi¢., € H is defined by a set of
coefficientsw; € IR such that:

hw(x) = arg maXijfj(x, y) = argmaxw ' f(x,y). (2.5)
SV — yey

Consider the character recognition example in Fig. 2.1. Our igpigt a vector of
pixel values of the image angis the alphabefq, . . ., z}. We might have a basis function
fi(x,y) = WXyoweor = on Ay = char) for each possiblérow, col) andchar € ),
wherex, ., ... denotes the value of pixglow, col). Since different letters tend to have
different pixels turned on, this very simple model captures enough information to perform
reasonably well.

The most common loss for classificatiori$ loss. Minimizing the)/1 risk is generally
a very difficult problem with multiple maxima for any large cl&gs The standard solution
is minimizing an upper bound on t#l loss,?(x, y, h(x)) > ((x,y, h(x)). (In addition
to computational advantages of this approach, there are statistical benefits of minimizing a
convexupper bound [Bartletet al,, 2003]). Two of the primary classification methods we
consider, logistic regression and support vector machines, differ primarily in their choice of
the upper bound on the trainitigl loss. The regularizatio®[h,,] for the linear family is
typically the norm of the parametelisv||,, for p = 1, 2. Intuitively, a zero, or small weight
w; implies that the hypothesis,, does not depend on the value ffx, y) and hence is
simpler than &, with a large weightv;.
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hinge-loss
—_— 0/1-loss

Figure 2.2: 0/1-loss upper bounded by log-loss and hinge-loss. Horizontal axis shows
w ' f(x,y) — max,, w'f(x,y'), wherey is the correct label fox, while the vertical axis

show the value of the associated loss. The log-loss is shown up to an additive constant for
illustration purposes.

2.2 Logistic regression

In logistic regression, we assign a probabilistic interpretation to the hypothgsis defin-
ing a conditional distribution:

Py(y | x) = exp{wa(x, v)}, (2.6)

Zw(x)
whereZy (x) = >_ ¢y exp{w'f(x,y)}. The optimal weights are selected by maximiz-
ing the conditional likelihood of the data (minimizing the log-loss) with some regulariza-
tion. This approach is called the (regularizesBximum likelihood estimation. Common
choices for regularization areor 2-norm regularization on the weights; we us®orm
below:

min %HWHQ + C’Z log Z (x9) — wTf(x@ 3@, (2.7)

whereC' is a user-specified constant the determines the trade-off between regularization
and likelihood of the data. The log-lokg; 7., (x) — w ' f(x, y) is an upper bound (up to a
constant) on the/1 loss/’/! (see Fig. 2.2).
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2.3 Logistic dual and maximum entropy

The objective function is convex in the parametetsso we have an unconstrained (differ-
entiable) convex optimization problem. The gradient with respest i® given by:

w+ Oy Eiw[HxY )] - HxY,y0) = w - O EiW[Afi(y)],

whereE; v [f(y)] = >_, f(y)Pw(y | x(?) is the expectation under the conditional distribu-

tion Py (y | x®¥) andAf;(y) = £(x@, y@) — £(x@, y). Ignoring the regularization term,

the gradient is zero when the basis function expectations are equal to the basis functions
evaluated on the labelg?. It can be shown [Cover & Thomas, 1991] that the dual of the
maximum likelihood problem (without regularization) is the maximum entropy problem:

max  — Y Py(y|xY)log Py(y | xV) (2.8)
2

We can interpret logistic regression as trying to match the empirical basis function expec-
tations while maintaining a high entropy conditional distributin(y | x).

2.4 Support vector machines

Support vector machines [Vapnik, 1995] select the weights based on the “margin” of con-
fidence ofh,,. In the multi-class SVM formulation [Weston & Watkins, 1998; Crammer &
Singer, 2001}, the margin on examplquantifies by how much the true label “wins” over
the wrong ones:

min w' Af;(y),

1 - Te(o(i) () Te((0)
v = min w f(x'y w f(x'")y) =
( ) ( ) [[w] gy

(W gy
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whereAf;(y) = £(x®,y@) — f(x, 5). Maximizing the smallest such margin (and allow-
ing for negative margins) is equivalent to solving the following quadratic program:
. 1 2
min - ofjw][* + CZ& (2.9)
s.t. wAf;(y) > O (y) — &, Vi, Yye .
Note that the slack variablg is constrained to be positive in the above program since

w T Af;(y@) = 0 and®/!(y?) = 0. We can also express asmax, (/' (y) — w' Af;(y),
and the optimization problem Eq. (2.9) in a form similar to Eq. (2.7):

1
min  —||w||* + C’Z max[é?/l(y) —w ' Afy(y)]. (2.10)
2 — v

The hinge-loss(naxy[ég/l(y) — w' Afi(y)] is also an upper bound on tigl loss (/!
(see Fig. 2.2).

2.5 SVM dual and kernels

The form of the dual of Eq. (2.9) is crucial to efficient solution of SVM and the ability to
use a high or even infinite dimensional set of basis functions via kernels.

2

max Yl (0) - (2.12)

Z i (y)Afi(y)

s.t. Zai(y) =C, Vi, a;(y) >0, Yi,y.
Yy

In the dual, they;(y) variables correspond to tive” Af;(y) > (%1 (y) —¢&; constraints in the
primal Eq. (2.9). The solution to the duat gives the solution to the primal as a weighted
combination of basis functions of examples:

w' =D ai(y)Afi(y).
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The pairings of examples and incorrect labélsy), that have non-zera;(y), are called
support vectors

An important feature of the dual formulation is that the basis functfaagpear only as
dot products. Expanding the quadratic term, we have:

y)Afi(y)

S5 ) ()AL(y) AL ().

LYy 59

Hence, as long as the dot produék, y)' f(%, %) can be computed efficiently, we can
solve Eq. (2.11) independently of the actual dimensiorfi.oNote that at classification
time, we also do not need to worry about the dimensiofigifice:

wE(x,9) = > aily)Afi(y) "f(x,9) Zaz y ) TE(x, )£ (x ) TE(x, 7).

Y
For example, we might have basis functions that are polynomial of degireéerms of
image pixels.f;(x,y) = A(Xrows con = ONA ... A Xpowycol, = 0N Ay = char) for each
possible(rowsy, coly) ... (rowg, coly) andchar € ). Computing this polynomial kernel
can be done independently of the dimensipeven though the number of basis functions
grows exponentially withl [Vapnik, 1995].

In fact, logistic regression can also be kernelized. However, the hinge loss formulation
usually produces sparse solutions in terms of the number of support vectors, while solutions
to the corresponding kernelized log-loss problem are generally non-sparse (all examples
are support vectors) and require approximations for even relatively small datasets [Wahba
et al, 1993; Zhu & Hastie, 2001].



Chapter 3
Structured models

Consider once more the problem of character recognition. In fact, a more natural and useful
task is recognizing words and entire sentences. Fig. 3.1 shows an example handwritten
word “brace.” Distinguishing between the second letter and fourth letter (‘r’ andric’)
isolationis far from trivial, but in the context of the surrounding letters that together form
a word, this task is much less error-prone for humans and should be for computers as well.
In this chapter, we consider prediction problems in which the output is not a single
discrete valuey, but a set of valuey = (yi,...,y.), for example an entire sequence
of L characters. For concreteness, let the number of varidbles fixed. The output
spacey C Y x ... x Y we consider is a subset of product of output spaces of single
variables. In word recognition, ead is the alphabet, whil¢’ is the dictionary. This
joint output space is often a proper subset of the product of singleton output spaces,
Vi x...xYr. Inword recognition, we might restrict that the letter ‘q’ never follows by ‘'z’ in
English. In addition to “hard” constraints, the output variables are often highly correlated,
e.g. consecutive letters in a word. We refer to joint spaces with constraints and correlations
asstructured. We call problems with discrete output spasésictured classification or
structured prediction. Structured modelswe consider in this chapter (and thesis) predict
the outputgointly, respecting the constraints and exploiting the correlations in the output
space.
The range of prediction problems these broad definitions encompass is immense, aris-
ing in fields as diverse as natural language analysis, machine vision, and computational

24
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Figure 3.1: Handwritten word recognition: sample from Kassel [1995] data set.

biology, to name a few. The class of structured mo@¢lse consider is essentially of the
same form as in previous chapter, except thaas been replaced ky

hw(x) = argmax w' f(x,y), (3.1)
y :g(x,y)<0

where as beforé(x,y) is a vector of function : X x ) — IR™. The output space
Y = {y : g(x,y) < 0} is defined using a vector of functiogx, y) that define the
constraints, wherg : X x )Y — IR*. This formulation is very general. Clearly, for
manyf, g pairs, finding the optimay is intractable. For the most part, we will restrict our
attention to models where this optimization problem can be solved in polynomial time. This
includes, for example, probabilistic models like Markov networks (in certain cases) and
context-free grammars, combinatorial optimization problems like min-cut and matching,
convex optimization such as linear, quadratic and semi-definite programming. In other
cases, like intractable Markov networks (Ch. 8) and correlation clustering (Ch. 11), we use
anapproximatepolynomial time optimization procedure.

3.1 Probabilistic models: generative and conditional

The termmodel is often reserved for probabilistic models, which can be subdivided into
generative and conditional with respect to the prediction task. A generative model assigns
a normalized joint density(x, y) to the input and output space x ) with

p(x,y) >0, Z/ p(x,y) = 1.
yEy xEX
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A conditional model assigns a normalized dengity | x) only over the output spac®
with
py 1% >0, Y pylx)=1  VxeX.

yey

Probabilistic interpretation of the model offers well-understood semantics and an im-
mense toolbox of methods for inference and learning. It also provides an intuitive measure
of confidence in the predictions of a model in terms of conditional probabilities. In addi-
tion, generative models are typically structured to allow very efficient maximum likelihood
learning. A very common class of generative models is the exponential family:

p(x,y) o exp{w f(x,y)}.

For exponential families, the maximum likelihood parametersith respect to the joint
distribution can be computed in closed form using the empirical basis function expectations
Es[f(x,y)] [DeGroot, 1970; Hastiet al,, 2001].

Of course, this efficiency comes at a price. Any model is an approximation to the true
distribution underlying the data. A generative model must make simplifying assumptions
(more precisely, independence assumptions) about the eltire), while a conditional
model makes many fewer assumption by focusing@n| y). Because of this, by opti-
mizing the model to fit the joint distributiop(x, y), we may be tuning the approximation
away from optimal conditional distributigny | x), which we use to make the predictions.
Given sufficient data, the conditional model will learn the best approximatigiiytg x)
possible usingv, while the generative model(x, y) will not necessarily do so. Typically,
however, generative models actually need fewer samples to converge to a good estimate of
the joint distribution than conditional models need to accurately represent the conditional
distribution. In a regime with very few training samples (relative to the number of param-
etersw), generative models may actually outperform conditional models [Ng & Jordan,
2001].
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3.2 Prediction models: normalized and unnormalized

Probabilistic semantics are certainly not necessary for a good predictive model if we are
simply interested in the optimal prediction (theg max in Eq. (3.1)). As we discussed

in the previous chapter, support vector machines, which do not represent a conditional
distribution, typically perform as well or better than logistic regression [Vapnik, 1995;
Cristianini & Shawe-Taylor, 2000].

In general, we can often achieve higher accuracy models when we do not learn a nor-
malized distribution over the outputs, but concentrate on the margieasion boundary,
the difference between the optimaland the rest. Even more importantly, in many cases
we discuss below, normalizing the model (summing over the eldilis intractable, while
the optimaly can be found in polynomial time. This fact makes standard maximum like-
lihood estimation infeasible. The learning methods we advocate in this thesis circumvent
this problem by requiring only the maximization problem to be tractable. We still heav-
ily rely on the representation and inference tools familiar from probabilistic models for
the construction of and prediction in unnormalized models, but largely dispense with the
probabilistic interpretation when needed. Essentially, we use thenexabel very broadly,
to include any scheme that assigns scores to the output 3pace has a procedure for
finding the optimal scoring.

In this chapter, we review basic concepts in probabilistic graphical models d4dled
kov network®r Markov random fieldsWe also briefly touch upon examples of context-free
grammars and combinatorial problems that will be explained in greater detail in Part Ill to
illustrate the range of prediction problems we address.

3.3 Markov networks

Markov networks provide a framework for a rich family of models for both discrete and
continuous prediction [Pearl, 1988; Cowetlal, 1999]. The models treat the inputs and
outputs as random variablés with domainX and’Y with domain)’ and compactly de-
fine a conditional density(Y | X) or distributionP(Y | X) (we concentrate here on the
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conditional Markov networks or CRFs [Laffergt al., 2001]). The advantage ofgaaphi-

cal framework is that it can exploit sparseness in the correlations between outpiitse
graphical structure of the models encodesdhalitativeaspects of the distribution: direct
dependencies as well as conditional independenciesqiifwetitativeaspect of the model

is defined by theotentialsthat are associated with nodes and cliques of the graph. Before
a formal definition, consider a first-order Markov chain a model for the word recognition
task. In Fig. 3.2, the nodes are associated with output vari&bkesd the edges correspond

to direct dependencies or correlations. We do not explicitly represent the iKputshe
figure. For example, the model encodes tHais conditionally independent of the rest of
the variables gively;_;,Y;.;. Intuitively, adjacent letters in a word are highly correlated,
but the first-order model is making the assertion (which is certainly an approximation) that
once the value of a lettér; is known, the correlation between a lettgrbeforej and a
letterY, afterj is negligible. More precisely, we use a model where

P(Y, | XG?YCL?X):P(%’YLX% P(Ya|Y}7Y2’7X>:P(Y:1’Y}7X)7 b<j<a.

For the purposes of finding the most likatythis conditional independence property means
that the optimization problem is decomposable: giventhat y;, it suffices toseparately
find the optimal subsequence fromto ; ending withy;, and the optimal subsequence
starting withy; from j to L.

3.3.1 Representation

The structure of a Markov network is defined by an undirected géagh (V, £), where

the nodes are associated with variabfes {Y3,...,Y.}. A cliqueis a set of nodes C V

that form a fully connected subgraph (every two nodes are connected by an edge). Note that
each subclique of a clique is also a clique, and we consider each node a singleton clique.
In the chain network in Fig. 3.2, the cliques are simply the nodes and the ed@gs=

{{1},.. Y5} {1, Yo}, ..., {Y,, Y5} }. We denote the set of variables in a cliquas

Y., an assignment of variables in the cliqueyasand the space of all assignments to

the cligue ag).. We focus on discrete output spacgsbelow, but many of the same
representation and inference concepts translate to continuous domains. No assumption is
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$12(Y1, Y2) ¢23(Y2,Y3) ¢34(Y3,Ys) ¢a5(Ya, Ys)

¢1(Y1)  ¢2(Yo)  ¢3(Y3)  ¢4(Ya) ¢5(Ys)

I e

Figure 3.2: First-order Markov chai;(Y;) are node potentialss; ;. (Y;, Yii1) are edge
potentials (dependence aris not shown).

made abouf’.

Definition 3.3.1 A Markov networkis defined by an undirected gragh= (), ) and a
set of potentialsb = {¢.}. The nodes are associated with variablés= {Y;,...,Y.}.
Each cliquec € C(G) is associated with @otential ¢.(x, y.) with ¢, : X x V. — R,
which specifies a non-negative value for each assignmetd variables inY. and any
inputx. The Markov networkG, ®) defines a conditional distribution:

Py | x) = chﬁcxyc

CGC (9)

whereC(G) is the set of all the cliques of the graph aidx) is the partition function
given byZ(X) = Zyey HCEC(Q) ch(xa yc)'

In our example Fig. 3.2, we have node and edge potentials. Intuitively, the node poten-
tials quantify the correlation between the inpuand the value of the node, while the edge
potentials quantify the correlation between the pair of adjacent output variables as well as
the inputx. Potentials do not havelacal probabilistic interpretation, but can be thought
of as defining an unnormalized score for each assignment in the clique. Conditioned on
the image input, appropriate node potentials in our network should give high scores to the
correct letters (‘b’,'r’,'a’,'c’,'e’), though perhaps there would be some ambiguity with the
second and fourth Ietter. For simplicity, assume that the edge potentials would not depend
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on the images, but simply should give high scores to pairs of letters that tend to appear often
consecutively. Multiplied together, these scores should favor the correct output “brace”.

In fact, a Markov network is a generalized log-linear model, since the poteptials y..)
could be represented (in log-space) as a sum of basis functions guer

¢C(XC7 YC) = exp [Z wc,kfc,k<xu yc)] = exp [WZfC(X, YC)}
k=1

wheren,. is the number of basis functions for the cliqueHence the log of the conditional

probability is given by:

log P<y ‘ X) = Z W;rfc(x7 yc) - 10g ZW<X)'
ceC(G)

In case of node potentials for word recognition, we could use the same basis functions as
for individual character recognitiory; »(x, y;) = (X, row,co = 01 A y; = char) for each
possible(row, col) in x;, the window of the image that corresponds to lejtemd each

char € Y; (we assume the input has been segmented into imag#sat correspond to
letters). In general, we condition a clique only on a portion of the isputhich we denote

asx.. For the edge potentials, we can define basis functions for each combination of letters
(assume for simplicity no dependence:on f; ;11 x(x, y;, yj+1) = A(y; = chari Ay =

chary) for eachchar; € Y; andchary € Yj44. In this problem (as well as many others),

we are likely to “tie” or “share” the parameters of the modelacross cliques. Usually, all
single node potentials would share the same weights and basis functions (albeit the relevant
portion of the inputk.. is different) and similarly for the pairwise cliques, no matter in what
position they appear in the sequence.

With slight abuse of notation, we stack all basis functions into one vdctéior the
sequence modef, has node functions and edge functions, so whena node, the edge
functions inf (x., y.) are defined to evaluate to zero. Similarly, whes an edge, the node

1Sometimes we might actually want some dependence on the position in the sequence, which can be
accomplished by adding more basis functions that condition on the position of the clique.
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functions inf(x., y.) are also defined to evaluate to zero. Now we can write:

fx,y)= > f(xeye).
ceC(G)
We stack the weights in the corresponding manner, so the most likely assignment according
to the model is given by:

argmax log Py, (y | x) = argmaxw ' f(x,y),
yey yey

in the same form as Eg. (3.1).

3.3.2 Inference

There are several important questions that can be answered by probabilistic models. The
task of finding the most likely assignment, known as maximum a-posteriori (MAP) or most
likely explanation (MPE), is just one of such questions, but most relevant to our discussion.
The Viterbi dynamic programming algorithm solves this problem for chain networks in
O(L) time. Let the highest score of any subsequence frao% > 1 ending with valuey,,

be defined as

O (yx) = yflan H¢j(X,yj)¢j(X, Yi-1,Y5)-
k=1 j

The algorithm computes the highest scores recursively:

o1(y1) = d1(x, 1), Vuu € I
Or(yr) = max o1 (Ye—1)0;(X, Yk )P; (X, Yk—1, V), 1<k<L, Yy, € Vs

Yk—1€Vk—1

The highest scoring sequence has semie,, ¢; (v ). Using thearg max’s of themax’s in

the computation op*, we can back-trace the highest scoring sequence itself. We assume
that score ties are broken in a predetermined way, say according to some lexicographic
order of the symbols.
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$1(Y1)

$14(Y1,Ys) $12(Y1,Y2)

$34(Y3,Ys) $23(Y2, Y3)

#3(Y3)

Figure 3.3: Diamond Markov network (added triangulation edge is dashed).

In general Markov networks, MAP inference is NP-hard [Coveglal., 1999]. How-
ever, there are several important subclasses of networks that allow polynomial time infer-
ence. The most important of these is the class of networkdeuitlree-width We need the
concept of triangulation (or chordality) to formally define tree-width. Recall thatche
of length! in an undirected grapé is a sequence of node¢s,, vy, . . ., v;), distinct except
thatv, = v;, which are connected by edges, v;.1) € G. A chord of this cycle is an edge
(v;,v;) € G between non-consecutive nodes.

Definition 3.3.2 (Triangulated graph) An undirected graply is triangulatedif every one
of its cycles of length> 4 possesses a chord.

Singly-connected graphs, like chains and trees, are triangulated since they contain no cy-
cles. The simplest untriangulated network is the diamond in Fig. 3.3. To triangulate it,
we can add the edg@7, Y3) or (Y5, Y,). In general, there are many possible sets of edges
that can be added to triangulate a graph. The inference procedure creates a tree of cliques
using the graph augmented by triangulation. The critical property of a triangulation for the
inference procedure is the size of the largest clique.

Definition 3.3.3 (Tree-width of a graph) Thetree-widthof a triangulated grapl@ is the
size of its largest cligue minus Thetree-width of an untriangulated grapl@ is the
minimum tree-width of all triangulations of.
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The tree-width of a chain or a treelisand the tree-width of Fig. 3.3 i Finding the mini-
mum tree-width triangulation of a general graph is NP-hard, but good heuristic algorithms
exist [Cowellet al,, 1999].

The inference procedure is based on a data structure gaheton treethat can be
constructed for a triangulated graph. The junction tree is an alternative representation of
the same distribution that allows simple dynamic programming inference similar to the
Viterbi algorithm for chains.

Definition 3.3.4 (Junction tree) A junction tree7 = (), &) for a triangulated graplg is

a tree in which the nodes are a subset of the cliques of the gilagh((G) and the edges

£ satisfy therunning intersection property for any two cliques: and ¢/, the variables in

the intersection: N ¢’ are contained in the clique of every node of the tree on the (unique)
path betweer and¢'.

Fig. 3.4 shows a junction tree for the diamond network. Each of the original clique poten-
tials must associated with exactly one node in the junction tree. For example, the potentials
for the{Y1,Ys, Y } and{Y}, Y3, Y.} nodes are the product of the associated clique poten-
tials:

¢134(Yl>Y37Y;1) = ¢1(Y1)¢4(Y;1)¢14(Y17KL)¢34(Y?,>Y4)7
P123(Y1,Y2,Y3) = 2(Y2)3(Y3)012(Y1, Y2)a3(Y2, Y3).

Algorithms for constructing junction trees from triangulated graphs are described in detail
in Cowellet al. [1999].

The Viterbi algorithm for junction trees picks an arbitrary reotor the tree7 and
proceeds recursively from the leaves to compute the highest scoring subtree at a node by
combining the subtrees with highest score from its children. We denote the leaves of the
tree asLv(7) and the children of node(relative to the root r) ag'h,.(c):

o1 (y1) = ¢u(x,y1), VI € Lo(T), Yy, € Vi;
Dr(ye) = (X, ye) H yH,l%;(c bu(yer), Vee V(T)\ Lv(T), Vy. € Y.,

c/€Chy(c)
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b14(Y1,Ys) 21(Y1) $12(Y1,Y2)

$34(Y3,Y2) ¢3(Y3) ¢23(Y2,Y3)

Figure 3.4. Diamond network junction tree. Each of the original potentials is associated
with a node in the tree.

wherey. ~ y. denotes whether the partial assignmgnts consistent with the partial
assignmeny . on the variables in the intersection@@ndc’. The highest score is given by
maxy, ¢:(y,). Using thearg max’'s of the max’s in the computation o*, we can back-
trace the highest scoring assignment itself. Note that this algorithm is exponential in the
tree-width, the size of the largest clique. Similar type of computations using the junction
tree can be used to compute the partition functiQrix) (by simply replacingnax by > ")

as well as marginal probabilitié3(y.|x) for the cliques of the graph [Cowaedt al,, 1999].

3.3.3 Linear programming MAP inference

In this section, we present an alternative inference method based on linear programming.
Although solving the MAP inference using a general LP solver is less efficient than the
dynamic programming algorithms above, this formulation is crucial in viewing Markov
networks in a unified framework of the structured models we consider and to our develop-
ment of common estimation methods in later chapters. Let us begin with a linear integer
program to compute the optimal assignmgniVe represent an assignment as a set binary
variablesu.(y.), one for each clique and each value of the cliqye, that denotes whether

the assignment has that value, such that:

log [ ée(x,¥e) = te(ye) log de(x, ye)-

CYe
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p2(y2)

p1(y1) p12(y1, y2)

o|lr|O|O
o|lo|o|o
o|lr|o|O
o|lo|o|o
o|lo|o|o

Figure 3.5: Example of marginal agreement: row sumgefy;, y») agree withu, (y, ),
column sums agree wittn (y2).

We call these variables marginals, as they correspond to the marginals of a distribution that
has all of its mass centered on the MAP instantiation (assuming it is unique). There are
several elementary constraints that such marginals satisfy. First, they must sum to one for
each clique. Second, the marginals for cliques that share variables are consistent. For any
cliquec € C and a subclique C ¢, the assignment of the subclique,(y,), must be
consistent with the assignment of the clique(y.). Together, these constraints define a
linear integer program:

max > pre(ye)log de(X, ye) (3-2)

CYe

st Y pelye) =1, Veel;  ply.) €{0,1}, Veecl, vy
Ye

,Us<ys) = Z ,uc(yz)a VS,C € C> s Cec, VYS-

Yeys

For example, in case the network is a chain or a tree, we will have node and edge marginals
that sum tol and agree with each other as in Fig. 3.5.

Clearly, for any assignment’, we can defing..(y.) variables that satisfy the above
constraints by setting.(y.) = 1(y.. = y.). We can also show that converse is true: any
valid setting ofu..(y.) corresponds to a valid assignmentin fact,
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Lemma 3.3.5 For a triangulated network with unique MAP assignment, the integrality
constraint in the integer program in Eq. (3.2) can be relaxed and the resulting LP is guar-
anteed to have integer solutions.

A proof of this lemma appears in Wainwrigéital. [2002]. Intuitively, the constraints force

the marginalg..(y.) to correspond to some valid joint distribution over the assignments.
The optimal distribution with the respect to the objective puts all its mass on the MAP
assignment. If the MAP assignment is not unique, the value of the LP is the same as
the value of the integer program, and any linear combination of the MAP assignments
maximizes the LP.

In case the network is not triangulated, the set of marginals is not guaranteed to rep-
resent a valid distribution. Consider, for example, the diamond network in Fig. 3.3 with
binary variables, with the following edge marginals that are consistent with the constraints:

112(0,0) = p12(1,1) = 0.5, p12(1,0) = p12(0,1) = 0;
23(0,0) = pog(1,1) = 0.5, t23(1,0) = pes(0,1) = 0;
1134(0,0) = p3a(1,1) = 0.5, p34(1,0) = p34(0, 1) = 0;
1114(0,0) = pza(1,1) = 0, p14(1,0) = 114(0, 1) = 0.5.

The corresponding node marginals must all be sétioNote that the edge marginals for
(1,2),(2,3),(3,4) disallow any assignment other th@®00 or 1111, but the edge marginal
for (1,4) disallows any assignment that h&s = Y,. Hence this set of marginals dis-
allows all assignments. If we triangulate the graph and add the clifjde%>, Y5} and
{Y1,Y3,Y,} with their corresponding constraints, the above marginals will be disallowed.

In graphs where triangulation produces very large cliques, exact inference is intractable.
We can resort to the above MAthouttriangulation as an approximate inference procedure
(augmented with some procedure for rounding possibly fractional solutions). In Ch. 7, we
discuss another subclass of networks where MAP inference using LPs is tractable for any
network topology, but with a restricted type of potentials.
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Figure 3.6: Example parse tree from Penn Treebank [Magtak, 1993].

3.4 Context free grammars

Context-free grammars are one of the primary formalisms for capturing the recursive struc-
ture of syntactic constructions [Manning & Sahe, 1999]. For example, Fig. 3.6 shows
a parse tree for the sententle screen was a sea of tethis tree is from the Penn Tree-
bank [Marcuset al,, 1993], a primary linguistic resource for expert-annotated English text.
The non-terminal symbols (labels of internal nodes) correspond to syntactic categories such
as noun phrase (NP), verbal phrase (VP) or prepositional phrase (PP) and part-of-speech
tags like nouns (NN), verbs (VBD), determiners (DT) and prepositions (IN). The terminal
symbols (leaves) are the words of the sentence.

For clarity of presentation, we restrict our grammars to be in Chomsky normai({Ghir),
where all rules in the grammar are of the forsh— B C' andA — D, whereA, B andC
are non-terminal symbols, add is a terminal symbol.

Definition 3.4.1 (CFG) A CFGG consists of:

o A set of non-terminal symbola/

o A designated set of start symbolg C N

2Any CFG can be represented by another CFG in CNF that generates the same set of sentences.
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o A set of terminal symbolg;

o A set of productions? = {Pg, Py}, divided into

> Binary productionsPz ={A — BC: A, B,C € N} and
> Unary productionsPy = {A —-D: AeN,D e T}.

Consider a very simple grammar:

o N ={S,NP,VP,PP,NN, VBD, DT, IN}
o Ns = {5}
o 7 = {The, the, cat, dog, tree, saw, from}

oPg ={S - NP VP,NP — DT NN,NP — NP PP, VP — VBD NP,
VP — VP PP, PP — IN NP}.

o Py = {DT — The, DT — the, NN — cat, NN — dog, NN — tree, VBD — saw,
IN — from}

A grammar generates a sentence by starting with a symhalsirand applying the
productions inP to rewrite nonterminal symbols. For example, we can gendragecat
saw the dodpy starting withS — NP VP, rewriting theNP asNP — DT NN with DT —
The andNN — cat, then rewriting theVP asVP — VBD NP with VBD — saw, again
usingNP — DT NN, but now withDT — the andNN — dog. We can represent such
derivations using trees like in Fig. 3.6 or (more compactly) using bracketed expressions
like the one below:

[[TheDT CatNN]Np [SaWVBD [theDT dOgNN]NP]VP}S .

The simple grammar above can generate sentences of arbitrary length, since it has sev-
eral recursive productions. It can also generate the same sentence several ways. In general,
there are exponentially many parse trees that produce a sentence oflle@gtisider the
sentenceThe cat saw the dog from the tre@he likely analysis of the sentence is that
the cat, sitting in the tree, saw the dog. An unlikely but possible alternative is that the cat
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actually saw the dog who lived near the tree or was tied to it in the past. Our grammar
allows both interpretations, with the difference being in the analysis of the top\ével

[sawypp [thepr dogyn]nplve [[fromiy [thepT treexn|ne]pp,

SaAaWvyBD [[theDT dOgNN]NP [fI'OHlIN [theDT treeNN]Np]pp}Np.

This kind of ambiguity, called prepositional attachment, is very common in many re-
alistic grammars. A standard approach to resolving ambiguity is to use a PCFG to define
a joint probability distribution over the space of parse trgesnd sentence&’. Standard
PCFG parsers use a Viterbi-style algorithm to compugenax, P(x,y) as the most likely
parse tree for a sentenge The distributionP(x, y) is defined by assigning a probability
to each production and making sure that the sum of probabilities of all productions starting
with a each symbol is:

>  PMA-BC)=1, > PA—-D)=1, VAEN.

B,C:A—B CePp D:A—D€ePy

We also need to assign a probability to the different starting symibly € N such that
ZAeNS P(A) = 1. The probability of a tree is simply the product of probabilities of the
productions used in the tree (times the probability of the starting symbol). Hence the log-
probability of a tree is a sum of the log-probabilities of its productions. By letting our basis
functionsf (x, y) consist of the counts of the productions ande their log-probabilities,

we can cast PCFG as a structured linear model (in log space). In Ch. 9, we will show how
to represent a parse tree as an assignment of variablegh appropriate constraints to
express PCFGS (and more generally weighted CFGs) in the form of Eq. (3.1) as

hw(x) = argmax w' f(x,y),
y:g(xy)<0

and describe the associated algorithm to compute the highest scoring parg@irer a
sentencex.
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3.5 Combinatorial problems

Many important computational tasks are formulated as combinatorial optimization prob-
lems such as the maximum weight bipartite and perfect matching, spanning tree, graph-cut,
edge-cover, bin-packing, and many others [Lawler, 1976; Papadimitriou & Steiglitz, 1982;
Cormenet al, 2001]. These problems arise in applications such as resource allocation,
job assignment, routing, scheduling, network design and many more. In some domains,
the weights of the objective function in the optimization problem are simple and natural
to define (for example, Euclidian distance or temporal latency), but in many others, con-
structing the weights is an important and labor-intensive design task. Treated abstractly, a
combinatorial space of structures, such as matchings or graph-cuts or trees), together with
a scoring scheme that assigns weights to candidate outputs is a kind of a model.

As a particularly simple and relevant example, consider modeling the task of assigning
reviewers to papers as a maximum weight bipartite matching problem, where the weights
represent the “expertise” of each reviewer for each paper. More specifically, suppose we
would like to haveR reviewers per paper, and that each reviewer be assigned afhpast
pers. For each paper and reviewer, we have an a wejgimdicating the qualification level
of reviewer; for evaluating papek. Our objective is to find an assignment for reviewers
to papers that maximizes the total weight. We represent a matching with a set of binary
variablesy;;, that take the valug if reviewer j is assigned to papér, and0 otherwise. The
bipartite matching problem can be solved using a combinatorial algorithm or the following
linear program:

max Z Hikqjk (33)
gk

st Y mp=R > pp<P  0<pp <L
j p

This LP is guaranteed to produce integer solutions (as long asd R are integers) for
any weights;(y) [Nemhauser & Wolsey, 1999].

The quality of the solution found depends critically on the choice of weights that de-
fine the objective. A simple scheme could measure the “expertise” as the percent of word
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overlap in the reviewer’s home page and the paper’s abstract. However, we would want to
weight certain words much more (words that are relevant to the subject and infrequent).
Constructing and tuning the weights for a problem is a difficult and time-consuming pro-
cess, just as it is for Markov networks for handwriting recognition.

As usual, we will represent the objectiyéy) as a weighted combination of a set of
basis functionsv ' f(x, y). Letx;; denote the intersection of the set of words occurring in
webpage(j) Nabstract(k), the web page of a reviewgiand the abstract of the paperwe
can definef,(x,y) = ij yird(word, € x;), the number of times word was in both
the web page of a reviewer and the abstract of the paper that were matghe@han the
scoreg;y is simply ¢, = >, wal(wordy € x,i), @ weighted combination of overlapping
words. In the next chapter we will show how to learn the parametersmuch the same
way we learn the parametessof a Markov network.

The space of bipartite matchings illustrates an important property of many structured
spaces: the maximization problemy max, ., w ' f(x,y) is easier than the normalization

problem)" _, exp{w'f(x,y)}. The maximum weight bipartite matching can be found

€y
in ponnomTaI (cubic) time in the number of nodes in the graph using a combinatorial algo-
rithm. However, even simply counting the number of matchinggfFscomplete [Valiant,
1979; Garey & Johnson, 1979]. Note that counting is easier than normalization, which is
essentially weighted counting. This fact makes a probabilistic interpretation of the model as
a distribution over matchings intractable to compute. Similarly, exact maximum likelihood

estimation is intractable, since it requires computing the normalization.



Chapter 4
Structured maximum margin estimation

In the previous chapter, we described several important types of structured models of the
form:

hw(x) = argmax w' f(x,y), 4.1)
y:g(xy)<0

where we assume that the optimization problemx, . y)<o W' f(x,y) can be solved

or approximated by a compact convex optimization problem for some convex subset of
parametersy € W. A compactproblem formulation is polynomial in the description
length of the objective and the constraints.

Given a samples = {(x,y@)}™ , we develop methods for finding parameters
such that:

argmaxw ' f(x?V)y) ~ y¥ Wi,
yey(i>

where)®) = {y : g(x(¥,y) < 0}. In this chapter, we describe at an abstract level two

general approaches to structured estimation that we apply in the rest of the thesis. Both of
these approaches define a convex optimization problem for finding such parameters

There are several reasons to derive compact convex formulations. First and foremost,
we can find globally optimal parameters (with fixed precision) in polynomial time. Sec-
ond, we can use standard optimization software to solve the problem. Although special-
purpose algorithms that exploit the structure of a particular problem are often much faster

42
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(see Ch. 6), the availability of off-the-shelf software is very important for quick develop-
ment and testing of such models. Third, we can analyze the generalization performance of
the framework without worrying about the actual algorithms used to carry out the optimiza-
tion and the associated woes of intractable optimization problems: local minima, greedy
and heuristic methods, etc.

Our framework applies not only to the standard models typically estimated by prob-
abilistic methods, such as Markov networks and context-free grammars, but also to a
wide range of “unconventional” predictive models. Such models include graph cuts and
weighted matchings, where maximum likelihood estimation is intractable. We provide ex-
act maximum margin solutions for several of these problems (Ch. 7 and Ch. 10).

In prediction problems where the maximization in Eq. (4.1) is intractable, we consider
convex programs that provide only an upper or lower bound on the true solution. We
discuss how to use these approximate solutions for approximate learning of parameters.

4.1 Max-margin estimation

As in the univariate prediction, we measure the error of approximation using a loss func-
tion /. In structured problems, where we are jointly predicting multiple variables, the loss
is often not just the simpl@-1 loss or squared error. For structured classification, a natural
loss function is a kind of Hamming distance betwgéh andh(x): the number of vari-
ables predicted incorrectly. We will explore these and more general loss functions in the
following chapters.

4.1.1 Min-max formulation

Throughout, we will adopt the hinge upper bouid:(x")) on the loss function for struc-
tured classification inspired by max-margin criterion:

Gi(h(x")) = max[w ' £i(y) + 4(y)] - wE(y®?) > 6;(h(x®)),
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where as beford,; (h(x)) = £(x, y® h(xD)), £;(h(xD)) = £(xD,y® h(x®)), and
f;(y) = f(x,y). With this upper bound, the min-max formulation for structured classifi-
cation problem is analogous to multi-class SVM formulation in Eq. (2.9) and Eg. (2.10):

: 1 9
min §||W|| +C’Z§i (4.2)

st wihy")+& > max [w'fi(y) + i(y)], Vi

The above formulation is a convex quadratic progranwinsincemaxycy w'fi(y) +
¢;(y)] is convex inw (maximum of affine functions is a convex function). For brevity, we
did not explicitly include the constraint that the parameters are in some legal convex set
(w € W, most often IR), but assume this throughout this chapter.

The problem with Eq. (4.2) is that the constraints have a very unwieldy form. An-
other way to express this problem is using |V@| linear constraints, which is generally
exponential inL;, the number of variables ip;.

) 1 9
min o [|wl| +OZ@ (4.3)
s.t. WTfi(y(i)) +& > WTfi(y) +4(y), Vi, Vye€ Yo,

This form reveals the “maximum margin” nature of the formulation. We can interpret
Hi«_\IWT [f.(y") — £;(y)] as themarginof y* over anothey € Y. Assumingg; are all
zero (say becaugg is very large), the constraints enforce

w f(y®) — witi(y) > ti(y),

so minimizing||w|| maximizes the smallest such margin, scaled by the 4gss. The
slack variableg; allow for violations of the constraints at a c@s§;. If the loss function is
not uniform over all the mistakes # y¥, then the constraints make costly mistakes (those
with high /;(y)) less likely. In Ch. 5 we analyze the effect of non-uniform loss function
(Hamming distance type loss) on generalization, and show a strong connection between the
loss-scaled margin and expected risk of the learned model.

The formulation in Eq. (4.3) is a standard QP with linear constraints, but its exponential
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size is in general prohibitive. We now return to Eqg. (4.2) and transform it to a a more man-
ageable problem. The key to solving Eq. (4.2) efficiently isldss-augmentednference

max [wf;(y) + :(y)). (4.4)
Even ifmaxy .y w ' f;(y) can be solved in polynomial time using convex optimization, the
form of the loss ternd;(y) is crucial for the loss-augmented inference to remain tractable.
The range of tractable losses will depend strongly on the problem itselid)’). Even
within the range of tractable losses, some are more efficiently computable than others. A
large part of the development of structured estimation methods in the following chapters
is identifying appropriate loss functions for the application and designing convex formula-
tions for the loss-augmented inference.

Assume that we find such a formulation in terms of a set of varighlesith a concave
(@in ;) objectiveﬁ(w, ;) and subject to convex constraigs ;)

max [w'fi(y) +4(y)] = max - fi(w, ). (4.5)
yey@) pi:gi (1) <0
We call such formulation compact if the number of varialesnd constraintg; (x;) is
polynomial inL;, the number of variables in(®.

Note thatmax,,, g, (.,)<o fi(w, 1i;) must be convex iw, since Eq. (4.4) is. Likewise,
we can assume that it is feasible and bounded if Eq. (4.4) is. In the next section, we de-
velop a max-margin formulation that uses Lagrangian duality (see [Boyd & Vandenberghe,
2004] for an excellent review) to define a joint, compact convex problem for estimating the
parametersy.

To make the symbols concrete, consider the example of the reviewer-assignment prob-
lem we discussed in the previous chapter: we would like a bipartite matchingRnigh
viewers per paper and at maBtpapers per reviewer. Each training sampt®nsists of a
matching ofNjgi) papers andv,” reviewers from some previous year. bef, denote the
intersection of the set of words occurring in the web page of a revigaed the abstract of
the papel. Lety;, indicate whether revieweris matched to the papét We can define
a basis functiorfy(x;x, y;1) = y;rl(word, € x;i), which indicates whether the wottlis
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in both the web page of a reviewer and the abstract of the paper that are matghétlen
abbreviate the vector of all the basis functions for each gﬁgfsyjkf](,? = f(xg.ik)7 Yjk)-

We assume that the loss function decomposes over the varighlér example, the
Hamming loss simply counts the number of different edges in the matcingsy¥:

Z f%}f yjk Z ]l y]k # y]k Z y]ky]k

The last equality follows from the fact that any valid matching for exanmples R review-
ers forN papers, hencBN -3 i yjky](ﬁj represents exactly the number of edges that
are different betweegn andy”. Combining the two pieces, we have

wE(xDy) = W (s, yn) + 0] = BN+ yiulw £ — ).

gk gk

The loss-augmented inference problem can be then written as an kP smilar
to Eq. (3.3) (without the constant terfiv,"):

max Z Hi ]k k - y;;g)]

s.t. Z pige =R, Y mgp<P 0< <1
j k

In terms of Eq. (4.5)f; andg; are affine inu;: ﬁ(w, i) = RNS) +> i tin[w £ —yﬁ?]
andg;(1;) <0 & Z'Nijk =R, > ik < P, 0 <y < 1.
In general, when we can expressix,y: w Tf(x(,y) as an LP and we use a loss

function this is linear in the number of mistakes, we have a linear program of this form for
the loss-augmented inference:

for appropriately defined;, F;, c;, A;, b;, which depend only ox®, y®, f(x,y) and
g(x,y). Note that the dependence enis linear and only in the objective of the LP. If
this LP is compact (the number of variables and constraints is polynomial in the number of
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label variables), then we can use it to solve the max-margin estimation problem efficiently
by using convex duality.

TheLagrangian associated with Eq. (4.4) is given by

Lisw(pis \) = fi(w, i) — N &), (4.7)

where)\; > 0 is a vector ofLagrange multipliers, one for each constraint function in
g:(i;). Since we assume thﬁt(w, 1;) is concave inu; and bounded on the non-empty set
i+ gi(u;) < 0, we havestrong duality:

max -w ) = min max L; ).
118 (1) <0 fz( 7#1) NS0 z,w(,Uz? z)

For many forms off andg, we can write the Lagrangian dualin,>o max,,, L; w (i, \;)
explicitly as:

min  h(w, \;) (4.8)
s.t. qz(w7 /\l) < 07

where h;(w, \;) and q;(w, );) are convex in bothw and \;,. (We folded\; > 0 into
q;(w, \;) for brevity.) Since the original problem had polynomial size, the dual is polyno-
mial size as well. For example, the dual of the LP in Eq. (4.6) is

Plugging Eq. (4.8) into Eq. (4.2), we get
: 1 2
min §HWH +C ZSZ (4.10)

t. T (y® > i hi(w, ), V.
s w fi(y )+€_qi(g}gl)§0 (w,\i), Wi

Moreover, we can combine the minimization ovewith minimization over{w,{}. The
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reason for this is that if the right hand side is not at the minimum, the constraint is tighter
than necessary, leading to a suboptimal soluttorOptimizing jointly over\ as well will
produce a solution téw, £} that is optimal.

: 1 9
min §||W|| +CZ& (4.11)

s.t. w i (y) + & > hi(w, \), Vi

Hence we have a joint and compact convex optimization program for estimating
The exact form of this program depends stronglyfomdg. For our LP-based example,
we have a QP with linear constraints:

: 1 9
min §||W|| —|—CZ§,- (4.12)

st. wHEYD)+&>di+bl N, Vi
AN >Fw+c, Vi
A >0, Vi

4.1.2 Certificate formulation

In the previous section, we assumedampactconvex formulation of the loss-augmented
max in Eq. (4.4). There are several important combinatorial problems which allow poly-
nomial time solution yet do not have a compact convex optimization formulation. For
example, maximum weight perfect (non-bipartite) matching and spanning tree problems
can be expressed as linear programs w@ikponentiallynany constraints, but no polyno-
mial formulation is known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these
problems, however, can be solved in polynomial time using combinatorial algorithms. In
some cases, though, we can find a compactificate of optimalitythat guarantees that
y® = arg max,, [wTfi(y) + £:(y)] without expressing loss-augmented inference as a com-
pact convex program. Intuitively, just verifying that a given assignment is optimal is some-
times easier than actually finding it.
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Consider the maximum weight spanning tree problem. A basic property of a span-
ning tree is that cutting any eddg k) in the tree creates two disconnected sets of nodes
(V;[jk], V[jk]), wherej € V;[jk] andk € Vi[jk]. A spanning tree is optimal with respect
to a set of edge weights if and only if for every edgek) in the tree connectiny);[j k| and
Viljk], the weight of(j, k) is larger than (or equal to) the weight of any other edget’)
in the graph withy’ € V;[jk], k' € V;[jk] [Cormenet al, 2001]. We discuss the conditions
for optimality of perfect matchings in Ch. 10. Suppose that we can ficwhgpactconvex
formulation of these conditions via a polynomial (i) set of functionsy;(w, ;), jointly
convex inw and auxiliary variables;:

Ju; st qw,) <0 o wifi(y®) >wfi(y) +4(y), Vye)y?.
Then the following joint convex program i andv computes the max-margin parameters:

min  =||w]|? (4.13)

Expressing the spanning tree optimality does not require additional varigblag in
other problems, such as in perfect matching optimality in Ch. 10, such auxiliary variables
are needed. In the spanning tree problem, suppgsencodes whether eddg¢, k) is in
the tree and the score of the edge is givenmbf; ;. for some basis functiorﬂx§2, Yjk)-
We also assume that the loss function decomposes into a sum of losses over the edges, with
loss for each wrong edge given By;,. Then the optimality conditions are:
Wk > W e+ G, Yk, JK sty =1, 5 € Viljkl, K € Viljk].

For a full graph, we hav§|V(?)|?) constraints for each examplewhere|V®| is the number
of nodes in the graph for example

Note that this formulation does not allow for violations of the margin constraints (it has
no slack variables;). If the basis functions are not sufficiently rich to ensure that gach
is optimal, then Eq. (4.1.2) may be infeasible. Essentially, this formulation requires that
the upper bound on the empirical risk be zéﬁi‘[hw] = 0, and minimizes the complexity
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of the hypothesis., as measured by the norm of the weights.

If the problem is infeasible, the designer could add more basis fundiieny) that
take into account additional information about One could also add slack variables for
each example and each constraint that would allow violations of optimality conditions with
some penalty. However, these slack variables would not represent upper bounds on the loss
as they are in the min-max formulation, and therefore are less justified.

4.2 Approximations: upper and lower bounds

There are structured prediction tasks for which we might not be able to solve the estimation
problem exactly. Often, we cannot compuiex, .y« [w ' f;(y) + ¢;(y)] exactly or explic-

itly, but can only upper or lower bound it. Fig. 4.1 shows schematically how approximating
of the max subproblem reduces or extends the feasible spaceanti¢ and leads to ap-
proximate solutions. The nature of these lower and upper bounds depends on the problem,
but we consider two general cases below.

4.2.1 Constraint generation

When neither compact maximization or optimality formulation is possible, but the max-
imization problem can be solved or approximated by a combinatorial algorithm, we can
resort toconstraint generatioror cutting planemethods. Consider Eq. (4.3), where we
have an exponential number of linear constraints, one for eandy € Y. Only a sub-
set of those constraints will be active at the optimal solutionin fact, not more than the
number of parametersplus the number of examples can be active in general, since that
is the number of variables. If we can identify a small number of constraints that are critical
to the solution, we do not have to include all of them. Of course, identifying these con-
straints is in general as difficult as solving the problem, but a greedy approach of adding the
most violated constraints often achieves good approximate solutions after adding a small
(polynomial) number of constraints. If we continue adding constraints until there are no
more violated ones, the resulting solution is optimal.

We assume that we have an algorithm that prodyces arg max, .y [w ' fi(y) +
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&l — = Upper-bound
. Exact

*++v+ | ower-bound

Figure 4.1: Exact and approximate constraints on the max-margin quadratic program. The
solid red line represents the constraints imposed by the assignmenis®, whereas the
dashed and dotted lines represent approximate constraints. The approximate constraints
may coincide with the exact constraints in some cases, and be more stringent or relaxed in
others. The parabolic contours represent the value of the objective function and ‘+’, ‘x’ and
‘0’ mark the different optima.

¢;(y)]. The algorithm is described in Fig. 4.2. We maintain, for each exam@esmall
but growing set of assignmerg&? c Y. At each iteration, we solve the problem with a
subset of constraints:

R TR
min - Z||w]| +C;&- (4.14)
st wEYD) + &> wii(y) + G(y), Vi, ¥y e YO,

The only difference between Eq. (4.3) and Eq. (4.14) is3Hdthas been replaced By,

We then computg = arg max, .y [w ' fi(y) 4 £;(y)] for eachi and check whether the
constraintw "f;(y®) + & + € > w ' fi(y) + £i(y), is violated, where is a user defined
precision parameter. If it is violated, we pt) = Y@ U y. The algorithm terminates
when no constraints are violated. In Fig. 4.1, the lower-bound on the constraints provided
by Y@ Uy keeps tightening with each iteration, terminating when the desired preeision
reached. We note that if the algorithm that produges arg max .o [w ' fi(y) +4;(y)] is
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Input: precision parameter
1. Initialize: Y = {}, Vi.

2. Setviolation = 0 and solve fow and¢ by optimizing
min oWl +C D6
st wihyY) +& = witi(y) +4ly), Vi, Yy eIV

3. For each,
Computey = arg maxyeym [w' f;(y) + Li(y)],
if wifi(y?)+&+e<wifi(y) +4(y),
then Setj}(") = j}v(i) Uy andviolation = 1

4. if violation = 1 goto 2.

Returnw.

Figure 4.2: A constraint generation algorithm.

suboptimal, the approximation error of the solution we achieve might be much greater than
e. The number of constraints that must be added before the algorithm terminates depends
on the precisior and problem specific characteristics. See [Bertsimas & Tsitsiklis, 1997;
Boyd & Vandenberghe, 2004] for a more in-depth discussion of cutting planes methods.
This approach may also be computationally faster in providing a very good approximation
in practice if the explicit convex programming formulation is polynomial in size, but very
large, while the maximization algorithm is comparatively fast.

4.2.2 Constraint strengthening

In many problems, the maximization problem we are interested in may be very expensive
or intractable. For example, we consider MAP inference in large tree-width Markov net-
works in Ch. 8, multi-way cut in Ch. 7, graph-partitioning in Ch. 11. Many such problems
can be written amtegerprograms. Relaxations of such integer programs into LPs, QPs
or SDPs often provide excellent approximation algorithms [Hochbaum, 1997; Nemhauser
& Wolsey, 1999]. The relaxation usually defines a larger feasible spéte> Y@ over
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which the maximization is done, wheyec Y may correspond to a “fractional” assign-
ment. For example, a solution to the MAP LP in Eq. (3.2) for an untriangulated network
may not correspond to any valid assignment. In such a case, the approximation is an over-
estimate of the constraints:

max [w' ;(y) + (i(y)] > max[w'f(y) + 6(y)].

yey@) yey®
Hence the constraint set is tightened with such invalid assignments. Fig. 4.1 shows how the
over-estimate reduces the feasible space ahd¢.

Note that for every setting of the weigh#s that produces fractional solutions for the
relaxation, the approximate constraints are tightened because of the additional invalid as-
signments. In this case, the approximate MAP solution has higher value than any integer
solution, including the true assignmeyit), thereby driving up the corresponding slagk
By contrast, for weightsv for which the MAP approximation is integer-valued, the margin
has the standard interpretation as the difference between the segfearid the MAPy
(according tow). As the objective includes a penalty for the slack variable, intuitively,
minimizing the objective tends to drive the weigltsaway from the regions where the so-
lutions to the approximation are fractional. In essence, the estimation algorithm is finding
weights that are not necessarily optimal forexactmaximization algorithm, but (close to)
optimal for the particulappproximatemaximization algorithm used. In practice, we will
show experimentally that such approximations often work very well.

4.3 Related work

Our max-margin formulation is related to a body of work called inverse combinatorial and
convex optimization [Burton & Toint, 1992; Zhang & Ma, 1996; Ahuja & Orlin, 2001;
Heuberger, 2004]. Amverse optimization problens defined by an instance of an opti-
mization problemmax, .y w' f(y), a set of nominal weighte°, and a target solutiog’.

The goal is to find the weights closest to the nominal® in some norm, which make the
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target solution optimal:

min |w — WoHp

s.t. w f(y) >w'f(y), Vyel.

Most of the attention has been én and L., horms, butZ, norm is also used.

The study of inverse problems began with geophysical scientists (see [Tarantola, 1987]
for in-depth discussion of a wide range of applications). Modeling a complex physical
system often involves a large number of parameters which scientists find hard or impossible
to set correctly. Provided educated guesses for the paranvétersd the behavior of the
system as a target, the inverse optimization problem attempts to match the behavior while
not perturbing the “guesstimate” too much.

Although there is a strong connection between inverse optimization problems and our
formulations, the goals are very different than ours. In our framework, we are learning
a parameterized objective function that depends on the wp@nd will generalize well
in prediction on new instances. Moreover, we do not assume as given a nominal set of
weights. Note that if we sek” = 0, thenw = 0 is trivially the optimal solution. The
solutionw depends critically on the choice of nominal weights, which is not appropriate in
the learning setting.

The inverse reinforcement learning problem [Ng & Russell, 2000; Abbeel & Ng, 2004]

is much closer to our setting. The goalis to learn a reward function that will cause a rational
agent to act similar to the observed behavior of an expert. A full description of the problem

is beyond our scope, but we briefly describe the Markov decision process (MDP) model
commonly used for sequential decision making problems where an agent interacts with its
environment. The environment is modeled as a system that can be in one of a set of discrete
states. At every time step, the agent chooses an action from a discrete set of actions and the
system transitions to a next state with a probability that depends on the current state and
the action taken. The agent collects a reward at each step, which generally depends on the
on the current and the next state and the action taken. A rational agent executes a policy
(essentially, a state to action mapping) that maximizes its expected reward. To map this
problem (approximately) to our setting, note that a policy roughly corresponds to the labels
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y, the state sequence correspond to the ispand the reward for a state/action sequence is
assumed to be ' f(x, y) for some basis functions " f(x, y). The goal is to lears from a

set of state/action sequendas$”, y()) of the expert such that the maximizing the expected
reward according to the system model makes the agent imitate the expert. This and related
problems are formulated as a convex program in Ng and Russell [2000] and Abbeel and
Ng [2004].

4.4 Conclusion

In this chapter, we presented two formulations of structured max-margin estimation that
define a compact convex optimization problem. The first formulatimn;max, relies on

the ability to express inference in the model as a compact convex optimization problem.
The second oneertificate, only requires expressing optimality of a given assignment ac-
cording to the model. Our framework applies to a wide range of prediction problems that
we explore in the rest of the thesis, including Markov networks, context free grammars, and
many combinatorial structures such as matchings and graph-cuts. The estimation problem
is tractable and exact whenever the prediction problem can be formulated as a compact
convex optimization problem or a polynomial time combinatorial algorithm with compact
convex optimality conditions. When the prediction problem is intractable or very expen-
sive to solve exactly, we resort to approximations that only provide upper/lower bounds
on the predictions. The estimated parameters are then approximate, but produce accurate
approximateprediction models in practice.

Because our approach only relies using the maximum in the model for prediction, and
does not require a normalized distributidiy | x) over all outputs, maximum margin
estimation can be tractable when maximum likelihood is not. For example, to learn a prob-
abilistic modelP(y | x) over bipartite matchings using maximum likelihood requires com-
puting the normalizing partition function, which #P-complete [Valiant, 1979; Garey &
Johnson, 1979]. By contrast, maximum margin estimation can be formulated as a compact
QP with linear constraints. Similar results hold for non-bipartite matchings and min-cuts.

In models that are tractable for both maximum likelihood and maximum margin, (such
as low-treewidth Markov networks, context free grammars, many other problems in which



56 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

inference is solvable by dynamic programming), our approach has an additional advantage.
Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual
space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-
lihood estimation with kernels results in models that are generally non-sparse and require
pruning or greedy support vector selection methods [Laffettgl, 2004; Altunet al.,

2004].

The forthcoming formulations in the thesis follow the principles laid out in this chapter.
The range of applications of these principles is very broad and leads to estimation prob-
lems with very interesting structure in each particular problem, from Markov networks and
context-free grammars to graph cuts and perfect matchings.
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Chapter 5
Markov networks

Markov networks are extensively used to model complex sequential, spatial, and relational
interactions in prediction problems arising in many fields. These problems involve labeling

a set of related objects that exhilmital consistency. Isequentialabeling problems (such

as handwriting recognition), the labels (letters) of adjacent inputs (images) are highly corre-
lated. Sequential prediction problems arise in natural language processing (part-of-speech
tagging, speech recognition, information extraction [Manning &iof, 1999]), compu-
tational biology (gene finding, protein structure prediction, sequence alignment [Durbin
et al, 1998]), and many other fields. In image processing, neighboring pixels egp#bit

tial label coherence in denoising, segmentation and stereo correspondence [Besag, 1986;
Boykov et al, 1999a]. In hypertext or bibliographic classification, labels of linked and
co-cited documents tend to be similar [Chakrabattal., 1998; Taskaet al., 2002]. In
proteomic analysis, location and function of proteins that interact are often highly corre-
lated [Vazque=zt al, 2003]. Markov networks compactly represent complex joint distribu-
tions of the label variables by modeling their local interactions. Such models are encoded
by a graph, whose nodes represent the different object labels, and whose edges represent
and quantify direct dependencies between them. For example, a Markov network for the
hypertext domain would include a node for each webpage, encoding its label, and an edge
between any pair of webpages whose labels are directly correlated (e.g., because one links
to the other).

We address the problem of max-margin estimation the parameters of Markov networks
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for such structured classification problems. We show a compact convex formulation that
seamlessly integrates kernels with graphical models. We analyze the theoretical general-
ization properties of max-margin estimation and derive a novel margin-based bound for
structured classification.

We are given a labeled training sample= {(x®,y®)}™,, drawn from a fixed dis-
tribution D over X x ). We assume the structure of the network is given: we have a
mapping from an inpuk to the corresponding Markov network graglix) = {V, £}
where the node¥ map to the variables in. We abbreviatg (x(V) asG® below. In hand-
writing recognition, this mapping depends on the segmentation algorithm that determines
how many letters the sample image contains and splits the image into individual images
for each letter. It also depends on the basis functions we use to model the dependencies of
the problem, for example, first-order Markov chain or a higher-order models. Note that the
topology and size of the gragh?, might be different for each exampleFor instance, the
training sequences might have different lengths.

We focus onconditional Markov networks (or CRFs [Laffertet al, 2001]), which
represen?’(y | x) instead ofgenerativenodelsP(x,y). The log-linear representation we
have described in Sec. 3.3.1 is defined via a vectar lodisis functions (x, y):

log Pu(y | x) = w'f(x,y) — log Zw(x),

where Zy, (x) = >_, exp{w'f(x,y)} andw € IR". Before we present the maximum
margin estimation, we review the standard maximum likelihood method.

5.1 Maximum likelihood estimation

The regularized maximum likelihood approach of learning the weight$ a Markov net-

work is similar to logistic regression we described in Sec. 2.2. The objective is to minimize
the training log-loss with an additional regularization term, usually the squared-norm of the
weightsw [Lafferty et al., 2001]:

1 S . |
Wi = C) log Py [x17) = SIWIF =+ CY log Zu(x) — w'ti(y"™),
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wheref;(y) = f(x?, y).

This objective function is convex in the parametersso we have an unconstrained
convex optimization problem. The gradient with respeo¥ts given by:

W) [Biwlfiy)] = fi(y")] =w = C ) Eiw[Afi(y))

whereE,; ., [fi(y)] = > ¢y fi(y) Pw(y | x1¥) is the expectation under the conditional dis-
tribution P, (y | x) andAf;(y) = f(x@, y®) — f(x y), as before. To compute the ex-
pectations, we can use inference in the Markov network to calculate margipats | x)

for each clique: in the network Sec. 3.3.2. Since the basis functions decompose over the
cliques of the network, the expectation decomposes as well:

Ez,w[fz(y)} = Z Z fi,c(Yc)PW(YC | X(Z))

ceC y ey

Second order methods for solving unconstrained convex optimization problems, such
as Newton’s method, require the second derivatives as well as the gradienf; (ygt=
f;(y) — E; w[fi(y)]. The Hessian of the objective depends on the covariances of the basis
functions:

I+ C'ZEi,w [6f;(y)oti(y) '],

where! is an x n identity matrix. Computing the Hessian is more expensive than the
gradient, since we need to calculate joint marginals of every pair of cliqued ¢/,

Py (yue | x;) as well as covariances of all basis functions, which is quadratic in the num-
ber of cliques and the number of functions. A standard approach is to use an approximate
second order method that does not need to compute the Hessian, but uses only the gradient
information [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004]. Conjugate Gradients

or L-BFGS methods have been shown to work very well on large estimation problems [Sha

& Pereira, 2003; Pintet al., 2003], even with millions of parametews.



5.2. MAXIMUM MARGIN ESTIMATION 61

5.2 Maximum margin estimation

For maximum-margin estimation, we begin with the min-max formulation from Sec. 4.1:

.1 9
min §HWH —1—02& (5.1)

s.t. WTfi(y(i)) + & > max [WTfi(y) +4i(y)], Vi
y

We know from Sec. 3.3.3 how to expressx, w' f;(y) as an LP, but the important differ-
ence is the loss functiof). The simplest loss is th@1 loss/;(y) = 1(y@ # y). In fact

this loss for sequence models was used by Collins [2001] and Attah[2003]. However,

in structured problems, where we are predicting multiple labels, the loss is often not just
the simple0/1 loss, but may depend on the number of labels and type of labels predicted
incorrectly or perhaps the number of cliques of labels predicted incorrectly. In general, we
assume that the loss, like the basis functions, decomposes over the cliques of labels.

Assumption 5.2.1 The loss functiod;(y) is decomposable:

Gly)= > Dy y) = > lielye)

ceC(G(D) cec(G™)

We will focus on decomposable loss functions below. A natural choice that we use in our
experiments is the Hamming distance:

Py y) = 3 A £ ).
eV
With this assumption, we can express this inference problem for a triangulated graph
as a linear program for each examples in Sec. 3.3.3:

max Y i o(ye) W' fie(ye) + lic(ye)] (5.2)

CGYe

s.t. Zui,c<yc> — 17 \V/Z, Ve € C(l)y Ni,c(Yc) > 07 Ve € C(Z)a VYC;
Y

,ui,s(YS) = Z ﬂi,c(yé)a VS,C € 8(1)7 s C C, VYSa

Yerys
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whereC®” = C(G™) are the cliques of the Markov network for example

As we showed before, the constraints ensure thattfsdorm a proper distribution. If
the most likely assignment is unique, then the distribution that maximizes the objective puts
all its weight on that assignment. (If theg max is not unique, any convex combination of
the assignments is a valid solution). The dual of Eq. (5.2) is given by:

min Z ic (5.3)

s.t. )\i,c + Z mi,s,c(yc) - Z mi,c,s(y;) Z WTfi,e(}’C) + gi,c(Yc)a VC € C(Z)7VYC
sDc sCe, yiye
In this dual, the); . variables correspond to the normalization constraints, whijlg;(y.)
variables correspond to the agreement constraints in the primal in Eq. (5.2).

Plugging the dual into Eq. (5.1) for each examjpénd maximizing jointly over all the
variables v, £, A andm), we have:

: 1 2
min §||W|| +C’Z§i (5.4)
s.t. wai(y(i)) +& > Z Nie, Vi

/\i,c + Z mi,s,c(Yc) - Z mi,c,s(}’é) Z WTfi,c(Yc) + gi,c()’c)a VC € C(l)a ch-

sDc sCc, yhi~ye

In order to gain some intuition about this formulation, we make a change of variables from
/\i,c to fi,c:
Nie =W £.(yD) + &y Vi, VeeC®

The reason for naming the new variables using the léttgH be clear in the following. For
readability, we also introduce variables that capture the effect of all the agreement variables
m:

’LC yC Z mZCS ys Zm’LSC yC i? vc e C(’L)7 v},C'

sCc, yi~ye sOc
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With these new variables, we have:
min w03 ¢ (5.5)
2 - ! '

s.t. 5@ > Zfi,ea \V/L

szc(yg)) + 52 c 2 WTfi c<yc) + gz c(yc) + Mz c(yc>7 VZ, VC € C(Z)a vy'cv
Mio(ye) = > Mics(yl) = > miselye), Vi, Veecl®, vy,

sCc, yh~ye sDc

Note thats, = > ¢, . at the optimum, since the slack varialgleonly appears only in the
constraintg; > >° ¢ . and the objective minimizeS¢;. Hence we can simply eliminate

this set of variables:
. 1 9
min - [|wl| +CZ@,C (5.6)

s.t. Wsz c(y ) + fzc Z w fz c<yc) + gic(Yc) + Mic(}’c); VZ, Ve e C(Z)a VYC;
Mio(ye) = Y Mics(yl) = > miselye), Vi, VeeCW, vy,

sCc, yhi~ye sDc

Finally, we can write this in a form that resembles our original formulation Eq. (5.1), but
defined at a local level, for each clique:

R T
min EHWH +C Zfzc (5.7)
s.t. fz c(yc ) + 51 c Z max [ Tfi,c(y-c) + ei,c(}’c) + Mi,c(yc)]7 VZ, Ve € C(Z)a

Mio(ye) = D Mies(yl) = > mMiselye), Vi, VeeC?, vy,
sCec, ySNyc sDc

Note that without); . andm; . ; variables, we essentially treat each clique as an indepen-
dent classification problem: for each clique we have a hinge upper-bound on the local loss,
or a margin requirement. The; . ;(ys) variables correspond to a certain kind of messages
between cliques that distribute “credit” to cliques to fulfill this margin requirement from
other cliques which have sufficient margin.



64 CHAPTER 5. MARKOV NETWORKS

§12 £23 §34 €45
m1,12(Y1) m2 23(Y2) m3 34(Y3) ma4 45(Y4)
mo 12(Y2) m3.23(Y3) m4.34(Y4) ms.45(Ys)

DRCRNCRECRNC

Figure 5.1: First-order chain shown as a set of cliques (nodes and edges). Also shown are
the corresponding local slack variablefor each cligue and messagesbetween cliques.

As an example, consider the first-order Markov chain in Fig. 5.1. The set of cliques
consists of the five nodes and the four edges. Suppose for the sake of this example that
our training data consists of only one training sample. The figure shows the local slack
variables{ and messages between cliques for this sample. For brevity of notion in this
example, we drop the dependence on the sample indexhe indexing of the variables
(we also used;ﬁ*) instead Ofyj(-i) below). For concreteness, below we use the Hamming
loss ¢, which decomposes into local termigy;) = 1(y; # y](*)) for each node and is
zero for the edges.

The constraints associated with the node cliques in this sequence are:

WTf1 Y *) +& > WTf1 n v Fy ) —miaz(yi), Yy,
w ' £y (y ) +& > wih(y Yo # yé*) —ma12(y2) — Mao3(y2), Vs
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w ' fy(y ) +& > wif(y Y F yff‘) — My 34(Ys) — Maas(Ys), YYu;
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The edge constraints are:

WTflz(yg*), Y )) + & > Wiy, ye) + maae(yr) + maaa(ye), Vyi, s
Wszs(yé*)a yé )) +&s > Wby, ys) + mops(ye) + maas(ys), Yy, ys;
w'f 4(y§ ) yf; )) + &1 > WLy, ya) + maga(ys) + maga(ya), Vys, ys;
w L (U 8 € = W i (i, ys) + maas () + msas(ys), VY4 us.

5.3 M?2N dual and kernels

In the previous section, we showed a derivation of a compact formulation based on LP
inference. In this section, we develop an alternative dual derivation that provides a very
interesting interpretation of the problem and is a departure for special-purpose algorithms
we develop. We begin with the formulation as in Eq. (4.3):

. Lo
min o |[wl| +C;€i (5.8)

whereAf;(y) = f(x@, y®) — £f(x,y). The dual is given by:

2

(5.9)

s.t. Zaz( )=C, Vi;  «a(y) >0, Vi,y.

In the dual, the exponential number®f(y) variables correspond to the exponential num-
ber of constraints in the primal. We make two small transformations to the dual that do not
change the problem: we normalia&s by C' (by lettinga; (y) = Ca(y)), so that they sum
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to 1 and divide the objective byy. The resulting dual is given by:

2

max 3 aily)6ily) - %c (5.10)

Z i (y)Afi(y)

s.t. Zai(y) =1, Vi, a;(y) >0, Vi,y.
Yy

As in multi-class SVMs, the solution to the dualgives the solution to the primal as a
weighted combinationw™ = C'}_, = o (y)Afi(y).

Our main insight is that the variables(y) in the dual formulation Eqg. (5.10) can be
interpreted as a kind dfistributionovery, since they lie in the simplex

Yoaiy) =1 aly) =0, Vy.
y

This dual distribution does not represent the probability that the model assigns to an instan-
tiation, but the importance of the constraint associated with the instantiation to the solution.
The dual objective is a function of expectationggf) and Af;(y) with respect tay;(y).
Sincel;(y) = > li(y.) andAf;(y) = > . Af; .(y.) decompose over the cliques of the
Markov network, we only need clique marginals of the distributigfy) to compute their
expectations. We define the marginal dual variables as follows:

pieye) = Y aily'), Vi, Veec?, vy, (5.11)

Y ~ye

wherey’ ~ y. denotes whether the partial assignmgnis consistent with the full assign-
menty’. Note that the number gf; .(y.) variables is small (polynomial) compared to the
number of«;(y) variables (exponential) if the size of the largest clique is constant with
respect to the size of the network.

Now we can reformulate our entire QP (5.10) in terms of these marginal dual variables.
Consider, for example, the first term in the objective function (fixing a particular

Z O‘i(y)gi(Y) = Z O‘i(Y) Zﬁi,C(YC) = Zgi,C(yC) Z ai(y/> = Z PJLC(ychC(YC)'

CYe y'~ye &Ye
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The decomposition of the second term in the objective is analogous.

D ai(y)Afi(y) =) Afic(ye) Y aaly) =Y tic(ye) Afie(ye).

&Yye y'~ye Ye

Let us denote the the objective of Eqg. (5.10)@&y). Note that it only depends on
a;(y) through its marginalg;; .(y.), that is, Q(a) = Q'(M(«)), where M denotes the
marginalization operator defined by Eq. (5.11) . The domain of this opef@{a¥(], is
the product of simplices for all the: examples. What is its rang&[M], the set of legal
marginals? Characterizing this set (also knowmasginal polytopgcompactly will allow
us to work in the space ¢f's:

& "(10).
Tk A & max W)
Hence we must ensure that corresponds tsomedistribution «;, which is exactly
what the constraints in the LP for MAP inference enforce (see discussion of Lemma 3.3.5).
Therefore, when alF® are triangulated, the followingtructureddual QP has the same
primal solution v*) as the originaéxponentiadual QP in Eq. (5.10):

2

(5.12)

Z /’L’L',C (YC) Afi,c (yc>

i’c’yC

1
max Z ﬂi,c(yc)gi,c<yc) - 50

i,C,y(;

s.t. Z:ui,c(y'c> = 17 V’l, Ve € C(Z)7 ,ui,c(YC) > O, VZ, Ve € C(Z)a VYCv
Yc

pis(ys) = > pielyl), Vi, Vs,ceCY, sCe, Vy..

Yerys
The solution to the structured dyal gives us the primal solution:

W= O3 (Y AL (ye).

7"7C7yC

In this structured dual, we only enforce that there exists,azonsistent withu;, but do
not make a commitment about what it is. In general,dhdistribution is not unique, but
there is a continuum of distributions consistent with a set of marginals. The objective of
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the QP Eqg. (5.10) does not distinguish between these distributions, since it only depends on
their marginals. The maximum-entropy distributiapnconsistent with a set of marginals

i, however, is unique for a triangulated model and can be computed using the junction tree
T for the network [Cowelkt al, 1999].

Specifically, associated with each edger’) in the tree7 ) is a set of variables called
the separatos = ¢ N ¢’. Note that each separatoand complement of a separatox s is
also a cligue of the original graph, since it is a subclique of a larger clique. We denote the
set of separators a”. Now we can define the maximum-entropy distributigity) as

follows:
HceT<i) MLC(YC)

ngsm Mz’,s(}’s) '

ai(y) = (5.13)

Again, by conventior)/0 = 0.

Kernels

Note that the solution is a weighted combination of local basis functions and the objective
of Eq. (5.12) can be expressed in terms of dot products between local basis functions

Af o (ye) TAE o (ye) = [F(xD, v D) — £(xD, )] TEY, y9) — £(x, ye)).

Hence, we can locally kernelize our models and solve Eq. (5.12) efficiently. Kernels are
typically defined on the input, e.@(xﬁi),xéj)). In our handwriting example, we use a
polynomial kernel on the pixel values for the node cliques. We usually extend the kernel
over the input space to the joint input and output space by simply defining

f(xe,ye) (%6, ye) = Ay = ye)k(Xe, Xe).

Of course, other definitions are possible and may be useful when the assignments in each
clique y. have interesting structure. In Sec. 6.2 we experiment with several kernels for
the handwriting example. As in SVMs, the solutions to the max-margin QP are typically
sparse in the: variables. Hence, each log-potential in the network “remembers” only a
small proportion of the relevant training data inputs.
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p1(y1)

p1a(y1,ya) pr12(y1,y2)
pa(ya) @ @ p2(y2)
p34(y3,ya) 123(y2,y3)

' 1123(Y1, Y2, Y3)!

©3(y3)

Figure 5.2: Diamond Markov network (added triangulation edge is dashed and three-node
marginals are in dashed rectangles).

5.4 Untriangulated models

If the underlying Markov net is not chordal, we must address the problem by triangulating
the graph, that is, adding fill-in edges to ensure triangulation. For example, if our graph is
a 4-cycleY;—Y,—Y3—Y,—Y; as in Fig. 5.2, we can triangulate the graph by adding an
arcY;—Yjs. This will introduce new cliques?, Y3, Y3 andY;, Y3, Y, and the corresponding
marginals,ui23(y1, y2, y3) anduss(v1, ys, y4). We can then use this new graph to produce
the constraints on the marginals:

> pos(yive us) = pas(y2,vs), V2, v
Y1
Zums(yh Y2, ya) = MlZ(ylu y2), Y1, Yo;
Y3
Z p3a (Y1, Y3, Ya) = psa(ys, ya), VY3, Ya;
Y1
Z u134(y1, Ys, y4) = M13(y17 ?J3)a Y1, 3.

Y3

The new marginal variables appear only in the constraints; they do not add any new basis
functions nor change the objective function.
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In general, the number of constraints introduced is exponential in the number of vari-
ables in the new cliques — the tree-width of the graph. Unfortunately, even sparsely con-
nected networks, for example 2D grids often used in image analysis, have large tree-width.
However, we can still solve the QP in the structured primal Eq. (5.6) or the structured
dual Eq. (5.12) defined by an untriangulated graph. Such a formulation, which enforces
only local consistency of marginals, optimizes our objective only over a relaxation of the
marginal polytope. However, the learned parameters produce very accurate approximate
models in practice, as experiments in Ch. 8 demonstrate.

Note that we could also strengthen the untriangulated relaxation without introducing
an exponential number of constraints. For example, we can add positive semidefinite con-
straints on the marginajs used by Wainwright and Jordan [2003], which tend to improve
the approximation of the marginal polytope. Although this and other more complex relax-
ations are a very interesting area of future development, they are often much more expen-
sive.

The approximate QP does not guarantee that the learned modelexsiciinference
minimizes the true objective: (upper-bound on) empirical risk plus regularization. But do
we really need these optimal parameters if we cannot perform exact inference? A more
useful goal is to make sure that training error is minimized usingaffigoximateinfer-
ence procedure via the untriangulated LP. We conjecture that the parameters learned by
the approximate QP in fact do that to some degree. For instance, consider the separable
case, where 100% accuracy is achievable on the training data by some parametewsetting
such that approximate inference (using the untriangulated LP) produces integral solutions.
Solving the problem a§’ — oo will find this solution even though it may not be optimal
(in terms of the norm of thev) using exact inference. Fdat in intermediate range, the
formulation trades off fractionality of the untriangulated LP solutions with complexity of
the weightg|w||2.

5.5 Generalization bound

In this section, we show a generalization bound for the task of structured classification that
allows us to relate the error rate on the training set to the generalization error. To the best
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of our knowledge, this bound is the first to deal with structured error, such as the Hamming
distance. Our analysis of Hamming loss allows to prove a significantly stronger result than
previous bounds for th&'1 loss, as we detail below.

Our goal in structured classification is often to minimize the number of misclassified
labels, or the Hamming distance betweaeandh(x). An appropriate error function is the
average per-label loss

1
Llw.x,y) = 70" (y, arg max w'£(x,y).
y/

wherelL is the number of label variablesyn As in other generalization bounds for margin-
based classifiers, we relate the generalization error to the margin of the classifier. Consider
an upper bound on the above loss:

_ 1
Lw,x,y) < L(w,X,y) = max —0H (y,y).
(wxy) < Llw,xy) = max 70V
This upper bound is tight i = argmax,, w'f(x,y’), Otherwise, it is adversarial: it
picks from ally’ which are bettery "f(y) < w'f(y’)), one that maximizes the Hamming
distance fromy. We can now define a-margin per-label loss

_ 1
L(w,x,y) < L(w,x,y) < L(W,X,y) = max -

!
Y,y )
y': wTE(y)<w T £(y")+veH (y,y") L ( )

This upper bound is even more adversarial: it is tighy if= arg max,,[w'f(x,y’) +
(" (y,y")], otherwise, it picks from al{’ which are bettewhen helped by /" (y,y’), one
that maximizes the Hamming distance frgmNote that the loss we minimize in the max-
margin formulation is very closely related (although not identical to) this upper bound.

We can now prove that the generalization accuracy of any hypotkeisibounded by
its empiricaly-margin per-label loss, plus a term that grows inversely with the margin.To
state the bound, we need to define several other factors it depends upoi, hetthe
maximum number of cliques ig(x), V. be the maximum number of values in a clique
Y|, ¢ be the maximum number of cliques that have a variable in common Rarixe
an upper-bound on the 2-norm of clique basis functions. Consider a first-order sequence
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model as an example, withas the maximum length, andthe number of values a variable
takes. ThenV, = 2L — 1 since we havéd. node cliques and, — 1 edge cliquesy, = /2
because of the edge cliques; ang 3 since nodes in the middle of the sequence participate
in 3 cliques: previous-current edge clique, node clique, and current-next edge clique.

Theorem 5.5.1 For the family of hypotheses parameterizedvbyand anys > 0, there
exists a constank’ such that for anyy > 0 per-label margin, andn > 1 samples, the
expected per-label loss is bounded by:

1
lom+InN.+InV]+1In—| |

m y 1)

Ep[L(w,x,y)] < Es[m(w7x,y)]+\/K {Rgh"’yqz

with probability at leastt — . &

Proof: See Appendix A.1 for the proof details and the exact value of the constark

The first term upper bounds the training erromof Low lossEg[£7(w, x, y)] at high
margin~y quantifies the confidence of the prediction model. The second term depends on
||lwl|/~, which corresponds to the complexity of the classifier (normalized by the margin
level). Thus, the result provides a bound to the generalization error that trades off the
effectivecomplexity of the hypothesis space with the training error.

The proof uses a covering number argument analogous to previous results in SVMs [Zhang,
2002]. However we propose a novel method for covering the space of structured prediction
models by using a cover of the individual clique basis function differeddes(y.). This
new type of cover is polynomial in the number of cliques, yielding significant improve-
ments in the bound. Specifically, our bound has a logarithmic dependence on the number
of cliqgues {n N.) and depends only on the 2-norm of the basis functions per-cligue (

This is a significant gain over the previous result of Collins [2001farloss, which has

linear dependence (inside the square root) on the number of najleand depends on

the joint 2-norm of all of the basis functions for an example (whick-i$V.R.). Such a

result was, until now, an open problem for margin-based sequence classification [Collins,
2001]. Finally, for sequences, note thaﬁif: O(1) (for example, in OCR, if the number

of instances is at least a constant times the length of a word), then our bound is independent
of the number of labelg.
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5.6 Related work

The application of margin-based estimation methods to parsing and sequence modeling was
pioneered by Collins [2001] using the Voted-Perceptron algorithm [Freund & Schapire,
1998]. He provides generalization guarantees({fbitoss) that hold for separable case and
depend on the number of mistakes the perceptron makes before convergence. Remarkably,
the bound does not explicitly depend on the length of the sequence, although undoubtedly
the number of mistakes does.

Collins [2004] also suggested an SVM-like formulation (with exponentially many con-
straints) and a constraint generation method for solving it. His generalization bound (for
0/1 loss) based on the SVM-like margin, however, has linear dependence (inside the square
root) on the number of nodeg). It also depends on the joint 2-norm of all of the basis
functions for an example (which is N.R.). By considering the more natural Hamming
loss, we achieve a much tighter analysis.

Altun et al. [2003] have applied the exponential-size formulation with constraint gen-
eration we described in Sec. 4.2.1 to problems natural language processing. In a follow-up
paper, Tsochantaridit al. [2004] show that only a polynomial number of constraints are
needed to be generated to guarantee a fixed level of precision of the solution. However,
the number of constraints in many important cases is several orders highgrtfian in
the the approach we present. In addition, the corresponding problem needs to be resolved
(or at least approximately resolved) after each additional constraint is added, which is pro-
hibitively expensive for large number of examples and label variables.

The work of Guestriret al. [2003] presents LP decompositions based on graphical
model structure for the value function approximation problem in factored MDPs (Markov
decision processes with structure). Describing the exact setting is beyond our scope, but it
suffices to say that our original decomposition of the max-margin QP was inspired by the
proposed technique to transform an exponential set of constraints into a polynomial one
using a triangulated graph.

There has been a recent explosion of work in maximum conditional likelihood estima-
tion of Markov networks. The work of Laffertgt al. [2001] has inspired many applications
in natural language, computational biology, computer vision and relational modeling [Sha
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& Pereira, 2003; Pinte@t al., 2003; Kumar & Hebert, 2003; Suttaet al, 2004; Taskar

et al, 2002; Taskaet al,, 2003b]. As in the case of logistic regression, maximum condi-
tional likelihood estimation for Markov networks can also be kernelized [Adtiad., 2004;
Lafferty et al, 2004]. However, the solutions are non-sparse and the proposed algorithms
are forced to use greedy selection of support vectors or heuristic pruning methods.

5.7 Conclusion

We use graph decomposition to derive an exact, compact, convex max-margin formulation
for Markov networks with sequence and other low-treewidth structure. Our formulation
avoids the exponential blow-up in the number of constraints in the max-margin QP that
plagued previous approaches. The seamless integration of kernels with graphical models
allows us to create very rich models that leverage the immense amount of research in kernel
design and graphical model decompositions. We also use approximate graph decomposi-
tion to derive a compact approximate formulation for Markov networks in which inference

is intractable.

We provide theoretical guarantees on the avepmgdabelgeneralization error of our
models in terms of the training set margin. Our generalization bound significantly tightens
previous results of Collins [Collins, 2001] and suggests possibilities for analyzing per-label
generalization properties of graphical models.

In the next chapter, we present an efficient algorithm that exploits graphical model
inference and show experiments on a large handwriting recognition task that utilize the
powerful representational capability of kernels.



Chapter 6
M>3N algorithms and experiments

Although the number of variables and constraints in the structured dual in Eq. (5.12) is
polynomial in the size of the data, unfortunately, for standard QP solvers, the problem is
often too large even for small training sets. Instead, we use a coordinate dual ascent method
analogous to the sequential minimal optimization (SMO) used for SVMs [Platt, 1999].

We apply our MN framework and structured SMO algorithm to a handwriting recogni-
tion task. We show that our models significantly outperform other approaches by incorpo-
rating high-dimensional decision boundaries of polynomial kernels over character images
while capturing correlations between consecutive characters.

6.1 Solving the MN QP

Let us begin by considering the primal and dual QPs for multi-class SVMs:

2

.1 1
min o[[wl[* +C )& max Y ai(y)li(y) — 5C || D ai(y)Afi(y)
i iy 2
y

The KKT conditions [Bertsekas, 1999; Boyd & Vandenberghe, 2004] provide sufficient
and necessary criteria for optimality of a dual solutien As we describe below, these
conditions have certain locality with respect to each exampidich allows us to perform

75
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the search for optimal by repeatedly considering one example at a time.

A feasible dual solutiomx and a primal solution defined by:

wwzcz%@M@ (6.1)

& = max [((y) — wAL(y)] = max [(i(y) + w £i(y)] — w£(y?),

Y Y

are optimal if they satisfy the following two types of constraints:

ai(y) =0 = w'Afi(y) >
a(y) >0 = w Af(y) =

li(y) — & (KKT1)
li(y) — & (KKT?2),
We can express these conditions as

ai(y) =0 = w'fi(y) + Li(y) < max [w'Ei(y) + G(Y)]; (KKT1)

a(y) >0 = w'fi(y) +b(y) = max (w ' fi(y') + Gi(y). (KKT2)

To simplify the notation, we define

vily) =w i(y) + G(y);  vi() = max [w £ () + Li(y'))-

With these definitions, we have
ai(y) =0=vi(y) <v(@); (KKTL)  ai(y) >0=vi(y) > vi(y); (KKT2).
In practice, however, we will enforce KKT conditions up to a given tolerdheee < 1.
a;(y) =0 = v(y) <v(@) + € a;(y) > 0= v;(y) > vi(y) — e (6.2)

Essentially,«;(y) can bezeroonly if v;(y) is at moste larger than the all others Con-
versely,o;(y) can benon-zeroonly if v;(y) is at most smaller than the all others

Note that the normalization constraints on the dual variablase local to each exam-
plei. This allows us to perform dual block-coordinate ascent where a block corresponds to
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1. Initialize: o;(y) = A(y = y@), Vi, .

2. Setviolation = 0,

3. For each,

4. If o; violates (KKT1) or (KKT2),

5 Setviolation = 1,

6 Find feasibley, such thatQ(o}, a_;) > O(a;, a_;) and sety; = a.
7. If violation = 1 goto 2.

Figure 6.1: Block-coordinate dual ascent.

the vector of dual variables; for a single examplé The general form of block-coordinate
ascent algorithm as shown in Fig. 6.1 is essentially coordinate ascent on blockain-
taining the feasibility of the dual. When optimizing with respect to a single biptke
objective function can be split into two terms:

Qa) = Qa;) + Q, ay),

wherea_; denotes all duady,, variables fork other thani. Only the second part of the
objective Q(«;, a_;) matters for optimizing with respect to;. The algorithm starts with
a feasible dual solutiom and improves the objective block-wise until all KKT condi-
tions are satisfied. Checking the constraints requires compuwtiaigdé from « according
to Eq. (6.1).

As long as the local ascent step overis guaranteed to improve the objective when
KKT conditions are violated, the algorithm will converge to the global maximum in a finite
number of steps (within the precision). This allows us to focus on efficient updates to a
single block ofc; at a time.

Letaj(y) = ai(y) + A(y). Note thaty . A(y) = 0 anda;(y) + A(y) > 0 so thate; is
feasible. We can write the objectié@(«_;) + Q(a}, a—;) in terms of\ anda:

2

D (500 + M) = 5| [ ADALG) + sl
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By dropping all terms that do not involve and making the substitution
w=C%, a;(y)Af;(y), we get:

Z Ay)li(y) —w' (Z A(y)AfAy)) S
Since)_, Aly) =0,

ZA ) AR (y ZA () =Y AWE(y) = =D Aw)Ei(y)

Below we also make the substitution(y) = w'f;(y) + ¢;(y) to get the optimization
problem forA:

2

max Z AMy)v;(y

s.t. ZA )+>\( ) >0, V.

6.1.1 SMO

We do not need to solve the optimization subproblem above at each pass through the data.
All that is required is an ascent step, not a full optimization. Sequential Minimal Opti-
mization (SMO) approach takes an ascent step that modifies the least number of variables.
In our case, we have the simplex constraint, so we must change at least two variables in
order to respect the normalization constraint (by moving weight from one dual variable to
another). We address a strategy for selecting the two variables in the next section, but for
now assume we have pickedy’) and\(y”). Then we havé = \(y') = —A(y”) in order

to sum to 1. The optimization problem becomes a single variable quadratic progfam in

max  [uy') — (o)) — SCIRG) — B 6.3)
s.t. a;(y)+6>0; az( " —d§>0.
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05

-0.5F

-15F

Figure 6.2: Representative examples of the SMO subproblem. Horizonal axis reppesents
with two vertical lines depicting the upper and lower boundsdd. Vertical axis repre-
sents the objective. Optimum either occurs at the maximum of the parabola if it is feasible
or the upper or lower bound otherwise.

With a = vi(y') = vi(y"), b = Clfi(y") — i(y")

2ec=—a;(y),d = a;(y"), we have:
b
max [ad — 55 ] st. e <8 <d, (6.4)

where the optimum is achieved at the maximum of the parabg@laf ¢ < a/b < d or at
the boundary: or d (see Fig. 6.1.1). Hence the solution is given by simply clippipy

0" = max(c, min(d, a/b)).

The key advantage of SMO is the simplicity of this update. Computing the coefficients
involves dot products (or kernel evaluations) to computef;(y') andw 'f;(y”) as well as

(fi(y") = fi(y") T (£i(y) — £i(y")).

6.1.2 Selecting SMO pairs

How do we actually select such a pair to guarantee that we make progress in optimizing
the objective? Note that at least one of the assignmentsst violate (KKT1) or (KKT2),
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. Setviolation = 0.

. For eachy,

KKTL: If o;(y) = 0 andv;(y) > v;(7) + e,
Sety’ = y andviolation = 1 and goto 7.

KKT2: If o;(y) > 0 andu;(y) < v;(y) — e,
Sety’ = y andviolation = 2 and goto 7.

. If violation > 0,

For eachy # v/,
If violation = 1 anda;(y) > 0,

10. Sety” = y and goto 13.

11.  Ifwviolation = 2 andv;(y) > v;(y'),

12. Sety” = y and goto 13.

13. Returny’ andy”.

© © N O R~ DN

Figure 6.3: SMO pair selection.

because otherwisg, is optimal with respect to the curreant ;. The selection algorithm is
outlined in Fig. 6.3.

The first variable in the pair/, corresponds to a violated condition, while the second
variable,y”, is chosen to guarantee that solving Eq. (6.3) will result in improving the ob-
jective. There are two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. «;(y') = 0 butv;(y') > v;(y') + €. This is the case whergy’ is a not
support vector but should be. We would like to increasg/’), so we needy;(y”) > 0
to borrow from. There will always be a suchyd since}_ a;(y) = 1 anda;(y’) = 0.
Sincev;(y') > vi(y') + €, vi(y') > vi(y") + €, so the linear coefficient in Eq. (6.4) is
a = v;(y') —v;(y") > e. Hence the unconstrained maximum is positiyé > 0. Since the
upper-boundl = «;(y") > 0, we have enough freedom to improve the objective.

Case KKT2. a;(y') > 0 butwv;(y') < vi(yy/) —e. This is the case whetigy’ is a support
vector but should not be. We would like to decreas@/’), so we need;(y”) > v;(y')

so thata/b < 0. There will always be a such@ sincev;(y’) < v;(y’) — . Since the
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lower-bounde = —«;(y') < 0, again we have enough freedom to improve the objective.

Since at each iteration we are guaranteed to improve the objective if the KKT conditions
are violated and the objective is bounded, we can use the SMO in the block-coordinate
ascent algorithm to converge in a finite number of steps. To the best of our knowledge,
there are no upper bounds on the speed of convergence of SMO, but experimental evidence
has shown it a very effective algorithm for SVMs [Platt, 1999]. Of course, we can improve
the speed of convergence by adding heuristics in the selection of the pair, as long as we
guarantee that improvement is possible when KKT conditions are violated.

6.1.3 Structured SMO

Clearly, we cannot perform the above SMO updates in the spacedifectly for the
structured problems, since the numbenofariables is exponential. The constraints;on
variables are much more complicated, since gaplarticipates not only in non-negativity

and normalization constraints, but also clique-agreement constraints. We cannot limit our
ascent steps to changing only twoariables at a time, because in order to make a change
in one clique and stay feasible, we need to modify variables in overlapping cliques. For-
tunately, we can perform SMO updates @wariables implicitly in terms of the marginal

dual variableg..

The diagram in Fig. 6.1.3 shows the abstract outline of the algorithm. The key steps in
the SMO algorithm are checking for violations of the KKT conditions, selecting theypair
andy”, computing the corresponding coefficient$, ¢, d and updating the dual. We will
show how to do these operations by doing all the hard work in terms of the polynomially
many marginaj; variables and auxiliary “max-marginals” variables.

Structured KKT conditions

As before, we define;(y) = w'fi(y) + ¢;(y). The KKT conditions are, for ay:

a(y) =0=vi(y) <v(¥);  aily) >0=v(y) > u(y). (6.5)
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y == Y/ —
78 A P N e S PN N
select { : SMO .| project
&lift ¢ i update i i

Figure 6.4: Structured SMO diagram. We use margipais select an appropriate pair of
instantiationgy’ andy” and reconstruct their values. We then perform the simple SMO
update and project the result back onto the marginals.

Of course, we cannot check these explicitly. Instead, we define max-marginals for each
clique in the junction tree € 7 and its valuey., as:

i}\i,c(yc) = max [Wsz(Y) + E'L(y)]u ai,c(yc) = max Oéz(}’)
y~Yye y~¥Ye

We also defing; .(7.) = maxy, 4y, 0;.(y.) = maxy.y. [w'fi(y) + £i(y)]. Note that we

do not explicitly represent;(y), but we can reconstruct the maximum-entropy one from
the marginalg; by using Eq. (5.13). Both; .(y.) anda; .(y.) can be computed by using

the Viterbi algorithm (one pass propagation towards the root and one outwards from the
root [Cowellet al,, 1999]). We can now express the KKT conditions in terms of the max-
marginals for each cliqguec 7 and its values..:

ai,C(YC) =0= i}\i,C(YC) < 61‘70(370% ai,C(YC) >0= 61‘,6(3’6) > 6170(376) (66)

Theorem 6.1.1 The KKT conditions in Eq. (6.5) and Eq. (6.6) are equivalent.

Proof:
Eq. (6.5)= Eq. (6.6) Assume Eq. (6.5). Suppose, we have a violation of KKT1: for
somec, y., Q;.(y.) = 0, butv; .(y.) > 0;.(¥c). Sinceq; .(y.) = maxy.y, o;(y) = 0,



6.1. SOLVING THE MN QP 83

thena;(y) = 0, Vy ~ y.. Hence, by Eq. (6.5x:(y) < vi(y), Vy ~ ye. Butti.(yc) >
U;..(¥e.) implies the opposite: there exisgs~ y,. such thaw;(y) > v;.(¥.), which also
impliesv;(y) > v;(¥), a contradiction.

Now suppose we have a violation of KKT2: for somg., a; .(y.) > 0, butv; .(y.) <
U:..(¥e). Thenv,(y) < v;(¥), Yy ~ y.. Buta, .(y.) > 0 implies there existy ~ y. such
thato;(y) > 0. For thaty, by Eq. (6.5)v;(y) > v;(y), a contradiction.

Eq. (6.6) = Eq. (6.5) Assume Eg. (6.6). Suppose we have a violation of KKT1:
for somey, a;(y) = 0, butv;(y) > v;(¥). This means thay is the optimum ofv;(-),
hencet; .(y.) = vi(y) > vw(¥) > 0i.(e), Ve € T y. ~ y. But by Eqg. (6.6), if
Vie(ye) > v;0(¥e), then we cannot hawe; .(y.) = 0. Hence all they-consistenty; max-
marginals are positive; .(y.) > 0, Ve € 7@, and it follows that all they-consistent
marginalsy, are positive as well;; .(y.) > 0, Ve € T (since sum upper-bounds max).
Butay(y) = Heer( Fice)

[ cs0) pis(ys)
a contradiction.

, so if all they-consistent marginals are positive, thefy) > 0,

Now suppose we have a violation of KKT2: for somge «;(y) > 0, butv;(y) <
v;(¥). Sinceq;(y) > 0, we know that all they-consistenty; max-marginals are positive
Qic(ye) >0, Ve € T, By EQ. (6.6),0;.(y.) > 0:.(¥:), Ve € T®. Note that trivially
maxy v;(y') = max(0;.(y.), 0;.(y.)) for any cliquec and clique assignment,. Since
Vie(ye) > 0ie(Ve), Ve € T, thenmax, v;(y’) = v;.(y.),, Ve € T9. That is,v; .(ye.)
is the optimal value. We will show thaf(y) = v; .(y.), a contradiction. To show that this,
we consider any two adjacent nodes in the Fée, cliquesa andb, with a separatos, and
show that; ., (Yaun) = Via(Ya) = is(ys). By chaining this equality from the root of the
tree to all the leaves, we gef(y) = v; .(y.) for anyc.

We need to introduce some more notation to deal with the two parts of the tree induced
by cutting the edge betweenandb. Let { A, B} be a partition of the nodeg® (cliques
of C) resulting from removing the edge betweemndb such thate € A andb € B.
We denote the two subsets of an assignmenasy, andyg (with overlap aty,). The
value of an assignment;(y) can be decomposed into two parts(y) = v; a(ya) +
v; 5(yB), Wherev; 4(y4) andwv; g(yg) only count the contributions of their constituent
cliqgues. Take any maximizeg® ~ y, with v;(y?) = 0;.(y.) > 0i.(¥.) and any
maximizery® ~ y;, with v;(y®) = 9;,(ys) > 0i4(¥3), which by definition agree witly
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on the intersection. We decompose the two associated values into the corresponding parts:
0i(y@) = v (y'™) oy (yY) andey(y®) = vy (y D) +vi(yY). We create a new assignment
that combines the best of the twg{®) = y&' U y!¥. Note thatv;(y®) = v(y?) +
vi(yg)) = 0, 5(ys), since we essentially fixed the intersectioand maximized over the

rest of the variables inl and B separately. Now;; ,(y.) = 0is(ys) > 0is(ys) Since they

are optimal as we said above. Hence we h@(/ﬁf)) + vi(yfg‘;)) = vi(y(j)) + vi(yg’)) >

vi(y P + v;(y'?) which implies that; (') > v;(y?) andv;(y?) > vi(y'?). Now we
create another assignment that clamps the value ofdatitb: y (@) = yff) U yf,f). The
value of this assignment is optimaly @) = v;(y'™) + v;(y V) = v;(y@) = v:(y®).

Structured SMO pair selection and update

As in multi-class problems, we will select the first variable in the pdircorresponding to

a violated condition, while the second variaké, to guarantee that solving Eqg. (6.3) will
result in improving the objective. Having selectgdandy”, the coefficients for the one-
variable QP in Eq. (6.4) ate= v;(y’")—v;(y"), b = C||f:(y') £ (y")||?
a;(y"). As before, we enforce approximate KKT conditions in the algorithm in Fig. 6.5.

o= —ai(y'),d =

We have two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. @, .(y.) = 0 but®; .(y.) > 0;.(y.)+e. We have sep’ = arg max,_, vi(y),
S0v;(y') = Vie(y.) > ie(yl) + € > vi(y') + € anda,(y’) = 0. This is the case where
i,y' is a not support vector but should be. We would like to incregsg’), so we need
a;(y") > 0 to borrow from. There will always be a suchyéd (with y” # y’) since
Zy a;(y) = 1 anda;(y’) = 0. We can find one by choosing. for which &; .(y.) > 0,
which guarantees that fgr, = arg max,._, (y), a;(y”) > 0. Sincev;(y’) > vi(y’) + ¢,
vi(y') > vi(y”) +¢, so the linear coefficient in Eq. (6.4)ds= v;(y’) — v;(y”) > €. Hence
the unconstrained maximum is positivéb > 0. Since the upper-bountl= «;(y”) > 0,
we have enough freedom to improve the objective.

Case KKT2. @ .(y.) > 0butt; .(y.) < ;.(y.)—e. We have sef’ = argmax,_,_a;(y),
s0q;i(y') = Qic(yr) > 0andui(y’) < Vic(ye) < Uie(yl) — € < vi(y’) — e This is the
case wherée, y’ is a support vector but should not be. We would like to decreaSg),
so we need;(y”) > v;(y’) so thata/b < 0. There will always be a such g’ since
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. Setviolation = 0.
. Foreach: € 70, y,
KKTL: If @;o(ye) = 0, andd; o(ye) > 0:0(¥2) + €,

Sety, = y., y' = argmax,_,_v;(y) andviolation = 1 and goto 7.
KKT2: If @, .(y.) > 0, and; .(y.) < v;.(¥.) — €,

Sety, = y., ¥y = argmax,_,_o;(y) andviolation = 2 and goto 7.
. If violation > 0,

For eacly. # y.,
If violation = 1 anda; .(y.) > 0,

© ® N O U AWM

10. Sety, = argmax,,_«;(y)and goto 13.
11.  Ifviolation = 2 andv; .(y.) > U;(y.),

12. Sety” = argmax,_,_v;(y) and goto 13.
13. Returny’ andy”.

Figure 6.5: Structured SMO pair selection.

v;(y') < vi(y') — e. We can find one by choosing. for whichv; .(y.) > 0;.(y.) — e,
which guarantees that for, = argmax,_, vi(y), vi(y") > vi(y’) — ¢, Since the lower-
boundec = —a;(y’) < 0, again we have enough freedom to improve the objective.
Having computed new valueg(y’') = «;(y’) + § andai(y”) = a;(y’) — 9, we need
to project this change onto the marginal dual varialblesThe only marginal affected are

the ones consistent wiyl and/ory”, and the change is very simple:

i o(Ye) = tie(ye) + 02y, ~y') — 6d(ye ~ y").

6.2 Experiments

We selected a subset f 6100 handwritten words, with average length-of characters,
from 150 human subjects, from the data set collected by Kassel [1995]. Each word was
divided into characters, each character was rasterized into an imagelgf 8 binary
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Figure 6.6: (a) 3 example words from the OCR data set; (b) OCR: Average per-
character test error for logistic regression, CRFs, multiclass SVMs, dahg$Mising linear,
guadratic, and cubic kernels.

pixels. (See Fig. 6.6(a).) In our framework, the image for each word corresporgsto
label of an individual character ;, and a labeling for a complete word 3a Each label
Y, takes values from one af; classeqa, ..., z}.

The data set is divided intt0 folds of ~ 600 training and~ 5500 testing examples.
The accuracy results, summarized in Fig. 6.6(b), are averages ovel thkls. We im-
plemented a selection of state-of-the-art classification algorithnoependent label ap-
proaches which do not consider the correlation between neighboring characters — lo-
gistic regression, multi-class SVMs as described in Eq. (2.9), and one-against-all SVMs
(whose performance was slightly lower than multi-class SVMs);sagience approaches
— CRFs, and our proposedVietworks. Logistic regression and CRFs are both trained by
maximizing the conditional likelihood of the labels given the features, using a zero-mean
diagonal Gaussian prior over the parameters, with a standard deviation between 0.1 and
1. The other methods are trained by margin maximization. Our features for each label
Y, are the corresponding image @ character. For the sequence approaches (CRFs and
M3), we used an indicator basis function to represent the correlation bepyeemd)), ., ;.
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For margin-based methods (SVMs and)Mwe were able to use kernels (both quadratic
and cubic were evaluated) to increase the dimensionality of the feature space. We used
the structured SMO algorithm with about 30-40 iterations through the data. Using these
high-dimensional feature spaces in CRFs is not feasible because of the enormous number
of parameters.

Fig. 6.6(b) shows two types of gains in accuracy: First, by using kernels, margin-based
methods achieve a very significant gain over the respective likelihood maximizing methods.
Second, by using sequences, we obtain another significant gain in accuracy. Interestingly,
the error rate of our method using linear feature$d% lower than that of CRFs, and
about the same as multi-class SVMs with cubic kernels. Once we use cubic kernels our
error rate is15% lower than CRFs and aboB8% lower than the best previous approach.

For comparison, the previously published results, although using a different setup (e.g., a
larger training set), are about comparable to those of multiclass SVMs.

6.3 Related work

The kernel-adatron [Friegs al., 1998] and voted-perceptron algorithms [Freund & Schapire,
1998] for large-margin classifiers have a similar online optimization scheme. Collins
[2001] have applied voted-perceptron to structured problems in natural language. Although
head-to-head comparisons have not been performed, it seems that, empirically, less passes
(about 30-40) are needed for our algorithm than in the perceptron literature.

Recently, the Exponentiated Gradient [Kivinen & Warmuth, 1997] algorithm has been
adopted to solve our structured QP for max-margin estimation [Baetlett, 2004]. Al-
though the EG algorithm has attractive convergence properties, it has yet to be shown to
learn faster than Structured SMO, particularly in the early iterations through the dataset.

6.4 Conclusion

In this chapter, we address the large (though polynomial) size of our quadratic program
using an effective optimization procedure inspired by SMO. In our experiments with the
OCR task, our sequence model significantly outperforms other approaches by incorporating
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high-dimensional decision boundaries of polynomial kernels over character images while
capturing correlations between consecutive characters. Overall, we believetmat-M
works will significantly further the applicability of high accuracy margin-based methods to
real-world structured data. In the next two chapters, we apply this framework to important
classes of Markov networks for spatial and relational data.



Chapter 7
Assoclative Markov networks

In the previous chapter, we considered applications of sequence-structured Markov net-
works, which allow very efficient inference and learning. The chief computational bottle-
neck in applying Markov networks for other large-scale prediction problems is inference,
which is NP-hard in general networks suitable in a broad range of practical Markov network
structures, including grid-topology networks [Besag, 1986].

One can address the tractability issue by limiting the structure of the underlying net-
work. In some cases, such as the quad-tree model used for image segmentation [Bouman &
Shapiro, 1994], a tractable structure is determined in advance. In other cases (e.g., [Bach &
Jordan, 2001]), the network structure is learned, subject to the constraint that inference on
these networks is tractable. In many cases, however, the topology of the Markov network
does not allow tractable inference. For example, in hypertext, the network structure can
mirror the hyperlink graph, which is usually highly interconnected, leading to computa-
tionally intractable networks.

In this chapter, we show that optimal learning is feasible for an important subclass of
Markov networks — networks witlattractive potentials This subclass, calledssocia-
tive Markov networks (AMNsEontains networks of discrete variables withlabels and
arbitrary-size cligue potentials witRh” parameters that favor the same labels for all vari-
ables in the clique. Such positive interactions capture the “guilt by association” pattern of
reasoning present in many domains, in which connected (“associated”) variables tend to
have the same label. AMNSs are a natural fit object recognition and segmentation, webpage

89
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classification, and many other applications.

In the max-margin estimation framework, the inference subtask is one of finding the
best joint (MAP) assignment to all of the variables in a Markov network. By contrast, other
learning tasks (e.g., maximizing the conditional likelihood of the target labels given the
features) require that we compute the posterior probabilities of different label assignments,
rather than just the MAP.

The MAP problem can naturally be expressed as an integer programming problem. We
use a linear program relaxation of this integer program in the min-max formulation. We
show that, for associative Markov networks of over binary variablés= 2), this linear
program provides exact answers. To our knowledge, our method is the first to allow training
Markov networks of arbitrary connectivity and topology. For the non-binary dase @),
the approximate linear program is not guaranteed to be optimal but we can bound its relative
error. Our empirical results suggest that the solutions of the resulting approximate max-
margin formulation work well in practice.

We present an AMN-based method for object segmentation of complex from 3D range
data. By constraining the class of Markov networks to AMNSs, our models can be learned
efficiently and at run-time, scale up to tens of millions of nodes and edges. The proposed
learning formulation effectively and directly learns to exploit a large set of complex surface
and volumetric features, while balancing the spatial coherence modeled by the AMN.

7.1 Associative networks

Associative interactions arise naturally in the context of image processing, where nearby
pixels are likely to have the same label [Besag, 1986; Botal., 1999b]. In this setting,
a common approach is to useganeralized Potts mod@Potts, 1952], which penalizes
assignments that do not have the same label across the g¢dge?) = \;;, Vk # [ and
¢ij(k, k) =1, where);; < 1.

For binary-valued Potts models, Greaigal. [1989] show that the MAP problem can be
formulated as a min-cut in an appropriately constructed graph. Thus, the MAP problem can
be solved exactly for this class of models in polynomial time. For 2, the MAP problem
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is NP-hard, but a procedure based on a relaxed linear program guarantees a factor 2 approx-
imation of the optimal solution [Boykoet al, 1999b; Kleinberg & Tardos, 1999]. Our
associative potentials extend the Potts model in several ways. Importantly, AMNs allow
different labels to have different attraction strengthi(k, k) = \;;(k), where\;;(k) > 1,
and¢;;(k,l) = 1, Vk # (. This additional flexibility is important in many domains, as
different labels can have very diverse affinities. For example, foreground pixels tend to
have locally coherent values while background is much more varied.

In a second important extension, AMNs admit non-pairwise interactions between vari-
ables, with potentials over cliques involvimg variables)(j;1, . . ., tim). In this case, the
clique potentials are constrained to have the same type of structure as the edge potentials:
There areK parameterg.(k,..., k) = A.(k) > 1 and the rest of the entries are setito
In particular, using this additional expressive power, AMNSs allow us to encode the pattern
of (soft) transitivity present in many domains. For example, consider the problem of pre-
dicting whether two proteins interact [Vazquetzal., 2003]; this probability may increase
if they bothinteract with another protein. This type of transitivity could be modeled by a
ternary clique that has highfor the assignment with all interactions present.

More formally, we definassociativdunctions and potentials as follows.

Definition 7.1.1 A functiong : ) — IR isassociative for a grapf over K -ary variablesf
it can be written as:

9 =3 0k =k + 3 S0 Aye =k k) glk) 20, VeeC\V,

VeV k=1 ceC\V k=1

where) are the nodes and are the cliques of the grap. A set of potential®(y) is
associative ifp(y) = e?™¥) andg(y) is associative.

7.2 LP Inference

We can write an integer linear program for the problem of finding the maximum of an
associative functiop(y), where we have a “marginal” variabjlg (k) for each node € V
and each labet, which indicates whether nodehas value:, andy.(k) for each clique:
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(containing more than one variable) and labgelhich represents the event that all nodes
in the cliquec have labek:

max 305 pBg(k) + 303 pelk)ge(k) (7.2)

veEV k=1 c€C\V k=1
K

st pe(k) €{0,1}, Veel k> p(k)=1 VYve;
k=1

pe(k) < py(k), YeeC\V, veEc, k.

Note that we substitute the constrajni(k) = A .. u.(k) by linear inequality con-
straintsu.(k) < p,(k). This works because the coefficieptk) is non-negative and we
are maximizing the objective function. Hence at the optimup) = min, u, (k) , which
is equivalent tqu.(k) = A .. to(k), wheny, (k) are binary.

It can be shown that in the binary case, the linear relaxation of Eq. (7.1), (where the
constraintsu.(k) € {0, 1} are replaced by.(k) > 0), is guaranteed to produce an integer
solution when a unique solution exists.

Theorem 7.2.11f K = 2, for any associative functioq the linear relaxation of Eq. (7.1)
has an integral optimal solution.

See Appendix A.2.1 for the proof. This result states that the MAP problem in binary AMNs

is tractable, regardless of network topology or clique size. In the non-binary Ease)

these LPs can produce fractional solutions and we use a rounding procedure to get an
integral solution.

Theorem 7.2.21f K > 2, for any associative functiog, the linear relaxation of Eq. (7.1)
has a solution that is larger than the solution of the integer program by at most the number
of variables in the largest clique.

In the appendix, we also show that the approximation ratio of the rounding procedure is the
inverse of the size of the largest clique (e@for pairwise networks). Although artificial
examples with fractional solutions can be easily constructed by using symmetry, it seems
that in real data such symmetries are often broken. In fact, in all our experiments with
L > 2 on real data, we never encountered fractional solutions.
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7.3 Min-cut inference

We can also use efficient min-cut algorithms to perform exact inference on the learned
models forK = 2 and approximate inference féf > 2. For simplicity, we focus on the
pairwise AMN case. We first consider the case of binary AMNs, and later show how to use
the local search algorithm developed by Boylaial. [1999a] to perform (approximate)
inference in the general multi-class case. For pairwise, binary AMNSs, the objective of the
integer program in Eq. (7.1) is:

max Y [1t,(1)go(1) + p10(2)90(2)] + D [t (1) gu (1) + frao(2) gu(2)]. (7.2)

veY uveE

7.3.1 Graph construction

We construct a graph in which thmin-cutwill correspond to the optimal MAP labeling
for the above objective. First, we recast the objective as minimization by simply reversing
the signs on the value of eaéh

min — > [po(1)go(1) + 10(2)90(2)] = D [tun(1)gun(1) + pun(2)gun(2)]. - (7.3)
veY uveE
The graph will consist of a vertex for each node in the AMN, along withltlzend 2
terminals. In the fina{);, ),) cut, theV, set will correspond to labél, and the), set will
correspond to label. We will show how to deal with the node terms (those depending only
on a single variable) and the edge terms (those depending on a pair of variables), and then
how to combine the two.

Node terms

Consider a node term ., (1)g,(1) — 14,(2)g,(2). Such a term corresponds to the node po-
tential contribution to our objective function for nodeFor each node term corresponding

to nodev we add a vertex to the min-cut graph. We then look &, = ¢,(1) — ¢.(2),

and create an edge of weigfi,| from v to eitherl or 2, depending on the sign af,.

The reason for that is that the final min-cut graph must consist of only positive weights. An
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—v O

gv(1) —gu(2) >0 Guv(1)

guv(l) + guv(z)

@ O—0

gv(2) - gv(l) >0

Figure 7.1: Min-cut graph construction of node (left) and edge (right) terms.

example is presented in Fig. 7.3.1.

From Fig. 7.3.1, we see that if the AMN consisted of only node potentials, the graph
construction above would add an edge from each node to its more likely label. Thus if we
run min-cut, we would simply get a cut with catsince for each introduced vertex we
have only one edge of positive weight to eithesr 2, and we would always choose not to
cut any edges.

Edge Terms

Now consider an edge term of the forfy,, (1)guw(1) — pww(2)gu0(2). TO construct a
min-cut graph for the edge term we will introduce two vertiecesndv. We will connect
vertexu to 1 with an edge of weight,, (1), connect to 2 with an edge of weighg,,, (2)
and connect to v with an edge of weigh,,, (1) + ¢.,(2). Fig. 7.3.1 shows an example.
Observe what happens when both nodes are oVihgde of the cut: the value of the
min-cut isg,, (1), which must be less thag,,(2) or the min-cut would have placed them
both on thel side. When looking at edge terms in isolation, a cut that places each node
in different sets will not occur, but when we combine the graphs for node terms and edge
terms, such cuts will be possible.

We can take the individual graphs we created for node and edge terms and merge them
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by adding edge weights together (and treating missing edges as edges with Gyeilght

can be shown that the resulting graph will represent the same objective (in the sense that
running min-cut on it will optimize the same objective) as the sum of the objectives of each
graph. Since our MAP-inference objective is simply a sum of node and edge terms, merging
the node and edge term graphs will result in a graph in which min-cut will correspond to
the MAP labeling.

7.3.2 Multi-class case

The graph construction above finds the best MAP labeling for the binary case, but in prac-
tice we would often like to handle multiple classes in AMNs. One of the most effective
algorithms for minimizing energy functions like ours is theexpansion algorithm pro-
posed by Boykowet al. [1999a]. The algorithm performs a series of “expansion” moves
each of which involves optimization over two labels, and it can be shown that it converges
to within a factor of 2 of the global minimum.

Expansion Algorithm

Consider a current labeling and a particular labet € 1,..., K. Another labeling.’ is
called an &-expansion” move (following Boykoet al. [1999a]) fromy if 1! # k implies
= u, (Wherep, is the label of the node in the AMN.) In other words, &-expansion
from a current labeling allows each label to either stay the same, or chahge to

Thea-expansion algorithm cycles through all labkls either a fixed or random order,
and finds the new labeling whose objective has the lowest value. It terminates when there
IS noa-expansion move for any labglthat has a lower objective than the current labeling
(Fig. 7.2).

The key part of the algorithm is computing the beséxpansion labeling for a fixed
k and a fixed current labeling. The min-cut construction from earlier allows us to do
exactly that since an-expansion move essentially minimizes a MAP-objective over two
labels: it either allows a node to retain its current label, or switch to the abéh this
new binary problem we will let labdl represent a node keeping its current label and label
2 will denote a node taking on the new laldelIn order to construct the right coefficients
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1. Begin with arbitrary labeling
2. Setsuccess := 0
3. Foreach labet € {1,... K}

3.1 Computgi = arg min —g(x') amongy’ within onea-expansion ofu.
3.2 If E(i1) < E(u), setu := j1 and success= 1

4. If success = 1 goto 2.

5. Returnu

Figure 7.2:a-expansion algorithm

1k, k

for the new binary objective we need to consider several factors. Belod'lahd;;

denote the node and edge coefficients associated with the new binary objective:

o Node PotentialsFor each nodein the current labeling whose current label is not
we letd?® = 6%, andd!' = 0%, wherey; denotes the current label of nodeand¥:
denotes the coefficient in the multiclass AMN MAP objective. Note that we ignore
nodes with labet altogether since an-expansion move cannot change their label.

o Edge PotentialsFor each edgéi, j) € E whose nodes have labels different from
we add a new edge potential, with weights = 6;“. If the two nodes of the edge
currently have the same label, we é;@t: ij?’yj, and if the two nodes currently have
different labels we le€;) = 0. For each edgéi, j) € E in which exactly one of the
nodes has labet in the current labeling, we adif;“, to the node potenti#’ of the
node whose label is different from

After we have constructed the new binary MAP objective as above, we can apply the
min-cut construction from before to get the optimal labeling within arexpansion from
the current one. Veksler [1999] shows that thexpansion algorithm convergesan V)
iterations whereV is the number of nodes. As noted in Boykelal. [1999a] and as we
have observed in our experiments, the algorithm terminates only after a few iterations with
most of the improvement occurring in the first 2-3 expansion moves.



7.4. MAX-MARGIN ESTIMATION 97

7.4 Max-margin estimation

The potentials of the AMN are once again log-linear combinations of basis functions. We
will need the following assumption to ensure thatf(x, y) is associative:

Assumption 7.4.1 Basis function$ are component-wise associative f(x) for any(x,y).

Recall that this implies that for cliques larger than one, all basis functions evaluate to

for assignments where the values of the nodes are not equal and are non-negative for the
assignments where the values of the nodes are equal. To ensuse'f{at y) is associa-

tive, it is useful to separate the basis functions with support only on nodes from those with
support on larger cliques.

Definition 7.4.2 Let f be the subset of basis functiofisvith support only on singleton
cliques:

f={fef:VxeX, ye), ceCGX), |c|>1, fuxe,yc) =0}

Letf = f \ f be the rest of the basis functions. lat,w} = w be the corresponding
subsets of parameters.

It is easy to verify that any non-negative combination of associative functions is asso-
ciative, and any combination of basis functions with support only on singleton cliques is
also associative, so we have:

Lemma 7.4.3 w' f(x,y) is associative fog (x) for any(x, y) whenever Assumption 7.4.1
holds andw > 0.

We must make similar associative assumption on the loss function in order to guarantee
that the LP inference can handle it.

Assumption 7.4.4 The loss functior(x¥, y(® | y) is associative fog® for all 4.

In practice, this restriction is fairly mild, and the Hamming loss, which we use in general-
ization bounds and experiments, is associative.
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Using the above Assumptions 7.4.1 and 7.4.4 and some algebra (see Appendix A.2.3
for derivation), we have the following max-margin QP for AMNs:

1 5
min §||w|| +C Z iv (7.4)

i,wep(®)

st WAL (k) = Y mie(k) > Go(k) = &, Vioo € VO E;

cOv

WAL (k) + > myeu(k) > Lio(k), Vi,e€CO\VY k;

VEC
M co(k) > —WTfi7C(y£i))/|c|, Vi, c e CY \V(i),v €ck;
w > 0;

wheref; (k) = £ (k,... k) andl; (k) = (o (k, ... k).

While this primal is more complex than the regulafWifactored primal in Eq. (5.4),
the basic structure of the first two sets of constraints remains the same: we have local
margin requirements and “credit” passed around through messagesk). The extra
constraints are due to the associativity constraints on the resulting model.

The dual of Eq. (7.4) (see derivation in Sec. A.2.3) is given by:

2 2
C . Cll. -
max Z i (k) c(k) — ) Z piw(B)AL; (k)| — ) v+ Z i (k) A ()
i,CGC“) ok ’L',’UGV“) k i,cEC(” K

K

st pie(k) >0, Vi, VeeCY, k; Z“i,v(k) —1, Vi, Yoe V.
k=1

pie(k) < pin(k), Vi, Ve e CO\VD v ee, k

v>0.

In the dual, there are marginglsfor each node and clique, for each valiesimilar
to Eq. (5.12). However, the constraints are different, and not surprisingly, are essentially
the constraints from the inference LP relaxation in Eq. (7.1).
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The dual and primal solutions are related by

W= Y ()AL (k) W=+ > pe(k)Af (k).
iweV® k i,ceC) K

The variables simply ensure thétare positive (if any componedt; ... .0 (k) AF o (K)
iS negative, maximizing the objective will force the corresponding componeéitiootancel
it out). Note that the objective can be written in terms of dot products of node basis func-
tions Af; (k)T Af;;(k), so they can be kernelized. Unfortunately, the edge basis functions
cannot be kernelized because of the non-negativity constraint.

For K = 2, the LP inference is exact, so that Eq. (7.4) leaxactmax-margin weights
for Markov networks ofarbitrary topology. ForK > 2, the linear relaxation leads to a
strengthening of the constraints enby potentially adding constraints corresponding to
fractional assignments as in the case of untriangualated networks. Thus, the optimal choice
w, & for the original QP may no longer be feasible, leading to a different choice of weights.
However, as our experiments show, these weights tend to do well in practice.

7.5 EXxperiments

We applied associative Markov networks to the task of terrain classification. Terrain clas-
sification is very useful for autonomous mobile robots in real-world environments for path
planning, target detection, and as a pre-processing step for other perceptual tasks. The
Stanford Segbot Projéchas provided us with a laser range maps of the Stanford campus
collected by a moving robot equipped with SICK2 laser sensors Fig. 7.5. The data consists
of around 35 million points, represented as 3D coordinates in an absolute frame of refer-
ence Fig. 7.5. Thus, the only available information is the location of points. Each reading
was a point in 3D space, represented by(itsy, z) coordinates in an absolute frame of
reference. Thus, the only available information is the location of points, which was fairly
noisy because of localization errors.

Our task is to classify the laser range points into four clasgesind, building, tree,

IMany thanks to Michael Montemerlo and Sebastian Thrun for sharing the data.
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Figure 7.3: Segbot: roving robot equipped with SICK2 laser sensors.

and shrubbery. Since classifying ground points is trivial given their absolute z-coordinate
(height), we classify them deterministically by thresholding the z coordinate at a value
close to 0. After we do that, we are left with approximately 20 million non-ground points.
Each point is represented simply as a location in an absolute 3D coordinate system. The
features we use require pre-processing to infer properties of the local neighborhood of a
point, such as how planar the neighborhood is, or how much of the neighbors are close to
the ground. The features we use are invariant to rotation in the x-y plane, as well as the
density of the range scan, since scans tend to be sparser in regions farther from the robot.
Our first type of feature is based on the principal plane around it. For each point we
sample 100 points in a cube of radit$ meters. We run PCA on these points to get the
plane of maximum variance (spanned by the first two principal components). We then par-
tition the cube intd3 x 3 x 3 bins around the point, oriented with respect to the principal
plane, and compute the percentage of points lying in the various sub-cubes. We use a num-
ber of features derived from the cube such as the percentage of points in the central column,
the outside corners, the central plane, etc. These features capture the local distribution well
and are especially useful in finding planes. Our second type of feature is based on a column
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Figure 7.4: 3D laser scan range map of the Stanford Quad.

around each point. We take a cylinder of radiug5 meters, which extends vertically to
include all the points in a “column”. We then compute what percentage of the points lie in
various segments of this vertical column (e.g., between 2m and 2.5m). Finally, we also use
an indicator feature of whether or not a point lies witin of the ground. This feature is
especially useful in classifying shrubbery.

For training we select roughly 30 thousand points that represent the classes well: a
segment of a wall, a tree, some bushes. We considered three different msyals:
Voted-SVM and AMNs. All methods use the same set of features, augmented with a
guadratic kernel.

The first model is a multi-class SVM with a quadratic kernel over the above features.
This model (Fig. 7.5, right panel and Fig. 7.7, top panel) achieves reasonable performance
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Figure 7.5: Terrain classification results showing Stanford Memorial Church obtained
with SVM, Voted-SVM and AMN models. (Color legend: buildings/red, trees/green,
shrubs/blue, ground/gray).

in many places, but fails to enforce local consistency of the classification predictions. For
example arches on buildings and other less planar regions are consistently confused for
trees, even though they are surrounded entirely by buildings.

We improved upon the SVM by smoothing its predictions using voting. For each point
we took its local neighborhood (we varied the radius to get the best possible results) and
assigned the point the label of the majority of its 100 neighbors. Vidied-SVM model
(Fig. 7.5, middle panel and Fig. 7.7, middle panel) performs slightly betterSNa: for
example, it smooths out trees and some parts of the buildings. Yet it still fails in areas like
arches of buildings where tIf#/M classifier has a locally consistent wrong prediction.

The final model is a pairwise AMN over laser scan points, with associative potentials
to ensure smoothness. Each point is connected to 6 of its neighbors: 3 of them are sampled
randomly from the local neighborhood in a sphere of radivisn, and the other 3 are
sampled at random from the vertical cylinder column of radi@$m. It is important to
ensure vertical consistency since B8M classifier is wrong in areas that are higher off the
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Mincut inference performance
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Figure 7.6: The running time (in seconds) of the min-cut-based inference algorithm for
different problem sizes. The problem size is the sum of the number of nodes and the
number of edges. Note the near linear performance of the algorithm and its efficiency even
for large models.

ground (due to the decrease in point density) or because objects tend to look different as we
vary their z-coordinate (for example, tree trunks and tree crowns look different). While we
experimented with a variety of edge features including various distances between points,
we found that even using only a constant feature performs well.

We trained the AMN model using CPLEX to solve the quadratic program; the train-
ing took about an hour on a Pentium 3 desktop. The inference over each segment was
performed using min-cut witlx-expansion moves as described above. We used a pub-
licly available implementation of the min-cut algorithm, which uses bidirectional search
trees for augmenting paths (see Boykov and Kolmogorov [2004]). The implementation is
largely dominated by I/O time, with the actual min-cut taking less than two minutes even
for the largest segment. The performance is summarized in Fig. 7.6, and as we can see, it
is roughly linear in the size of the problem (number of nodes and number of edges).

We can see that the predictions of the AMN (Fig. 7.5, left panel and Fig. 7.7, bot-
tom panel) are much smoother: for example building arches and tree trunks are predicted
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correctly. We also hand-labeled around 180 thousand points of the test set (Fig. 7.8) and
computed accuracies of the predictions shown in Fig. 7.9 (excluding ground, which was
classified by pre-processing). The differences are dranta¥itd: 68%,Voted-SVM: 73%
andAMN: 93%. See more results, including a fly-through movie of the data, at
http://ai.stanford.edu/"btaskar/3Dmap/

7.6 Related work

Several authors have considered extensions to the Potts model. Kleinberg and Tardos
[1999] extend the multi-class Potts model to have more general edge potentials, under the
constraints that negative log of the edge potentials form a metric on the set of labels. They
also provide a solution based on a relaxed LP that has certain approximation guarantees.

More recently, Kolmogorov and Zabih [2002] showed how to optimize energy func-
tions containing binary and ternary interactions using graph cuts, as long as the parameters
satisfy a certain regularity condition. Our definition of associative potentials below also
satisfies the Kolmogorov and Zabih regularity conditionfor= 2. However, the structure
of our potentials is simpler to describe and extend for the multi-class case. In fact, we can
extend our max-margin framework to estimate their more general potentials by expressing
inference as a linear program.

Our terrain classification approach is most closely related to work in vision applying
conditional random fields (CRFs) to 2D images. Kumar and Hebert [2003] train CRFs
using a pseudo-likelihood approximation to the distributl®fly | X) since estimating
the true conditional distribution is intractable. Unlike their work, our learning formulation
provides an exact and tractable optimization algorithm, as well as formal guarantees for
binary classification problems. Moreover, unlike their work, our approach can also handle
multi-class problems in a straightforward manner.

7.7 Conclusion

In this chapter, we provide an algorithm for max-margin training of associative Markov
networks, a subclass of Markov networks that allows only positive interactions between
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related variables. Our approach relies on a linear programming relaxation of the MAP
problem, which is the key component in the quadratic program associated with the max-
margin formulation. We thus provide a polynomial time algorithm which approximately
solves the maximum margin estimation problem for any associative Markov network. Im-
portantly, our method is guaranteed to find the optimal (margin-maximizing) solution for all
binary-valued AMNSs, regardless of the clique size or the connectivity. To our knowledge,
this algorithm is the first to provide an effective learning procedure for Markov networks
of such general structure.

Our results in the binary case rely on the fact that the LP relaxation of the MAP problem
provides exact solutions. In the non-binary case, we are not guaranteed exact solutions, but
we can prove constant-factor approximation bounds on the MAP solution returned by the
relaxed LP. It would be interesting to see whether these bounds provide us with guarantees
on the quality (e.g., the margin) of our learned model.

We present large-scale experiments with terrain segmentation and classification from
3D range data involving AMNs with tens of millions of nodes and edges. The class of
associative Markov networks appears to cover a large number of interesting applications.
We have explored only a computer vision application in this chapter, and consider another
one (hypertext classification) in the next. It would be very interesting to consider other
applications, such as extracting protein complexes from protein-protein interaction data, or
predicting links in relational data. The min-cut based inference is able to handle very large
networks, and it is an interesting challenge to apply the algorithm to even larger models
and develop efficient distributed implementations.

However, despite the prevalence of fully associative Markov networks, it is clear that
many applications call for repulsive potentials. While clearly we cannot introduce fully
general potentials into AMNs without running against the NP-hardness of the general prob-
lem, it would be interesting to see whether we can extend the class of networks we can learn
effectively.



106 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Figure 7.7: Results from th&VM, Voted-SVM andAMN models.
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Figure 7.8: Labeled part of the test set: ground truth (top)@Witl predictions (bottom).
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Figure 7.9: Predictions of théoted-SVM (top) andAMN (bottom) models.



Chapter 8
Relational Markov networks

In the previous chapters, we have seen how sequential and spatial correlation between
labels can be exploited for tremendous accuracy gains. In many other supervised learning
tasks, the entities to be labeled are related with each other in very complex ways, not just
sequentially or spatially. For example, in hypertext classification, the labels of linked pages
are highly correlated. A standard approach is to classify each entity independently, ignoring
the correlations between them. In this chapter, we present a framework that builds on
Markov networks and provides a flexible language for modeling rich interaction patterns in
structured data. We provide experimental results on a webpage classification task, showing
that accuracy can be significantly improved by modeling relational dependencies.

Many real-world data sets are innately relational: hyperlinked webpages, cross-citations
in patents and scientific papers, social networks, medical records, and more. Such data con-
sist of entities of different types, where each entity type is characterized by a different set
of attributes. Entities are related to each other via different types of links, and the link
structure is an important source of information.

Consider a collection of hypertext documents that we want to classify using some set
of labels. Most naively, we can use a bag of words model, classifying each webpage solely
using the words that appear on the page. However, hypertext has a very rich structure that
this approach loses entirely. One document has hyperlinks to others, typically indicating
that their topics are related. Each document also has internal structure, such as a partition
into sections; hyperlinks that emanate from the same section of the document are even

109
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more likely to point to similar documents. When classifying a collection of documents,
these are important cues, that can potentially help us achieve better classification accuracy.
Therefore, rather than classifying each document separately, we want to provide a form of
collective classificationwhere we simultaneously decide on the class labels of all of the
entities together, and thereby can explicitly take advantage of the correlations between the
labels of related entities.

We propose the use of a joint probabilistic model for an entire collection of related enti-
ties. We introduce the framework adlational Markov networks (RMNgyvhich compactly
defines a Markov network over a relational data set. The graphical structure of an RMN is
based on the relational structure of the domain, and can easily model complex patterns over
related entities. For example, we can represent a pattern where two linked documents are
likely to have the same topic. We can also capture patterns that involve groups of links: for
example, consecutive links in a document tend to refer to documents with the same label.
As we show, the use of an undirected graphical model avoids the difficulties of defining
a coherent generative model for graph structures in directed models. It thereby allows us
tremendous flexibility in representing complex patterns.

8.1 Relational classification

Consider hypertext as a simple example of a relational domain. A relational domain is
defined by a schema, which describes entities, their attributes and relations between them.
In our domain, there are two entity typd3oc andLink. If a webpage is represented as a
bag of wordsPoc would have a set of boolean attributesc. HasWord indicating whether
the wordk occurs on the page. It would also have the label attribwielLabel indicating
the topic of the page, which takes on a set of categorical valuesLifkeentity type has
two attributesLink.From andLink.To, both of which refer tdoc entities.

In general, achemaspecifies of a set of entity typés= { £, ..., E, }. Eachtyperis
associated with three sets of attributes: content attributs(for example Doc.HasWorg),
label attributed2. Y (for example Doc.Label), and reference attributds. R (for example,
Link.To). For simplicity, we restrict label and content attributes to take on categorical val-
ues. Reference attributes include a special unique key attributethat identifies each
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entity. Other reference attributés R refer to entities of a single type’ = Range(E.R)
and take values iomain(E'.K).

An instantiationZ of a schema specifies the set of entiti€g £) of each entity type
E € & and the values of all attributes for all of the entities. For example, an instantiation
of the hypertext schema is a collection of webpages, specifying their labels, words they
contain and links between them. We will useX, Z.Y andZ.R to denote the content,
label and reference attributes in the instantiafigf .x, Z.y andZ.r to denote the values
of those attributes. The componéni:, which we call arinstantiation skeletoor instan-
tiation graph specifies the set of entities (nodes) and their reference attributes (edges). A
hypertext instantiation graph specifies a set of webpages and links between them, but not
their words or labels. Taskat al. [2001] suggest the use pfobabilistic relational mod-
els (PRMsXor the collective classification task. PRMs [Koller & Pfeffer, 1998; Friedman
et al, 1999; Getooret al, 2002] are a relational extension of Bayesian networks [Pearl,
1988]. A PRM specifies a probability distribution over instantiations consistent with a
given instantiation graph by specifying a Bayesian-network-like template-level probabilis-
tic model for each entity type. Given a particular instantiation graph, the PRM induces
a large Bayesian network over that instantiation that specifies a joint probability distribu-
tion over all attributes of all of the entities. This network reflects the interactions between
related instances by allowing us to represent correlations between their attributes.

In our hypertext example, a PRM might use a naive Bayes model for words, with a di-
rected edge betweddoc.Labeland each attributBoc.HadWord,; each of these attributes
would have aconditional probability distribution”(Doc.HasWorg | Doc.Label) associ-
ated with it, indicating the probability that wordappears in the document given each of
the possible topic labels. More importantly, a PRM can represent the inter-dependencies
between topics of linked documents by introducing an edge fdbomLabelto Doc.Label
of two documents if there is a link between them. Given a particular instantiation graph
containing some set of documents and links, the PRM specifies a Bayesian network over all
of the documents in the collection. We would have a probabilistic dependency from each
document’s label to the words on the document, and a dependency from each document’s
label to the labels of all of the documents to which it points. Taska. show that this
approach works well for classifying scientific documents, using both the words in the title
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and abstract and the citation-link structure.

However the application of this idea to other domains, such as webpages, is problematic
since there are many cycles in the link graph, leading to cycles in the induced “Bayesian
network”, which is therefore not a coherent probabilistic model. Getpat. [2001] sug-
gest an approach where we do not include direct dependencies between the labels of linked
webpages, but rather treat links themselves as random variables. Each two pages have a
“potential link”, which may or may not exist in the data. The model defines the probability
of the link existence as a function of the labels of the two endpoints. In this link exis-
tence model, labels have no incoming edges from other labels, and the cyclicity problem
disappears. This model, however, has other fundamental limitations. In particular, the re-
sulting Bayesian network has a random variable for each potential lifk*~ariables for
collections containingV pages. This quadratic blowup occurs even when the actual link
graph is very sparse. Whew is large (e.g., the set of all webpages), a quadratic growth is
intractable. Even more problematic are the inherent limitations on the expressive power im-
posed by the constraint that the directed graph must represent a coherent generative model
over graph structures. The link existence model assumes that the presence of different
edges is a conditionally independent event. Representing more complex patterns involving
correlations between multiple edges is very difficult. For example, if two pages point to the
same page, it is more likely that they point to each other as well. Such interactions between
many overlapping triples of links do not fit well into the generative framework.

Furthermore, directed models such as Bayesian networks and PRMs are usually trained
to optimize the joint probability of the labels and other attributes, while the goal of clas-
sification is a discriminative model of labels given the other attributes. The advantage
of training a model only to discriminate between labels is that it does not have to trade
off between classification accuracy and modeling the joint distribution over non-label at-
tributes. In many cases, discriminatively trained models are more robust to violations of
independence assumptions and achieve higher classification accuracy than their generative
counterparts.
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Figure 8.1: An unrolled Markov net over linked documents. The links follow a common
pattern: documents with the same label tend to link to each other more often.

8.2 Relational Markov networks

We now extend the framework of Markov networks to the relational settingel&ional
Markov network (RMN}pecifies a conditional distribution over all of the labels of all
of the entities in an instantiation given the relational structure and the content attributes.
(We provide the definitions directly for the conditional case, as the unconditional case is a
special case where the set of content attributes is empty.) Roughly speaking, it specifies the
cliques and potentials between attributes of related entities at a template level, so a single
model provides a coherent distribution for any collection of instances from the schema.

For example, suppose that pages with the same label tend to link to each other, as
in Fig. 8.1. We can capture this correlation between labels by introducing, for each link, a
clique between the labels of the source and the target page. The potential on the clique will
have higher values for assignments that give a common label to the linked pages.

To specify what cliques should be constructed in an instantiation, we will define a no-
tion of arelational clique templateA relational clique template specifies tuples of variables
in the instantiation by using a relational query language. For our link example, we can write
the template as a kind of SQL query:

SELECT docl.Category, doc2.Category
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FROM Doc docl, Doc doc2, Link link
WHERE link.From = docl.Key and link.To = doc2.Key

Note the three clauses that define a query: the FROM clause specifies the cross prod-
uct of entities to be filtered by the WHERE clause and the SELECT clause picks out the
attributes of interest. Our definition of clique templates contains the corresponding three
parts.

A relational clique templat€’ = (F, W, S) consists of three components:

o F = {F;} — a set of entity variables, where an entity variables of type E'( F;).
o W(F.R) — aboolean formula using conditions of the fofnR,; = F.R;.
o F.S C F.XUF.Y — a selected subset of content and label attributds ira

For the clique template corresponding to the SQL query aldoeensists oflocl, doc2
andlink of typesDoc, Doc andLink, respectivelyW (F.R) is link.From = docl.Key A
link.To = doc2. Key andF'.S is docl.Category anddoc2.Category.

A clique template specifies a set of cliques in an instantigfion

C(T)={c=fS :feI(F)AW(r)}

wheref is a tuple of entitieq f;} in which eachf; is of type E(F;); Z(F) = Z(E(F})) x
...XZI(E(F,))denotes the cross-product of entities in the instantiation; the cUger)
ensures that the entities are related to each other in specified ways; and fiSadlglects

the appropriate attributes of the entities. Note that the clique template does not specify the
nature of the interaction between the attributes; that is determined by the clique potentials,
which will be associated with the template.

This definition of a clique template is very flexible, as the WHERE clause of a tem-
plate can be an arbitrary predicate. It allows modeling complex relational patterns on the
instantiation graphs. To continue our webpage example, consider another common pattern
in hypertext: links in a webpage tend to point to pages of the same category. This pattern
can be expressed by the following template:

SELECT docl.Category, doc2.Category
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FROM Doc docl, Doc doc2, Link link1, Link link2
WHERE link1.From = link2.From and link1.To = docl.Key
and link2.To = doc2.Key and not docl.Key = doc2.Key

Depending on the expressive power of our template definition language, we may be able
to construct very complex templates that select entire subgraph structures of an instantia-
tion. We can easily represent patterns involving three (or more) interconnected documents
without worrying about the acyclicity constraint imposed by directed models. Since the
clique templates do not explicitly depend on the identities of entities, the same template can
select subgraphs whose structure is fairly different. The RMN allows us to associate the
same clique potential parameters with all of the subgraphs satisfying the template, thereby
allowing generalization over a wide range of different structures.

A Relational Markov network (RMNM = (C, ®) specifies a set of cligue templates
C and corresponding potentials= {¢¢}ccc to define a conditional distribution:

P(Iy\Ix Zr)

CEC ceC(T)

whereZ(Z .x,Z.r) is the normalizing partition function:

2@xIr) =) |] H dc(Ixe,Ty.)

Iy CeCceC(T

Using the log-linear representation of potentials(V¢) = exp{w/fc(V¢)}, we can
write

logP(Z.y |ZTx,Zxr) = w f(Tx,T.y,Z.r)—logZ(I.x,T.r)

where

fcZx,Z.y,I.r)= Z fo(Z.x0,Z.ye)
ceC(7)

is the sum over all appearances of the templ&t€) in the instantiation, anflis the vector
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of all f..

Given a particular instantiatiof of the schema, the RMM produces armunrolled
Markov network over the attributes of entitiesdn The cliques in the unrolled network
are determined by the clique templatés We have one clique for eache C(Z), and
all of these cliques are associated with the same clique potential In our webpage
example, an RMN with the link basis function described above would define a Markov net
in which, for every link between two pages, there is an edge between the labels of these
pages. Fig. 8.1 illustrates a simple instance of this unrolled Markov network.

8.3 Approximate inference and learning

Applying both maximum likelihood and maximum margin learning in the relational setting
is requires inference in very large and complicated networks, where exact inference is
typically intractable. We therefore resort to approximate methods.

Maximum likelihood estimation

For maximum likelihood learning, we need to compute basis function expectations, not
just the most likely assignment. There is a wide variety of approximation schemes for this
problem, including MCMC and variational methods. We chose tohadief propagation
for its simplicity and relative efficiency and accuracy. Belief Propagation (BP) is a local
message passing algorithm introduced by Pearl [1988]. It is guaranteed to converge to the
correct marginal probabilities for each node only for singly connected Markov networks.
However, recent analysis [Yedidg al,, 2000] provides some theoretical justification. Em-
pirical results [Murphyet al, 1999] show that it often converges in general networks, and
when it does, the marginals are a good approximation to the correct posteriors. As our
results in Sec. 8.4 show, this approach works well in our domain. We refer the reader to
Yedidiaet al. for a detailed description of the BP algorithm.

We provide a brief outline of one variant of BP, referring to [Murpéiyal., 1999]
for more details. For simplicity, we assume a pairwise network where all potentials are
associated only with nodes and edges given by:
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P(Yi,....Y, H% LY, sz

whereij ranges over the edges of the network andY;.Y;) = ¢(xi;, Y, Y;), ¥:i(Y;) =

¢(Xi7 Y;>

The belief propagation algorithm is very simple. At each iteration, each hpsends
the following messages to all its neighbadys:):

mzy i) azwm yu i wz yz H mk@

kEN(i)—j

whereq is a (different) normalizing constant. This process is repeated until the messages
converge. At any point in the algorithm, the marginal distribution of any ngdeapprox-
imated by

( - Oé’QZ)l 7, H mkz

keN(i

and the marginal distribution of a pair of nodes connected by an edge is approximated by

bij (Y3, Y)) = oy (Yi, Y;)ehi H myi (Y:) H my; (Y,

keN(i leN(j)—t

These approximate marginals are precisely what we need for the computation of the
basis function expectations and performing classification. Computing the expected basis
function expectations involves summing their expected values for each clique using the
approximate marginals (Y;) andb;;(Y;,Y;). Similarly, we usemax,, b;(Y;) at prediction
time. Note that we can alseax — product variant of loopy BP, with

mZJ(Y) — amaxwlj yla j % yz H mkz
keN(i)—

to compute approximate posterior “max’-marginals and use those for prediction. In our
experiments, this results in less accurate classification, so we use posterior marginal pre-
diction.
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Maximum margin estimation

For maximum margin estimation, we used approximate LP inference inside the max-margin
QP, using commercial llog CPLEX software to solve it. For networks with general poten-
tials, we used the untriangulated LP we described in Sec. 5.4. The untriangulated LP
produced fractional solutions for inference on the test data in several settings, which we
rounded independently for each label. For networks with attractive potentials (AMNS), we
used the LP in Sec. 7.2, which always produced integral solutions on test data.

8.4 Experiments

We tried out our framework on thé/ebKBdataset [Craveet al, 1998], which is an in-
stance of our hypertext example. The data set contains webpages from four different Com-
puter Science departments: Cornell, Texas, Washington and Wisconsin. Each page has a
label attribute, representing the type of webpage which is orm@wifse, faculty, student,
project or other. The data set is problematic in that the categattyer is a grab-bag of
pages of many different types. The number of pages classifiethasis quite large,

so that a baseline algorithm that simply always selectibeér as the label would get an
average accuracy of 75%. We could restrict attention to just the pages with the four other
labels, but in a relational classification setting, the deleted webpages might be useful in
terms of their interactions with other webpages. Hence, we compromised by eliminating
all other pages with fewer than three outlinks, making the numbeostbér pages com-
mensurate with the other categories. The resulting category distribution is: course (237),
faculty (148), other (332), research-project (82) and student (542). The number of remain-
ing pages for each school are: Cornell (280), Texas (292), Washington (315) and Wisconsin
(454). The number of links for each school are: Cornell (574), Texas (574), Washington
(728) and Wisconsin (1614).

For each page, we have access to the entire html of the page and the links to other
pages. Our goal is to collectively classify webpages into one of these five categories. In all
of our experiments, we learn a model from three schools and test the performance of the
learned model on the remaining school, thus evaluating the generalization performance of
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the different models. We used € [0.1, 10] and took the best setting for all models.

Unfortunately, we cannot directly compare our accuracy results with previous work
because different papers use different subsets of the data and different training/test splits.
However, we compare to standard text classifiers such as Naive Bayes, Logistic Regression,
and Support Vector Machines, which have been demonstrated to be successful on this data
set [Joachims, 1999].

8.4.1 Flat models

The simplest approach we tried predicts the categories based on just the text content on
the webpage. The text of the webpage is represented using a set of binary attributes that
indicate the presence of different words on the page. We found that stemming and feature
selection did not provide much benefit and simply pruned words that appeared in fewer
than three documents in each of the three schools in the training data. We also experi-
mented with incorporating meta-data: words appearing in the title of the page, in anchors
of links to the page and in the last header before a link to the page [¥aag 2002].

Note that meta-data, although mostly originating from pages linking into the considered
page, are easily incorporated as features, i.e. the resulting classification task is still flat
feature-based classification. Our first experimental setup compares three well-known text
classifiers —Naive Bayes, linear support vector machineS\m), and logistic regression
(Logistic) — using words and meta-words. The results, shown in Fig. 8.2, show that the
two discriminative approaches outperfoNaive Bayes. Logistic andSvm give very sim-

ilar results. The average error over the 4 schools was reduced by around 4% by introducing
the meta-data attributes.

Incorporating meta-data gives a significant improvement, but we can take additional
advantage of the correlation in labels of related pages by classifying them collectively. We
want to capture these correlations in our model and use them for transmitting informa-
tion between linked pages to provide more accurate classification. We experimented with
several relational models.
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Figure 8.2: Comparison Maive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

8.4.2 Link model

Our first model captures direct correlations between labels of linked pages. These corre-
lations are very common in our data: courses and research projects almost never link to
each other; faculty rarely link to each other; students have links to all categories but mostly
courses. The.ink model, shown in Fig. 8.1, captures this correlation through links: in
addition to the local bag of words and meta-data attributes, we introduce a relational clique
template over the labels of two pages that are linked.We train this model using maximum
conditional likelihood (labels given the words and the links) and maximum margin.

We also compare to a directed graphical model to contrast discriminative and genera-
tive models of relational structure. Thists-ML model is a (partially) generative model
proposed by Getooet al. [2001]. For each page, a logistic regression model predicts
the page label given the words and meta-features. Then a simple generative model speci-
fies a probability distribution over the existence of links between pages conditioned on both
pages’ labels. Concretely, we learn the probability of existence of a link between two pages
given their labels. Note that this model does not require inference during learning. Max-
imum likelihood estimation (with regularization) of the generative component is closed
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Figure 8.3: Comparison of flat versus collective classification on WebKB: SVM, Exists
model with logistic regression and thenk model estimated using the maximum likelihood
(ML) and the maximum margin (MM) criteria.

form given appropriate co-occurrence counts of linked pages’ labels. However, the predic-
tion phase is much more expensive, since the resulting graphical model includes edges not
only for the existing hyperlinks, but also those that do not exist. Intuitively, observing the
link structure directly correlates all page labels in a website, linked or not. By contrast,
theLink model avoids this problem by only modeling the conditional distribution given the
existing links.

Fig. 8.3 shows a gain in accuracy from SVMs to thiek model by using the corre-
lations between labels of linked web pages. There is also very significant additional gain
by using maximum margin training: the error ratelLafik-MM is 40% lower than that of
Link-ML, and51% lower than multi-class SVMs. Thexists model doesn’t perform very
well in comparison. This can be attributed to the simplicity of the generative model and the
difficulty of the resulting inference problem.

8.4.3 Cocite model

The second relational model uses the insight that a webpage often has internal structure
that allows it to be broken up intsections For example, a faculty webpage might have
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Figure 8.4: Comparison Maive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

one section that discusses research, with a list of links to all of the projects of the faculty
member, a second section might contain links to the courses taught by the faculty member,
and a third to his advisees. We can view a section of a webpage as a fine-grained version of
Kleinberg’s hub [Kleinberg, 1999] (a page that contains a lot of links to pages of particular
category). Intuitively, if two pages ar®cited or linked to from the same section, they are
likely to be on similar topics. Note that we expect the correlation between the labels in this
case to be positive, so we can use AMN-type potentials in the max-margin estimation. The
Cocite model captures this type of correlation.

To take advantage of this trend, we need to enrich our schema by adding the attribute
Sectionto Link to refer to the section number it appears in. We defined a section as a
sequence of three or more links that have the same path to the root in the html parse tree.
In the RMN, we have a relational clique template defined by:

SELECT docl.Category, doc2.Category
FROM Doc docl, Doc doc2, Link link1, Link link2
WHERE link1.From = link2.From and link1.Section = link2.Section and
link1.To = docl.Key and link2.To = doc2.Key and not docl.Key = doc2.Key

We compared the performance %M, Cocite-ML and Cocite-MM. The results,
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shown in Fig. 8.4, also demonstrate significant improvements of the relational models over
the SVM. The improvement is present when testing on each of the schools. Again, maxi-
mum likelihood trained modeTocite-ML achieves a worse test error than maximum mar-
gin Cocite-MM model, which shows a 30% relative reduction in test error G¥M.

We note that, in our experiments, the learr@akcite-MM weights never produced frac-
tional solutions when used for inference, which suggests that the optimization successfully
avoided problematic parameterizations of the network, even in the case of the non-optimal
multi-class relaxation.

8.5 Related work

Our RMN representation is most closely related to the work on PRMs [Koller & Pfeffer,
1998]. Later work showed how to efficiently learn model parameters and structure (equiv-
alent of clique selection in Markov networks) from data [Friedreaial,, 1999]. Getoor

et al. [2002] propose several generative models of relational structure. Their approach
easily captures the dependence of link existence on attributes of entities. However there
are many patterns that we are difficult to model in PRMs, in particular those that involve
several links at a time. We give some examples here.

One useful type of pattern type issamilarity template, where objects that share a cer-
tain graph-based property are more likely to have the same label. Consider, for example,
a professor X and two other entities Y and Z. If X’s webpage mentions Y and Z in the
same context, it is likely that the X-Y relation and the Y-Z relation are of the same type; for
example, if Y is Professor X’s advisee, then probably so is Z. Our framework accommo-
dates these patterns easily, by introducing pairwise cliques between the appropriate relation
variables.

Another useful type of subgraph template involu@ssitivity patterns, where the pres-
ence of an A-B link and of a B-C link increases (or decreases) the likelihood of an A-C link.
For example, students often assist in courses taught by their advisor. Note that this type
of interaction cannot be accounted for just using pairwise cliques. By introducing cliques
over triples of relations, we can capture such patterns as well. We can incorporate even
more complicated patterns, but of course we are limited by the ability of belief propagation
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to scale up as we introduce larger cliques and tighter loops in the Markov network.

We describe and exploit these patterns in our work on RMNs using maximum likelihood
estimation [Taskaet al., 2003b]. Attempts to model such pattern in PRMs run into the
constraint that the probabilistic dependency graph (Bayesian network) must be a directed
acyclic graph. For example, for the transitivity pattern, we might consider simply directing
the correlation edges between link existence variables arbitrarily. However, it is not clear
how to parameterize a link existence variable for a link that is involved in multiple triangles.

The structure of the relational graph has been used extensively to infer importance in
scientific publications [Egghe & Rousseau, 1990] and hypertext [Kleinberg, 1999]. Sev-
eral recent papers have proposed algorithms that use the link graph to aid classification.
Chakrabartiet al. [1998] use system-predicted labels of linked documents to iteratively
re-label each document in the test set, achieving a significant improvement compared to a
baseline of using the text in each document alone. A similar approach was used by Neville
and Jensen [2000] in a different domain. Slattery and Mitchell [2000] tried to identify di-
rectory (or hub) pages that commonly list pages of the same topic, and used these pages to
improve classification of university webpages. However, none of these approaches provide
a coherent model for the correlations between linked webpages, applying combinations of
classifiers in a procedural way, with no formal justification.

8.6 Conclusion

In this chapter, we propose a new approach for classification in relational domains. Our ap-
proach provides a coherent foundation for the process of collective classification, where we
want to classify multiple entities, exploiting the interactions between their labels. We have
shown that we can exploit a very rich set of relational patterns in classification, significantly
improving the classification accuracy over standard flat classification.

In some cases, we can incorporate relational features into standard flat classification.
For example, when classifying papers into topics, it is possible to simply view the presence
of particular citations as atomic features. However, this approach is limited in cases where
some or even all of the relational features that occur in the test data are not observed in
the training data. In our WebKB example, there is no overlap between the webpages in the
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different schools, so we cannot learn anything from the training data about the significance
of a hyperlink to/from a particular webpage in the test data. Incorporating basic features
(e.g., words) from the related entities can aid in classification, but cannot exploit the strong
correlation between thabelsof related entities that RMNs capture.

Hypertext is the most easily available source of structured data, however, RMNs are
generally applicable to any relational domain. The results in this chapter represent only
a subset of the domains we have worked on (see [Tamkal, 2003b]). In particular,
social networks provide extensive information about interactions among people and orga-
nizations. RMNSs offer a principled method for learning to predict communities of and
hierarchical structure between people and organizations based on both the local attributes
and the patterns of static and dynamic interaction. Given the wealth of possible patterns, it
is particularly interesting to explore the problem of inducing them automatically.
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Chapter 9
Context free grammars

We present a novel discriminative approach to parsing using structured max-margin crite-
rion based on the decomposition properties of context free grammars. We show that this
framework allows high-accuracy parsing in cubic time by exploiting novel kinds of lexical
information. Our models can condition on arbitrary features of input sentences, thus incor-
porating an important kind of lexical information not usually used by conventional parsers.
We show experimental evidence of the model’s improved performance over a natural base-
line model and a lexicalized probabilistic context-free grammar.

9.1 Context free grammar model

CFGs are one of the primary formalisms for capturing the recursive structure of syntactic
constructions, although many others have also been proposed [Manningi&&ch999].

For clarity of presentation, we restrict our grammars to be in Chomsky normal form as
in Sec. 3.4. The non-terminal symbols correspond to syntactic categories such as noun
phrase (NP) or verbal phrase (VP). The terminal symbols are usually words of the sen-
tence. However, in the discriminative framework that we adopt, we are not concerned with
defining a distribution over sequences of words (language model). Insteamhnaéion

on the words in a sentence to produce a model of the syntactic structure. Terminal sym-
bols for our purposes are part-of-speech tags like nouns (NN), verbs (VBD), determiners
(DT). For example, Fig. 9.1(a) shows a parse tree for the senfidrescreen was a sea of

128
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red. The set of symbols we use is based on the Penn Treebank [Matrais1993]. The
non-terminal symbols with bars (for exampl&T, NN, VBD) are added to conform to the
CNF restrictions. For convenience, we repeat our definition of a CFG from Sec. 3.4 here:

Definition 9.1.1 (CFG) A CFGG consists of:

o A set of non-terminal symbola/
o A designated set of start symbolég C N
o A set of terminal symbolg;

o A set of productions? = {Pg, Py}, divided into

> Binary productionsPg ={A — BC: A, B,C € N} and
> Unary productionsPy = {A —-D: AeN,D e T}.

A CFG defines a set of valid parse trees in a natural manner:

Definition 9.1.2 (CFG tree) A CFG treeis a labeled directed tree, where the set of valid
labels of the internal nodes other than the roalisand the set of valid labels for the leaves
is 7. The root’s label set igVs. Additionally, each pre-leaf node has a single child and
this pair of nodes can be labeled alsand D, respectively, if and only if there is a unary
productionA — D € Py. All other internal nodes have two children, left and right, and
this triple of nodes can be labeled as B and C, respectively, if and only if there is a
binary productionA — B C € Pg.

In general, there are exponentially many parse trees that produce a sentence of.length

This tree representation seems quite different from the graphical models we have been
considering thus far. However, we can use an equivalent representation that essentially
encodes a tree as an assignment to a set of appropriate variables. For each span starting
with s and an ending with, we introduce a variablg, . taking values in\V'U L to represent
the label of the subtree that exactly coversgdominatesthe words of the sentence from
stoe. The valuel is assigned if no subtree dominates the span. Indicexle refer to
positions between words, rather than to words themselves, lierce < ¢ < n for a
sentence of length. The “top” symbolY; , is constrained to be i, since it represents
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a sea of red 01 2 3 45 67
(a) (b)

Figure 9.1: Two representations of a binary parse tree: (a) nested tree structure, and (b)
grid of labeled spans. The row and column number are the beginning and end of the span,
respectively. Empty squares correspond to non-constituent spans. The gray squares on the
diagonal represent part-of-speech tags.

the starting symbol of the sentence. We also introduce variabletaking values ir7” to
represent the terminal symbol (part-of-speech) betwesrds + 1. If Y, . # L, itis often

called aconstituent Fig. 9.1(b) shows the representation of the tree in Fig. 9.1(a) as a grid
where each square correspond¥’{p. The row and column number in the grid correspond

to the beginning and end of the span, respectively. Empty squares correspondltees.

The gray squares on the diagonal represent the terminal variables. For example, the figure
showsY; o = DT, Y56 = NN, Y35 = NP andY; 4, = L.

While any parse tree corresponds to an assignment to this set of variables in a straight-
forward manner, the converse is not true: there are assignments that do not correspond
to valid parse trees. In order to characterize the set of valid assignieotmsider the
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constraints that hold for a valid assignment

Vyse = A) = Z]lysme: (A,B,C)), 0<s<e<n, VAeN; (9.1)

A—B CePp
s<m<e

]l(ys,e = A) = Z m(ys’,s,e == (Ba A7 O))
B—A CePp
0<s'<s

+ ) Uy =(B,CLA), 0<s<e<n YVAEN; (9.2)

B—C AePp
e<e'<n

yssr1 =A) = > Wy,ssr1 = (A, D)), 0<s<n, VAEN; (9.3)
A—DePy

yoo =D) = Y Uysssr1 = (A, D)), 0<s<n, VDeT. (9.4)
A—D€ePy

The notationy; .. = (A, B,C) abbreviateg)s. = A A ys;m = B A yme = C and
Vsss+1 = (A, D) abbreviategys .1 = A Ay,s = D. The first set of constraints (9.1)
holds because if the span froso e is dominated by a subtree starting with(that is,

yse = A), then there must be a unique production starting withnd some split pointz,

s < m < e, that produces that subtree. Conversely,if # A, no productions start with

A and covers to e. The second set of constraints (9.2) holds because that if the span from
s to e is dominated by a subtree starting with(y, . = A), then there must be a (unique)
production that generated it: either starting beferer aftere. Similarly, the third and
fourth set of constraints (9.3 and 9.4) hold since the terminals are generated using valid
unary productions. We denote the set of assignmerdatisfying (9.1-9.4) a3’. In fact

the converse is true as well:

Theorem 9.1.31If y € ), theny represents a valid CFG tree.

Proof sketch: It is straightforward to construct a parse tree frgme ) in a top-down
manner. Starting from the root symbai,,,, the first set of constraints (9.1) ensures that a
unique production spartsto n, say splitting atn and specifying the values foy ,,, and

Ym.n- The second set of constraints (9.2) ensures that all other gpansndy,, ,, for

m’ # m are labeled byL. Recursing on the two subtreeg,,, andy,, ,, will produce the

rest of the tree down to the pre-terminals. The last two sets of constraints (9.3 and 9.4)
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ensure that the terminals are generated by an appropriate unary productions from the pre-
terminals.

9.2 Context free parsing

A standard approach to parsing is to use a CFG to define a probability distribution over
parse trees. This can be done simply by assigning a probability to each production and
making sure that the sum of probabilities of all productions starting with each symhol is

> P(A-BC)=1, > PA-D)=1, VAEN.
B,C:A—B CePg D:A—DePy
The probability of a tree is simply the product of probabilities of the productions used in
the tree. More generally, a weighted CFG assigns a score to each production (this score
may depend on the position of the productiom, €) such that the total score of a tree is
the sum of the score of all the productions used:

S<y): Z Ssme YSme Z SSS—H YSS—I—l

0<s<m<e<ln 0<s<n

wheresS; i e(¥sme) = 0if (yse = LV Ysm = L Vym = L). If the production scores
are production log probabilities, then the tree score is the tree log probability. However,
weighted CFGs do not have the local normalization constraints Eq. (9.5).

We can use a Viterbi-style dynamic programming algorithm called CKY to compute
the highest score parse treeft|P|n?) time [Younger, 1967; Manning & S¢hize, 1999].
The algorithm computes the highest score of any subtree starting with a symbol over each
spand < s < e < n recursively:

S:,s+1(A) = AInDaX SS s+1<A D) 0 S s <n, VA €N7 (95)
Sie(A) = max  Syme(A B,C)+ S, (B)+5,(C), 0<s<e<n VAN

s<m<e

The highest scoring tree has scatex e, S;,(A). Using thearg max’s of themax’s in
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the computation o6*, we can back-trace the highest scoring tree itself. We assume that
score ties are broken in a predetermined way, say according to some lexicographic order of
the symbols.

9.3 Discriminative parsing models

We cast parsing as a structured classification task, where we want to learn a function
X — Y, whereX is a set of sentences, aptis a set of valid parse trees according to a
fixed CFG grammar.

The functions we consider take the following linear discriminant form:

he(x) = argmaxw ' f(x,y),
y
wherew € IR? andf is a basis function representation of a sentence and parse tree pair
f: X x) — IRY. We assume that the basis functions decompose with the CFG structure:

f(X7 y) = Z f(xs,ea ys,e) + Z f(Xs,m,e7 ys,m,e)7
0<s<e<n 0<s<m<eln
wheren is the length of the sentenceandx,,. andx,,, . are the relevant subsets of
the sentence the basis functions depend on. To simplify notation, we introduce the set of
indices,C, which includes both spans and span triplets:

C={(s,m):0<s<e<n} U{(s,me):0<s<m<e<n}.

Hencef(x,y) = > .cc f(Xc, ¥e).

Note that this class of discriminants includes PCFG models, where the basis func-
tions consist of the counts of the productions used in the parse, and the paramaters
the log-probabilities of those productions. For examplepuld include functions which
identify the production used together with features of the words at positionse, and
neighboring positions in the sentenc€e.g. f (Xsm.e, Ysime) = W(Ysme = S, NP, VP) A
m'word(x) = was)). We could also include functions that identify the label of the span
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from s to e together with features of the word (e.§(Xs ., Ys;m) = B(Ysm = NP) A
sthword(x) = the)).

9.3.1 Maximum likelihood estimation

The traditional method of estimating the parameters of PCFGs assumes a generative model
that definesP(x, y) by assigning normalized probabilities to CFG productions. We then
maximize the joint log-likelihood", log P(x, y) (with some regularization). We com-
pare to such a generative grammar of Collins [1999] in our experiments.

A alternative probabilistic approach is to estimate the parameters discriminatively by

maximizingconditionallog-likelihood. For example, the maximum entropy approach [John-
son, 2001] defines a conditional log-linear model:

Py(y | x) = exp{w ' f(x,y)},

Zw(x)
where Z, (x) = Y, exp{w'f(x,y)}, and maximizes the conditional log-likelihood of

the sampley ", log P(y® | y®), (with some regularization). The same assumption that
the basis functions decompose as sums of local functions over spans and productions is
typically made in such models. Hence, as in Markov networks, the gradient depends
on the expectations of the basis functions, which can be computéq|i|n?) time by
dynamic programming algorithm called inside-outside, which is similar to the CKY al-
gorithm. However, computing the expectations over trees is actually more expensive in
practice than finding the best tree for several reasons. CKY works entirely in the log-space,
while inside-outside needs to compute actual probabilities. Branch-and-prune techniques,
which save a lot of useless computation, are only applicable in CKY.

A typical method for finding the parameters is to use Conjugate Gradients or L-BFGS
methods [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004], which repeatedly com-
pute these expectations to calculate the gradient. Clark and Curran [2004] report experi-
ments involving 479 iterations of training for one model, and 1550 iterations for another
using similar methods.
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9.3.2 Maximum margin estimation

We assume that loss function also decomposes with the CFG structure:

e(X, Yy, 5’) - Z K(Xs,ea Ys,e, ?)s,e) + Z g(Xs,m,ey Ysme ys,m,e) - Z €<Xca Ye, yc)

0<s<e<n 0<s<m<e<n ceC

One approach would be to defifiex; ., yse, Use) = W(yse # Use). This would lead to
((x,y,y) tracking the number of “constituent errors”yn Another, more strict definition

would be to defin€(x; e, Ysm.e: Ysme) = 1(Ysme # Ysm.e). This definition would lead

to /(x,y,y) being the number of productionsynwhich are not seen in. The constituent

loss function does not exactly correspond to the standard scoring metrics, sucloras F
crossing brackets, but shares the sensitivity to the number of differences between trees. We
have not thoroughly investigated the exact interplay between the various loss choices and
the various parsing metrics. We used the constituent loss in our experiments.

As in the max-margin estimation for Markov networks, we can formulate an exponen-
tial size QP:
min 1||w||2+025 (9.6)
2 - ’ '

s.t. w Afi(y) > G(y) — & Viy,

whereAf;(y) = f(x¥,y@) — £(xV,y), andt;(y) = (x@, y), y).
The dual of Eq. (9.6) (after normalizing lgy) is given by:

2

(9.7)

max Z ai(y)i(y) — %C Z a;(y)Afi(y)

s.t. Zai(y) =1, Vi; «ai(y)>0, Viy.
Yy
Both of the above formulations are exponential (in the number of variables or con-

straints) in the lengths:(’s) of the sentences. But we can exploit the context-free structure
of the basis functions and the loss to define a polynomial-size dual formulation in terms of
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marginal variableg; (y):

pise(A)= D aily), 0<s<e<n, VAEN;

Yiys,e=A
iss(D) = Z a(y), 0<s<e<n,VDeT,
Y:ys,s=D
Wi sme(A, B,C) = Z a;i(y), 0<s<m<e<n,VA— BC € Pg,
¥:Ys,m,e=(4,B,0)
Wisssi1(A, D)= Z a(y), 0<s<n,VA—DEePy.

y:y5,5,5+1=(A,D)

There areO(|Pg|n? + |Py|n;) such variables for each sentence of lengthinstead of
exponentially manyy; variables. We can now express the objective function in terms of
the marginals. Using these variables, the first set of terms in the objective becomes:

Z@i(Y)€i<Y) — Zai(y) Y lielye) = Y pie(yoliclye)-

cec(®) i,ceC® y.

Similarly, the second set of terms (inside the 2-norm) becomes:

Zaz(y)Afz(y) = Z az(Y) Z Afi,c(Yc) = Z Mi,c(YC)Afi,c(yc)'

i,y ceCc() i,ceC) y.

As in M3Ns, we must characterize the set of marginalthat corresponds to valid
«. The constraints op are essentially based on the those that deJina (9.1-9.4). In

addition, we require that the marginals over the root nodgs., (yo.»,), sSums to 1 over the
possible start symbol§/s.
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Putting the pieces together, the factored dual is:

2

max Z ,U/i,c(y(:)gi,c(yc) + C Z /vLi,C(yc)Afi,c<YC> (98)
i,ceC() i,ceC®
st D g (A) =1, Vi eyl 205 Vi, Vee €,
A€eNs
Hise(A) = 3 pisme(A,B,C), Vi, 0<s<e<n, YAEN;
A—B CePp
s<m<e
,ui,s,e(A) = Z ﬂi,s’,s,e(Ba A, C)
B—A CePp
0<s'<s
+ 3 fisew(B.C,A), Vi,0< s <e<n,VAEN;
B—C A€Pp
e<e’<n;
Hi,s,s+1(A) = Z pisssii(A, D), Vi, 0<s<n;, VAEN;
A—DePy
IU’i:S,S(D) - Z Ni,s,s,s+1<A, D)7 VZ, 0 S s < ny, VD e _T.
AHDEPU

The constraints op is necessary, since they must correspond to marginals of a distri-
bution over trees. They are also sufficient:

Theorem 9.3.1 A set of marginalg; (y) satisfying the constraints in Eq. (9.8) corresponds
to a valid distribution over the legal parse tregsc )¥). A consistent distribution;(y)

is given by

H ,ui,s,m,e(ys,m@)

ai\Y) = Hi0n; \Yo,n,
( ) ( ) Mi,s,e(ys,e)

0<s<m<e<n;

where0/0 = 0 by convention.

Proof sketch: The proof follows from inside-outside probability relations [Manning &
Schitze, 1999]. The first term is a valid distribution of starting symbols. E‘agﬁ%
term form > s corresponds to a conditional distribution over binary productigns —
Ysm Ym.e) that are guaranteed to sum to 1 over split potatand possible productions.

Similarly, each%m term for corresponds to a conditional distribution over
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unary productionsy; 1 — s ) that are guaranteed to sum to 1 over possible produc-
tions. Hence, we have defined a kind of PCFG (where production probabilities depend on
the location of the symbol), which induces a valid distributigrover trees. It straightfor-
ward to verify that this distribution has marginais

9.4 Structured SMO for CFGs

We trained our max-margin models using the Structured SMO algorithm with block-coordinate
descent adopted from graphical models (see Sec. 6.1). The CKY algorithm computes sim-
ilar max-marginals in the course of computing the best tree as does Viterbi in Markov
networks.

i}\i,c(yc) = Inax [Wsz(}’) + gl(y)]a 6Zi,c(yc) = max Oéz(y>
y~Ye y~Ye

We also defin®; .(¥.) = maxy: 4y 0;.(y.) = maxy,y. [W'f;(y)+ £i(y)]. Note that we
do not explicitly represent;(y), but we can reconstruct the maximum-entropy one from
the marginalg:; as in Theorem 9.3.1.

We again express the KKT conditions in terms of the max-marginals for each span and
span triplec € C and its valuey.:

a’i,c()’c) = O = ﬁi,c(}’c) S ﬁz,c(ﬁ); ai,c(}’c) > 0 = 6@',0(}’0) Z 6@,0(370) (99)

The algorithm cycles through the training sentences, runs CKY to compute the max-
marginals and performs an SMO update on the violated constraints. We typically find that
20-40 iterations through the data are sufficient for convergence in terms of the objective
function improvements.

9.5 Experiments

We used the Penn English Treebank for all of our experiments. We report results here for
each model and setting trained and tested on only the sentences ofdebhthiords. Aside
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from the length restriction, we used the standard splits: sections 2-21 for training (9753
sentences), 22 for development (603 sentences), and 23 for final testing (421 sentences).

As a baseline, we trained a CNF transformation of the unlexicalized model of Klein and
Manning [2003] on this data. The resulting grammar had 3975 non-terminal symbols and
contained two kinds of productions: binary non-terminal rewrites and tag-word rewrites.
Unary rewrites were compiled into a single compound symbol, so for example a subject-
gapped sentence would have label lg&evp. These symbols were expanded back into
their source unary chain before parses were evaluated. The scores for the binary rewrites
were estimated using unsmoothed relative frequency estimators. The tagging rewrites were
estimated with a smoothed model®fw|t), also using the model from Klein and Manning
[2003]. In particular, Table 9.2 shows the performance of this maxelERATIVE): 87.99
F, on the test set.

For theBASIC max-margin model, we used exactly the same set of allowed rewrites
(and therefore the same set of candidate parses) as in the generative case, but estimated
their weights using the max-margin formulation with a loss that counts the number of
wrong spans. Tag-word production weights were fixed to be the log of the generative
P(w|t) model. That is, the only change betwe®BNERATIVE andBASIC is the use of the
discriminative maximum-margin criterion in place of the generative maximum likelihood
one for learning production weights. This change alone results in a small improvement
(88.20 vs. 87.99 B.

On top of the basic model, we first added lexical features of each span; this gave a
LEXICAL model. For a spafs, ¢) of a sentence, the base lexical features were:

o x,, the first word in the span

e}

x,_1, the preceding adjacent word

(0]

z._1, the last word in the span

e}

x., the following adjacent word

© <Is—1> xs>

e}

<:Be—1a xe)

o

x441 for spans of length 3
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Model P R R

GENERATIVE 87.70 88.06 87.88
BASIC 87.51 88.44 87.98
LEXICAL 88.15 88.62 88.39
LEXICAL+AUX | 89.74 90.22 89.98

Table 9.1: Development set results of the various models when trained and tested on Penn
treebank sentences of lengthl5.

Model P R R

GENERATIVE 88.25 87.73 87.99
BASIC 88.08 88.31 88.20
LEXICAL 88.55 88.34 88.44

LEXICAL+AUX | 89.14 89.10 89.12
COLLINS 99 89.18 88.20 88.69

Table 9.2: Test set results of the various models when trained and tested on Penn treebank
sentences of lengtd 15.

These base features were conjoined with the span length for spans of length 3 and below,
since short spans have highly distinct behaviors (see the examples below). The features are
lexical in the sense than they allow specific words and word pairs to influence the parse
scores, but are distinct from traditional lexical features in several ways. First, there is no
notion of headword here, nor is there any modeling of word-to-word attachment. Rather,
these features pick up on lexical trends in constituent boundaries, for example the trend
that in the sentencEhe screen was a sea of rethe (length 2) span between the wovds

and the wordf is unlikely to be a constituent. These non-head lexical features capture a
potentially very different source of constraint on tree structures than head-argument pairs,
one having to do more with linear syntactic preferences than lexical selection. Regardless
of the relative merit of the two kinds of information, one clear advantage of the present
approach is that inference in the resulting model remains cubic (as oppoggh 1y,

since the dynamic program need not track items with distinguished headwords. With the
addition of these features, the accuracy moved past the generative baseline, to 88.44.



9.5. EXPERIMENTS 141

As a concrete (and particularly clean) example of how these features can sway a de-
cision, consider the sentend@de Egyptian president said he would visit Libya today to
resume the talksThe generative model incorrectly considensya todayto be a baseip.
However, this analysis is counter to the trendadayto be a one-word constituent. Two
features relevant to this trend ar&NSTITUENT A first-word =today A length = 1) and
(CONSTITUENTA last-word =todayA length = 1). These features represent the preference
of the wordtodayfor being the first and last word in constituent spans of lengthrithe
LEXICAL model, these features have quite large positive weights: 0.62 each. As a result,
this model makes this parse decision correctly.

Another kind of feature that can usefully be incorporated into the classification process
is the output of other, auxiliary classifiers. For this kind of feature, one must take care
that its reliability on the training not be vastly greater than its reliability on the test set.
Otherwise, its weight will be artificially (and detrimentally) high. To ensure that such
features are as noisy on the training data as the test data, we split the training into two
folds. We then trained the auxiliary classifiers on each fold, and using their predictions as
features on the other fold. The auxiliary classifiers were then retrained on the entire training
set, and their predictions used as features on the development and test sets.

We used two such auxiliary classifiers, giving a prediction feature for each span (these
classifiers predicted only the presence or absence of a bracket over that span, not bracket
labels). The first feature was the prediction of the generative baseline; this feature added
little information, but made the learning phase faster. The second feature was the output
of a flat classifier which was trained to predict whether single spans, in isolation, were
constituents or not, based on a bundle of features including the list above, but also the
following: the preceding, first, last, and following tag in the span, pairs of tags such as
preceding-first, last-following, preceding-following, first-last, and the entire tag sequence.

Tag features on the test sets were taken from a pretagging of the sentence by the tagger
described in [Toutanowet al,, 2003].While the flat classifier alone was quite poor (P 78.77
/ R 63.94 / k 70.58), the resulting max-margin modeEkicAL +AUX) scored 89.12 F
To situate these numbers with respect to other models, the parser in [Collins, 1999],which

1in this length 1 case, these are the same feature. Note also that the features are conjoined with only one
generic label class “constituent” rather than specific constituent types.
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is generative, lexicalized, and intricately smoothed scores 88.69 over the same train/test
configuration.

9.6 Related work

A number of recent papers have considered discriminative approaches for natural language
parsing [Johnsoet al., 1999; Collins, 2000; Johnson, 2001; Geman & Johnson, 2002;
Miyao & Tsuijii, 2002; Clark & Curran, 2004; Kaplaet al,, 2004; Collins, 2004]. Broadly
speaking, these approaches fall into two categorezankinganddynamic programming
approaches. In reranking methods [Johnebal., 1999; Collins, 2000; Sheet al., 2003],

an initial parser is used to generate a number of candidate parses. A discriminative model
is then used to choose between these candidates. In dynamic programming methods, a
large number of candidate parse trees are represented compactly in a parse tree forest or
chart. Given sufficiently “local” features, the decoding and parameter estimation problems
can be solved using dynamic programming algorithms. For example, several approaches
[Johnson, 2001; Geman & Johnson, 2002; Miyao & Tsujii, 2002; Clark & Curran, 2004,
Kaplanet al., 2004] are based on conditional log-linear (maximum entropy) models, where
variants of the inside-outside algorithm can be used to efficiently calculate gradients of the
log-likelihood function, despite the exponential number of trees represented by the parse
forest.

The method we presented has several compelling advantages. Unlike reranking meth-
ods, which consider only a pre-pruned selection of “good” parses, our method is an end-
to-end discriminative model over the full space of parses. This distinction can be very
significant, as the set of-best parses often does not contain the true parse. For example,
in the work of Collins [2000], 41% of the correct parses were not in the candidate pool of
~30-best parses. Unlike previous dynamic programming approaches, which were based on
maximum entropy estimation, our method incorporates an articulated loss function which
penalizes larger tree discrepancies more severely than smaller ones.

Moreover, the structured SMO we use requires only the calculation of Viterbi trees,
rather than expectations over all trees (for example using the inside-outside algorithm).
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This allows a range of optimizations that prune the space of parses (without making ap-
proximations) not possible for maximum likelihood approaches which must extract basis
function expectations from the entire set of parses. In our experim#its) iterations

were generally required for convergence (exceptghgic model, which took about 100
iterations.)

9.7 Conclusion

We have presented a maximum-margin approach to parsing, which allows a discriminative
SVM:-like objective to be applied to the parsing problem. Our framework permits the use
of a rich variety of input features, while still decomposing in a way that exploits the shared
substructure of parse trees in the standard way.

It is worth considering the cost of this kind of method. At training time, discriminative
methods are inherently expensive, since they all involve iteratively checking current model
performance on the training set, which means parsing the training set (usually many times).
Generative approaches are vastly cheaper to train, since they must only collect counts from
the training set.

On the other hand, the max-margin approach does have the potential to incorporate
many new kinds of features over the input, and the current feature set allows limited lexi-
calization in cubic time, unlike other lexicalized models (including the Collins model which
it outperforms in the present limited experiments). This trade-off between the complexity,
accuracy and efficiency of a parsing model is an important area of future research.



Chapter 10
Matchings

We address the problem of learning to match: given a set of input graphs and corresponding
matchings, find a parameterized edge scoring function such that the correct matchings have
the highest score. Bipartite matchings are used in many fields, for example, to find marker
correspondences in vision problems, to map words of a sentence in one language to another,
to identify functional genetic analogues in different organisms. We have shown a compact
max-margin formulation for bipartite matchings in Ch. 4. In this chapter, we focus on a
more complex problem of non-bipartite matchings. We motivate this problem using an
application in computational biology, disulfide connectivity prediction, but non-bipartite
matchings can be used for many other tasks.

Identifying disulfide bridges formed by cysteine residues is critical in determining the
structure of proteins. Recently proposed models have formulated this prediction task as a
maximum weight perfect matching problem in a graph containing cysteines as nodes with
edge weights measuring the attraction strength of the potential bridges. We exploit combi-
natorial properties of the perfect matching problem to define a compact, convex, quadratic
program. We use kernels to efficiently learn very rich (in-fact, infinite-dimensional) mod-
els and present experiments on standard protein databases, showing that our framework
achieves state-of-the-art performance on the task.

Throughout this chapter, we use the problem of disulfide connectivity prediction as an
example. We provide some background on this problem.

144
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10.1 Disulfide connectivity prediction

Proteins containing cysteine residues form intra-chain covalent bonds knossudtede
bridges Such bonds are a very important feature of protein structure since they enhance
conformational stability by reducing the number of configurational states and decreasing
the entropic cost of folding a protein into its native state [Matsunetied,, 1989]. They do

so mostly by imposing strict structural constraints due to the resulting links between distant
regions of the protein sequence [Harrison & Sternberg, 1994].

Knowledge of the exact disulfide bonding pattern in a protein provides information
about protein structure and possibly its function and evolution. Furthermore, since the
disulfide connectivity pattern imposes structure constraints, it can be used to reduce the
search space in both protein folding prediction as well as protein 3D structure prediction.
Thus, the development of efficient, scalable and accurate methods for the prediction of
disulfide bonds has numerous practical applications.

Recently, there has been increased interest in applying computational techniques to
the task of predicting the intra-chain disulfide connectivity [Fariselli & Casadio, 2001;
Fariselliet al., 2002; Vullo & Frasconi, 2004, Klepeis & Floudas, 2003; Badtlal., 2004].

Since a sequence may contain any number of cysteine residues, which may or may not
participate in disulfide bonds, the task of predicting the connectivity pattern is typically
decomposed into two subproblems: predicting the bonding state of each cysteine in the
sequence, and predicting the exact connectivity among bonded cysteines. Alternatively,
there are methods [Balét al., 2004] that predict the connectivity pattern without knowing

the bonding state of each cysteine

We predict the connectivity pattern by finding the maximum weighted matching in a
graph in which each vertex represents a cysteine residue, and each edge represents the
“attraction strength” between the cysteines it connects [Fariselli & Casadio, 2001]. We
parameterize the this attraction strength via a linear combination of features, which can
include the protein sequence around the two residues, evolutionary information in the form
of multiple alignment profiles, secondary structure or solvent accessibility information, etc.

We thank Pierre Baldi and Jianlin Cheng for introducing us to the problem of disulfide connectivity
prediction and providing us with preliminary draft of their paper and results of their model, as well as the
protein datasets.
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10.2 Learning to match

Formally, we seek a functioh : X — ) that maps inputx € X to output matchings
y € Y, for example X is the space of protein sequences ahid the space of matchings
of their cysteines. The space of matchirigss very large, in fact, superexponential in
the number of nodes in a graph. Howev@rhas interesting and complex combinatorial
structure which we exploit to learnefficiently.

The training data consists of examplesS = {(x,y®)}™ of input graphs and
output matchings. We assume that the inpuiefines the space of possible matchings
using some deterministic procedure. For example, given a protein sequence, we construct
a complete graph where each node corresponds to a cysteine. We represent each possible
edge between nodgsindk (j < k) in examplei using a binary variablg!;). For simplicity,
we assume complete graphs, but very little needs to be changed to handle sparse graphs.

If examplei has L; nodes, then there arg;(L; — 1)/2 edge variables, sg®” is a
binary vector of dimensiod,;(L; — 1)/2. In a perfect matching, each node is connected
exactlyone other node. In non-perfect matchings, each node is connecidnistone
other node. Let; = L;/2, then for complete graphs with even number of vertitgghe
number of possible perfect matchingsé%% (which is Q((%)™), super-exponential in
n;). For example, 1ANS protein in Fig. 10.1 hasysteines (nodes),5 potential bonds
(edges) and5 possible perfect matchings.

Our hypothesis class is maximum weight matchings:

hs(x) = arg max Z Sk (X) Yk, (10.1)

For disulfide connectivity prediction, this model was used by Fariselli and Casadio [2001].
Their model assigns an attraction strength(x) to each pair of cysteines, calculated by
assuming that all residues in the local neighborhoods of the two cysteines make contact,
and summing contact potentials for pairs of residues. We consider a simple but very general
class of attraction scoring functions defined by a weighted combination of featusasisr
functions

sie(x) = Y wafa(xjk) = wE(x1), (10.2)
q
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Figure 10.1: PDB protein 1ANS: amino acid sequence, 3D structure, and graph of potential
disulfide bonds. Actual disulfide connectivity is shown in yellow in the 3D model and the
graph of potential bonds.

wherex;, is the portion of the inpuk that directly relates to nodesandk, fi(x;i) is

a real-valued basis function ang, € IR. For example, the basis functions can represent
arbitrary information about the two cysteine neighborhoods: the identity of the residues
at specific positions around the two cysteines, or the predicted secondary structure in the
neighborhood of each cysteine. We assume that the user provides the basis functions, and
that our goal is to learn the weighis, for the model:

hw(x) = arg maXZWTf(xjk)yjk. (10.3)
yey ik
Below, we will abbreviatew "f(x,y) = D ik w ' f(x1) Yk, andw ' £;(y) = w' f(x, y),
The naive formulation of the max-margin estimation, which enumerates all perfect
matchings for each exampigis:

1 A ,
min §||W||2 st. w fi(y®) > wfi(y) + G(y), Vi, Yy € Y. (10.4)

The number of constraints in this formulation is super-exponential in the number of nodes
in each example. In the following sections we present two max-margin formulations,
first with an exponential set of constraints (Sec. 10.3), and then with a polynomial one
(Sec. 10.4).
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10.3 Min-max formulation

Using the min-max formulation from Ch. 4, we have a singlex constraint for eaclx

min %HWHQ st. w fi(y®?) > ;23(}; w'fi(y) + bi(y)], Vi (10.5)
The key to solving this problem efficiently is thess-augmenteohference

max, .o W' £;(y) + £:(y)]. Under the assumption of Hamming distance loss (or any loss
function that can be written as a sum of terms corresponding to edges), this maximization
is equivalent (up to a constant term) to a maximum weighted matching problem. Note that
since they variables are binary, the Hamming distance betwg@nandy can be written
as(1—y)Ty® + (1 -y Ty =1Ty® 4+ (1 — 2y®)Ty. Hence, the maximum weight
matching where edggk has weightszf(xg.Q) +(1— ZyJ(Q) (plus the constarit" y() gives

the value ofmaxy o [w ' f;(y) + 4(y)].

This problem can be solved i(L?) time [Gabow, 1973; Lawler, 1976]. It can also be
solved as a linear program, where we introduce continuous variapjesistead of binary
variabIeSyj(.Q :

max Z Wi ik [WTf(xgik)) +(1— 2y§i))] (10.6)
ik

1
> e < SVI=1), VC{l,....L}, [V| > 3 and odd.

J.keVvV

The constraint , 1 ;5 < 1 require that the number of bonds incident on a node is less

or equal to one. For perfect matchings, these constraints are chandég;tg, = 1 to

ensure exactly one bond. The subset constraints (in the last line of Eq. (10.6)) ensure that
solutions to the LP are integral [Edmonds, 1965]. Note that we have an exponential number
of constraints Q(2(%~1)), but this number is asymptotically smaller than the number of
possible matchings . It is an open problem to derive a polynomial sized LP formulation for
perfect matchings [Schrijver, 2003].
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We can write the loss-augmented inference problem in terms of the LP in Eq. (10.6):

max [w' fi(y) + 4(y)] = d; + max p] [Fiw +c,
yey@® A:,ﬁi;obi

where:d; = 1Ty®; y; is a vector of lengthl;(L; — 1)/2 indexed by bondk; A; andb

are the appropriate constraint coefficient matrix and right hand side vector, respedtjvely.
is a matrix of basis function coefficients such that the compoienf the vectorF,w is
wa(x§2) andc; = (1 — 2y®). Note that the dependence anis linear and occurs only
in the objective of the LP.

The dual of the LP in Eq. (10.6) is
min \/b; st. AN >Fw+c; A >0. (10.7)
We plug it into Eg. (10.5) and combine the minimization oXevith minimization overw.

min %HWHZ (10.8)
s.t. w fi(y®) > d; + N\ by, Vi

Al N >Fiw+c, Vi

A >0, Vi

In case that our basis functions are not rich enough to predict the training data perfectly,
we can introduce a slack varialglgfor each exampléto allow violations of the constraints
and minimize the sum of the violations:

S DA,
min ?mu+cgki (10.9)

s.t. w fi(yD) + & >d; + \by, Vi
AN\ >Fw+c;, Vi

The paramete€’ allows the user to trade off violations of the constraints with fit to the
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Figure 10.2: Log of the number of QP constraints (y-axis) vs. number of bonds (x-axis) in
the three formulations (perfect matching enumeration, min-max and certificate).

data.

Our formulation is a linearly-constrained quadratic program, albeit with an exponen-
tial number of constraints. In the next section, we develop an equivalent polynomial size
formulation.

10.4 Certificate formulation

Rather than solving the loss-augmented inference problem explicitly, we can focus on find-
ing a compactertificate of optimalitythat guarantees that?) = arg max, [w ' f;(y) +

¢;(y)]. We consider perfect matchings and then provide a reduction for the non-perfect
case. LetM be a perfect matching for a complete undirected grépk (V, E). In an
alternating cycle/pathn G with respect tal/, the edges alternate between those that be-
long to M and those that do not. An alternating cycleitsgmentingwith respect taV/ if

the score of the edges in the matchihfis smaller that the score of the edges not in the
matching)M/.

Theorem 10.4.1 [Edmonds, 1965JA perfect matching/ is a maximum weight perfect
matching if and only if there are no augmenting alternating cycles.
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The number of alternating cycles is exponential in the number of vertices, so simply enu-
merating all of them will not do. Instead, we can rule out such cycles by considering
shortest paths.

We begin by negating the score of those edges naétinin the discussion below we
assume that each edge scefehas been modified this way. We also refer to the segre
as the length of the edgé:. An alternating cycle is augmenting if and only if its length is
negative. A condition ruling out negative length alternating cycles can be stated succinctly
using a kind of distance function. Pick an arbitrary root nedelLet d;, with j € V,
e € {0,1}, denote the length of the shortest distance alternating pathfrany, where
e = 1 if the last edge of the path is i/, 0 otherwise. These shortest distances are well-
defined if and only if there are no negative alternating cycles. The following constraints
capture this distance function.

sjp > dy—di, s> d) —dj, vV jk ¢ M; (10.10)

Sijdllg—d?, Sijdjl-—dg, YV jk € M.

Theorem 10.4.2 There exists a distance functi¢ni$} satisfying the constraints in
Eqg. (10.10) if and only if no augmenting alternating cycles exist.

Proof.

(If) Suppose there are no augmenting alternating cycles. Since any alternating paths
from r to j can be shortened (or left the same length) by removing the cycles they contain,
the two shortest paths to(one ending with)/-edge and one not) contain no cycles. Then
let d} andd; be the length of those paths, for al(for j = r, setd) = d; = 0). Then for
anyjk (or kj) in M, the shortest path tpending with an edge not in/ plus the edgek
(or k) is an alternating path tb ending with an edge id/. This path is longer or same
length as the shortest pathk@nding with an edge inf: s, +d) > dj, (or sp; +dJ > dy),
so the constraint is satisfied. Similarly fgk, kj ¢ M.

(Only if) Suppose a distance functidu} satisfies the constraints in Eq. (10.10). Con-
sider an alternating cycle’. We renumber the nodes such that the cycle passes through
nodesl,2,...,[l and the first edge(l,2), is in M. The length of the path is(C) =
S11 + Zé;ll s;j+1. For each odd, the edgd(j, j + 1) isin M, s0s; ;41 > dj,, — d3. For
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eveny, the edgej, j + 1) is notinM, sos; ;1 > dJ,, — dj. Finally, the last edg€(l, 1),
isnotinM, sos;; > df — d}. Summing the edges, we have:

-1
|5

1

-1
S(C)=d) —dj + > [d, —df]+

j=1,0dd Jj=2,even

1 _
Hence all alternating cycles have nonnegative length.

In our learning formulation we have the loss-augmented edge weéﬁjﬁs (2y§2 —
1) (w ' f(xj)+1— 2y](-2). Letd, be a vector of distance variablés H; andG; be matrices
of coefficients andy; be a vector such thdl,w + G;d; > q; represents the constraints
in Eq. (10.10) for examplé Then the following joint convex program im andd computes

the max-margin parameters:

1
min §||W||2 (10.112)

Once again, in case that our basis functions are not rich enough to predict the training data
perfectly, we can introduce a slack variable vegtdo allow violations of the constraints.

The case of non-perfect matchings can be handled by a reduction to perfect matchings
as follows [Schrijver, 2003]. We create a new graph by making a copy of the nodes and
the edges and adding edges between each node and the corresponding node in the copy.
We extend the matching by replicating its edges in the copy and for each unmatched node,
introduce an edge to its copy. We defifiex;;) = 0 for edges between the original and
the copy. Perfect matchings in this graph projected onto the original graph correspond to
non-perfect matchings in the original graph.

The comparison between the log-number of constraints for our three equivalent QP
formulations (enumeration of all perfect matchings, min-max and certificate) is shown
in Fig. 10.2. The x-axis is the number of edges in the matching (number of nodes divided
by two).
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10.5 Kernels

Instead of directly optimizing the primal problem in Eg. (10.8), we can work with its dual.
Each training exampleé has L;(L; — 1)/2 dual variables, andu(i) is the dual variable
associated with the features corresponding to the gélge.et oY be the vector of dual
variables for examplé The dual quadratic optimization problem has the form:

2

max Zc ol — = Z > [(eud - ald) £ (10.12)

i jkeE®)

s.t. A0 < Cb;, Vi

The only occurrence of feature vectors is in the expansion of the squared-norm term in the
objective:

S S (on) - al) eedd) 1) (Cu - o) (10.13)

1,7 kle E() mneE ()

N T
Therefore, we can apply the kernel trick andﬂet,(jl)) (xﬁ,{%) = K(x,(d), an) Thus, we

can efficiently map the original featurégx;;,) to a high-dimensional space. The primal
and dual solutions are related by:

w=2 > (Cy —ap)f(xy) (10.14)

Eq. (10.14) can be used to compute the attraction strengtk) in a kernelized manner at
prediction time. The polynomial-sized representation in Eq. (10.11) is similarly kerneliz-
able.
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10.6 Experiments

We assess the performance of our method on two datasets containing sequences with ex-
perimentally verified bonding patterns: DIPRO2 and SP39. The DIPRO2 dateast
compiled and made publicly available by Baktial. [2004]. It consists of all proteins

from PDB [Bermanet al., 2000], as of May 2004, which contain intra-chain disulfide
bonds. After redundance reduction there are a total of 1018 sequences. In addition, the
sequences are annotated with secondary structure and solvent accessibility information de-
rived from the DSSP database [Kabsch & Sander, 1983]. The SP39 dataset is extracted
from the Swiss-Prot database of proteins [Bairoch & Apweiler, 2000], release 39. It con-
tains only sequences with experimentally verified disulfide bridges, and has a total of 726
proteins. The same dataset was used in earlier work [Ralali, 2004; Vullo & Frasconi,

2004; Fariselli & Casadio, 2001], and we have followed the same procedure for extracting
sequences from the database.

Even though our method is applicable to both sequences with a high number of bonds
or sequences in which the bonding state of cysteine residues is unknown, we report results
for the case where the bonding state is known, and the number of bonds is between 2 and
5 (since the case of 1 bond is trivial). The DIPRO2 contains 567 such sequences, and only
53 sequences with a higher number of bonds, so we are able to perform learning on over
90% of all proteins. There are 430 proteins with 2 and 3 bonds and 137 with 4 and 5 bonds.
SP39 contains 446 sequences containing between 2 and 5 bonds.

In order to avoid biases during testing, we adopt the same dataset splitting procedure
as the one used in previous work [Fariselli & Casadio, 2001; Vullo & Frasconi, 2004;
Baldi et al,, 2004]. We split SP39 into 4 different subsets, with the constraint that pro-
teins no proteins with sequence similarity of more than 30% belong to different subsets.
Sequence similarity was derived using an all-against-all rigorous Smith-Waterman local
pairwise alignment [Smith & Waterman, 1981] (with the BLOSUMG65 scoring matrix, gap
penalty 12 and gap extension 4). Pairs of chains whose alignment is less than 30 residues
were considered unrelated. The DIPRO2 dataset was split similarly into 5 folds, although
the procedure had less effect due to the redundance reduction applied by the authors of the

2http://contact.ics.uci.edu/bridge.html
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dataset.

Models

The experimental results we report use the dual formulation of Sec. 10.5 and an RBF kernel
K (X, Xim) = exp(w), with v € [0.1, 10]. We use the exponential sized represen-
tation of Sec. 10.3 since for the case of proteins containing between two and five bonds, it
is more efficient due to the low constants in the exponential problem size. We used com-
mercial QP software (CPLEX) to train our models. Training time took around 70 minutes
for 450 examples, using a sequential optimization procedure which solves QP subproblems
associated with blocks of training examples. We are currently working on an implemen-
tation of the certificate formulation Sec. 10.4 to handle longer sequences and non-perfect
matchings (when bonding state is unknown). Below, we describe several models we used.

The features we experimented with were all based on the local regions around candidate
cysteine pairs. For each pair of candidate cysteijes}, where; < k, we extract the
amino-acid sequence in windows of sizeentered aj andk. As in Baldiet al. [2004],
we augment the features of each model with the number of residues betwadh. The
models below use windows of size= 9.

The first model SEQUENCEuses the features described above: for each window, the
actual sequence is expanded t20ax n binary vector, in which the entries denote whether
or not a particular amino acid occurs at the particular position. For examplglshentry
in the vector represents whether or not the amino-acid Alanine occurs at p@safdhe
local window, counting from the left end of the window. The final set of features for each
{Jj, k} pair of cysteines is simply the two local windows concatenated together, augmented
with the linear distance between the cysteine residues.

The second modeRROFILE is the same aSEQUENCE except that instead of us-
ing the actual protein sequence, we use multiple sequence alignment profile information.
Multiple alignments were computed by running PSI-BLAST using default settings to align
the sequence with all sequences in the NR database [Altstlall 1997]. Thus, the in-
put at each position of a local window is the frequency of occurrence of each @bthe
amino-acids in the alignments.



156 CHAPTER 10. MATCHINGS
[K [ PROFILE [ DAG-RNN| [K [ SEQUENCE| PROFILE | PROFILE-SS
2 [ 0.75/0.75] 0.7470.74] [2] 0.707/0.70 [ 0.73/0.73] 0.79/0.79
3 [ 0.60/0.48] 0.61/0.51| |3 | 0.62/0.52 | 0.67/0.59 0.7470.69
4]/ 0.46/0.24 0.44/0.27| [4 | 0.447/0.21 | 0.59/0.44] 0.7070.56
5 | 0.43/0.16] 0.4170.11) [ 5| 0.29/0.06 | 0.43/0.17 0.627/0.27

(@) (b)

Table 10.1: Numbers indicaterecision / Accuracy (a) Performance d?PROFILE model
on SP39 vs. preliminary results of the DAG-RNN model [Badtlal., 2004] which repre-
sent the best currently published results. In each row, the best performandmid.irfb)
Performance cSEQUENCEPROFILE PROFILE-SSnodels on the DIPRO2 dataset.

The third modelPROFILE-SSaugments thBROFILEmodel with secondary structure
and solvent-accessibility information. The DSSP program produces 8 types of secondary
structure, so we augment each local window of sizevith an additional lengtty x n
binary vector, as well as a lengthbinary vector representing the solvent accessibility at
each position.

Results and discussion

We evaluate our algorithm using two metrics: accuracy and precision. The accuracy mea-
sure counts how many full connectivity patterns were predicted correctly, whereas preci-
sion measures the number of correctly predicted bonds as a fraction of the total number of
possible bonds.

The first set of experiments compares our model to preliminary results reported in Baldi
et al. [2004], which represent the current top-performing system. We perform 4-fold cross-
validation on SP39 in order to replicate their setup. As Table 10.1 show®RRE-ILE
model achieves comparable results, with similar or better levels of precision for all bond
numbers, and slightly lower accuracies for the case of 2 and 3 bonds.

In another experiment, we show the performance gained by using multiple alignment
information by comparing the results of ts& QUENCEmModel with thePROFILE As we
can see from Table 10.1(b), the evolutionary information captured by the amino-acid align-
ment frequencies plays an important role in increasing the performance of the algorithm.
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Figure 10.3: Performance ®ROFILEmodel as training set size changes for proteins with
(a) 2 and 3 bonds (b) 4 and 5 bonds.

The same phenomenon is observed by Vullo and Frasconi [2004] in their comparison of
sequence and profile-based models.

As afinal experiment, we examine the role that secondary structure and solvent-accessibilit
information plays in the modd?PROFILE-SSTable 10.1(b) shows that the gains are sig-
nificant, especially for sequences withand4 bonds. This highlights the importance of
developing even richer features, perhaps through more complex kernels.

Fig. 10.3 shows the performance of tAROFILEmodel as training set size grows. We
can see that for sequences of all bond numbers, both accuracy and precision increase as the
amount of data grows. The trend is more pronounced for sequenceg atti5 bonds
because they are sparsely distributed in the dataset. Such behavior is very promising, since
it validates the applicability of our algorithm as the availability of high-quality disulfide
bridge annotations increases with time.

10.7 Related work

The problem of inverse perfect matching has been studied by Liu and Zhang [2003] in
the inverse combinatorial optimization framework we describe in Sec. 4.3: Given a set of
nominal weightsv® and a perfect matchingy/, which is not a maximum one with respect

to w’, find a new weight vectow that makes) optimal and minimizeg|w’ — w||,

for p = 1,00. They do not provide a compact optimization problem for this related but
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different task, relying instead on the ellipsoid method with constraint generation.

The problem of disulfide bond prediction first received comprehensive computational
treatment in Fariselli and Casadio [2001]. They modeled the prediction problem as finding
a perfect matching in a weighted graph where vertices represent bonded cysteine residues,
and edge weights correspond to attraction strength. The problem of learning the edge
weights was addressed using a simulated annealing procedure. Their method is only ap-
plicable to the case when bonding state is known. In Fariselil. [2002], the authors
switch to using a neural network for learning edge weights and achieve better performance,
especially for the case of 2 and 3 disulfide bonds.

The method in Vullo and Frasconi [2004] takes a different approach to the problem. It
scores candidate connectivity patterns according to their similarity with respect to the cor-
rect pattern, and uses a recursive neural network architecture [Frasebni998] to score
candidate patterns. At prediction time the pattern scores are used to perform an exhaustive
search on the space of all matchings. The method is computationally limited to sequences
of 2 to 5 bonds. It also uses multiple alignment profile information and demonstrates its
benefits over sequence information.

In Baldi et al. [2004], the authors achieve the current state-of-the-art performance on
the task. Their method uses Directed Acyclic Graph Recursive Neural Networks [Baldi
& Pollastri, 2003] to predict bonding probabilities between cysteine pairs. The prediction
problem is solved using a weighted graph matching based on these probabilities. Their
method performs better than the one in Vullo and Frasconi [2004] and is also the only
one which can cope with sequences with more than 5 bonds. It also improves on previous
methods by not assuming knowledge of bonding state.

A different approach to predicting disulfide bridges is reported in Klepeis and Floudas
[2003], where bond prediction occurs as part of predictirgheet topology in proteins.
Residue-to-residue contacts (which include disulphide bridges) are predicted by solving a
series of constrained integer programming problems. Interestingly, the approach can be
used to predict disulfide bonds with no knowledge of bonding state, but the results are not
comparable with those in other publications.

The task of predicting whether or not a cysteine is bonded has also been addressed using
a variety of machine learning techniques including neural networks, SVMs, and HMMs



10.8. CONCLUSION 159

[Fariselli et al, 1999; Fiser & Simon, 2000; Martelét al,, 2002; Frasconet al, 2002;
Ceroniet al., 2003] Currently the top performing systems have accuracies around 85%.

10.8 Conclusion

In this chapter, we derive a compact convex quadratic program for the problem of learning
to match. Our approach learns a parameterized scoring function that reproduces the ob-
served matchings in a training set. We present two formulations: one which is based on a
linear programming approach to matching, requiring an exponential number of constraints,
and one which develops a certificate of matching optimality for a compact polynomial-sized
representation. We apply our framework to the task of disulfide connectivity prediction, for-
mulated as a weighted matching problem. Our experimental results show that the method
can achieve performance comparable to current top-performing systems. Furthermore, the
use of kernels makes it easy to incorporate rich sets of features such as secondary structure
information, or extended local neighborhoods of the protein sequence. In the future, it will
be worthwhile to examine how other kernels, such as convolution kernels for protein se-
quences, will affect performance. We also hope to explore the more challenging problem
of disulfide connectivity prediction when the bonding state of cysteines is unknown. While
we have developed the framework to handle that task, it remains to experimentally deter-
mine how well the method performs, especially in comparison to existing methods [Baldi
et al, 2004], which have already addressed the more challenging setting.



Chapter 11
Correlation clustering

Data can often be grouped in many different reasonable clusterings. For example, one user
may organize her email messages by project and time, another by sender and topic. Images
can be segmented by hue or object boundaries. For a given application, there might be
only one of these clusterings that is desirable. Learning to cluster considers the problem of
finding desirable clusterings on new data, given example desirable clusterings on training
data.

We focus on correlation clustering, a novel clustering method that has recently en-
joyed significant attention from the theoretical computer science community [Betredal
2002; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003]. It is formulated as a vertex
partitioning problem: Given a graph with real-valued edge scores (both positive and neg-
ative), partition the vertices into clusters to maximize the score of intra-cluster edges, and
minimize the weight of inter-cluster edges. Positive edge weights represent correlations be-
tween vertices, encouraging those vertices to belong to a common cluster; negative weights
encourage the vertices to belong to different clusters. Unlike most clustering formulations,
correlation clustering does not require the user to specify the number of clusters nor a dis-
tance threshold for clustering; both of these parameters are effectively chosen to be the best
possible by the problem definition. These properties make correlation clustering a promis-
ing approach to many clustering problems; in machine learning, it has been successfully
applied to coreference resolution for proper nouns [McCallum & Wellner, 2003].

Recently, several algorithms based on linear programming and positive-semidefinite

160
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programming relaxations have been proposed to approximately solve this problem. In this
chapter, we employ these relaxations to derive a max-margin formulation for learning the
edge scores for correlation clustering from clustered training data. We formulate the ap-
proximate learning problem as a compact convex program with quadratic objective and
linear or positive-semidefinite constraints. Experiments on synthetic and real-world data
show the ability of the algorithm to learn an appropriate clustering metric for a variety of
desired clusterings.

11.1 Clustering formulation

An instance of correlation clustering is specified by an undirected ggaph(V, £) with
N nodes and edge scosg, for eachjk in £, (j < k). We assume that the graph is fully
connected (if it is not, we can make it fully connected by adding appropriate ¢égdgh
s, = 0). We define binary variables,, one for each edggk, that represent whether node
j andk belong to the same cluster. LEtbe the space of assignmemtshat define legal
partitions. For notational convenience, we introduce hgtrandy;; variables, which will
be constrained to have the same value. We also introglyceariables, and fix them to
have valuel and sets;; = 0.

Bansalet al. [2002] consider two related problems:

max > sy — | > sl = y); (MAXAGREE)
jk:sj>0 Jk:s;j,<0

min > sl —yp) — | > sy (MINDISAGREE)
jk:sjp>0 jk:sj,<0

The motivation for the names of the two problems comes from separating the set of edges
into positive weight edges and negative weight edges. The best score is obviously achieved
by including all the positive and excluding all the negative edges, but this will not generally
produce a valid partition. IMAX AGREE we maximize the “agreement” of the partition

with the positive/negative designations: the weight of plesitive includededges minus

the weight ofnegative excludeddges. IMMINDISAGREE, we minimize the disagreement:

the weight ofpositive excludeaddges minus the weight aofegative includeddges. In
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particular, let

s = max > skt = > s 5T = | > s
Jk:s;j,<0 Jk:sj>0

Then the value oMAX AGREEIs s* — s~ and the value oMINDISAGREE s™ — s*. The
optimal partition for the two problems is of course the same (if it is unique). Bansal
et al. [2002] show that both of these problems are NP-hard (but have different approxi-
mation hardness). We will concentrate on the maximization verdlan AGREE Several
approximation algorithms have been developed based on Linear and Semidefinite Program-
ming [Charikaret al., 2003; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003], which
we consider in the next sections.

11.1.1 Linear programming relaxation

In order to insure thay defines a partition, it is sufficient to enforce a kind of triangle
inequality for each triple of nodes< k < I:

Yik + Y <y + 1 Yik + Ui <y + 15 Yi + Y < Y + 1. (11.1)

The triangle inequality enforces transitivity: jfandk are in the same clustey, = 1)
andk and! are in the same clustey( = 1), then; and!/ will be forced to be in this
cluster ¢/; = 1). The other two cases are similar. Any symmetric, transitive binary relation
induces a partition of the objects.

With these definitions, we can express M@ex AGREE problem as an integer linear
program (ignoring the constants™):

max Zsjkyjk (11.2)
ik
s.t. yjk + Ykl S ylj + 17 Vj,k, lv yjj = 17 vja yjk € {07 1}7 VJ, k.

Note that the constraints imply that, = v, for any two nodes: andb. To see this,
consider the inequalities involving nodeandb with j = a,k = b,l = bandj = b, k =
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a,l = a:

yab+ybb§yba+1; yba+yaa Syab"i_l;

Sinceyaa = Ynpb = L we haveyab = Yba-
The LP relaxation is obtained by replacing the binary variables {0, 1} in Eq. (11.2)
with continuous variable§ < /1, < 1.

Mgk + pg < g + 1, Vg, kL pi; =1, Vj; pir >0, Vi k. (11.3)

Note thaty;, < 1 is implied since the triangle inequality with= [ gives ;; + p; <
pj; + 1, and sinceu;; = 1 andy;, = pu;, we haveu;;, < 1.

We are not guaranteed that this relaxation will produce integral solutions. The LP
solution,s™”, is an upper bound on th&. Charikaret al. [2003] show that the integrality
gap of this upper bound is at le&st3:

st — s~ 2
7 < =

11.1.2 Semidefinite programming relaxation

An alternative formulation [Charikaet al., 2003] is the SDP relaxation. Letat () denote
the variableg.;; arranged into a matrix.

max Z Sjkﬂjk (114)
jk
s.t. mat(u) = 0; wi; =1, Vj; wir >0, Yy, k.

In effect, we substituted the triangle inequalities by the semidefinite constraint. To motivate
this relaxation, consider any clustering solution. Choose a collection of orthogonal unit
vectors{vy,..., vk}, one for each cluster in the solution. Every verjei the cluster

is assigned the unit vector; corresponding to the cluster it is in. If verticgsand k

are in the same cluster, thmjvk = 1, if not, v;vk = 0. The score of the clustering
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solution can now be expressed in terms of the dot produtts,. In the SDP relaxation
in Eq. (11.4), we havenat(x) > 0, which can be decomposed into a sum of outer products
mat(p) = Y, Vv, .

The entrieg:;;, correspond to inner produc@vk. The vectors generating the inner
products are unit vectors by the requiremgnt = 1. However, they do not necessarily
form a set of orthogonal vectors.

The SDP solutions®*””, is also an upper bound on the and Charikaet al. [2003]
show that the integrality gap of this upper bound is at |6a&81843:

s*— s~

11.2 Learning formulation

The score for an edge is commonly derived from the characteristics of the pair of nodes.
Specifically, we parameterize the score as a weighted combination of basis functions

Sjk = WTf(Xjk),

w, f(x;) € IR", wherex;;, is a set of features associated with noglesidk. In document
clustering, the entries d ,, might be the words shared by the documerasidk, while if

one is clustering points in IR features might be distances along different dimensions. We
assumd (x;;) = 0 so thats;; = 0. Hence we write

w' f(x,y) = Z yirw £(x1).
jk

Furthermore, we assume that the loss function decomposes over the edges, into a sum
of edge losses, ;i (y;x):

tiy) = Zfi,jk(yjk) = Zyjkfi,jk(l) + (1 = yjx)li j(0) = €:(0) + Z Yilijks
ik ik ik

wherel; ;i = ¢; jx(1) — ¢; j1(0). For example, the Hamming loss counts the number of
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edges incorrectly cut or uncut by a partition.
Z Uye # vSy) Zy]k + Zy] (1—2ySy) = e7(0) + Zy]k&jka

where/l; j, =1 — 2y§§3

With this assumption, the loss augmented maximization is

2;(0) + maxz:yj;€ w f( ) + 4 ] (11.5)

We can now use the LP relaxation in Eq. (11.3) and the SDP relaxation in Eqg. (11.4) as
upper bounds on Eq. (11.5). We use these upper-bounds in the min-max formulation to
achieve approximate max-margin estimation.

The dual of the LP based upper bound for examje/; (0)+

min Y Aigw+ Zzw (11.6)

jkl

s.t. ZP"?W + )‘Njk — )\i,klg] > W f( ) + i, VI F ks
l

Zig+ Y igi + Mgz — Mgl > liggr V5
l
)\i,jkl Z 07 Vj, ka l.
Above, we introduced a dual variable ;;; for each triangle inequality angd ; for the

identity on the diagonal. Note the righthand-side of the second set of inequalities follows
from the assumptiofi(x;;) = 0.
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Plugging this dual into the min-max formulation, we have:

: 1 2
min §HWH —|—C’Z§i (11.7)
s.t. WTf(X(i), y(z)) + fl Z 62(0) + Z )\i,jkl -+ Z Zi,ja VZ,

gkl J

Zp\i,jkl + Ntk — Niglg) > WTf(Xg-ik)) + ik, Vi,Vj #k;
]

Zig+ Y it + Aiags — Mgl > gy Vi, V5
l

)\i,jkl 2 07 VZ,Vj,k’,l

Similarly, the dual of the SDP based upper bound (i8)+

min Z 2 j (11.8)
J
s.t. _/\i,jk Z WTf<X§Z]3) + gi,jk? Vj 7é k);
Zijg— Nigi = liji V7
mat(\;) = 0.

Plugging the SDP dual into the min-max formulation, we have:
: 1 9
min - o||w|*+C > & (11.9)
j

Mgk =W EXG) + G, ViV £ K
Zi,j — )\i,jj Z gi,jj; \V/’Z,VJ,
mat(\;) = 0, Vi,Vj, kL.
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11.3 Dual formulation and kernels

The dual of Eq. (11.7) and Eq. (11.9) provide some insight into the structure of the problem
and enable efficient use of kernels. Here we give the dual of Eq. (11.7):

2

ST - min) )

i,7k

max ZM@ ]kgz Jjk — _C

i,5k

The dual of Eq. (11.9) is very similar, except that the linear transitivity constraints
Wik + i < iy + 1, Vi,Vj, k, 1 are replaced by the correspondimgt(y;) > 0:

2

S = ) fx)

1,7k

max Z i ki jk — _C

i,7k
s.t. mat(,ul) >~ 0, VZ, Hijs = 1, VZ,VJ, Hi ik > 0, VZ,VJ, k.

The relation between the primal and dual solution is

wo= O () — ) f(x). (11.10)

i,5k

One important consequence of this relationship is that the edge parameters are all sup-
port vector expansions. The dual objective can be expressed in terms of dot-products
f(xjx) " f(xin). Therefore, we can use kernel§(x;i, x;,,) to define the space of basis
functions. This kernel looks at two pairs of nodég, k) and (I, m), and measures the
similarity between the relation between the nodes of each pair. If we are clustering points
in Euclidian space, the kernel could be a function of the two segments corresponding to
the pairs of points, for example, a polynomial kernel over their lengths and angle between
them.
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11.4 Experiments

We present experiments on a synthetic problem exploring the effect of irrelevant basis
functions (features), and two real data sets, email clustering and image segmentation.

11.4.1 Irrelevant features

In this section, we explore on a synthetic example how our algorithm deals with irrele-
vant features. In particular, we generate data (100 points) from a mixture of two one-
dimensional Gaussians, where each mixture component corresponds to a cluster. This first
dimension is thus the relevant feature. Then we add noise componeitsadditional
(irrelevant) dimensions. The noise is independently generated for each dimension, from a
mixture of Gaussians with same difference in means and variance as for the relevant dimen-
sion. Figure 11.1(a) shows the projection of a data sample onto the first two dimensions
and on two irrelevant dimensions.

Let x; denote each point anxl;[d| denote thel-th dimension of the point. We used
a basis function for each dimensigip(x;;) = e~ Csld—xl)* plus an additional constant
basis function. The training and test data consists of a 100 samples from the model. The
results in Fig. 11.1(b) illustrate the capability of our algorithm to learn to ignore irrelevant
dimensions. The accuracy is the fraction of edges correctly predicted to be between/within
cluster. Random clustering will give an accuracy of 50%. The comparison with k-means is
simply a baseline to illustrate the effect of the noise on the data.

11.4.2 Email clustering

We also test our approach on the task of clustering email into folders. We gathered the
data from the SRI CALO project.Our dataset consisted of email from seven users (ap-
proximately 100 consecutive messages per user), which the users had manually filed into
different folders. The number of folders for each users varied from two to six, with an
average of 3-4 folders. We are interested in the problem of learning to cluster emails.

Ihttp://www.ai.sri.com/project/CALO
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Figure 11.1: (a) Projection onto first two dimensions (top) and two noise dimensions (bot-
tom); (c) Performance on 2 cluster problem as function of the number of irrelevant noise
dimensions. Learning to cluster is the solid line, k-means the dashed line. Error-bars de-
note one standard deviation, averages are over 20 runs. Accuracy is the fraction of edges
correctly predicted to be between/within cluster.

Specifically, what score functiosy;, causes correlation clustering to give clusters similar
to those that human users had chosen?

To test our learning algorithm, we use each user as a training set in turn, learning the
parameters from the partition of a single user’s mailbox into folders. We then use the
learned parameters to cluster the other users’ mail. The basis funttiopsmeasured the
similarity between the text of the messages, the similarity between the “From:” field, “To:”
field, and “Cc:” field. One feature was used for each common word in the pair of emails
(except words that appeared in more than half the messages, which were deemed “stop
words” and omitted). Also, additional features captured the proportion of shared tokens
for each email field, including the from, to, Cc, subject and body fields. The algorithm
is therefore able to automatically learn the relative importance of certain email fields to
filing two messages together, as well as importance of meaningful words versus common,
irrelevant ones.

We compare our method to tlhemeans clustering algorithm using with the same word
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Figure 11.2: Average Pair F1 measure for clustering user mailboxes.

features, and took the best clustering out of five tries. We made this comparison somewhat
easy fork-means by giving it the correct number of clusterdNVe also informed our algo-

rithm of the number of clusters by uniformly adding a positive weight to the edge weights
to cause it to give the correct number of clusters. We performed a simple binary search on
this additional bias weight parameter to find the number of clusters comparaaldte

results in Fig. 11.2 show the averagé measure (harmonic mean of precision and recall;

a standard metric in information retrieval [Baeza-Yates & Ribeiro-Neto, 1999]) computed
on the pairs of messages that belonged to the same cluster. Our algorithm significantly
outperformsk-means on several users and does worse only for one of the users.

11.4.3 Image segmentation

We also test our approach on the task of image segmentation. We selected images from
the Berkeley Image Segmentation Dataset [Magtiral., 2001] for which two users had
significantly different segmentations. For example, Fig. 11.3(a) and (b) show two distinct
segmentations: one very coarse, mostly based of overall hue, and one much finer, based
on the hue and intensity. Depending on the task at hand, we may prefer the first over the
second or vice-versa. Itis precisely this kind of variability in the similarity judgements that
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(@) (b)

Figure 11.3: Two segmentations by different users: training image with (a) coarse segmen-
tation and (b) fine segmentation.

we want our algorithm to capture.

In order to segment the image, we first divided it contiguous regions of approximately
the same color by running connected components on the pixels. We connected two adjacent
pixels by an edge if their RGB value was the same at a coarse resolution (4 bits per each
of the R,G,B channel). We then selected about a hundred largest regions, which covered
80-90% of the pixels. These regions are the objects that our algorithm learns to cluster.
(We then use the learned metric to greedily assign the remaining small regions to the large
adjoining regions.)

There is a rich space of possible features we can use in our models: for each pair
of regions, we can consider their shape, color distribution, distance, presence of edges
between them, etc. In our experiments, we used a fairly simple set of features that are very
easy to compute. For each region, we calculated the bounding box, area and average color
(averaging the pixels in the RGB space). We then computed three distances (one for each
HSV channel), as well as the distance in pixels between the bounding boxes and the area
of the smaller of the two regions. All features were normalized to have zero mean and
variance 1.

We trained two models, one using Fig. 11.3(a) and the other using Fig. 11.3(b) and
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Figure 11.4: Test image: (a) input; (b) segmentation based on coarse training data (c)
segmentation based on fine training data.

tested on the image in Fig. 11.4(a). The results are shown in Fig. 11.4(b) and (c), respec-
tively. Note that mountains, rocks and grass are segmented very coarsely based on hue in
(b) while the segmentation in (c) is more detailed and sensitive to saturation and value of
the colors.

11.5 Related work

The performance of most clustering algorithms depends critically on the distance metric
that they are given for measuring the similarity or dissimilarity between different data-
points. Recently, a number of algorithms have been proposed for automatically learning
distance metrics as a preprocessing step for clustering [liad), 2002; Bar-Hillelet al,,

2003]. In contrast to algorithms that learn a metric independently of the algorithm that will
be used to cluster the data, we describe a formulation that tightly integrates metric learning
with the clustering algorithm, tuning one to the other in a joint optimization. Thus, instead
of using an externally-defined criterion for choosing the metric, we will instead seek to
learn a good metrifor the clustering algorithmAn example of work in a similar vein is

the algorithm for learning a distance metric for spectral clustering [Bach & Jordan, 2003].
The clustering algorithm essentially uses an eigenvector decomposition of an appropriate
matrix derived from the pairwise affinity matrix, which is more efficient than correlation
clustering, for which we use LP or SDP formulations. However the objective in the learning
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formulation proposed in Bach and Jordan [2003] is not convex and difficult to optimize.

11.6 Conclusion

We looked at correlation clustering, and how to learn the edge weights from example clus-
terings. Our approach ties together the inference and learning algorithm, and attempts
to learn a good metric specifically for the clustering algorithm.. We showed results on a
synthetic dataset, showcasing robustness to noise dimensions. Experiments on the CALO
e-mail and image segmentation experiments show the potential of the algorithm on real-
world data. The main limitation of the correlation clustering is scalability: the number of
constraints |(V|?) in the LP relaxation and the size of the positive-semidefinite constraint

in the SDP relaxation. It would be very interesting to explore constraint generation or sim-
ilar approaches to speed up learning and inference. On the theoretical side, it would be
interesting to work out a PAC-like bound for generalization of the learned score metric.
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Chapter 12
Conclusions and future directions

This thesis presents a novel statistical estimation framework for structured models based
on the large margin principle underlying support vector machines. The framework results
in several efficient learning formulations for complex prediction tasks. Fundamentally,
we rely on the expressive power of convex optimization problems to compactly capture
inference or solution optimality in structured models. Directly embedding this structure
within the learning formulation produces compact convex problems for efficient estimation
of very complex models. For some of these models, alternative estimation methods are
intractable. We develop theoretical foundations for our approach and show a wide range
of experimental applications, including handwriting recognition, 3D terrain classification,
disulfide connectivity in protein structure prediction, hypertext categorization, natural lan-
guage parsing, email organization and image segmentation.

12.1 Summary of contributions

We view a structured prediction model as a mapping from the space of irpatst’ to
a discrete vector outpyt € ). Essentially, a model defines a compact, parameterized
scoring functionw "f(x,y) and prediction using the model reduces to finding the highest
scoring outpuy given the inpuix. Our class of models has the following linear form:

hw(x) = argmax w' f(x,y),
y:8(x,y)<0

176
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wherew ¢ IR" is the vector of parameters of the model, constragits y) € IR* define

the space of feasible outpuytgyiven the inpuk and basis functionfx, y) € IR" represent
salient features of the input/output pair. Although the space of oufguig(x,y) < 0} is
usually immense, we assume that the inference problgmax,, ., <o w ' f(x,y) can

be solved (or closely approximated) by an efficient algorithm that exploits the structure of
the constraintg and basis function§. This definition covers a broad range of models,
from probabilistic models such as Markov networks and context free grammars to more
unconventional models like weighted graph-cuts and matchings.

12.1.1 Structured maximum margin estimation

Given a samples = {(x®,y¥)}™, we develop methods for finding parametersuch
that:

argmaxw f(x?y) ~ y@, i,
yey(i)

where)® = {y : g(x¥ y) < 0}.

The naive formulatiohuses), |V | linear constraints, which is generally exponential
in the number of variables in eagh).

1
min 5 [[w|f?
2

s.t. wai(y(i)) > WTfZ-(y) +/4;(y), Vi, Vye€ 2

We propose two general approaches that transform the above exponential size QP to an
exactly equivalent polynomial size QP in many important classes of models. These formu-
lations allow us to find globally optimal parameters (with fixed precision) in polynomial
time using standard optimization software. In many models where maximum likelihood
estimation is intractable, we provide exact maximum margin solutions (Ch. 7 and Ch. 10).

1For simplicity, we omit the slack variables in this summary.
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Min-max formulation

We can turn the above problem into an equivalent min-max formulationawitm-linear
max-constraints:

min %||w||2
s.t. w ' £i(y D) > max [w'fi(y) + 4(y)], Vi
yey@

The key to solving the estimation problem above efficiently is the loss-augmented infer-
ence problemmax, o [w'f;(y) + 4i(y)]. Even if max,.y» w'f;(y) can be solved in
polynomial time using convex optimization, the form of the loss térfy) is crucial for
the loss-augmented inference to remain tractable. We typically use a natural loss func-
tion which is essentially the Hamming distance betwgé&hand h(x¥): the number of
variables predicted incorrectly.

We show that if we can express the (loss-augmented) inference as a compact convex
optimization problem (e.g., LP, QP, SDP, etc.), we can embed the maximization inside the
min-max formulation to get a compact convex program equivalent to the naive exponential
formulation. We show that this approach leads to exact polynomial-size formulations for
estimation of low-treewidth Markov networks, associative Markov networks over binary
variables, context-free grammars, bipartite matchings, and many other models.

Certificate formulation

There are several important combinatorial problems which allow polynomial time solu-
tion yet do not have a compact convex optimization formulation. For example, maximum
weight perfect (non-bipartite) matching and spanning tree problems can be expressed as
linear programs witrexponentiallymany constraints, but no polynomial formulation is
known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these problems, however,
can be solved in polynomial time using combinatorial algorithms. In some cases, though,
we can find a compacertificate of optimalityhat guarantees that

vy = arg max[w ' fi(y) + 4i(y)].
y
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For perfect (non-bipartite) matchings, this certificate is a condition that ensures there are
no augmenting alternating cycles (see Ch. 10). We can express this condition by defining
an auxiliary distance function on the nodes an a set of linear constraints that are satisfied if
and only if there are no negative cycles. This simple set of linear constraints scales linearly
with the number of edges in the graph. Similarly, we can derive a compact certificate for
the spanning tree problem.

The certificate formulation relies on the fact that verifying optimality of a solution is
often easier than actually finding one. This observation allows us to apply our framework
to an even broader range of models with combinatorial structure than the min-max formu-
lation.

Maximum margin vs. maximum likelihood

There are several theoretical advantages to our approach in addition to the empirical accu-
racy improvements we have shown experimentally. Because our approach only relies on
using the maximum in the model for prediction, and does not require a normalized dis-
tribution P(y | x) over all outputs, maximum margin estimation can be tractable when
maximum likelihood is not. For example, to learn a probabilistic maeel | x) over
bipartite matchings using maximum likelihood requires computing the normalizing parti-
tion function, which is#P-complete [Valiant, 1979; Garey & Johnson, 1979]. By contrast,
maximum margin estimation can be formulated as a compact QP with linear constraints.
Similar results hold for an important subclass of Markov networks and non-bipartite match-
ings.

In models that are tractable for both maximum likelihood and maximum margin (such
as low-treewidth Markov networks, context free grammars, many other problems in which
inference is solvable by dynamic programming), our approach has an additional advantage.
Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual
space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-
lihood models with kernels are generally non-sparse and require pruning or greedy support
vector selection methods [Wahk&al, 1993; Zhu & Hastie, 2001; Laffertgt al., 2004;

Altun et al,, 2004].
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There are, of course, several advantages to maximum likelihood estimation. In appli-
cations where probabilistic confidence information is a must, maximum likelihood is much
more appropriate. Also, in training settings with missing data and hidden variables, proba-
bilistic interpretation permits the use of well-understood algorithms such as EM [Dempster
etal, 1977].

Approximations

In many problems, the maximization problem we are interested in may be NP-hard, for
example, we consider MAP inference in large treewidth Markov networks in Ch. 8, multi-
way cuts in Ch. 7, graph-partitioning in Ch. 11. Many such problems can be written as
integerprograms. Relaxations of such integer programs into LPs, QPs or SDPs often pro-
vide excellent approximation algorithms and fit well within our framework, particularly the
min-max formulation. We show empirically that these approximations are very effective in
many applications.

12.1.2 Markov networks: max-margin, associative, relational

The largest portion of the thesis is devoted to novel estimation algorithms, representational
extensions, generalization analysis and experimental validation for Markov networks.

o Low-treewidth Markov networks
We use a compact LP for MAP inference in Markov networks with sequence and
other low-treewidth structure to derive an exact, compact, convex learning formu-
lation. The dual formulation allows efficient integration of kernels with graphical
models that leverages rich high-dimensional representations for accurate prediction
in real-world tasks.

o Scalable online algorithm
Although our convex formulation is a QP with linear number of variables and con-
straints in the size of the data, for large datasets (millions of examples), it is very
difficult to solve using standard software. We present an efficient algorithm for solv-
ing the estimation problem called Structured SMO. Our online-style algorithm uses
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inference in the model and analytic updates to solve extremely large estimation prob-
lems.

o Generalization analysis
We analyze the theoretical generalization properties of max-margin estimation in
Markov networks and derive a novel margin-based bound for structured prediction.
This is the first bound to address structured error (e.g., proportion of mislabeled
pixels in an image).

o Learning associative Markov networks (AMNS)
We define an important subclass of Markov networks that captures positive correla-
tions present in many domains. This class of networks extends the Potts model [Potts,
1952] often used in computer vision and allows exact MAP inference in the case of
binary variables. We show how to express the inference problem using an LP which
is exact for binary networks. As a result, for associative Markov networks over bi-
nary variables, our framework allows exact estimation of networks of arbitrary con-
nectivity and topology, for which likelihood methods are believed to be intractable.
For the non-binary case, we provide an approximation that works well in practice.
We present an AMN-based method for object segmentation from 3D range data. By
constraining the class of Markov networks to AMNSs, our models are learned effi-
ciently and, at run-time, can scale up to tens of millions of nodes and edges by using
graph-cut based inference [Kolmogorov & Zabih, 2002].

o Representation and learning of relational Markov networks
We introduce relational Markov networks (RMNSs), which compactly define tem-
plates for Markov networks for domains with relational structure: objects, attributes,
relations. The graphical structure of an RMN is based on the relational structure of
the domain, and can easily model complex interaction patterns over related entities.
We apply this class of models to classification of hypertext using hyperlink structure
to define relations between webpages. We use a compact approximate MAP LP in
these complex Markov networks, in which exact inference is intractable, to derive an
approximate max-margin formulation.
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12.1.3 Broader applications: parsing, matching, clustering

The other large portion of the thesis addresses a range of prediction tasks with very diverse
models: context free grammars for natural language parsing, perfect matchings for disulfide
connectivity in protein structure prediction, graph partitions for clustering documents and
segmenting images.

o Learning to parse
We exploit dynamic programming decomposition of context free grammars to derive
a compact max-margin formulation. We build on a recently proposed “unlexicalized”
grammar that allows cubic time parsing and we show how to achieve high-accuracy
parsing (still in cubic time) by exploiting novel kinds of lexical information. We show
experimental evidence of the model’s improved performance over several baseline
models.

o Learning to match
We use a combinatorial optimality condition, namely the absence of augmenting al-
ternating cycles, to derive an exact, efficient certificate formulation for learning to
match. We apply our framework to prediction of disulfide connectivity in proteins
using perfect matchings. The algorithm we propose uses kernels, which makes it pos-
sible to efficiently embed input features in very high-dimensional spaces and achieve
state-of-the-art accuracy.

o Learning to cluster
By expressing the correlation clustering problem as a compact LP and SDP, we use
the min-max formulation to learn a parameterized scoring function for clustering. In
contrast to algorithms that learn a metric independently of the algorithm that will
be used to cluster the data, we describe a formulation that tightly integrates metric
learning with the clustering algorithm, tuning one to the other in a joint optimization.
We formulate the approximate learning problem as a compact convex program. Ex-
periments on synthetic and real-world data show the ability of the algorithm to learn
an appropriate clustering metric for a variety of desired clusterings, including email
folder organization and image segmentation.
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12.2 Extensions and open problems

There are several immediate applications, less immediate extensions and open problems for
our estimation framework. We organize these ideas into several sections below, including
further theoretical analysis and new optimization algorithms, novel prediction tasks, and
more general learning settings.

12.2.1 Theoretical analysis and optimization algorithms

o Approximation bounds
In several of the intractable models, like multi-class AMNs in Ch. 7 and correlation
clustering in Ch. 11, we used approximate convex programs within the min-max for-
mulation. These approximate inference programs have strong relative error bounds.
An open question is to translate these error bounds on inference into error bounds on
the resulting max-margin formulations.

o Generalization bounds with distributional assumptions
In Ch. 5, we presented a bound on the structured error in Markov networks, with-
out any assumption about the distribution/ofy | x), relying only on the samples
(x@, y@) being i.i.d. This distribution-free assumption leads to a worst case analy-
sis, while some assumptions about the approximate decompoBitiohx) may be
warranted. For example, for sequential prediction problems, the Markov assumption
of some finite order is reasonable (i.e., given the input and previtalsels, the next
label is independent of the labels more than the past). In spatial prediction tasks,
a label variable is independent of the rest given a large enough ball of labels around
it. Similar assumptions may be made for some “degree of separation” in relational
domains. More generally, it would be interesting to exploit such conditional indepen-
dence assumptions or asymptotic bounds on entrop}(pf| x) to get generalization
guarantees even from a single structured exarplg).

o Problem-specific optimization methods
Although our convex formulations are polynomial in the size of the data, scaling
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up to larger datasets will require problem-specific optimization methods. For low-
treewidth Markov networks and context free grammars, we have presented the Struc-
tured SMO algorithm. Another algorithm useful for such models is Exponentiated
Gradient [Bartletiet al., 2004]. Both algorithms rely on dynamic programming de-
compositions. However, models which do not permit such decompositions, such as
graph-cuts, matchings, and many others, create a need for new algorithms that can ef-
fectively use combinatorial optimization as a subroutine to eliminate the dependence
on general-purpose convex solvers.

12.2.2 Novel prediction tasks

o Bipartite matchings

Maximum weight bipartite matchings are used in a variety of problems to predict
mappings between sets of items. In machine translation, matchings are used to
map words of the two languages in aligned sentences [Mateisal, 2004]. In 2D

shape matching, points on two shapes are matched based on their local contour fea-
tures [Belongieet al, 2002]. Our framework provides an exact, efficient alternative

to the maximum likelihood estimation for learning the matching scoring function.

Sequence alignment

In standard pairwise alignment of biological sequences, a string edit distance is used
to determine which portions of the sequences align to each other [Needleman &
Wunsch, 1970; Durbiet al,, 1998]. Finding the best alignment involves a dynamic
program that generalizes the longest common subsequence algorithm. Our frame-
work can be applied (just as in context free grammar estimation) to efficiently learn
a more complex edit function that depends on the contextual string features, perhaps
using novel string kernels [Haussler, 1999; Leslial., 2002; Lodhiet al., 2000].

Continuous prediction problems

We have addressed estimation of models with discrete output spaces, generalizing
classification models to multivariate, structured classification. Similarly, we can
consider a whole range of problems where the prediction variables are continuous.
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Such problems are a natural generalizations of regression, involving correlated, inter-
constrained real-valued outputs. For example, several recent models of metabolic
flux in yeast use linear programming formulations involving quantities of various
enzymes, with stoichiometric constraints [Varma & Palsson, 1994]. It would be
interesting to use observed equilibria data under different conditions to learn what
“objective” the cell is maximizing. In financial modeling, convex programs are often
used to model portfolio management; for example, Markowitz portfolio optimization

is formulated as a quadratic program which minimizes risk and maximizes expected
return under budget constraints [Markowitz, 1991; Luenberger, 1997]. In this setting,
one could learn a user’s return projection and risk assessment function from observed
portfolio allocations by the user.

These problems are similar to the discrete structured prediction models we have con-
sidered: inference in the model can formulated as a convex optimization problem.
However, there are obstacles to directly applying the min-max or certificate formu-
lations. Details of this are beyond the scope of this thesis, but it suffices to say that
loss-augmented inference using, Hamming distance equivdlehdss (orL- loss),

no longer produces a maximization of a concave objective with convex constraints
since L, L, are convex, not concave (it turns out that it is actually possible to use
L loss). Developing effective loss functions and max-margin formulations for the
continuous setting could provide a novel set of effective models for structured multi-
variate real-valued prediction problems.

12.2.3 More general learning settings

o Structure learning
We have focused on the problem of learning parameters of the model (even though
our kernelized models can be considered non-parametric). In the case of Markov
networks, especially in spatial and relational domains, there is a wealth of possible
structures (cliques in the network) one can use to model a problem. It is particularly
interesting to explore the problem of inducing these cliques automatically from data.
The standard method of greedy stepwise selection followed by re-estimation is very
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expensive in general networks [Della Piegtal, 1997; Bach & Jordan, 2001].
Recent work on selecting input features in Markov networks (or CRFs) uses several
approximations to learn efficiently with millions of candidate features [McCallum,
2003]. However, clique selection is still relatively unexplored. It is possible that
AMNSs, by restricting the network to be tractable under any structure, may permit
more efficient clique selection methods.

Semi-supervised learning

Throughout the thesis we have assumed completely labeled data. This assumption
often limits us to relatively small training sets where data has been carefully anno-
tated, while much of the easily accessible data is not at all or suitably labeled. There
are several more general settings we would like to extend our framework.

The simplest setting is a mix of labeled and unlabeled examples, where a small su-
pervised dataset is augmented by a large unsupervised one. There has been much
research in this setting for classification [Blum & Mitchell, 1998; Nigaial., 2000;
Chapelleet al,, 2002; Szummer & Jaakkola, 2001; Zktal,, 2003; Corduneanu &
Jaakkola, 2003]. Although most of this work has been done in a probabilistic set-
ting, the principle of regularizing (discouraging) decision boundaries near densely
clustered inputs could be applicable to our structured setting.

A more complex and rich setting involves presence of hidden variables in each ex-
ample. For example, in machine translation, word correspondences between pairs of
sentences are usually not manually annotated (at least not on a large scale). These
correspondence variables can be treated as hidden variables. Similarly, in handwrit-
ing recognition, we may not have each letter segmented out but instead just get a
word or sentence as a label for the entire image. This setting has been studied mainly
in the probabilistic, generative models often using the EM algorithm [Demetétr

1977; Cowellet al,, 1999]. Discriminative methods have been explored far less. Es-
pecially in the case of combinatorial structures, extensions of our framework allow
opportunities for problem-specific convex approximations to be exploited.
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12.3 Future

We have presented a supervised learning framework for a large class of prediction mod-
els with rich and interesting structure. Our approach has several theoretical and practical
advantages over standard probabilistic models and estimation methods for structured pre-
diction. We hope that continued research in this framework will help tackle evermore
sophisticated prediction problems in the future.



Appendix A

Proofs and derivations

A.1 Proof of Theorem 5.5.1

The proof of Theorem 5.5.1 uses the covering number bounds of Zhang [2002] (in the
Data-Dependent Structural Risk Minimization framework [Shawe-Tagtoal., 1998].)
Zhang provides generalization guarantees for linear binary classifiers of thé fgsm =
sgn(w ' x). His analysis is based on the upper bounds on the covering number for the class
of linear functionsF; (w,z) = w 'z where the norms of the vectows andz are bounded.

We reproduce the relevant definitions and theorems from Zhang [2002] here to highlight
the necessary extensions for structured classification.

The covering number is a key quantity in measuring function complexity. Intuitively,
the covering number of an infinite class of functions (e.g. parameterized by a set of weights
w) is the number of vectors necessary to approximate the values of any function in the class
on a sample. Margin-based analysis of generalization error uses the margin achieved by a
classifier on the training set to approximate the original function class of the classifier by
a finite covering with precision that depends on the margin. Here, we will only define the
oo-norm covering number.

188



A.1. PROOF OF THEOREM 5.5.1 189

A.1.1 Binary classification

In binary classification, we are given a samfle- {x®, y®}™ | from distributionD over
X x Y, whereX = IR" and) is mapped tat-1, so we can folck andy into z = yx.

Definition A.1.1 (Covering Number) Letv = {vM ... v("}, wherev(?) ¢ IR™, be a
coveringof a function classF(w, S) with e-precision under the metrig, if for all w there
exists av¥) such that for each data sampi€) € S:

p(v? F(w,29)) <.
Thecovering number of a samplgis the size of the smallest covering’,. (F, p, ¢, S) =

inf |v| s.t. v is a covering ofF (w, S). We also define theovering number for any sample
of sizem: Noo(F, p,€,m) = supg, |sj=m Noo(F, p,€,5). 1

When the norms ofv andz are bounded, we have the following upper bound on the
covering number of linear functions under the linear metfitv, v') = |v — v/|.

Theorem A.1.2 (Theorem 4 from Zhang [2002))If ||w||, < @ and|z|, < b, thenV
e >0,

2b2
logy Noo(FL, pr,€,m) < 36a€—2 log, (2 [4ab/e +2]m+1). &

In order to use the classifier's margin to bound its expected loss, the bounds below use
a stricter, margin-based loss on the training sample that measures the worst loss achieved
by the approximate covering based on this margin. LLetR — [0, 1] be a loss function.
In binary classification, we lef(v) = 1(v < 0) be the step function, so that 0-1 loss of
segn(w'x) is f(Fr(w,z)). The next theorem bounds the expecfelbss in terms of the
y-margin 10ss,f7(v) = sup,(, <2, f(v'), On the training sample. For 0-1 loss and linear
metric p.,, the corresponding-margin loss isf”(v) = (v < 2).

Theorem A.1.3 (Corollary 1 from Zhang [2002]) Let f : IR — [0, 1] be a loss function
and f7(v) = sup,, ./ <o, f(v') be they-margin loss for a metrip. Lety, > 4, > ... be
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a decreasing sequence of parameters, ande a sequence of positive numbers such that
> o, pi = 1, then for allé > 0, with probability of at least — ¢ over data:

Ep[f(F(w,2))] < Es[f(F(w,z))]+ \/% {1114,/\/@% P, %, S) + 1n2%

for all w and~, where for each fixed, we use to denote the smallest index $1.< ~.

A.1.2 Structured classification

We will extend this framework to bound the average per-labeld8¢sg)/ L for structured
classification by defining an appropriate Igsand a function clasg (as well as a metric
p) such thatf (F) computes average per-label loss gfidF) provides a suitablg-margin
loss. We will bound the corresponding covering number by building on the bound in The-
oremA.1.2.

We can no longer simply folet andy, sincey is a vector, so we let = (x,y). In
order for our loss function to compute average per-label loss, it is convenient to make our
function claswector-valuedinstead of scalar-valued as above). We define a new function
classFy (w,z), which is a vector of minimum values &f " Af;(y) for each error level
(" (y) from 1 to L as described below.

Definition A.1.4 (dth-error-level function) Thedth-error-level functionV/,(w, z) for d €
{1,..., L} is given by:

My(w,z) = min w'Af(y). 1
a( ) ytH (y)=d (¥)

Definition A.1.5 (Multi-error-level function class) Themulti-error-level function clas®,,(w, z)
is given by:

Fu(w,z) = (My(w,2z),...,My(w,z),..., M (w,z)). 1

We can now compute the average per-label loss ffoniw, z) by defining an appropriate
loss functionf;,.
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Definition A.1.6 (Average per-label loss)Theaverage per-label los&, : IR * +— [0, 1] is
given by:
1 :
fuv) = L8 d%lgo v,

where in cas&/d, vy > 0, we definewg ming.,,<ovs = 0. 1

With the above definitions, we have an upper bound on the average per-label loss

fulFu(w.m) = Targ | min  Molw,z) > 7 (argmax w6 (y).

Note that the cas€d, M,(w,z) > 0 corresponds to the classifier making no mistakes:
arg max,, w ' f;(y) = y. This upper bound is tight iff = arg max,, w ' f(x,y’), Other-
wise, it is adversarial: it picks from aj’ which are betterw " f(y) < w'f(y’)), one that
maximizes the Hamming distance frgm

We now need to define an appropriate metrithat in turn defines-margin loss for
structured classification. Since the margin of the hypothesis grows with the number of
mistakes, our metric can become “looser” with the number of mistakes, as there is more
room for error.

Definition A.1.7 (Multi-error-level metric) Let themulti-error-level metricp,; : IRF x
IRY — IR for a vector in IR" be given by:

o
pa(v,v') = max M.

d d .

We now define the correspondingmargin loss using the new metric:
Definition A.1.8 (y-margin average per-label loss)They-margin average per-label loss

fl IRE—[0,1] is given by:

fuv)=sup  fu(v'). 1
pum(v,v)<2y

Combining the two definitions, we get:

1
fou(Fu(w,z)) = sup — arg min vg.
M( ( ) vi|vg—Ma(w,z)|<2dy L divg<0
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We also define the corresponding covering number for our vector-valued function class:

Definition A.1.9 (Multi-error-level covering number) LetV = {V® ... V(M} where
v = vP v vE)yand VY e IRE, be acoveringof Fy(w, S), ith e-
precision under the metrip,,, if for all w there exists av() such that for each data
samplez”) € S:

o (VY Fu(w,29)) < e

Thecovering number of a sampleis the size of the smallest coverinls. (Fur, par, €, 5) =
inf |V| s.t. V is a covering ofF,,(w, S). We also define

Noo(Far, par, €,m) = ) S‘éllp Noo(Far, pars €,5).

We provide a bound on the covering number of our new function class in terms of a
covering number for the linear function class. Recall tNais the maximum number of
cliques inG(x), V. is the maximum number of values in a clig¥,|, ¢ is the maximum
number of cliques that have a variable in common, Bpg an upper-bound on the 2-norm
of clique basis functions. Consider a first-order sequence model as an examplg,asith
the maximum length, and the number of values a variable takes. Thén= 2L —1 since
we haveL node cliques and — 1 edge cliquesy, = V2 because of the edge cliques; and
g = 3 since nodes in the middle of the sequence patrticipate in 3 cliques: previous-current
edge clique, node clique, and current-next edge clique.

Lemma A.1.10 (Bound on multi-error-level covering number)
Noo(Furs pars €q,m) < Noo(Fr, pr, €, mN(V. — 1)).

Proof: We will show thatNo (Fas, pars€q, S) < Noo(Fr, pr, €, S") for any sampleS
of sizem, where we construct the samp$ of sizem/N.(V, — 1) in order to cover the
clique potentials as described below. Note that this is sufficient S\AceF;, pr, €, ') <
Noo(Fr, pr, 6, mN.(V, — 1)), by definition, so

Noo(fM,pM,eq,m) = lsu|p Noo(fM,pM,eq,S) S Nm(fL,pL,E,mNC(‘/; — 1))
S:|S|=m
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The construction of’ below is inspired by the proof technique in Collins [2001],
but the key difference is that our construction is linear in the number of cliggesnd
exponential in the number of label variables per clique, while his is exponential in the total
number of label variables per example. This reduction in size comes about because our
covering approximates the values of clique potentialsAf; .(y.) for each cliquec and
clique assignment. as opposed to the values of entire assignmentaf;(y).

For each sample € S, we createN, (V. — 1) samplesAf; .(y.), one for each clique
¢ and each assignment. # y'”. We construct a set of vectors= {v(V), ... v()},
wherev) ¢ IR™Ne(V-=1) The component of) corresponding to the sampké”) and the
assignmeny. to the labels of the clique will be denoted byvl(jc) (y.). For convenience,
we definevl(.fc) (yff)) = 0 for correct label assignments, a’.sf,-,c(yg)) = 0. To makey an
oo-norm covering ofF; (w, ') underp;, we require that for anw there exists ') € v

such that for each sampie?”:
’VZUC) (ye) — WTAfLC(yC)\ <e VeeCY, Vy.. (A.1)

By Definition A.1.1, the number of vectorsiis given byr = N (Fr, pr, €, mN.(V.—1)).

We can now use to construct a coveriny = {V(Y ... V("}, where
MACZEN VAL VAC R v4C2)

and V) ¢ IR, for our multi-error-level functionFy,. Letv’(y) = 3, v\ (y.), and
My(v?,20)) = MiNy.oH (y)—g Vz(j)(Y)y then

1

Vz(J) — (]\41(\,@)7 Z(i)>, cee Md(V(j), z(i)), R ]\4L<V(j)7 Z(Z))) . (AZ)

Note thatvl(fc) (y.) is zero for all cliques: for which the assignment is corregt; = yﬁi).
Thus for an assignment with d mistakes, at mostq vfjc) (yv.) will be non-zero, as each
label can appear in at mostcliques. By combining this fact with Eq. (A.1), we obtain:

v (y) — w' Afi(y)| < dge, Vi, Vy : (i (y) = d. (A3)
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We conclude the proof by showing thais a covering ofF,, underp,,: For eachw,
pick VW € V such that the corresponding”) ¢ v satisfies the condition in Eq. (A.1). We
must now bound:

| miny:ﬁfl( )=d V(J)(

~ — ity W AE(Y)
() (i)y) _ y) —ming g w ' Afi(y
pM<VZ 7fM(W’ z )) ch?X d :

Fix any i. Letyy = argming.uy)_y ng)(y) andyy = argmingu,—,w' Afi(y). Con-
sider the case Wherez(j)(yg) > w ! Af,(y¥) (the reverse case is analogous), we must
prove that:

v (y9) —wT AL (yY) < v (yy) — wl Af(yY) < dge ; (A.4)

where the first step follows from definitionyf, sincevgj)(y;l’) < vZ@ (yY). The last step
is a direct consequence of Eq. (A.3). Hepgg VY, 7y (w,z)) < ge. 1

Lemma A.1.11 (Numeric bound on multi-error-level covering number)

logy Noo(Far, par, €,m) < 36———2— H ||2q log (1 + 2 [4M + 2-‘ mN.(V. — 1)) )
€

Proof: Substitute Theorem A.1.2 into Lemma A.1.10.

Theorem A.1.12 (Multi-label analog of Theorem A.1.3)Let f,, and f},(v) be as defined
above. Lety; > v, > ... be a decreasing sequence of parameters, gk a sequence
of positive numbers such that;”, p; = 1, then for all§ > 0, with probability of at least
1 — ) over data:

32 1
E fu(Fu(w,z)) < Esfly(Fu(w,z))+ \/E {1n4./\foo(—7:M,sz1,%, S) + hlpf(;

for all w and~, where for each fixed, we use to denote the smallest index sit. < ~.
Proof: Similar to the proof of Zhang’s Theorem 2 and Corollary 1 [Zhang, 2002] where
in Step 3 (derandomization) we substitute the vector-valtigdand the metrigp,,. 1

Theorem 5.5.1 follows from above theorem with= R. ||w/||, /2¢ andp; = 1/2¢ using an
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argument identical to the proof of Theorem 6 in Zhang [2002].

A.2 AMN proofs and derivations

In this appendix, we present proofs of the LP inference properties and derivations of the
factored primal and dual max-margin formulation from Ch. 7. Recall that the LP relaxation
for finding the optimainaxy g(y) is:

max > > pu(k)go(k) + DD pelk)ge(k) (A.5)

VeV k=1 ceC\V k=1
K

s.t. pe(k) >0, VeelC, k; Zuv(k) =1, YveV;
k=1

pe(k) < py(k), YeeC\V,vec, k.

A.2.1 Binary AMNs

Proof (For Theorem 7.2.1) Consider any fractional, feasjbl&V/e show that we can con-
struct a new feasible assignmeritwhich increases the objective (or leaves it unchanged)
and furthermore has fewer fractional entries.

Sinceg.(k) > 0, we can assume that.(k) = min,e. p,(k); otherwise we could in-
crease the objective by increasing k). We construct an assignmeuitfrom p by leaving
integral values unchanged and uniformly shifting fractional values:by

fo(1) = po(1) = AB(0 < (1) < 1), p,(2) = po(2) + A(0 < (2) < 1),
pe(1) = pie(1) = AD0 < pe(1) < 1), pe(2) = pe(2) + A(0 < pe(2) < 1),

Now consider the smallest fractional (k), A(k) = min, . ., x>0 ¥u(k) for k = 1,2.
Note that if A = A\(1) or A = —\(2), 1/ will have at least one more integra] (k) thanu.
Thus if we can show that the update results in a feasible and better scoring assignment, we
can apply it repeatedly to get an optimal integer solution. To showthiatfeasible, we
needy, (1) + 1,(2) = 1, 1, (k) > 0 andpl (k) = minje, o, (k).
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First, we show that! (1) + . (2) = 1.

1y (1) 4 12,(2) = (1) = AB(0 < pro(1) < 1) + 10 (2) + A0 < 1,(2) < 1)
= (1) + po(2) = 1.

Above we used the fact thatf, (1) is fractional, so ig:,(2), sincepu, (1) + u,(2) = 1.
To show tha (k) > 0, we provemin, u (k) = 0.

min () = i () = (_min i, ()AO < s (4) < 1)

iy (k) >0

— min (miinuv(k), min | pp(k) — min ”“<k)D:O'

i (k) >0 i1t (K)>0

Lastly, we show..(k) = min;e,. o, (k).

0 <pe(l) <1)

< W
A1(0 < meinuv(l) < 1) = min u, (1);
<
A

WAL = pe(l) = AX(
= (mingu (1)) -
HA2) = pel2) + M
= (minpm(2))

he(1) < 1) -

0
+ A1(0 < mmuv(2) < 1) = min u, (2).

1€C

We have established that the ngivare feasible, and it remains to show that we can
improve the objective. We can show that the change in the objective is aMaj@ some
constantD that depends only op andg. This implies that one of the two cases= A(1)
or A = —\(2), will necessarily increase the objective (or leave it unchanged). The change
in the objective is:

P NAGE + > [k k)]ge(k)

veV k=1,2 ceC\V k=12

= A [2D.1) ~ D)+ 3 [De(1) — De(2)] | = AD

veEV ceC\V
Du(k) = gu(K)10 < (k) < 1), Delk) = go(B)AO < pr(k) < 1).

Hence the new assignmeiitis feasible, does not decrease the objective function, and
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has strictly fewer fractional entries.

A.2.2 Multi-class AMNSs

For K > 2, we use the randomized rounding procedure of Kleinberg and Tardos [1999]
to produce an integer solution for the linear relaxation, losing at most a factar ef
max.cc |c| in the objective function. The basic idea of the rounding procedure is to treat
iy (k) as probabilities and assign labels according to these probabilities in phases. In each
phase, we pick a labdl, uniformly at random, and a threshodd € [0, 1] uniformly at
random. For each nodewhich has not yet been assigned a label, we assign the Aabel

if u,(k) > «. The procedure terminates when all nodes have been assigned a label. Our
analysis closely follows that of Kleinberg and Tardos [1999].

Lemma A.2.1 The probability that a nodéis assigned labet by the randomized proce-
dure isp, (k).

Proof The probability that an unassigned node is assigned lalaklring one phase is
+ (), which is proportional tqu, (k). By symmetry, the probability that a node is as-
signed labek over all phases is exactly, (k). i

Lemma A.2.2 The probability that all nodes in a clique are assigned labek by the
procedure is at leasg; . (k).

Proof For a single phase, the probability that all nodes in a cligaee assigned labélif
none of the nodes were previously assigneg isin;c. 11, (k) = (k). The probability
thatat least oneof the nodes will be assigned labeln a phase is: (max;ec. 11, (k)). The
probability thatnoneof the nodes in the clique will be assignady label in one phase is
1— % Zszl max;e. iy (k).

Nodes in the clique will be assigned labet by the procedure if they are assigned label
k in one phase. (They can also be assigned lalasl a result of several phases, but we can

ignore this possibility for the purposes of the lower bound.) The probability that all the
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nodes inc will be assigned labet by the procedure in a single phase is:

> gk (1 - & > max Mk)) _ b

k=1 N Z?;l max;e. fby (k)
S pie(k) _ pie(F) _ pe(k)
a Zszl Ziec :u’v(k) ZZEC Z?:l Mv(k) |C|

Above, we first used the fact that fdr< 1, ;- d' = rld, and then upper-bounded

themax of the set of positive:,(k)’s by their suma

Theorem A.2.3 The expected cost of the assignment found by the randomized procedure
given a solutiory to the linear program in Eq. (A.5) is at lea}t, ,, Zszl Gu (k) (k) +
ZceC\V ﬁ 2521 ge(k)pee.

Proof This is immediate from the previous two lemmas.
The only difference between the expected cost of the rounded solution and the (non-

integer) optimal solution is thf-g‘ factor in the second term. By picking = max.c¢ |c|, we

have that the rounded solution is at mostimes worse than the optimal solution produced
by the LP of Eq. (A.5)1

We can also derandomize this procedure to get a deterministic algorithm with the same
guarantees, using the method of conditional probabilities, similar in spirit to the approach
of Kleinberg and Tardos [1999].

Note that the approximation factor eof applies, in fact, only to the clique poten-
tials. Thus, if we compare the log-probability of the optimal MAP solution and the log-
probability of the assignment produced by this randomized rounding procedure, the terms
corresponding to the log-partition-function and the node potentials are identical. We obtain
an additive error (in log-probability space) only for the clique potentials. As node poten-
tials are often larger in magnitude than clique potentials, the fact that we incur no loss
proportional to node potentials is likely to lead to smaller errors in practice. Along similar
lines, we note that the constant factor approximation is smaller for smaller cliques; again,
we observe, the potentials associated with large cliques are typically smaller in magnitude,
reducing further the actual error in practice.
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A.2.3 Derivation of the factored primal and dual max-margin QP

Using Assumptions 7.4.1 and 7.4.4, we have the dual of the LP used to represent the
interior max subproblemax, w ' f;(y) + £;(y) in Eq. (3.2):

min Y &, (A.6)
st —w (k) = > mycu(k) > y(k) = &o Vi,v € VO K
—W o (k) + ) mic(k) > Lio(k),  Vi,c € CON\VO ks

vece

Mien(k) >0, Vi,ce CO\VD veck;

wheref; .(k) = f; .(k,..., k) and?; .(k) = {; .(k,... k). In the dual, we have a variable
&, for each normalization constraint in Eq. (7.1) and variables, (k) for each of the
inequality constraints.

Substituting this dual into Eqg. (5.1), we obtain:
1 9
min §||w|| + OZ& (A7)
S.t. WT "‘fl = Z fzva VZ,

vep(®)

_WTfi,v k - Zmi,c,v k Z gz,v(k) - gi,’uv VZ7 v E V(Z)7 ku

Now let&;, = &, +w T (ys)) + 3o, W Eic(y)/|c] andm, ., (k) = mi, (k) +
WTfi7c(y£i))/|c|. Re-expressmg the above QP in terms of these new variables, we get:
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min §||w|| +Czi:§i (A.8)
st &> )&, Vi
vey @)
WAL, (k) =Y mp, (k) > (k) =&, Vi,ve VO k
cOv
WIAE (k) + > ml, (k) > LK), Viee O\ VO
vece
m;,c,v(k) > _WTfZ,C(y((:Z)>/|C|7 VZJ ce C(Z) \V(l)av S ku
W > 0.

Since¢; = Zwew-) ¢, atthe optimum, we can eliminaggand the corresponding set
of constraints to get the formulation in Eq. (7.4), repeated here for reference:

1
min WP+ 0 Y & (A.9)
i,weV @)
s.t. WTAfz)v(@ - Zmi,c,v(k) > liw(k) — &y, Vijve V@ k:
coOv
WAL (B) + > mico(k) > Gio(k), Vi€ CON\VO
vee

Mico(k) > =W E (yD) /], Vi,e € CO\NVD v e ek

w > 0.
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Now the dual of Eq. (A.9) is given by:

1 .
max Z ,U/i,c(k)gi,c(k) - 5 Z Ui,v(k>Afi,v (AlO)
i,ceC) k iweV® &
2

Sl X Aew®ED) e+ Y k)AL (k)

i,c€CO\V@ vee, k i,ceC K
K
st pio(k) >0, Vi, VeeCW, k; > pinlk)=C, Vi, Yo e VO

fic(k) = pi(k) = Nicw(k), Vi, Ve e CO\VD v ec, k;
Nicw(k) >0 Vi, Yee CO\VD wee, k,
7> 0.

In this dual,;. correspond to the first two sets of constraints, whikend+ correspond
to third and fourth set of constraints. Using the substitution

V=T + Z )\i,c,v( >“z C(yC )/|C’

i,c€CO\V() vee, k

and the fact thak, . ,(k) > 0 andfivc(yﬁi)) > 0, we can eliminate\ andr, as well as divide
w's by C, and re-express the above QP as:

2

1 .
max Z ic(k)ic(k) = 5C Z 1.0 (k)AF, —-0 Dt > pae(k) AL o(k
i,ceC) k i,weEV@ K i,c€C K
st pio(k) >0, Vi, VeeCW, k; D pinlk) =1, Vi, Yo e VO,

pie(k) < pin(k), Vi, Ve e CO\NVD v e k; > 0.
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