

LEARNING STRUCTURED PREDICTION MODELS:

A LARGE MARGIN APPROACH

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ben Taskar

December 2004

c© Copyright by Ben Taskar 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Daphne Koller
Computer Science Department

Stanford University
(Principal Advisor)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Andrew Y. Ng
Computer Science Department

Stanford University

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Fernando Pereira
Computer Science Department

University of Pennsylvania

Approved for the University Committee on Graduate Stud-

ies:

iii

iv

To my parents, Mark and Tsilya, and my love, Anat.

Abstract

Most questions require more than just true-false or multiple-choice answers. Yet super-

vised learning, like standardized testing, has placed the heaviest emphasis on complex

questions with simple answers. The acquired expertise must now be used to address tasks

that demand answers as complex as the questions. Such complex answers may consist of

multiple interrelated decisions that must be weighed against each other to arrive at a glob-

ally satisfactory and consistent solution to the question. In natural language processing, we

often need to construct a global, coherent analysis of a sentence, such as its corresponding

part-of-speech sequence, parse tree, or translation into another language. In computational

biology, we analyze genetic sequences to predict 3D structure of proteins, find global align-

ment of related DNA strings, and recognize functional portions of a genome. In computer

vision, we segment complex objects in cluttered scenes, reconstruct 3D shapes from stereo

and video, and track motion of articulated bodies.

We typically handle the exponential explosion of possible answers by building mod-

els that compactly capture the structural properties of the problem: sequential, grammat-

ical, chemical, temporal, spatial constraints and correlations. Such structured models in-

clude graphical models such as Markov networks (Markov random fields), recursive lan-

guage models such as context free grammars, combinatorial optimization problems such as

weighted matchings and graph-cuts. This thesis presents a discriminative estimation frame-

work for structured models based on the large margin principle underlying support vector

machines. Intuitively, the large-margin criterion provides an alternative to probabilistic,

likelihood-based estimation methods by concentrating directly on the robustness of the de-

cision boundary of a model. Our framework defines a suite of efficient learning algorithms

that rely on the expressive power of convex optimization to compactly capture inference or

vii

solution optimality in structured models. For some of these models, alternative estimation

methods are intractable.

The largest portion of the thesis is devoted to Markov networks, which are undirected

probabilistic graphical models widely used to efficiently represent and reason about joint

multivariate distributions. We use graph decomposition to derive an exact, compact, con-

vex formulation for large-margin estimation of Markov networks with sequence and other

low-treewidth structure. Seamless integration of kernels with graphical models allows ef-

ficient, accurate prediction in real-world tasks. We analyze the theoretical generalization

properties of max-margin estimation in Markov networks and derive a novel type of bound

on structured error. Using an efficient online-style algorithm that exploits inference in the

model and analytic updates, we solve very large estimation problems.

We define an important subclass of Markov networks, associative Markov networks

(AMNs), which captures positive correlations between variables and permits exact infer-

ence which scales up to tens of millions of nodes and edges. While likelihood-based meth-

ods are believed to be intractable for AMNs over binary variables, our framework allows

exact estimation of such networks of arbitrary connectivity and topology. We also intro-

duce relational Markov networks (RMNs), which compactly define templates for Markov

networks for domains with relational structure: objects, attributes, relations.

In addition to graphical models, our framework applies to a wide range of other models:

We exploit context free grammar structure to derive a compact max-margin formulation that

allows high-accuracy parsing in cubic time by using novel kinds of lexical information. We

use combinatorial properties of weighted matchings to develop an exact, efficient formu-

lation for learning to match and apply it to prediction of disulfide connectivity in proteins.

Finally, we derive a max-margin formulation for learning the scoring metric for clustering

from clustered training data, which tightly integrates metric learning with the clustering

algorithm, tuning one to the other in a joint optimization.

We describe experimental applications to a diverse range of tasks, including handwrit-

ing recognition, 3D terrain classification, disulfide connectivity prediction in proteins, hy-

pertext categorization, natural language parsing, email organization and image segmen-

tation. These empirical evaluations show significant improvements over state-of-the-art

methods and promise wide practical use for our framework.

viii

Acknowledgements

I am profoundly grateful to my advisor, Daphne Koller. Her tireless pursuit of excellence in

research, teaching, advising, and every other aspect of her academic work is truly inspira-

tional. I am indebted to Daphne for priceless and copious advice about selecting interesting

problems, making progress on difficult ones, pushing ideas to their full development, writ-

ing and presenting results in an engaging manner.

I would like to thank my thesis committee, Andrew Ng and Fernando Pereira, as well

as my defense committee members, Stephen Boyd and Sebastian Thrun, for their excellent

suggestions and thought-provoking questions. I have learned a great deal from their work

and their influence on this thesis is immense. In particular, Fernando’s work on Markov

networks has inspired my focus on this subject. Andrew’s research on clustering and clas-

sification has informed many of the practical problems addressed in the thesis. Sebastian

introduced me to the fascinating problems in 3D vision and robotics. Finally, Stephen’s

book on convex optimization is the primary source of many of the insights and derivations

in this thesis.

Daphne’s research group is an institution in itself. I am very lucky to have been a part

of it and shared the company, the ideas, the questions and the expertise of Pieter Abbeel,

Drago Anguelov, Alexis Battle, Luke Biewald, Xavier Boyen, Vassil Chatalbashev, Gal

Chechik, Lise Getoor, Carlos Guestrin, Uri Lerner, Uri Nodelman, Dirk Ormoneit, Ron

Parr, Eran Segal, Christian Shelton, Simon Tong, David Vickrey, Haidong Wang and Ming

Fai Wong.

Jean-Claude Latombe was my first research advisor when I was still an undergraduate

at Stanford. His thoughtful guidance and quick wit were a great welcome and inspiration

to continue my studies. When I started my research in machine learning with Daphne, I

ix

had the privilege and pleasure to work with Nir Friedman, Lise Getoor and Eran Segal.

They have taught me to remain steadfast when elegant theories meet the ragged edge of

real problems. Lise has been a great friend and my other big sister throughout my graduate

life. I could not wish for more caring advice and encouragement than she has given me all

these years.

I was lucky to meet Michael Collins, Michael Littman and David McAllester all in

one place, while I was a summer intern at AT&T. Collins’ work on learning large-margin

tagging and parsing models motivated me to look at such methods for other structured

models. I am very glad I had the chance to work with him on the max-margin parsing

project. Michael Littman, with his endearing combination of humor and warmth, lightness

and depth, has been a constant source of encouragement and inspiration. David’s wide-

ranging research on probability and logic, languages and generalization bounds, to mention

a few, enlightened much of my work.

(Almost) everything I know about natural language processing I learned from Chris

Manning and Dan Klein. Chris’ healthy scepticism and emphasis on the practical has kept

me from going down many dead-end paths. Dan has an incredible gift of making ideas

work, and better yet, explaining why other ideas do not work.

I would like to express my appreciation and gratitude to all my collaborators for their

excellent ideas, hard work and dedication: Pieter Abbeel, Drago Anguelov, Peter Bartlett,

Luke Biewald, Vassil Chatalbashev, Michael Collins, Nir Friedman, Audrey Gasch, Lise

Getoor, Carlos Guestrin, Geremy Heitz, Dan Klein, Daphne Koller, Chris Manning, David

McAllester, Eran Segal, David Vickrey and Ming Fai Wong.

Merci beaucoup to Pieter Abbeel, my sounding board for many ideas in convex opti-

mization and learning, for numerous enlightening discussions that we have had anytime,

anywhere: gym, tennis court, biking to EV, over cheap Thai food. Ogromnoye spasibo to

my officemate, sportsmate, always late, ever-ready to checkmate, Drago Anguelov, who

is always willing to share with me everything from research problems to music and back-

packing treks to Russian books and Belgian beer. Blagodarya vi mnogo for another great

Bulgarian I have the good luck to know, Vasco Chatalbashev, for his company and ideas,

good cheer and the great knack for always coming through. Muchas gracias to Carlos

Guestrin, my personal climbing instructor, fellow photography fanatic, avid grillmaster

x

and exploiter-of-structure extraordinaire, for opening his ear and heart to me when it mat-

ters most. Mh-goi-saai to Ming Fai Wong, for his sense of humor, kind heart and excellent

work.

Many thanks to my friends who have had nothing to do with work in this thesis, but

worked hard to keep my relative sanity throughout. I will not list all of you here, but my

gratitude to you is immense.

My parents, Mark and Tsilya, have given me unbending support and constant encour-

agement. I thank them for all the sacrifices they have made to ensure that their children

would have freedom and opportunities they never had in Soviet Union. To my sister, Anna,

my brother-in-law, Ilya, and my sweet niece, Talia, I am grateful for bringing me so much

joy and love. To my tireless partner in work and play, tears and laughter, hardship and love,

Anat Caspi, thank you for making me happy next to you.

xi

xii

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Supervised learning . 2

1.2 Complex prediction problems . 4

1.3 Structured models . 6

1.4 Contributions . 8

1.5 Thesis outline . 11

1.6 Previously published work . 13

I Models and methods 15

2 Supervised learning 16

2.1 Classification with generalized linear models 19

2.2 Logistic regression . 20

2.3 Logistic dual and maximum entropy . 21

2.4 Support vector machines . 21

2.5 SVM dual and kernels . 22

3 Structured models 24

3.1 Probabilistic models: generative and conditional 25

xiii

3.2 Prediction models: normalized and unnormalized 27

3.3 Markov networks . 27

3.3.1 Representation . 28

3.3.2 Inference . 31

3.3.3 Linear programming MAP inference 34

3.4 Context free grammars . 37

3.5 Combinatorial problems . 40

4 Structured maximum margin estimation 42

4.1 Max-margin estimation . 43

4.1.1 Min-max formulation . 43

4.1.2 Certificate formulation . 48

4.2 Approximations: upper and lower bounds 50

4.2.1 Constraint generation . 50

4.2.2 Constraint strengthening . 52

4.3 Related work . 53

4.4 Conclusion . 55

II Markov networks 57

5 Markov networks 58

5.1 Maximum likelihood estimation . 59

5.2 Maximum margin estimation . 61

5.3 M3N dual and kernels . 65

5.4 Untriangulated models . 69

5.5 Generalization bound . 70

5.6 Related work . 73

5.7 Conclusion . 74

6 M3N algorithms and experiments 75

6.1 Solving the M3N QP . 75

6.1.1 SMO . 78

xiv

6.1.2 Selecting SMO pairs . 79

6.1.3 Structured SMO . 81

6.2 Experiments . 85

6.3 Related work . 87

6.4 Conclusion . 87

7 Associative Markov networks 89

7.1 Associative networks . 90

7.2 LP Inference . 91

7.3 Min-cut inference . 93

7.3.1 Graph construction . 93

7.3.2 Multi-class case . 95

7.4 Max-margin estimation . 97

7.5 Experiments . 99

7.6 Related work . 104

7.7 Conclusion . 104

8 Relational Markov networks 109

8.1 Relational classification . 110

8.2 Relational Markov networks . 113

8.3 Approximate inference and learning . 116

8.4 Experiments . 118

8.4.1 Flat models . 119

8.4.2 Link model . 120

8.4.3 Cocite model . 121

8.5 Related work . 123

8.6 Conclusion . 124

III Broader applications: parsing, matching, clustering 127

9 Context free grammars 128

9.1 Context free grammar model . 128

xv

9.2 Context free parsing . 132

9.3 Discriminative parsing models . 133

9.3.1 Maximum likelihood estimation 134

9.3.2 Maximum margin estimation . 135

9.4 Structured SMO for CFGs . 138

9.5 Experiments . 138

9.6 Related work . 142

9.7 Conclusion . 143

10 Matchings 144

10.1 Disulfide connectivity prediction . 145

10.2 Learning to match . 146

10.3 Min-max formulation . 148

10.4 Certificate formulation . 150

10.5 Kernels . 153

10.6 Experiments . 154

10.7 Related work . 157

10.8 Conclusion . 159

11 Correlation clustering 160

11.1 Clustering formulation . 161

11.1.1 Linear programming relaxation 162

11.1.2 Semidefinite programming relaxation 163

11.2 Learning formulation . 164

11.3 Dual formulation and kernels . 167

11.4 Experiments . 168

11.4.1 Irrelevant features . 168

11.4.2 Email clustering . 168

11.4.3 Image segmentation . 170

11.5 Related work . 172

11.6 Conclusion . 173

xvi

IV Conclusions and future directions 175

12 Conclusions and future directions 176

12.1 Summary of contributions . 176

12.1.1 Structured maximum margin estimation 177

12.1.2 Markov networks: max-margin, associative, relational 180

12.1.3 Broader applications: parsing, matching, clustering 182

12.2 Extensions and open problems . 183

12.2.1 Theoretical analysis and optimization algorithms 183

12.2.2 Novel prediction tasks . 184

12.2.3 More general learning settings . 185

12.3 Future . 187

A Proofs and derivations 188

A.1 Proof of Theorem 5.5.1 . 188

A.1.1 Binary classification . 189

A.1.2 Structured classification . 190

A.2 AMN proofs and derivations . 195

A.2.1 Binary AMNs . 195

A.2.2 Multi-class AMNs . 197

A.2.3 Derivation of the factored primal and dual max-margin QP 199

Bibliography 202

xvii

List of Tables

9.1 Parsing results on development set . 140

9.2 Parsing results on test set . 140

10.1 Bond connectivity prediction results . 156

xviii

List of Figures

1.1 Supervised learning setting . 3

1.2 Examples of complex prediction problems 4

2.1 Handwritten character recognition . 19

2.2 Classification loss and upper bounds . 20

3.1 Handwritten word recognition . 25

3.2 Chain Markov network . 29

3.3 Diamond Markov network . 32

3.4 Diamond network junction tree . 34

3.5 Marginal agreement . 35

3.6 Example parse tree . 37

4.1 Exact and approximate constraints for max-margin estimation 51

4.2 A constraint generation algorithm. 52

5.1 Chain M3N example . 64

5.2 Diamond Markov network . 69

6.1 Block-coordinate ascent . 77

6.2 SMO subproblem . 79

6.3 SMO pair selection . 80

6.4 Structured SMO diagram . 82

6.5 Structured SMO pair selection . 85

6.6 OCR results . 86

xix

7.1 Min-cut graph construction . 94

7.2 α-expansion algorithm . 96

7.3 Segbot: roving robot equipped with SICK2 laser sensors. 100

7.4 3D laser scan range map of the Stanford Quad. 101

7.5 Comparison of terrain classification models (detail) 102

7.6 Min-cut inference running times . 103

7.7 Comparison of terrain classification models (zoomed-out) 106

7.8 Labeled portion of the test terrain dataset (Ground truth and SVM predictions)107

7.9 Labeled portion of the test terrain dataset (Voted-SVM and AMN predictions)108

8.1 Link model for document classification 113

8.2 WebKB results: flat models . 120

8.3 WebKB results: link model . 121

8.4 WebKB results: cocite model . 122

9.1 Two representations of a binary parse tree 130

10.1 PDB protein 1ANS . 147

10.2 Number of constraints vs. number of bonds 150

10.3 Learning curve for bond connectivity prediction 157

11.1 Learning to cluster with irrelevant features 169

11.2 Learning to organize email . 170

11.3 Two segmentations by different users . 171

11.4 Two segmentations by different models 172

xx

Chapter 1

Introduction

The breadth of tasks addressed by machine learning is rapidly expanding. Major appli-

cations include medical diagnosis, scientific discovery, financial analysis, fraud detection,

DNA sequence analysis, speech and handwriting recognition, game playing, image analy-

sis, robot locomotion and many more. Of course, the list of things we would like a computer

to learn to do is much, much longer. As we work our way down that list, we encounter the

need for very sophisticated decision making from our programs.

Some tasks, for example, handwriting recognition, are performed almost effortlessly

by a person, but remain difficult and error-prone for computers. The complex synthesis

of many levels of signal processing a person executes when confronted by a line of hand-

written text is daunting. The reconstruction of an entire sentence from the photons hitting

the retina off of each tiny patch of an image undoubtedly requires an elaborate interplay of

recognition and representation of the pen-strokes, the individual letters, whole words and

constituent phrases.

Computer scientists, as opposed to, say, neuroscientists, are primarily concerned with

achieving acceptable speed and accuracy of recognition rather than modeling this compli-

cated process with any biological verity. Computational models for handwriting recogni-

tion aim to capture the salient properties of the problem: typical shapes of the letters, likely

letter combinations that make up words, common ways to combine words into phrases, fre-

quent grammatical constructions of the phrases, etc. Machine learning offers an alternative

to encoding all the intricate details of such a model from scratch. One of its primary goals

1

2 CHAPTER 1. INTRODUCTION

is to devise efficient algorithms for training computers to automatically acquire effective

and accurate models from experience.

In this thesis, we present a discriminative learning framework and a novel family of effi-

cient models and algorithms for complex recognition tasks in several disciplines, including

natural language processing, computer vision and computational biology. We develop the-

oretical foundations for our approach and show a wide range of experimental applications,

including handwriting recognition, 3-dimensional terrain classification, disulfide connec-

tivity in protein structure prediction, hypertext categorization, natural language parsing,

email organization and image segmentation.

1.1 Supervised learning

The most basic supervised learning task is classification. Suppose we wish to learn to

recognize a handwritten character from a scanned image. This is a classification task,

because we must assigns a class (an English letter from ‘a’ through ‘z’) to an observation of

an object (an image). Essentially, a classifier is a function that maps an input (an image) to

an output (a letter). In the supervised learning setting, we construct a classifier by observing

labeled training examples, in our case, sample images paired with appropriate letters. The

main problem addressed by supervised learning is generalization. The learning program is

allowed to observe only a small sample of labeled images to produce an accurate classifier

on unseen images of letters.

More formally, letx denote an input. For example, a black-and-white imagex can be

represented as a vector of pixel intensities. We useX to denote the space of all possible

inputs. Lety denote the output, andY be the discrete space of possible outcomes (e.g.,

26 letters ‘a’-‘z’). A classifier (or hypothesis)h is a function fromX to Y, h : X 7→ Y.

We denote the set of all classifiers that our learning program can produce asH (hypothesis

class). Then given a set of labeled examples{x(i), y(i)}, i = 1, . . . , m, a learning program

seeks to produce a classifierh ∈ H that will work well on unseen examplesx, usually by

finding h that accurately classifies training data. The diagram in Fig. 1.1 summarizes the

supervised learning setting.

1.1. SUPERVISED LEARNING 3

Labeled data

Learning

Prediction

Hypotheses

New data

Figure 1.1: Supervised learning setting

The problem of classification has a long history and highly developed theory and prac-

tice (see for example, Mitchell [1997]; Vapnik [1995]; Dudaet al. [2000]; Hastieet al.

[2001]). The two most important dimensions of variation of classification algorithms is the

hypothesis classH and the criterion for selection of a hypothesish fromH given the train-

ing data. In this thesis, we build upon the generalized linear model family, which underlies

standard classifiers such as logistic regression and support vector machines. Through the

use of kernels to implicitly define high-dimensional and even infinite-dimensional input

representations, generalized linear models can approximate arbitrarily complex decision

boundaries.

The task of selecting a hypothesish reduces to estimating model parameters. Broadly

speaking, probabilistic estimation methods associate a joint distributionp(x,y) or condi-

tional distributionp(y | x) with h and select a model based on the likelihood of the data

[Hastieet al., 2001]. Joint distribution models are often called generative, while condi-

tional models are called discriminative. Large margin methods, by contrast, select a model

based on a more direct measure of confidence of its predictions on the training data called

the margin [Vapnik, 1995]. The difference between these two methods is one of the key

4 CHAPTER 1. INTRODUCTION

The screen was
a sea of red

RSCCPCYWGGCPW
GQNCYPEGCSGPKV

brace

(a) (b) (c) (d)

Figure 1.2:Examples of complex prediction problems (inputs-top, outputs-bottom):
(a) handwriting recognition [image7→ word];
(b) natural language parsing [sentence7→ parse tree];
(c) disulfide bond prediction in proteins [amino-acid sequence7→ bond structure (shown in yellow)];
(d) terrain segmentation [3D image7→ segmented objects (trees, bushes, buildings, ground)]

themes in this thesis.

Most of the research has focused on the analysis and classification algorithms for the

case of binary outcomes|Y| = 2, or a small number of classes. In this work, we focus

on prediction tasks that involve not a single decision with a small set of outcomes, but a

complex, interrelated collection of decisions.

1.2 Complex prediction problems

Consider once more the problem of character recognition. In fact, a more natural and useful

task is recognizing words and entire sentences. Fig. 1.2(a) shows an example handwritten

word “brace.” Distinguishing between the second letter and fourth letter (‘r’ and ‘c’)in iso-

lation is actually far from trivial, but in the context of the surrounding letters that together

form a word, this task is much less error-prone for humans and should be for computers

as well. It is also more complicated, as different decisions must be weighed against each

other to arrive at the globally satisfactory prediction. The space of all possible outcomes

1.2. COMPLEX PREDICTION PROBLEMS 5

Y is immense, usually exponential in the number of individual decisions, for example, the

number of 5 letter sequences (265). However, most of these outcomes are unlikely given

the observed input. By capturing the most salient structure of the problem, for example the

strong local correlations between consecutive letters, we will construct compact models

that efficiently deal with this complexity. Below we list several examples from different

fields.

• Natural language processing

Vast amounts of electronically available text have spurred a tremendous amount of

research into automatic analysis and processing of natural language. We mention

some of the lower-level tasks that have received a lot of recent attention [Charniak,

1993; Manning & Scḧutze, 1999]. Part-of-speech tagging involves assigning each

word in a sentence a part-of-speech tag, such asnoun, verb, pronoun, etc. As with

handwriting recognition, capturing sequential structure of correlations between con-

secutive tags is key. In parsing, the goal is to recognize the recursive phrase structure

of a sentence, such as verbal, noun and prepositional phrases and their nesting in

relation to each other. Fig. 1.2(b) shows a parse tree corresponding to the sentence:

“The screen was a sea of red” (more on this in Ch. 9). Many other problems, such as

named-entity and relation extraction, text summarization, translation, involve com-

plex global decision making.

• Computational biology

The last two decades have yielded a wealth of high-throughput experimental data,

including complete sequencing of many genomes, precise measurements of protein

3D structure, genome-wide assays of mRNA levels and protein-protein interactions.

Major research has been devoted to gene-finding, alignment of sequences, protein

structure prediction, molecular pathway discovery [Gusfield, 1997; Durbinet al.,

1998]. Fig. 1.2(c) shows disulfide bond structure (shown in yellow) we would like to

predict from the amino-acid sequence of the protein (more on this in Ch. 10).

• Computer vision

As digital cameras and optical scanners become commonplace accessories, medical

imaging technology produces detailed physiological measurements, laser scanners

6 CHAPTER 1. INTRODUCTION

capture 3D environments, satellites and telescopes bring pictures of Earth and distant

stars, we are flooded with images we would like our computer to analyze. Example

tasks include object detection and segmentation, motion tracking, 3D reconstruction

from stereo and video, and much more [Forsyth & Ponce, 2002]. Fig. 1.2(d) shows a

3D laser range data image of the Stanford campus collected by a roving robot which

we would like to segment into objects such as trees, bushes, buildings, ground, etc.

(more on this in Ch. 7).

1.3 Structured models

This wide range of problems have been tackled using various models and methods. We

focus on the models that compactly capture correlation and constraint structure inherent to

many tasks. Abstractly, a model assigns a score (or likelihood in probabilistic models) to

each possible input/output pair(x,y), typically through a compact, parameterized scoring

function. Inference in these models refers to computing the highest scoring output given

the input and usually involves dynamic programming or combinatorial optimization.

• Markov networks

Markov networks (a.k.a. Markov random fields) are extensively used to model com-

plex sequential, spatial, and relational interactions in prediction problems arising in

many fields. These problems involve labeling a set of related objects that exhibit

local consistency. Markov networks compactly represent complex joint distributions

of the label variables by modeling their local interactions. Such models are encoded

by a graph, whose nodes represent the different object labels, and whose edges rep-

resent and quantify direct dependencies between them. The graphical structure of

the models encodes thequalitativeaspects of the distribution: direct dependencies as

well as conditional independencies. Thequantitativeaspect of the model is defined

by thepotentialsthat are associated with nodes and cliques of the graph. The graph-

ical structure of the network (more precisely, the treewidth of the graph, which we

formally define in Ch. 3) is critical to efficient inference and learning in the model.

• Context free grammars

1.3. STRUCTURED MODELS 7

Context-free grammars are one of the primary formalisms for capturing the recur-

sive structure of syntactic constructions [Manning & Schütze, 1999]. For example,

in Fig. 1.2, the non-terminal symbols (labels of internal nodes) correspond to syntac-

tic categories such as noun phrase (NP), verbal phrase (VP) or prepositional phrase

(PP) and part-of-speech tags like nouns (NN), verbs (VBD), determiners (DT) and

prepositions (IN). The terminal symbols (leaves) are the words of the sentence. A

CFG consists of recursive productions (e.g.V P → V P PP , DT → The) that

can be applied to derive a sentence of the language. The productions define the set

of syntactically allowed phrase structures (derivations). By compactly defining a

probability distribution over individual productions, probabilistic CFGs construct a

distribution over parse trees and sentences, and the prediction task reduces to finding

the most likely tree given the sentence. The context free restriction allows efficient

inference and learning in such models.

• Combinatorial structures

Many important computational tasks are formulated as combinatorial optimization

problems such as the maximum weight bipartite and perfect matching, spanning

tree, graph-cut, edge-cover, and many others [Lawler, 1976; Papadimitriou & Stei-

glitz, 1982; Cormenet al., 2001]. Although the term ‘model’ is often reserved for

probabilistic models, we use the term model very broadly, to include any scheme

that assigns scores to the output spaceY and has a procedure for finding the opti-

mal scoringy. For example, the disulfide connectivity prediction in Fig. 1.2(c) can

be modeled by maximum weight perfect matchings, where the weights define po-

tential bond strength based on the local amino-acid sequence properties. The other

combinatorial structures we consider and apply in this thesis include graph cuts and

partitions, bipartite matchings, and spanning trees.

The standard methods of estimation for Markov networks and context free grammars

are based on maximum likelihood, both joint and conditional. However, maximum like-

lihood estimation of scoring function parameters for combinatorial structures is often in-

tractable because of the problem of defining a normalized distribution over an exponential

set of combinatorial structures.

8 CHAPTER 1. INTRODUCTION

1.4 Contributions

This thesis addresses the problem of efficient learning of high-accuracy models for complex

prediction problems. We consider a very large class of structured models, from Markov

networks to context free grammars to combinatorial graph structures such as matchings

and cuts. We focus on those models where exact inference is tractable, or can be efficiently

approximated.

◦ Learning framework for structured models

We propose a general framework for efficient estimation of models for structured

prediction. An alternative to likelihood-based methods, this framework builds upon

the large margin estimation principle. Intuitively, we find parameters such that in-

ference in the model (dynamic programming, combinatorial optimization) predicts

the correct answers on the training data with maximum confidence. We develop gen-

eral conditions under which exact large margin estimation is tractable and present

two formulations for structured max-margin estimation that define compact convex

optimization problems, taking advantage of prediction task structure. The first for-

mulation relies on the ability to express inference in the model as a compact convex

optimization problem. The second one only requires compactly expressing optimal-

ity of a given assignment according to the model and applies to a broader range of

combinatorial problems. These two formulations form the foundation which the rest

of the thesis develops.

◦ Markov networks

The largest portion of the thesis is devoted to novel estimation algorithms, represen-

tational extensions, generalization analysis and experimental validation for Markov

networks, a model class of choice in many structured prediction tasks in language,

vision and biology.

. Low-treewidth Markov networks

We use graph decomposition to derive an exact, compact, convex learning for-

mulation for Markov networks with sequence and other low-treewidth structure.

The seamless integration of kernels with graphical models allows us to create

1.4. CONTRIBUTIONS 9

very rich models that leverage the immense amount of research in kernel de-

sign and graphical model decompositions for efficient, accurate prediction in

real-world tasks. We also use approximate graph decomposition to derive a

compact approximate formulation for Markov networks in which inference is

intractable.

. Scalable online algorithm

We present an efficient algorithm for solving the estimation problem called

Structured SMO. Our online-style algorithm uses inference in the model and

analytic updates to solve extremely large estimation problems.

. Generalization analysis

We analyze the theoretical generalization properties of max-margin estimation

in Markov networks and derive a novel margin-based bound for structured pre-

diction. This bound is the first to address structured error (e.g. proportion

of mislabeled pixels in an image) and uses a proof that exploits the graphical

model structure.

. Learning associative Markov networks (AMNs)

We define an important subclass of Markov networks that captures positive cor-

relations present in many domains. We show that for AMNs over binary vari-

ables, our framework allows exact estimation of networks of arbitrary connec-

tivity and topology, for which likelihood methods are believed to be intractable.

For the non-binary case, we provide an approximation that works well in prac-

tice. We present an AMN-based method for object segmentation from 3D range

data. By constraining the class of Markov networks to AMNs, our models are

learned efficiently and, at run-time, scale up to tens of millions of nodes and

edges.

. Representation and learning of relational Markov networks

We introduce relational Markov networks (RMNs), which compactly define

templates for Markov networks for domains with relational structure objects,

10 CHAPTER 1. INTRODUCTION

attributes, relations. The graphical structure of an RMN is based on the rela-

tional structure of the domain, and can easily model complex interaction pat-

terns over related entities. We use approximate inference in these complex mod-

els, in which exact inference is intractable, to derive an approximate learning

formulation. We apply this class of models to classification of hypertext using

hyperlink structure to define relations between webpages.

◦ Broader applications: parsing, matching, clustering

The other large portion the thesis addresses a range of prediction tasks with very di-

verse models: context free grammars for natural language parsing, perfect matchings

for disulfide connectivity in protein structure prediction, graph partitions for cluster-

ing documents and segmenting images.

. Learning to parse

We exploit context free grammar structure to derive a compact max-margin

formulation and show high-accuracy parsing in cubic time by exploiting novel

kinds of lexical information. We show experimental evidence of the model’s

improved performance over several baseline models.

. Learning to match

We use combinatorial properties of weighted matchings to develop an exact,

efficient algorithm for learning to match. We apply our framework to predic-

tion of disulfide connectivity in proteins using perfect non-bipartite matchings.

The algorithm we propose uses kernels, which makes it possible to efficiently

embed the features in very high-dimensional spaces and achieve state-of-the-art

accuracy.

. Learning to cluster

We derive a max-margin formulation for learning the affinity metric for clus-

tering from clustered training data. In contrast to algorithms that learn a metric

independently of the algorithm that will be used to cluster the data, we describe

a formulation that tightly integrates metric learning with the clustering algo-

rithm, tuning one to the other in a joint optimization. Experiments on synthetic

and real-world data show the ability of the algorithm to learn an appropriate

1.5. THESIS OUTLINE 11

clustering metric for a variety of desired clusterings, including email folder or-

ganization and image segmentation.

1.5 Thesis outline

Below is a summary of the rest of the chapters in the thesis:

Chapter 2. Supervised learning: We review basic definitions and statistical framework

for classification. We define hypothesis classes, loss functions, risk. We consider

generalized linear models, including logistic regression and support vector machines,

and review estimation methods based on maximizing likelihood, conditional likeli-

hood and margin. We describe the relationship between the dual estimation problems

and kernels.

Chapter 3. Structured models: In this chapter, we define the abstract class of structured

prediction problems and models addressed by the thesis. We compare probabilistic

models, generative and discriminative and unnormalized models. We describe repre-

sentation and inference for Markov networks, including dynamic and linear program-

ming inference. We also briefly describe context free grammars and combinatorial

structures as models.

Chapter 4. Structured maximum margin estimation: This chapter outlines the main prin-

ciples of maximum margin estimation for structured models. We address the expo-

nential blow-up of the naive problem formulation by deriving two general equivalent

convex formulation. These formulations, min-max and certificate, allow us to ex-

ploit decomposition and combinatorial structure of the prediction task. They lead

to polynomial size programs for estimation of models where the prediction problem

is tractable. We also discuss approximations, in particular using upper and lower

bounds, for solving intractable or very large problems.

Chapter 5. Markov networks: We review maximum conditional likelihood estimation

and present maximum margin estimation for Markov networks. We use graphical

model decomposition to derive a convex, compact formulation that seamlessly in-

tegrates kernels with graphical models. We analyze the theoretical generalization

12 CHAPTER 1. INTRODUCTION

properties of max-margin estimation and derive a novel margin-based bound for

structured classification.

Chapter 6. M3N algorithms and experiments: We present an efficient algorithm for solv-

ing the estimation problem in graphical models, called Structured SMO. Our online-

style algorithm uses inference in the model and analytic updates to solve extremely

large quadratic problems. We present experiments with handwriting recognition,

where our models significantly outperform other approaches by effectively capturing

correlation between adjacent letters and incorporating high-dimensional input repre-

sentation via kernels.

Chapter 7. Associative Markov networks: We define an important subclass of Markov

networks, associative Markov networks (AMNs), that captures positive interactions

present in many domains. We show that for associative Markov networks of over bi-

nary variables, max-margin estimation allows exact training of networks of arbitrary

connectivity and topology, for which maximum likelihood methods are believed to

be intractable. For the non-binary case, we provide an approximation that works

well in practice. We present an AMN-based method for object segmentation from

3D range data that scales to very large prediction tasks involving tens of millions of

points.

Chapter 8. Relational Markov networks: We introduce the framework of relational Mar-

kov networks (RMNs), which compactly defines templates for Markov networks in

domains with rich structure modeled by objects, attributes and relations. The graph-

ical structure of an RMN is based on the relational structure of the domain, and can

easily model complex patterns over related entities. As we show, the use of an undi-

rected, discriminative graphical model avoids the difficulties of defining a coherent

generative model for graph structures in directed models and allows us tremendous

flexibility in representing complex patterns. We provide experimental results on a

webpage classification task, showing that accuracy can be significantly improved by

modeling relational dependencies.

Chapter 9. Context free grammars: We present max-margin estimation for natural lan-

guage parsing on the decomposition properties of context free grammars. We show

1.6. PREVIOUSLY PUBLISHED WORK 13

that this framework allows high-accuracy parsing in cubic time by exploiting novel

kinds of lexical information. We show experimental evidence of the model’s im-

proved performance over several baseline models.

Chapter 10. Perfect matchings:We apply our framework to learning to predict disulfide

connectivity in proteins using perfect matchings. We use combinatorial properties of

weighted matchings to develop an exact, efficient algorithm for learning the param-

eters of the model. The algorithm we propose uses kernels, which makes it possible

to efficiently embed the features in very high-dimensional spaces and achieve state-

of-the-art accuracy.

Chapter 11. Correlation clustering: In this chapter, we derive a max-margin formula-

tion for learning affinity scores for correlation clustering from clustered training data.

We formulate the approximate learning problem as a compact convex program with

quadratic objective and linear or positive-semidefinite constraints. Experiments on

synthetic and real-world data show the ability of the algorithm to learn an appro-

priate clustering metric for a variety of desired clusterings, including email folder

organization and image segmentation.

Chapter 12. Conclusions and future directions:We review the main contributions of the

thesis and summarize their significance, applicability and limitations. We discuss ex-

tensions and future research directions not addressed in the thesis.

1.6 Previously published work

Some of the work described in this thesis has been published in conference proceedings.

The min-max and certificate formulations for structured max-margin estimation have not

been published in their general form outlined in Ch. 4, although they underly several pa-

pers mentioned below. The polynomial formulation of maximum margin Markov networks

presented in Ch. 5 was published for a less general case, using a dual decomposition tech-

nique [Taskaret al., 2003a]. Work on associative Markov networks (Ch. 7) was published

with experiments on hypertext and news-wire classification [Taskaret al., 2004a]. A paper

14 CHAPTER 1. INTRODUCTION

on 3D object segmentation using AMNs, which presents a experiments on terrain classifi-

cation and other tasks, is currently under review (joint work with Drago Anguelov, Vassil

Chatalbashev, Dinkar Gupta, Geremy Heitz, Daphne Koller and Andrew Ng). Taskaret al.

[2002] and Taskaret al. [2003b] defined and applied the Relational Markov networks

(Ch. 8), using maximum (conditional) likelihood estimation. Natural language parsing

in Ch. 9 was published in Taskaret al. [2004b]. Disulfide connectivity prediction using

perfect matchings in Ch. 10 (joint work with Vassil Chatalbashev and Daphne Koller) is

currently under review. Finally, work on correlation clustering in Ch. 11, done jointly with

Pieter Abbeel and Andrew Ng, has not been published.

Part I

Models and methods

15

Chapter 2

Supervised learning

In supervised learning, we seek a functionh : X 7→ Y that maps inputsx ∈ X to outputs

y ∈ Y. The input spaceX is an arbitrary set (oftenX = IRn), while the output spaceY
we consider in this chapter discrete. A supervised learning problem with discrete outputs,

Y = {y1, . . . , yk}, wherek is the number of classes, is calledclassification. In handwritten

character recognition, for example,X is the set of images of letters andY is the alphabet

(see Fig. 2.1).

The input to an algorithm istraining data , a set ofm i.i.d. (independent and identically

distributed) samplesS = {(x(i), y(i))}m
i=1 drawn from a fixed but unknown distributionD

overX × Y. The goal of a learning algorithm is to output a hypothesish such thath(x)

will approximatey on new samples from the distribution(x, y) ∼ D.

Learning algorithms can be distinguished among several dimensions, chief among them

is thehypothesis classH of functionsh the algorithm outputs. Numerous classes of func-

tions have been well studied, including decision trees, neural networks, nearest-neighbors,

generalized log-linear models and kernel methods (see Quinlan [2001]; Bishop [1995];

Hastieet al. [2001]; Dudaet al. [2000], for in-depth discussion of these and many other

models). We will concentrate on the last two classes, for several reasons we discuss be-

low, including accuracy, efficiency, and extensibility to more complex structured prediction

tasks will consider in the next chapter.

The second crucial dimension of a learning algorithm is the criterion for selection ofh

fromH. We arrive at such a criterion by quantifying what it means forh(x) to approximate

16

17

y. Therisk functional R`
D[(h)] measures the expected error of the approximation:

R`
D[h] = E(x,y)∼D[`(x, y, h(x))], (2.1)

where theloss function` : X × Y × Y → IR+ measures the penalty for predictingh(x)

on the sample(x, y). In general, we assume that`(x, y, ŷ) = 0 if y = ŷ.

A common loss function for classification is0/1 loss

`0/1(x, y, h(x)) ≡ 1I(y 6= h(x)),

where 1I(·) denotes the indicator function, that is, 1I(true) = 1 and 1I(false) = 0.

Since we do not generally know the distributionD, we estimate the risk ofh using its

empirical risk R`
S, computed on the training sampleS:

R`
S[h] =

1

m

m∑
i=1

`(x(i), y(i), h(x(i))) =
1

m

m∑
i=1

`i(h(x(i))), (2.2)

where we abbreviatè(x(i), y(i), h(x(i))) = `i(h(x(i))). For 0/1 loss,R`
S[h] is simply the

proportion of training examples thath misclassifies.R`
S[h] is often called thetraining

error or training loss.

If our set of hypotheses,H, is large enough, we will be able to findh that has zero or

very small empirical risk. However, simply selecting a hypothesis with lowest risk

h∗ = arg min
h∈H

R`
S[h],

is generally not a good idea. For example, ifX = IR,Y = IR andH includes all polynomi-

als of degreem− 1, we can always find a polynomialh that passes through all the sample

points(x(i), y(i)), i = (1, ..., m) assuming that all thex(i) are unique. This polynomial is

very likely to overfit the training data, that is, it will have zero empirical risk, but high ac-

tual risk. The key to selecting a good hypothesis is to trade-off complexity of classH (e.g.

the degree of the polynomial) with the error on the training data as measured by empirical

riskR`
S. For a vast majority of supervised learning algorithms, this fundamental balance is

18 CHAPTER 2. SUPERVISED LEARNING

achieved by minimizing the weighted combination of the two criteria:

h∗ = arg min
h∈H

(D[h] + CR`
S[h]

)
, (2.3)

whereD[h] measures the inherent dimension or complexity ofh, andC ≥ 0 is a trade-

off parameter. We will not go into derivation of various complexity measuresD[h] here,

but simply adopt the standard measures as needed and refer the reader to Vapnik [1995];

Devroyeet al. [1996]; Hastieet al. [2001] for details. The termD[h] is often called

regularization.

Depending on the complexity of the classH, the search for the optimalh∗ in (2.3)

may be a daunting task1. For many classes, for example decision trees and multi-layer

neural networks, it is intractable [Bishop, 1995; Quinlan, 2001], and we must resort to

approximate, greedy optimization methods. For these intractable classes, the search pro-

cedure used by the learning algorithm is crucial. Below however, we will concentrate on

models where the optimalh∗ can be found efficiently using convex optimization in poly-

nomial time. Hence, the learning algorithms we consider are completely characterized by

the hypothesis classH, the loss functioǹ, and the regularizationD[h].

In general, we consider hypothesis classes of the following parametric form:

hw(x) = arg max
y∈Y

f(w,x, y), (2.4)

wheref(w,x, y) is a functionf : W×X ×Y 7→ IR, wherew ∈ W is a set of parameters,

usually withW ⊆ IRn. We assume that ties in thearg max are broken using some arbitrary

but fixed rule. As we discuss below, this class of hypotheses is very rich and includes

many standard models. The formulation in (2.4) of the hypothesis class in terms of an

optimization procedure will become crucial to extending supervised learning techniques to

cases where the output spaceY is more complex.

1For classification, minimizing the objective with the usual0/1 training error is generally a very difficult
problem with multiple maxima for most realisticH. See discussion in the next section about approaches to
dealing with0/1 loss.

2.1. CLASSIFICATION WITH GENERALIZED LINEAR MODELS 19

a b c d e
Figure 2.1: Handwritten character recognition: sample letters from Kassel [1995] data set.

2.1 Classification with generalized linear models

For classification, we consider thegeneralized linear family of hypothesesH. Givenn

real-valued basis functionsfj : X ×Y 7→ IR, a hypothesishw ∈ H is defined by a set ofn

coefficientswj ∈ IR such that:

hw(x) = arg max
y∈Y

n∑
i=1

wjfj(x, y) = arg max
y∈Y

w>f(x, y). (2.5)

Consider the character recognition example in Fig. 2.1. Our inputx is a vector of

pixel values of the image andy is the alphabet{a, . . . , z}. We might have a basis function

fj(x, y) = 1I(xrow,col = on ∧ y = char) for each possible(row, col) and char ∈ Y,

wherexrow,col denotes the value of pixel(row, col). Since different letters tend to have

different pixels turned on, this very simple model captures enough information to perform

reasonably well.

The most common loss for classification is0/1 loss. Minimizing the0/1 risk is generally

a very difficult problem with multiple maxima for any large classH. The standard solution

is minimizing an upper bound on the0/1 loss,`(x, y, h(x)) ≥ `(x, y, h(x)). (In addition

to computational advantages of this approach, there are statistical benefits of minimizing a

convexupper bound [Bartlettet al., 2003]). Two of the primary classification methods we

consider, logistic regression and support vector machines, differ primarily in their choice of

the upper bound on the training0/1 loss. The regularizationD[hw] for the linear family is

typically the norm of the parameters||w||p for p = 1, 2. Intuitively, a zero, or small weight

wj implies that the hypothesishw does not depend on the value offj(x, y) and hence is

simpler than ahw with a large weightwj.

20 CHAPTER 2. SUPERVISED LEARNING

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

3.5 log−loss

hinge−loss

0/1−loss

Figure 2.2: 0/1-loss upper bounded by log-loss and hinge-loss. Horizontal axis shows
w>f(x, y)−maxy′ 6=y w>f(x, y′), wherey is the correct label forx, while the vertical axis
show the value of the associated loss. The log-loss is shown up to an additive constant for
illustration purposes.

2.2 Logistic regression

In logistic regression, we assign a probabilistic interpretation to the hypothesishw as defin-

ing a conditional distribution:

Pw(y | x) =
1

Zw(x)
exp{w>f(x, y)}, (2.6)

whereZw(x) =
∑

y∈Y exp{w>f(x, y)}. The optimal weights are selected by maximiz-

ing the conditional likelihood of the data (minimizing the log-loss) with some regulariza-

tion. This approach is called the (regularized)maximum likelihood estimation. Common

choices for regularization are1 or 2-norm regularization on the weights; we use2-norm

below:

min
1

2
||w||2 + C

∑
i

log Zw(x(i))−w>f(x(i), y(i)), (2.7)

whereC is a user-specified constant the determines the trade-off between regularization

and likelihood of the data. The log-losslog Zw(x)−w>f(x, y) is an upper bound (up to a

constant) on the0/1 loss`0/1 (see Fig. 2.2).

2.3. LOGISTIC DUAL AND MAXIMUM ENTROPY 21

2.3 Logistic dual and maximum entropy

The objective function is convex in the parametersw, so we have an unconstrained (differ-

entiable) convex optimization problem. The gradient with respect tow is given by:

w + C
∑

i

Ei,w[fi(x
(i), y)]− fi(x

(i), y(i)) = w − C
∑

i

Ei,w[∆fi(y)],

whereEi,w[f(y)] =
∑

y f(y)Pw(y | x(i)) is the expectation under the conditional distribu-

tion Pw(y | x(i)) and∆fi(y) = f(x(i), y(i)) − f(x(i), y). Ignoring the regularization term,

the gradient is zero when the basis function expectations are equal to the basis functions

evaluated on the labelsy(i). It can be shown [Cover & Thomas, 1991] that the dual of the

maximum likelihood problem (without regularization) is the maximum entropy problem:

max −
∑
i,y

Pw(y | x(i)) log Pw(y | x(i)) (2.8)

s.t. Ei,w[∆fi(y)] = 0, ∀i.

We can interpret logistic regression as trying to match the empirical basis function expec-

tations while maintaining a high entropy conditional distributionPw(y | x).

2.4 Support vector machines

Support vector machines [Vapnik, 1995] select the weights based on the “margin” of con-

fidence ofhw. In the multi-class SVM formulation [Weston & Watkins, 1998; Crammer &

Singer, 2001], the margin on examplei quantifies by how much the true label “wins” over

the wrong ones:

γi =
1

||w|| min
y 6=y(i)

w>f(x(i), y(i))−w>f(x(i), y) =
1

||w|| min
y 6=y(i)

w>∆fi(y),

22 CHAPTER 2. SUPERVISED LEARNING

where∆fi(y) = f(x(i), y(i))− f(x(i), y). Maximizing the smallest such margin (and allow-

ing for negative margins) is equivalent to solving the following quadratic program:

min
1

2
||w||2 + C

∑
i

ξi (2.9)

s.t. w>∆fi(y) ≥ `0/1(y)− ξi, ∀i, ∀y ∈ Y .

Note that the slack variableξi is constrained to be positive in the above program since

w>∆fi(y
(i)) = 0 and`0/1(y(i)) = 0. We can also expressξi asmaxy `

0/1
i (y) −w>∆fi(y),

and the optimization problem Eq. (2.9) in a form similar to Eq. (2.7):

min
1

2
||w||2 + C

∑
i

max
y

[`
0/1
i (y)−w>∆fi(y)]. (2.10)

The hinge-lossmaxy[`
0/1
i (y) − w>∆fi(y)] is also an upper bound on the0/1 loss `0/1

(see Fig. 2.2).

2.5 SVM dual and kernels

The form of the dual of Eq. (2.9) is crucial to efficient solution of SVM and the ability to

use a high or even infinite dimensional set of basis functions via kernels.

max
∑
i,y

αi(y)`
0/1
i (y)− 1

2

∣∣∣∣∣

∣∣∣∣∣
∑
i,y

αi(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

(2.11)

s.t.
∑

y

αi(y) = C, ∀i; αi(y) ≥ 0, ∀i, y.

In the dual, theαi(y) variables correspond to thew>∆fi(y) ≥ `0/1(y)−ξi constraints in the

primal Eq. (2.9). The solution to the dualα∗ gives the solution to the primal as a weighted

combination of basis functions of examples:

w∗ =
∑
i,y

α∗i (y)∆fi(y).

2.5. SVM DUAL AND KERNELS 23

The pairings of examples and incorrect labels,(i, y), that have non-zeroα∗i (y), are called

support vectors.

An important feature of the dual formulation is that the basis functionsf appear only as

dot products. Expanding the quadratic term, we have:

∣∣∣∣∣

∣∣∣∣∣
∑
i,y

αi(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

=
∑
i,y

∑
j,ȳ

αi(y)αj(ȳ)∆fi(y)>∆fj(ȳ).

Hence, as long as the dot productf(x, y)>f(x̄, ȳ) can be computed efficiently, we can

solve Eq. (2.11) independently of the actual dimension off . Note that at classification

time, we also do not need to worry about the dimension off since:

w>f(x, ȳ) =
∑
i,y

αi(y)∆fi(y)>f(x, ȳ) =
∑
i,y

αi(y)[f(x(i), y(i))>f(x, ȳ)−f(x(i), y)>f(x, ȳ)].

For example, we might have basis functions that are polynomial of degreed in terms of

image pixels,fj(x, y) = 1I(xrow1,col1 = on ∧ . . . ∧ xrowd,cold = on ∧ y = char) for each

possible(row1, col1) . . . (rowd, cold) and char ∈ Y . Computing this polynomial kernel

can be done independently of the dimensiond, even though the number of basis functions

grows exponentially withd [Vapnik, 1995].

In fact, logistic regression can also be kernelized. However, the hinge loss formulation

usually produces sparse solutions in terms of the number of support vectors, while solutions

to the corresponding kernelized log-loss problem are generally non-sparse (all examples

are support vectors) and require approximations for even relatively small datasets [Wahba

et al., 1993; Zhu & Hastie, 2001].

Chapter 3

Structured models

Consider once more the problem of character recognition. In fact, a more natural and useful

task is recognizing words and entire sentences. Fig. 3.1 shows an example handwritten

word “brace.” Distinguishing between the second letter and fourth letter (‘r’ and ‘c’)in

isolation is far from trivial, but in the context of the surrounding letters that together form

a word, this task is much less error-prone for humans and should be for computers as well.

In this chapter, we consider prediction problems in which the output is not a single

discrete valuey, but a set of valuesy = (y1, . . . , yL), for example an entire sequence

of L characters. For concreteness, let the number of variablesL be fixed. The output

spaceY ⊆ Y1 × . . . × YL we consider is a subset of product of output spaces of single

variables. In word recognition, eachYj is the alphabet, whileY is the dictionary. This

joint output space is often a proper subset of the product of singleton output spaces,Y ⊂
Y1×. . .×YL. In word recognition, we might restrict that the letter ‘q’ never follows by ‘z’ in

English. In addition to “hard” constraints, the output variables are often highly correlated,

e.g. consecutive letters in a word. We refer to joint spaces with constraints and correlations

asstructured. We call problems with discrete output spacesstructured classificationor

structured prediction . Structured modelswe consider in this chapter (and thesis) predict

the outputsjointly, respecting the constraints and exploiting the correlations in the output

space.

The range of prediction problems these broad definitions encompass is immense, aris-

ing in fields as diverse as natural language analysis, machine vision, and computational

24

3.1. PROBABILISTIC MODELS: GENERATIVE AND CONDITIONAL 25

b r a c e
Figure 3.1: Handwritten word recognition: sample from Kassel [1995] data set.

biology, to name a few. The class of structured modelsH we consider is essentially of the

same form as in previous chapter, except thaty has been replaced byy:

hw(x) = arg max
y :g(x,y)≤0

w>f(x,y), (3.1)

where as beforef(x,y) is a vector of functionsf : X × Y 7→ IRn. The output space

Y = {y : g(x,y) ≤ 0} is defined using a vector of functionsg(x,y) that define the

constraints, whereg : X × Y 7→ IRk. This formulation is very general. Clearly, for

manyf ,g pairs, finding the optimaly is intractable. For the most part, we will restrict our

attention to models where this optimization problem can be solved in polynomial time. This

includes, for example, probabilistic models like Markov networks (in certain cases) and

context-free grammars, combinatorial optimization problems like min-cut and matching,

convex optimization such as linear, quadratic and semi-definite programming. In other

cases, like intractable Markov networks (Ch. 8) and correlation clustering (Ch. 11), we use

anapproximatepolynomial time optimization procedure.

3.1 Probabilistic models: generative and conditional

The termmodel is often reserved for probabilistic models, which can be subdivided into

generative and conditional with respect to the prediction task. A generative model assigns

a normalized joint densityp(x,y) to the input and output spaceX × Y with

p(x,y) ≥ 0,
∑
y∈Y

∫

x∈X
p(x,y) = 1.

26 CHAPTER 3. STRUCTURED MODELS

A conditional model assigns a normalized densityp(y | x) only over the output spaceY
with

p(y | x) ≥ 0,
∑
y∈Y

p(y | x) = 1 ∀x ∈ X .

Probabilistic interpretation of the model offers well-understood semantics and an im-

mense toolbox of methods for inference and learning. It also provides an intuitive measure

of confidence in the predictions of a model in terms of conditional probabilities. In addi-

tion, generative models are typically structured to allow very efficient maximum likelihood

learning. A very common class of generative models is the exponential family:

p(x,y) ∝ exp{w>f(x,y)}.

For exponential families, the maximum likelihood parametersw with respect to the joint

distribution can be computed in closed form using the empirical basis function expectations

ES[f(x,y)] [DeGroot, 1970; Hastieet al., 2001].

Of course, this efficiency comes at a price. Any model is an approximation to the true

distribution underlying the data. A generative model must make simplifying assumptions

(more precisely, independence assumptions) about the entirep(x,y), while a conditional

model makes many fewer assumption by focusing onp(y | y). Because of this, by opti-

mizing the model to fit the joint distributionp(x,y), we may be tuning the approximation

away from optimal conditional distributionp(y | x), which we use to make the predictions.

Given sufficient data, the conditional model will learn the best approximation top(y | x)

possible usingw, while the generative modelp(x,y) will not necessarily do so. Typically,

however, generative models actually need fewer samples to converge to a good estimate of

the joint distribution than conditional models need to accurately represent the conditional

distribution. In a regime with very few training samples (relative to the number of param-

etersw), generative models may actually outperform conditional models [Ng & Jordan,

2001].

3.2. PREDICTION MODELS: NORMALIZED AND UNNORMALIZED 27

3.2 Prediction models: normalized and unnormalized

Probabilistic semantics are certainly not necessary for a good predictive model if we are

simply interested in the optimal prediction (thearg max in Eq. (3.1)). As we discussed

in the previous chapter, support vector machines, which do not represent a conditional

distribution, typically perform as well or better than logistic regression [Vapnik, 1995;

Cristianini & Shawe-Taylor, 2000].

In general, we can often achieve higher accuracy models when we do not learn a nor-

malized distribution over the outputs, but concentrate on the margin ordecision boundary,

the difference between the optimaly and the rest. Even more importantly, in many cases

we discuss below, normalizing the model (summing over the entireY) is intractable, while

the optimaly can be found in polynomial time. This fact makes standard maximum like-

lihood estimation infeasible. The learning methods we advocate in this thesis circumvent

this problem by requiring only the maximization problem to be tractable. We still heav-

ily rely on the representation and inference tools familiar from probabilistic models for

the construction of and prediction in unnormalized models, but largely dispense with the

probabilistic interpretation when needed. Essentially, we use the termmodelvery broadly,

to include any scheme that assigns scores to the output spaceY and has a procedure for

finding the optimal scoringy.

In this chapter, we review basic concepts in probabilistic graphical models calledMar-

kov networksorMarkov random fields. We also briefly touch upon examples of context-free

grammars and combinatorial problems that will be explained in greater detail in Part III to

illustrate the range of prediction problems we address.

3.3 Markov networks

Markov networks provide a framework for a rich family of models for both discrete and

continuous prediction [Pearl, 1988; Cowellet al., 1999]. The models treat the inputs and

outputs as random variablesX with domainX andY with domainY and compactly de-

fine a conditional densityp(Y | X) or distributionP (Y | X) (we concentrate here on the

28 CHAPTER 3. STRUCTURED MODELS

conditional Markov networks or CRFs [Laffertyet al., 2001]). The advantage of agraphi-

cal framework is that it can exploit sparseness in the correlations between outputsY . The

graphical structure of the models encodes thequalitativeaspects of the distribution: direct

dependencies as well as conditional independencies. Thequantitativeaspect of the model

is defined by thepotentialsthat are associated with nodes and cliques of the graph. Before

a formal definition, consider a first-order Markov chain a model for the word recognition

task. In Fig. 3.2, the nodes are associated with output variablesYi and the edges correspond

to direct dependencies or correlations. We do not explicitly represent the inputsX in the

figure. For example, the model encodes thatYj is conditionally independent of the rest of

the variables givenYj−1, Yj+1. Intuitively, adjacent letters in a word are highly correlated,

but the first-order model is making the assertion (which is certainly an approximation) that

once the value of a letterYj is known, the correlation between a letterYb beforej and a

letterYa afterj is negligible. More precisely, we use a model where

P (Yb | Yj, Ya,x) = P (Yb | Yj,x), P (Ya | Yj, Yb,x) = P (Ya | Yj,x), b < j < a.

For the purposes of finding the most likelyy, this conditional independence property means

that the optimization problem is decomposable: given thatYj = yj, it suffices toseparately

find the optimal subsequence from1 to j ending withyj, and the optimal subsequence

starting withyj from j to L.

3.3.1 Representation

The structure of a Markov network is defined by an undirected graphG = (V , E), where

the nodes are associated with variablesV = {Y1, . . . , YL}. A clique is a set of nodesc ⊆ V
that form a fully connected subgraph (every two nodes are connected by an edge). Note that

each subclique of a clique is also a clique, and we consider each node a singleton clique.

In the chain network in Fig. 3.2, the cliques are simply the nodes and the edges:C(G) =

{{Y1}, . . . , {Y5}, {Y1, Y2}, . . . , {Y4, Y5}}. We denote the set of variables in a cliquec as

Yc, an assignment of variables in the clique asyc and the space of all assignments to

the clique asYc. We focus on discrete output spacesY below, but many of the same

representation and inference concepts translate to continuous domains. No assumption is

3.3. MARKOV NETWORKS 29

Figure 3.2: First-order Markov chain:φi(Yi) are node potentials,φi,i+1(Yi, Yi+1) are edge
potentials (dependence onx is not shown).

made aboutX .

Definition 3.3.1 A Markov network is defined by an undirected graphG = (V , E) and a

set of potentialsΦ = {φc}. The nodes are associated with variablesV = {Y1, . . . , YL}.
Each cliquec ∈ C(G) is associated with apotentialφc(x,yc) with φc : X × Yc 7→ IR+,

which specifies a non-negative value for each assignmentyc to variables inYc and any

inputx. The Markov network(G, Φ) defines a conditional distribution:

P (y | x) =
1

Z(x)

∏

c∈C(G)

φc(x,yc),

whereC(G) is the set of all the cliques of the graph andZ(x) is thepartition function

given byZ(x) =
∑

y∈Y
∏

c∈C(G) φc(x,yc).

In our example Fig. 3.2, we have node and edge potentials. Intuitively, the node poten-

tials quantify the correlation between the inputx and the value of the node, while the edge

potentials quantify the correlation between the pair of adjacent output variables as well as

the inputx. Potentials do not have alocal probabilistic interpretation, but can be thought

of as defining an unnormalized score for each assignment in the clique. Conditioned on

the image input, appropriate node potentials in our network should give high scores to the

correct letters (‘b’,‘r’,‘a’,‘c’,‘e’), though perhaps there would be some ambiguity with the

second and fourth letter. For simplicity, assume that the edge potentials would not depend

30 CHAPTER 3. STRUCTURED MODELS

on the images, but simply should give high scores to pairs of letters that tend to appear often

consecutively. Multiplied together, these scores should favor the correct output “brace”.

In fact, a Markov network is a generalized log-linear model, since the potentialsφc(xc,yc)

could be represented (in log-space) as a sum of basis functions overx,yc:

φc(xc,yc) = exp

[
nc∑

k=1

wc,kfc,k(x,yc)

]
= exp

[
w>

c fc(x,yc)
]

wherenc is the number of basis functions for the cliquec. Hence the log of the conditional

probability is given by:

log P (y | x) =
∑

c∈C(G)

w>
c fc(x,yc)− log Zw(x).

In case of node potentials for word recognition, we could use the same basis functions as

for individual character recognition:fj,k(x, yj) = 1I(xj,row,col = on ∧ yj = char) for each

possible(row, col) in xj, the window of the image that corresponds to letterj and each

char ∈ Yj (we assume the input has been segmented into imagesxj that correspond to

letters). In general, we condition a clique only on a portion of the inputx, which we denote

asxc. For the edge potentials, we can define basis functions for each combination of letters

(assume for simplicity no dependence onx) : fj,j+1,k(x, yj, yj+1) = 1I(yj = char1∧yj+1 =

char2) for eachchar1 ∈ Yj andchar2 ∈ Yj+1. In this problem (as well as many others),

we are likely to “tie” or “share” the parameters of the modelwc across cliques. Usually, all

single node potentials would share the same weights and basis functions (albeit the relevant

portion of the inputxc is different) and similarly for the pairwise cliques, no matter in what

position they appear in the sequence.1

With slight abuse of notation, we stack all basis functions into one vectorf . For the

sequence model,f has node functions and edge functions, so whenc is a node, the edge

functions inf(xc,yc) are defined to evaluate to zero. Similarly, whenc is an edge, the node

1Sometimes we might actually want some dependence on the position in the sequence, which can be
accomplished by adding more basis functions that condition on the position of the clique.

3.3. MARKOV NETWORKS 31

functions inf(xc,yc) are also defined to evaluate to zero. Now we can write:

f(x,y) =
∑

c∈C(G)

f(xc,yc).

We stack the weights in the corresponding manner, so the most likely assignment according

to the model is given by:

arg max
y∈Y

log Pw(y | x) = arg max
y∈Y

w>f(x,y),

in the same form as Eq. (3.1).

3.3.2 Inference

There are several important questions that can be answered by probabilistic models. The

task of finding the most likely assignment, known as maximum a-posteriori (MAP) or most

likely explanation (MPE), is just one of such questions, but most relevant to our discussion.

The Viterbi dynamic programming algorithm solves this problem for chain networks in

O(L) time. Let the highest score of any subsequence from1 to k > 1 ending with valueyk

be defined as

φ∗k(yk) = max
y1..k−1

∏
j

φj(x, yj)φj(x, yj−1, yj).

The algorithm computes the highest scores recursively:

φ∗1(y1) = φ1(x, y1), ∀y1 ∈ Y1;

φ∗k(yk) = max
yk−1∈Yk−1

φ∗k−1(yk−1)φj(x, yk)φj(x, yk−1, yk), 1 < k ≤ L, ∀yk ∈ Yk.

The highest scoring sequence has scoremaxyL
φ∗L(yL). Using thearg max’s of themax’s in

the computation ofφ∗, we can back-trace the highest scoring sequence itself. We assume

that score ties are broken in a predetermined way, say according to some lexicographic

order of the symbols.

32 CHAPTER 3. STRUCTURED MODELS

Figure 3.3: Diamond Markov network (added triangulation edge is dashed).

In general Markov networks, MAP inference is NP-hard [Cowellet al., 1999]. How-

ever, there are several important subclasses of networks that allow polynomial time infer-

ence. The most important of these is the class of networks withlow tree-width. We need the

concept of triangulation (or chordality) to formally define tree-width. Recall that acycle

of lengthl in an undirected graphG is a sequence of nodes(v0, v1, . . . , vl), distinct except

thatv0 = vl, which are connected by edges(vi, vi+1) ∈ G. A chordof this cycle is an edge

(vi, vj) ∈ G between non-consecutive nodes.

Definition 3.3.2 (Triangulated graph) An undirected graphG is triangulatedif every one

of its cycles of length≥ 4 possesses a chord.

Singly-connected graphs, like chains and trees, are triangulated since they contain no cy-

cles. The simplest untriangulated network is the diamond in Fig. 3.3. To triangulate it,

we can add the edge(Y1, Y3) or (Y2, Y4). In general, there are many possible sets of edges

that can be added to triangulate a graph. The inference procedure creates a tree of cliques

using the graph augmented by triangulation. The critical property of a triangulation for the

inference procedure is the size of the largest clique.

Definition 3.3.3 (Tree-width of a graph) Thetree-widthof a triangulated graphG is the

size of its largest clique minus1. The tree-width of an untriangulated graphG is the

minimum tree-width of all triangulations ofG.

3.3. MARKOV NETWORKS 33

The tree-width of a chain or a tree is1 and the tree-width of Fig. 3.3 is2. Finding the mini-

mum tree-width triangulation of a general graph is NP-hard, but good heuristic algorithms

exist [Cowellet al., 1999].

The inference procedure is based on a data structure calledjunction treethat can be

constructed for a triangulated graph. The junction tree is an alternative representation of

the same distribution that allows simple dynamic programming inference similar to the

Viterbi algorithm for chains.

Definition 3.3.4 (Junction tree) A junction treeT = (V , E) for a triangulated graphG is

a tree in which the nodes are a subset of the cliques of the graph,V ⊆ C(G) and the edges

E satisfy therunning intersection property: for any two cliquesc andc′, the variables in

the intersectionc ∩ c′ are contained in the clique of every node of the tree on the (unique)

path betweenc andc′.

Fig. 3.4 shows a junction tree for the diamond network. Each of the original clique poten-

tials must associated with exactly one node in the junction tree. For example, the potentials

for the{Y1, Y3, Y4} and{Y1, Y3, Y4} nodes are the product of the associated clique poten-

tials:

φ134(Y1, Y3, Y4) = φ1(Y1)φ4(Y4)φ14(Y1, Y4)φ34(Y3, Y4),

φ123(Y1, Y2, Y3) = φ2(Y2)φ3(Y3)φ12(Y1, Y2)φ23(Y2, Y3).

Algorithms for constructing junction trees from triangulated graphs are described in detail

in Cowellet al. [1999].

The Viterbi algorithm for junction trees picks an arbitrary rootr for the treeT and

proceeds recursively from the leaves to compute the highest scoring subtree at a node by

combining the subtrees with highest score from its children. We denote the leaves of the

tree asLv(T) and the children of nodec (relative to the root r) asChr(c):

φ∗l (yl) = φl(x,yl), ∀l ∈ Lv(T), ∀yl ∈ Yl;

φ∗c(yc) = φc(x,yc)
∏

c′∈Chr(c)

max
yc′∼yc

φ∗c′(yc′), ∀c ∈ V(T) \ Lv(T), ∀yc ∈ Yc,

34 CHAPTER 3. STRUCTURED MODELS

Figure 3.4: Diamond network junction tree. Each of the original potentials is associated
with a node in the tree.

whereyc′ ∼ yc denotes whether the partial assignmentyc is consistent with the partial

assignmentyc′ on the variables in the intersection ofc andc′. The highest score is given by

maxyr φ∗r(yr). Using thearg max’s of themax’s in the computation ofφ∗, we can back-

trace the highest scoring assignment itself. Note that this algorithm is exponential in the

tree-width, the size of the largest clique. Similar type of computations using the junction

tree can be used to compute the partition functionZw(x) (by simply replacingmax by
∑

)

as well as marginal probabilitiesP (yc|x) for the cliques of the graph [Cowellet al., 1999].

3.3.3 Linear programming MAP inference

In this section, we present an alternative inference method based on linear programming.

Although solving the MAP inference using a general LP solver is less efficient than the

dynamic programming algorithms above, this formulation is crucial in viewing Markov

networks in a unified framework of the structured models we consider and to our develop-

ment of common estimation methods in later chapters. Let us begin with a linear integer

program to compute the optimal assignmenty. We represent an assignment as a set binary

variablesµc(yc), one for each cliquec and each value of the cliqueyc, that denotes whether

the assignment has that value, such that:

log
∏

c

φc(x,yc) =
∑
c,yc

µc(yc) log φc(x,yc).

3.3. MARKOV NETWORKS 35

0000

0010

0000

0000

0000

0010

0000

0000

0

1

0

0

0

1

0

0

0010 0010

Figure 3.5: Example of marginal agreement: row sums ofµ12(y1, y2) agree withµ1(y1),
column sums agree withµ2(y2).

We call these variables marginals, as they correspond to the marginals of a distribution that

has all of its mass centered on the MAP instantiation (assuming it is unique). There are

several elementary constraints that such marginals satisfy. First, they must sum to one for

each clique. Second, the marginals for cliques that share variables are consistent. For any

clique c ∈ C and a subcliques ⊂ c, the assignment of the subclique,µs(ys), must be

consistent with the assignment of the clique,µc(yc). Together, these constraints define a

linear integer program:

max
∑
c,yc

µc(yc) log φc(x,yc) (3.2)

s.t.
∑
yc

µc(yc) = 1, ∀c ∈ C; µc(yc) ∈ {0, 1}, ∀c ∈ C, ∀yc;

µs(ys) =
∑

y′c∼ys

µc(y
′
c), ∀s, c ∈ C, s ⊂ c, ∀ys.

For example, in case the network is a chain or a tree, we will have node and edge marginals

that sum to1 and agree with each other as in Fig. 3.5.

Clearly, for any assignmenty′, we can defineµc(yc) variables that satisfy the above

constraints by settingµc(yc) = 1I(y′c = yc). We can also show that converse is true: any

valid setting ofµc(yc) corresponds to a valid assignmenty. In fact,

36 CHAPTER 3. STRUCTURED MODELS

Lemma 3.3.5 For a triangulated network with unique MAP assignment, the integrality

constraint in the integer program in Eq. (3.2) can be relaxed and the resulting LP is guar-

anteed to have integer solutions.

A proof of this lemma appears in Wainwrightet al. [2002]. Intuitively, the constraints force

the marginalsµc(yc) to correspond to some valid joint distribution over the assignments.

The optimal distribution with the respect to the objective puts all its mass on the MAP

assignment. If the MAP assignment is not unique, the value of the LP is the same as

the value of the integer program, and any linear combination of the MAP assignments

maximizes the LP.

In case the network is not triangulated, the set of marginals is not guaranteed to rep-

resent a valid distribution. Consider, for example, the diamond network in Fig. 3.3 with

binary variables, with the following edge marginals that are consistent with the constraints:

µ12(0, 0) = µ12(1, 1) = 0.5, µ12(1, 0) = µ12(0, 1) = 0;

µ23(0, 0) = µ23(1, 1) = 0.5, µ23(1, 0) = µ23(0, 1) = 0;

µ34(0, 0) = µ34(1, 1) = 0.5, µ34(1, 0) = µ34(0, 1) = 0;

µ14(0, 0) = µ34(1, 1) = 0, µ14(1, 0) = µ14(0, 1) = 0.5.

The corresponding node marginals must all be set to0.5. Note that the edge marginals for

(1, 2), (2, 3), (3, 4) disallow any assignment other than0000 or 1111, but the edge marginal

for (1, 4) disallows any assignment that hasY1 = Y4. Hence this set of marginals dis-

allows all assignments. If we triangulate the graph and add the cliques{Y1, Y2, Y3} and

{Y1, Y3, Y4} with their corresponding constraints, the above marginals will be disallowed.

In graphs where triangulation produces very large cliques, exact inference is intractable.

We can resort to the above LPwithouttriangulation as an approximate inference procedure

(augmented with some procedure for rounding possibly fractional solutions). In Ch. 7, we

discuss another subclass of networks where MAP inference using LPs is tractable for any

network topology, but with a restricted type of potentials.

3.4. CONTEXT FREE GRAMMARS 37

Figure 3.6: Example parse tree from Penn Treebank [Marcuset al., 1993].

3.4 Context free grammars

Context-free grammars are one of the primary formalisms for capturing the recursive struc-

ture of syntactic constructions [Manning & Schütze, 1999]. For example, Fig. 3.6 shows

a parse tree for the sentenceThe screen was a sea of red. This tree is from the Penn Tree-

bank [Marcuset al., 1993], a primary linguistic resource for expert-annotated English text.

The non-terminal symbols (labels of internal nodes) correspond to syntactic categories such

as noun phrase (NP), verbal phrase (VP) or prepositional phrase (PP) and part-of-speech

tags like nouns (NN), verbs (VBD), determiners (DT) and prepositions (IN). The terminal

symbols (leaves) are the words of the sentence.

For clarity of presentation, we restrict our grammars to be in Chomsky normal form2(CNF),

where all rules in the grammar are of the form:A → B C andA → D, whereA,B andC

are non-terminal symbols, andD is a terminal symbol.

Definition 3.4.1 (CFG) A CFGG consists of:

◦ A set of non-terminal symbols,N
◦ A designated set of start symbols,NS ⊆ N

2Any CFG can be represented by another CFG in CNF that generates the same set of sentences.

38 CHAPTER 3. STRUCTURED MODELS

◦ A set of terminal symbols,T
◦ A set of productions,P = {PB,PU}, divided into

. Binary productions,PB = {A → B C : A, B, C ∈ N} and

. Unary productions,PU = {A → D : A ∈ N , D ∈ T }.

Consider a very simple grammar:

◦ N = {S, NP, VP, PP, NN, VBD, DT, IN}
◦ NS = {S}
◦ T = {The, the, cat, dog, tree, saw, from}
◦ PB = {S → NP VP, NP → DT NN, NP → NP PP, VP → VBD NP,

VP → VP PP, PP → IN NP}.
◦ PU = {DT → The, DT → the, NN → cat, NN → dog, NN → tree, VBD → saw,

IN → from}

A grammar generates a sentence by starting with a symbol inNS and applying the

productions inP to rewrite nonterminal symbols. For example, we can generateThe cat

saw the dogby starting withS → NP VP, rewriting theNP asNP → DT NN with DT →
The andNN → cat, then rewriting theVP asVP → VBD NP with VBD → saw, again

usingNP → DT NN, but now withDT → the andNN → dog. We can represent such

derivations using trees like in Fig. 3.6 or (more compactly) using bracketed expressions

like the one below:

[[TheDT catNN]NP [sawVBD [theDT dogNN]NP]VP]S .

The simple grammar above can generate sentences of arbitrary length, since it has sev-

eral recursive productions. It can also generate the same sentence several ways. In general,

there are exponentially many parse trees that produce a sentence of lengthl. Consider the

sentenceThe cat saw the dog from the tree. The likely analysis of the sentence is that

the cat, sitting in the tree, saw the dog. An unlikely but possible alternative is that the cat

3.4. CONTEXT FREE GRAMMARS 39

actually saw the dog who lived near the tree or was tied to it in the past. Our grammar

allows both interpretations, with the difference being in the analysis of the top-levelVP:

[sawVBD [theDT dogNN]NP]VP [[fromIN [theDT treeNN]NP]PP,

sawVBD [[theDT dogNN]NP [fromIN [theDT treeNN]NP]PP]NP.

This kind of ambiguity, called prepositional attachment, is very common in many re-

alistic grammars. A standard approach to resolving ambiguity is to use a PCFG to define

a joint probability distribution over the space of parse treesY and sentencesX . Standard

PCFG parsers use a Viterbi-style algorithm to computearg maxy P (x,y) as the most likely

parse tree for a sentencex. The distributionP (x,y) is defined by assigning a probability

to each production and making sure that the sum of probabilities of all productions starting

with a each symbol is1:

∑
B,C:A→B C∈PB

P (A → B C) = 1,
∑

D:A→D∈PU

P (A → D) = 1, ∀A ∈ N .

We also need to assign a probability to the different starting symbolsP (A) ∈ NS such that∑
A∈NS

P (A) = 1. The probability of a tree is simply the product of probabilities of the

productions used in the tree (times the probability of the starting symbol). Hence the log-

probability of a tree is a sum of the log-probabilities of its productions. By letting our basis

functionsf(x,y) consist of the counts of the productions andw be their log-probabilities,

we can cast PCFG as a structured linear model (in log space). In Ch. 9, we will show how

to represent a parse tree as an assignment of variablesY with appropriate constraints to

express PCFGS (and more generally weighted CFGs) in the form of Eq. (3.1) as

hw(x) = arg max
y :g(x,y)≤0

w>f(x,y),

and describe the associated algorithm to compute the highest scoring parse treey given a

sentencex.

40 CHAPTER 3. STRUCTURED MODELS

3.5 Combinatorial problems

Many important computational tasks are formulated as combinatorial optimization prob-

lems such as the maximum weight bipartite and perfect matching, spanning tree, graph-cut,

edge-cover, bin-packing, and many others [Lawler, 1976; Papadimitriou & Steiglitz, 1982;

Cormenet al., 2001]. These problems arise in applications such as resource allocation,

job assignment, routing, scheduling, network design and many more. In some domains,

the weights of the objective function in the optimization problem are simple and natural

to define (for example, Euclidian distance or temporal latency), but in many others, con-

structing the weights is an important and labor-intensive design task. Treated abstractly, a

combinatorial space of structures, such as matchings or graph-cuts or trees), together with

a scoring scheme that assigns weights to candidate outputs is a kind of a model.

As a particularly simple and relevant example, consider modeling the task of assigning

reviewers to papers as a maximum weight bipartite matching problem, where the weights

represent the “expertise” of each reviewer for each paper. More specifically, suppose we

would like to haveR reviewers per paper, and that each reviewer be assigned at mostP pa-

pers. For each paper and reviewer, we have an a weightqjk indicating the qualification level

of reviewerj for evaluating paperk. Our objective is to find an assignment for reviewers

to papers that maximizes the total weight. We represent a matching with a set of binary

variablesyjk that take the value1 if reviewerj is assigned to paperk, and0 otherwise. The

bipartite matching problem can be solved using a combinatorial algorithm or the following

linear program:

max
∑

j,k

µjkqjk (3.3)

s.t.
∑

j

µjk = R,
∑

k

µjk ≤ P, 0 ≤ µjk ≤ 1.

This LP is guaranteed to produce integer solutions (as long asP andR are integers) for

any weightsq(y) [Nemhauser & Wolsey, 1999].

The quality of the solution found depends critically on the choice of weights that de-

fine the objective. A simple scheme could measure the “expertise” as the percent of word

3.5. COMBINATORIAL PROBLEMS 41

overlap in the reviewer’s home page and the paper’s abstract. However, we would want to

weight certain words much more (words that are relevant to the subject and infrequent).

Constructing and tuning the weights for a problem is a difficult and time-consuming pro-

cess, just as it is for Markov networks for handwriting recognition.

As usual, we will represent the objectiveq(y) as a weighted combination of a set of

basis functionsw>f(x,y). Let xjk denote the intersection of the set of words occurring in

webpage(j)∩abstract(k), the web page of a reviewerj and the abstract of the paperk. We

can definefd(x,y) =
∑

jk yjk1I(wordd ∈ xjk), the number of times wordd was in both

the web page of a reviewer and the abstract of the paper that were matched iny. Then the

scoreqjk is simplyqjk =
∑

d wd1I(wordd ∈ xjk), a weighted combination of overlapping

words. In the next chapter we will show how to learn the parametersw in much the same

way we learn the parametersw of a Markov network.

The space of bipartite matchings illustrates an important property of many structured

spaces: the maximization problemarg maxy∈Y w>f(x,y) is easier than the normalization

problem
∑

y∈Y exp{w>f(x,y)}. The maximum weight bipartite matching can be found

in polynomial (cubic) time in the number of nodes in the graph using a combinatorial algo-

rithm. However, even simply counting the number of matchings is#P-complete [Valiant,

1979; Garey & Johnson, 1979]. Note that counting is easier than normalization, which is

essentially weighted counting. This fact makes a probabilistic interpretation of the model as

a distribution over matchings intractable to compute. Similarly, exact maximum likelihood

estimation is intractable, since it requires computing the normalization.

Chapter 4

Structured maximum margin estimation

In the previous chapter, we described several important types of structured models of the

form:

hw(x) = arg max
y :g(x,y)≤0

w>f(x,y), (4.1)

where we assume that the optimization problemmaxy :g(x,y)≤0 w>f(x,y) can be solved

or approximated by a compact convex optimization problem for some convex subset of

parametersw ∈ W . A compactproblem formulation is polynomial in the description

length of the objective and the constraints.

Given a sampleS = {(x(i),y(i))}m
i=1, we develop methods for finding parametersw

such that:

arg max
y∈Y(i)

w>f(x(i),y) ≈ y(i), ∀i,

whereY(i) = {y : g(x(i),y) ≤ 0}. In this chapter, we describe at an abstract level two

general approaches to structured estimation that we apply in the rest of the thesis. Both of

these approaches define a convex optimization problem for finding such parametersw.

There are several reasons to derive compact convex formulations. First and foremost,

we can find globally optimal parameters (with fixed precision) in polynomial time. Sec-

ond, we can use standard optimization software to solve the problem. Although special-

purpose algorithms that exploit the structure of a particular problem are often much faster

42

4.1. MAX-MARGIN ESTIMATION 43

(see Ch. 6), the availability of off-the-shelf software is very important for quick develop-

ment and testing of such models. Third, we can analyze the generalization performance of

the framework without worrying about the actual algorithms used to carry out the optimiza-

tion and the associated woes of intractable optimization problems: local minima, greedy

and heuristic methods, etc.

Our framework applies not only to the standard models typically estimated by prob-

abilistic methods, such as Markov networks and context-free grammars, but also to a

wide range of “unconventional” predictive models. Such models include graph cuts and

weighted matchings, where maximum likelihood estimation is intractable. We provide ex-

act maximum margin solutions for several of these problems (Ch. 7 and Ch. 10).

In prediction problems where the maximization in Eq. (4.1) is intractable, we consider

convex programs that provide only an upper or lower bound on the true solution. We

discuss how to use these approximate solutions for approximate learning of parameters.

4.1 Max-margin estimation

As in the univariate prediction, we measure the error of approximation using a loss func-

tion `. In structured problems, where we are jointly predicting multiple variables, the loss

is often not just the simple0-1 loss or squared error. For structured classification, a natural

loss function is a kind of Hamming distance betweeny(i) andh(x(i)): the number of vari-

ables predicted incorrectly. We will explore these and more general loss functions in the

following chapters.

4.1.1 Min-max formulation

Throughout, we will adopt the hinge upper bound`i(h(x(i))) on the loss function for struc-

tured classification inspired by max-margin criterion:

`i(h(x(i))) = max
y∈Y(i)

[w>fi(y) + `i(y)]−w>fi(y
(i)) ≥ `i(h(x(i))),

44 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

where as before,̀i(h(x(i))) = `(x(i),y(i), h(x(i))), `i(h(x(i))) = `(x(i),y(i), h(x(i))), and

fi(y) = f(x(i),y). With this upper bound, the min-max formulation for structured classifi-

cation problem is analogous to multi-class SVM formulation in Eq. (2.9) and Eq. (2.10):

min
1

2
||w||2 + C

∑
i

ξi (4.2)

s.t. w>fi(y(i)) + ξi ≥ max
y∈Y(i)

[w>fi(y) + `i(y)], ∀i.

The above formulation is a convex quadratic program inw, sincemaxy∈Y(i) [w>fi(y) +

`i(y)] is convex inw (maximum of affine functions is a convex function). For brevity, we

did not explicitly include the constraint that the parameters are in some legal convex set

(w ∈ W, most often IRn), but assume this throughout this chapter.

The problem with Eq. (4.2) is that the constraints have a very unwieldy form. An-

other way to express this problem is using
∑

i |Y(i)| linear constraints, which is generally

exponential inLi, the number of variables inyi.

min
1

2
||w||2 + C

∑
i

ξi (4.3)

s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i).

This form reveals the “maximum margin” nature of the formulation. We can interpret
1

||w||w
>[fi(y

(i)) − fi(y)] as themarginof y(i) over anothery ∈ Y (i). Assumingξi are all

zero (say becauseC is very large), the constraints enforce

w>fi(y(i))−w>fi(y) ≥ `i(y),

so minimizing||w|| maximizes the smallest such margin, scaled by the loss`i(y). The

slack variablesξi allow for violations of the constraints at a costCξi. If the loss function is

not uniform over all the mistakesy 6= y(i), then the constraints make costly mistakes (those

with high `i(y)) less likely. In Ch. 5 we analyze the effect of non-uniform loss function

(Hamming distance type loss) on generalization, and show a strong connection between the

loss-scaled margin and expected risk of the learned model.

The formulation in Eq. (4.3) is a standard QP with linear constraints, but its exponential

4.1. MAX-MARGIN ESTIMATION 45

size is in general prohibitive. We now return to Eq. (4.2) and transform it to a a more man-

ageable problem. The key to solving Eq. (4.2) efficiently is theloss-augmentedinference

max
y∈Y(i)

[w>fi(y) + `i(y)]. (4.4)

Even ifmaxy∈Y(i) w>fi(y) can be solved in polynomial time using convex optimization, the

form of the loss term̀i(y) is crucial for the loss-augmented inference to remain tractable.

The range of tractable losses will depend strongly on the problem itself (f andY). Even

within the range of tractable losses, some are more efficiently computable than others. A

large part of the development of structured estimation methods in the following chapters

is identifying appropriate loss functions for the application and designing convex formula-

tions for the loss-augmented inference.

Assume that we find such a formulation in terms of a set of variablesµi, with a concave

(in µi) objectivef̃i(w, µi) and subject to convex constraintsg̃i(µi):

max
y∈Y(i)

[w>fi(y) + `i(y)] = max
µi:g̃i(µi)≤0

f̃i(w, µi). (4.5)

We call such formulation compact if the number of variablesµi and constraints̃gi(µi) is

polynomial inLi, the number of variables iny(i).

Note thatmaxµi:g̃i(µi)≤0 f̃i(w, µi) must be convex inw, since Eq. (4.4) is. Likewise,

we can assume that it is feasible and bounded if Eq. (4.4) is. In the next section, we de-

velop a max-margin formulation that uses Lagrangian duality (see [Boyd & Vandenberghe,

2004] for an excellent review) to define a joint, compact convex problem for estimating the

parametersw.

To make the symbols concrete, consider the example of the reviewer-assignment prob-

lem we discussed in the previous chapter: we would like a bipartite matching withR re-

viewers per paper and at mostP papers per reviewer. Each training samplei consists of a

matching ofN (i)
p papers andN (i)

r reviewers from some previous year. Letxjk denote the

intersection of the set of words occurring in the web page of a reviewerj and the abstract of

the paperk. Let yjk indicate whether reviewerj is matched to the paperk. We can define

a basis functionfd(xjk, yjk) = yjk1I(wordd ∈ xjk), which indicates whether the wordd is

46 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

in both the web page of a reviewer and the abstract of the paper that are matched iny. We

abbreviate the vector of all the basis functions for each edgejk asyjkf
(i)
jk = f(x

(i)
jk , yjk).

We assume that the loss function decomposes over the variablesyij. For example, the

Hamming loss simply counts the number of different edges in the matchingsy andy(i):

`H
i (y) =

∑

jk

`
0/1
i,jk(yjk) =

∑

jk

1I(yjk 6= y
(i)
jk) = RN (i)

p −
∑

jk

yjky
(i)
jk .

The last equality follows from the fact that any valid matching for examplei hasR review-

ers forN (i)
p papers, henceRN

(i)
p −∑

jk yjky
(i)
jk represents exactly the number of edges that

are different betweeny andy(i). Combining the two pieces, we have

w>f(x(i),y) =
∑

jk

[w>f(xjk, yjk) + `
0/1
i,jk(yjk)] = RN (i)

p +
∑

jk

yjk[w
>fjk − y

(i)
jk].

The loss-augmented inference problem can be then written as an LP inµi similar

to Eq. (3.3) (without the constant termRN
(i)
p):

max
∑

jk

µi,jk[w
>fjk − y

(i)
jk]

s.t.
∑

j

µi,jk = R,
∑

k

µi,jk ≤ P, 0 ≤ µi,jk ≤ 1.

In terms of Eq. (4.5),̃fi andg̃i are affine inµi: f̃i(w, µi) = RN
(i)
p +

∑
i,j µi,jk[w

>fjk−y
(i)
jk]

andg̃i(µi) ≤ 0 ⇔ ∑
j µi,jk = R,

∑
k µi,jk ≤ P, 0 ≤ µi,jk ≤ 1.

In general, when we can expressmaxy∈Y(i) w>f(x(i),y) as an LP and we use a loss

function this is linear in the number of mistakes, we have a linear program of this form for

the loss-augmented inference:

di + max (Fiw + ci)
>µi s.t. Aiµi ≤ bi, µi ≥ 0, (4.6)

for appropriately defineddi,Fi, ci,Ai,bi, which depend only onx(i), y(i), f(x,y) and

g(x,y). Note that the dependence onw is linear and only in the objective of the LP. If

this LP is compact (the number of variables and constraints is polynomial in the number of

4.1. MAX-MARGIN ESTIMATION 47

label variables), then we can use it to solve the max-margin estimation problem efficiently

by using convex duality.

TheLagrangian associated with Eq. (4.4) is given by

Li,w(µi, λi) = f̃i(w, µi)− λ>i g̃i(µi), (4.7)

whereλi ≥ 0 is a vector ofLagrange multipliers, one for each constraint function in

g̃i(µi). Since we assume that̃fi(w, µi) is concave inµi and bounded on the non-empty set

µi : g̃i(µi) ≤ 0, we havestrong duality:

max
µi:g̃i(µi)≤0

f̃i(w, µi) = min
λi≥0

max
µi

Li,w(µi, λi).

For many forms of̃f andg̃, we can write the Lagrangian dualminλi≥0 maxµi
Li,w(µi, λi)

explicitly as:

min hi(w, λi) (4.8)

s.t. qi(w, λi) ≤ 0,

wherehi(w, λi) and qi(w, λi) are convex in bothw and λi. (We foldedλi ≥ 0 into

qi(w, λi) for brevity.) Since the original problem had polynomial size, the dual is polyno-

mial size as well. For example, the dual of the LP in Eq. (4.6) is

di + minb>i λi s.t. A>
i λi ≥ Fiw + ci, λi ≥ 0, (4.9)

wherehi(w, λi) = di + b>i λi andqi(w, λi) ≤ 0 is {Fiw + ci −A>
i λi ≤ 0,−λi ≤ 0}.

Plugging Eq. (4.8) into Eq. (4.2), we get

min
1

2
||w||2 + C

∑
i

ξi (4.10)

s.t. w>fi(y(i)) + ξi ≥ min
qi(w,λi)≤0

hi(w, λi), ∀i.

Moreover, we can combine the minimization overλ with minimization over{w, ξ}. The

48 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

reason for this is that if the right hand side is not at the minimum, the constraint is tighter

than necessary, leading to a suboptimal solutionw. Optimizing jointly overλ as well will

produce a solution to{w, ξ} that is optimal.

min
1

2
||w||2 + C

∑
i

ξi (4.11)

s.t. w>fi(y(i)) + ξi ≥ hi(w, λi), ∀i;
qi(w, λi) ≤ 0, ∀i.

Hence we have a joint and compact convex optimization program for estimatingw.

The exact form of this program depends strongly onf̃ andg̃. For our LP-based example,

we have a QP with linear constraints:

min
1

2
||w||2 + C

∑
i

ξi (4.12)

s.t. w>fi(y(i)) + ξi ≥ di + b>i λi, ∀i;
A>

i λi ≥ Fiw + ci, ∀i;
λi ≥ 0, ∀i.

4.1.2 Certificate formulation

In the previous section, we assumed acompactconvex formulation of the loss-augmented

max in Eq. (4.4). There are several important combinatorial problems which allow poly-

nomial time solution yet do not have a compact convex optimization formulation. For

example, maximum weight perfect (non-bipartite) matching and spanning tree problems

can be expressed as linear programs withexponentiallymany constraints, but no polyno-

mial formulation is known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these

problems, however, can be solved in polynomial time using combinatorial algorithms. In

some cases, though, we can find a compactcertificate of optimalitythat guarantees that

y(i) = arg maxy[w>fi(y) + `i(y)] without expressing loss-augmented inference as a com-

pact convex program. Intuitively, just verifying that a given assignment is optimal is some-

times easier than actually finding it.

4.1. MAX-MARGIN ESTIMATION 49

Consider the maximum weight spanning tree problem. A basic property of a span-

ning tree is that cutting any edge(j, k) in the tree creates two disconnected sets of nodes

(Vj[jk],Vk[jk]), wherej ∈ Vj[jk] andk ∈ Vk[jk]. A spanning tree is optimal with respect

to a set of edge weights if and only if for every edge(j, k) in the tree connectingVj[jk] and

Vk[jk], the weight of(j, k) is larger than (or equal to) the weight of any other edge(j′, k′)

in the graph withj′ ∈ Vj[jk], k′ ∈ Vk[jk] [Cormenet al., 2001]. We discuss the conditions

for optimality of perfect matchings in Ch. 10. Suppose that we can find acompactconvex

formulation of these conditions via a polynomial (inLi) set of functionsqi(w, νi), jointly

convex inw and auxiliary variablesνi:

∃νi s.t. qi(w, νi) ≤ 0 ⇔ w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀y ∈ Y(i).

Then the following joint convex program inw andν computes the max-margin parameters:

min
1

2
||w||2 (4.13)

s.t. qi(w, νi) ≤ 0, ∀i.

Expressing the spanning tree optimality does not require additional variablesνi, but in

other problems, such as in perfect matching optimality in Ch. 10, such auxiliary variables

are needed. In the spanning tree problem, supposeyjk encodes whether edge(j, k) is in

the tree and the score of the edge is given byw>fi,jk for some basis functionsf(x(i)
jk , yjk).

We also assume that the loss function decomposes into a sum of losses over the edges, with

loss for each wrong edge given by`i,jk. Then the optimality conditions are:

w>fi,jk ≥ w>fi,j′k′ + `i,j′k′ , ∀jk, j′k′ s.t. y
(i)
jk = 1, j′ ∈ Vj[jk], k′ ∈ Vk[jk].

For a full graph, we have
(|V(i)|3) constraints for each examplei, where|V(i)| is the number

of nodes in the graph for examplei.

Note that this formulation does not allow for violations of the margin constraints (it has

no slack variablesξi). If the basis functions are not sufficiently rich to ensure that eachy(i)

is optimal, then Eq. (4.1.2) may be infeasible. Essentially, this formulation requires that

the upper bound on the empirical risk be zero,R`
S[hw] = 0, and minimizes the complexity

50 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

of the hypothesishw as measured by the norm of the weights.

If the problem is infeasible, the designer could add more basis functionsf(x,y) that

take into account additional information aboutx. One could also add slack variables for

each example and each constraint that would allow violations of optimality conditions with

some penalty. However, these slack variables would not represent upper bounds on the loss

as they are in the min-max formulation, and therefore are less justified.

4.2 Approximations: upper and lower bounds

There are structured prediction tasks for which we might not be able to solve the estimation

problem exactly. Often, we cannot computemaxy∈Y(i) [w>fi(y) + `i(y)] exactly or explic-

itly, but can only upper or lower bound it. Fig. 4.1 shows schematically how approximating

of the max subproblem reduces or extends the feasible space ofw andξ and leads to ap-

proximate solutions. The nature of these lower and upper bounds depends on the problem,

but we consider two general cases below.

4.2.1 Constraint generation

When neither compact maximization or optimality formulation is possible, but the max-

imization problem can be solved or approximated by a combinatorial algorithm, we can

resort toconstraint generationor cutting planemethods. Consider Eq. (4.3), where we

have an exponential number of linear constraints, one for eachi andy ∈ Y (i). Only a sub-

set of those constraints will be active at the optimal solutionw. In fact, not more than the

number of parametersn plus the number of examplesm can be active in general, since that

is the number of variables. If we can identify a small number of constraints that are critical

to the solution, we do not have to include all of them. Of course, identifying these con-

straints is in general as difficult as solving the problem, but a greedy approach of adding the

most violated constraints often achieves good approximate solutions after adding a small

(polynomial) number of constraints. If we continue adding constraints until there are no

more violated ones, the resulting solution is optimal.

We assume that we have an algorithm that producesy = arg maxy∈Y(i) [w>fi(y) +

4.2. APPROXIMATIONS: UPPER AND LOWER BOUNDS 51

Upper-bound
Exact
Lower-bound

×
+

Figure 4.1: Exact and approximate constraints on the max-margin quadratic program. The
solid red line represents the constraints imposed by the assignmentsy ∈ Y(i), whereas the
dashed and dotted lines represent approximate constraints. The approximate constraints
may coincide with the exact constraints in some cases, and be more stringent or relaxed in
others. The parabolic contours represent the value of the objective function and ‘+’, ‘x’ and
‘o’ mark the different optima.

`i(y)]. The algorithm is described in Fig. 4.2. We maintain, for each examplei, a small

but growing set of assignments̃Y(i) ⊂ Y(i). At each iteration, we solve the problem with a

subset of constraints:

min
1

2
||w||2 + C

∑
i

ξi (4.14)

s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).

The only difference between Eq. (4.3) and Eq. (4.14) is thatY(i) has been replaced bỹY(i).

We then computey = arg maxy∈Y(i) [w>fi(y) + `i(y)] for eachi and check whether the

constraintw>fi(y(i)) + ξi + ε ≥ w>fi(y) + `i(y), is violated, whereε is a user defined

precision parameter. If it is violated, we setỸ(i) = Ỹ(i) ∪ y. The algorithm terminates

when no constraints are violated. In Fig. 4.1, the lower-bound on the constraints provided

by Ỹ(i)∪y keeps tightening with each iteration, terminating when the desired precisionε is

reached. We note that if the algorithm that producesy = arg maxy∈Y(i) [w>fi(y)+`i(y)] is

52 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

Input: precision parameterε.

1. Initialize: Ỹ(i) = {}, ∀ i.

2. Setviolation = 0 and solve forw andξ by optimizing

min
1

2
||w||2 + C

∑
i

ξi

s.t. w>fi(y
(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).

3. For eachi,
Computey = arg maxy∈Y(i) [w>fi(y) + `i(y)],
if w>fi(y(i)) + ξi + ε ≤ w>fi(y) + `i(y),
then setỸ(i) = Ỹ(i) ∪ y andviolation = 1

4. if violation = 1 goto 2.

Returnw.

Figure 4.2: A constraint generation algorithm.

suboptimal, the approximation error of the solution we achieve might be much greater than

ε. The number of constraints that must be added before the algorithm terminates depends

on the precisionε and problem specific characteristics. See [Bertsimas & Tsitsiklis, 1997;

Boyd & Vandenberghe, 2004] for a more in-depth discussion of cutting planes methods.

This approach may also be computationally faster in providing a very good approximation

in practice if the explicit convex programming formulation is polynomial in size, but very

large, while the maximization algorithm is comparatively fast.

4.2.2 Constraint strengthening

In many problems, the maximization problem we are interested in may be very expensive

or intractable. For example, we consider MAP inference in large tree-width Markov net-

works in Ch. 8, multi-way cut in Ch. 7, graph-partitioning in Ch. 11. Many such problems

can be written asintegerprograms. Relaxations of such integer programs into LPs, QPs

or SDPs often provide excellent approximation algorithms [Hochbaum, 1997; Nemhauser

& Wolsey, 1999]. The relaxation usually defines a larger feasible spaceỸ (i) ⊃ Y(i) over

4.3. RELATED WORK 53

which the maximization is done, wherey ∈ Ỹ(i) may correspond to a “fractional” assign-

ment. For example, a solution to the MAP LP in Eq. (3.2) for an untriangulated network

may not correspond to any valid assignment. In such a case, the approximation is an over-

estimate of the constraints:

max
y∈Ỹ(i)

[w>fi(y) + `i(y)] ≥ max
y∈Y(i)

[w>fi(y) + `i(y)].

Hence the constraint set is tightened with such invalid assignments. Fig. 4.1 shows how the

over-estimate reduces the feasible space ofw andξ.

Note that for every setting of the weightsw that produces fractional solutions for the

relaxation, the approximate constraints are tightened because of the additional invalid as-

signments. In this case, the approximate MAP solution has higher value than any integer

solution, including the true assignmenty(i), thereby driving up the corresponding slackξi.

By contrast, for weightsw for which the MAP approximation is integer-valued, the margin

has the standard interpretation as the difference between the score ofy(i) and the MAPy

(according tow). As the objective includes a penalty for the slack variable, intuitively,

minimizing the objective tends to drive the weightsw away from the regions where the so-

lutions to the approximation are fractional. In essence, the estimation algorithm is finding

weights that are not necessarily optimal for anexactmaximization algorithm, but (close to)

optimal for the particularapproximatemaximization algorithm used. In practice, we will

show experimentally that such approximations often work very well.

4.3 Related work

Our max-margin formulation is related to a body of work called inverse combinatorial and

convex optimization [Burton & Toint, 1992; Zhang & Ma, 1996; Ahuja & Orlin, 2001;

Heuberger, 2004]. Aninverse optimization problemis defined by an instance of an opti-

mization problemmaxy∈Y w>f(y), a set of nominal weightsw0, and a target solutionyt.

The goal is to find the weightsw closest to the nominalw0 in some norm, which make the

54 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

target solution optimal:

min ||w −w0||p
s.t. w>f(yt) ≥ w>f(y), ∀y ∈ Y .

Most of the attention has been onL1 andL∞ norms, butL2 norm is also used.

The study of inverse problems began with geophysical scientists (see [Tarantola, 1987]

for in-depth discussion of a wide range of applications). Modeling a complex physical

system often involves a large number of parameters which scientists find hard or impossible

to set correctly. Provided educated guesses for the parametersw0 and the behavior of the

system as a target, the inverse optimization problem attempts to match the behavior while

not perturbing the “guesstimate” too much.

Although there is a strong connection between inverse optimization problems and our

formulations, the goals are very different than ours. In our framework, we are learning

a parameterized objective function that depends on the inputx and will generalize well

in prediction on new instances. Moreover, we do not assume as given a nominal set of

weights. Note that if we setw0 = 0, thenw = 0 is trivially the optimal solution. The

solutionw depends critically on the choice of nominal weights, which is not appropriate in

the learning setting.

The inverse reinforcement learning problem [Ng & Russell, 2000; Abbeel & Ng, 2004]

is much closer to our setting. The goal is to learn a reward function that will cause a rational

agent to act similar to the observed behavior of an expert. A full description of the problem

is beyond our scope, but we briefly describe the Markov decision process (MDP) model

commonly used for sequential decision making problems where an agent interacts with its

environment. The environment is modeled as a system that can be in one of a set of discrete

states. At every time step, the agent chooses an action from a discrete set of actions and the

system transitions to a next state with a probability that depends on the current state and

the action taken. The agent collects a reward at each step, which generally depends on the

on the current and the next state and the action taken. A rational agent executes a policy

(essentially, a state to action mapping) that maximizes its expected reward. To map this

problem (approximately) to our setting, note that a policy roughly corresponds to the labels

4.4. CONCLUSION 55

y, the state sequence correspond to the inputx and the reward for a state/action sequence is

assumed to bew>f(x,y) for some basis functionsw>f(x,y). The goal is to learnw from a

set of state/action sequences(x(i),y(i)) of the expert such that the maximizing the expected

reward according to the system model makes the agent imitate the expert. This and related

problems are formulated as a convex program in Ng and Russell [2000] and Abbeel and

Ng [2004].

4.4 Conclusion

In this chapter, we presented two formulations of structured max-margin estimation that

define a compact convex optimization problem. The first formulation,min-max, relies on

the ability to express inference in the model as a compact convex optimization problem.

The second one,certificate, only requires expressing optimality of a given assignment ac-

cording to the model. Our framework applies to a wide range of prediction problems that

we explore in the rest of the thesis, including Markov networks, context free grammars, and

many combinatorial structures such as matchings and graph-cuts. The estimation problem

is tractable and exact whenever the prediction problem can be formulated as a compact

convex optimization problem or a polynomial time combinatorial algorithm with compact

convex optimality conditions. When the prediction problem is intractable or very expen-

sive to solve exactly, we resort to approximations that only provide upper/lower bounds

on the predictions. The estimated parameters are then approximate, but produce accurate

approximateprediction models in practice.

Because our approach only relies using the maximum in the model for prediction, and

does not require a normalized distributionP (y | x) over all outputs, maximum margin

estimation can be tractable when maximum likelihood is not. For example, to learn a prob-

abilistic modelP (y | x) over bipartite matchings using maximum likelihood requires com-

puting the normalizing partition function, which is#P-complete [Valiant, 1979; Garey &

Johnson, 1979]. By contrast, maximum margin estimation can be formulated as a compact

QP with linear constraints. Similar results hold for non-bipartite matchings and min-cuts.

In models that are tractable for both maximum likelihood and maximum margin, (such

as low-treewidth Markov networks, context free grammars, many other problems in which

56 CHAPTER 4. STRUCTURED MAXIMUM MARGIN ESTIMATION

inference is solvable by dynamic programming), our approach has an additional advantage.

Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual

space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-

lihood estimation with kernels results in models that are generally non-sparse and require

pruning or greedy support vector selection methods [Laffertyet al., 2004; Altunet al.,

2004].

The forthcoming formulations in the thesis follow the principles laid out in this chapter.

The range of applications of these principles is very broad and leads to estimation prob-

lems with very interesting structure in each particular problem, from Markov networks and

context-free grammars to graph cuts and perfect matchings.

Part II

Markov networks

57

Chapter 5

Markov networks

Markov networks are extensively used to model complex sequential, spatial, and relational

interactions in prediction problems arising in many fields. These problems involve labeling

a set of related objects that exhibitlocal consistency. Insequentiallabeling problems (such

as handwriting recognition), the labels (letters) of adjacent inputs (images) are highly corre-

lated. Sequential prediction problems arise in natural language processing (part-of-speech

tagging, speech recognition, information extraction [Manning & Schütze, 1999]), compu-

tational biology (gene finding, protein structure prediction, sequence alignment [Durbin

et al., 1998]), and many other fields. In image processing, neighboring pixels exhibitspa-

tial label coherence in denoising, segmentation and stereo correspondence [Besag, 1986;

Boykov et al., 1999a]. In hypertext or bibliographic classification, labels of linked and

co-cited documents tend to be similar [Chakrabartiet al., 1998; Taskaret al., 2002]. In

proteomic analysis, location and function of proteins that interact are often highly corre-

lated [Vazquezet al., 2003]. Markov networks compactly represent complex joint distribu-

tions of the label variables by modeling their local interactions. Such models are encoded

by a graph, whose nodes represent the different object labels, and whose edges represent

and quantify direct dependencies between them. For example, a Markov network for the

hypertext domain would include a node for each webpage, encoding its label, and an edge

between any pair of webpages whose labels are directly correlated (e.g., because one links

to the other).

We address the problem of max-margin estimation the parameters of Markov networks

58

5.1. MAXIMUM LIKELIHOOD ESTIMATION 59

for such structured classification problems. We show a compact convex formulation that

seamlessly integrates kernels with graphical models. We analyze the theoretical general-

ization properties of max-margin estimation and derive a novel margin-based bound for

structured classification.

We are given a labeled training sampleS = {(x(i),y(i))}m
i=1, drawn from a fixed dis-

tribution D overX × Y. We assume the structure of the network is given: we have a

mapping from an inputx to the corresponding Markov network graphG(x) = {V , E}
where the nodesV map to the variables iny. We abbreviateG(x(i)) asG(i) below. In hand-

writing recognition, this mapping depends on the segmentation algorithm that determines

how many letters the sample image contains and splits the image into individual images

for each letter. It also depends on the basis functions we use to model the dependencies of

the problem, for example, first-order Markov chain or a higher-order models. Note that the

topology and size of the graphG(i), might be different for each examplei. For instance, the

training sequences might have different lengths.

We focus onconditional Markov networks (or CRFs [Laffertyet al., 2001]), which

representP (y | x) instead ofgenerativemodelsP (x,y). The log-linear representation we

have described in Sec. 3.3.1 is defined via a vector ofn basis functionsf(x,y):

log Pw(y | x) = w>f(x,y)− log Zw(x),

whereZw(x) =
∑

y exp{w>f(x,y)} andw ∈ IRn. Before we present the maximum

margin estimation, we review the standard maximum likelihood method.

5.1 Maximum likelihood estimation

The regularized maximum likelihood approach of learning the weightsw of a Markov net-

work is similar to logistic regression we described in Sec. 2.2. The objective is to minimize

the training log-loss with an additional regularization term, usually the squared-norm of the

weightsw [Lafferty et al., 2001]:

1

2
||w||2 − C

∑
i

log Pw(y(i) | x(i)) =
1

2
||w||2 + C

∑
i

log Zw(x(i))−w>fi(y(i)),

60 CHAPTER 5. MARKOV NETWORKS

wherefi(y) = f(x(i),y).

This objective function is convex in the parametersw, so we have an unconstrained

convex optimization problem. The gradient with respect tow is given by:

w + C
∑

i

[
Ei,w[fi(y)]− fi(y

(i))
]

= w − C
∑

i

Ei,w[∆fi(y)],

whereEi,w[fi(y)] =
∑

y∈Y fi(y)Pw(y | x(i)) is the expectation under the conditional dis-

tributionPw(y | x(i)) and∆fi(y) = f(x(i),y(i))− f(x(i),y), as before. To compute the ex-

pectations, we can use inference in the Markov network to calculate marginalsPw(yc | x(i))

for each cliquec in the network Sec. 3.3.2. Since the basis functions decompose over the

cliques of the network, the expectation decomposes as well:

Ei,w[fi(y)] =
∑

c∈C(i)

∑

yc∈Y(i)
c

fi,c(yc)Pw(yc | x(i)).

Second order methods for solving unconstrained convex optimization problems, such

as Newton’s method, require the second derivatives as well as the gradient. Letδfi(y) =

fi(y) − Ei,w[fi(y)]. The Hessian of the objective depends on the covariances of the basis

functions:

I + C
∑

i

Ei,w

[
δfi(y)δfi(y)>

]
,

whereI is a n × n identity matrix. Computing the Hessian is more expensive than the

gradient, since we need to calculate joint marginals of every pair of cliquesc and c′,

Pw(yc∪c′ | xi) as well as covariances of all basis functions, which is quadratic in the num-

ber of cliques and the number of functions. A standard approach is to use an approximate

second order method that does not need to compute the Hessian, but uses only the gradient

information [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004]. Conjugate Gradients

or L-BFGS methods have been shown to work very well on large estimation problems [Sha

& Pereira, 2003; Pintoet al., 2003], even with millions of parametersw.

5.2. MAXIMUM MARGIN ESTIMATION 61

5.2 Maximum margin estimation

For maximum-margin estimation, we begin with the min-max formulation from Sec. 4.1:

min
1

2
||w||2 + C

∑
i

ξi (5.1)

s.t. w>fi(y(i)) + ξi ≥ max
y

[w>fi(y) + `i(y)], ∀i.

We know from Sec. 3.3.3 how to expressmaxy w>fi(y) as an LP, but the important differ-

ence is the loss functioǹi. The simplest loss is the0/1 loss`i(y) ≡ 1I(y(i) 6= y). In fact

this loss for sequence models was used by Collins [2001] and Altunet al. [2003]. However,

in structured problems, where we are predicting multiple labels, the loss is often not just

the simple0/1 loss, but may depend on the number of labels and type of labels predicted

incorrectly or perhaps the number of cliques of labels predicted incorrectly. In general, we

assume that the loss, like the basis functions, decomposes over the cliques of labels.

Assumption 5.2.1 The loss functioǹi(y) is decomposable:

`i(y) =
∑

c∈C(G(i))

`(x(i)
c ,y(i)

c ,yc) =
∑

c∈C(G(i))

`i,c(yc).

We will focus on decomposable loss functions below. A natural choice that we use in our

experiments is the Hamming distance:

`H(x(i),y(i),y) =
∑

v∈V(i)

1I(y(i)
v 6= yv).

With this assumption, we can express this inference problem for a triangulated graph

as a linear program for each examplei as in Sec. 3.3.3:

max
∑
c,yc

µi,c(yc)[w
>fi,c(yc) + `i,c(yc)] (5.2)

s.t.
∑
yc

µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀c ∈ C(i), ∀yc;

µi,s(ys) =
∑

y′c∼ys

µi,c(y
′
c), ∀s, c ∈ C(i), s ⊂ c, ∀ys,

62 CHAPTER 5. MARKOV NETWORKS

whereC(i) = C(G(i)) are the cliques of the Markov network for examplei.

As we showed before, the constraints ensure that theµi’s form a proper distribution. If

the most likely assignment is unique, then the distribution that maximizes the objective puts

all its weight on that assignment. (If thearg max is not unique, any convex combination of

the assignments is a valid solution). The dual of Eq. (5.2) is given by:

min
∑

c

λi,c (5.3)

s.t. λi,c +
∑
s⊃c

mi,s,c(yc)−
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i), ∀yc.

In this dual, theλi,c variables correspond to the normalization constraints, whilemi,c,s(yc)

variables correspond to the agreement constraints in the primal in Eq. (5.2).

Plugging the dual into Eq. (5.1) for each examplei and maximizing jointly over all the

variables (w, ξ, λ andm), we have:

min
1

2
||w||2 + C

∑
i

ξi (5.4)

s.t. w>fi(y(i)) + ξi ≥
∑
i,c

λi,c, ∀i;

λi,c +
∑
s⊃c

mi,s,c(yc)−
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i),∀yc.

In order to gain some intuition about this formulation, we make a change of variables from

λi,c to ξi,c:

λi,c = w>fi,c(y(i)
c) + ξi,c, ∀i, ∀c ∈ C(i).

The reason for naming the new variables using the letterξ will be clear in the following. For

readability, we also introduce variables that capture the effect of all the agreement variables

m:

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s)−

∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

5.2. MAXIMUM MARGIN ESTIMATION 63

With these new variables, we have:

min
1

2
||w||2 + C

∑
i

ξi (5.5)

s.t. ξi ≥
∑

c

ξi,c, ∀i;

w>fi,c(y(i)
c) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s)−

∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Note thatξi =
∑

c ξi,c at the optimum, since the slack variableξi only appears only in the

constraintξi ≥
∑

c ξi,c and the objective minimizesCξi. Hence we can simply eliminate

this set of variables:

min
1

2
||w||2 + C

∑
i,c

ξi,c (5.6)

s.t. w>fi,c(y(i)
c) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s)−

∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Finally, we can write this in a form that resembles our original formulation Eq. (5.1), but

defined at a local level, for each clique:

min
1

2
||w||2 + C

∑
i,c

ξi,c (5.7)

s.t. w>fi,c(y(i)
c) + ξi,c ≥ max

yc

[w>fi,c(yc) + `i,c(yc) + Mi,c(yc)], ∀i, ∀c ∈ C(i);

Mi,c(yc) =
∑

s⊂c, y′s∼yc

mi,c,s(y
′
s)−

∑
s⊃c

mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.

Note that withoutMi,c andmi,c,s variables, we essentially treat each clique as an indepen-

dent classification problem: for each clique we have a hinge upper-bound on the local loss,

or a margin requirement. Themi,c,s(ys) variables correspond to a certain kind of messages

between cliques that distribute “credit” to cliques to fulfill this margin requirement from

other cliques which have sufficient margin.

64 CHAPTER 5. MARKOV NETWORKS

Figure 5.1: First-order chain shown as a set of cliques (nodes and edges). Also shown are
the corresponding local slack variablesξ for each clique and messagesm between cliques.

As an example, consider the first-order Markov chain in Fig. 5.1. The set of cliques

consists of the five nodes and the four edges. Suppose for the sake of this example that

our training data consists of only one training sample. The figure shows the local slack

variablesξ and messagesm between cliques for this sample. For brevity of notion in this

example, we drop the dependence on the sample indexi in the indexing of the variables

(we also usedy(∗)
j instead ofy(i)

j below). For concreteness, below we use the Hamming

loss`H , which decomposes into local terms`j(yj) = 1I(yj 6= y
(∗)
j) for each node and is

zero for the edges.

The constraints associated with the node cliques in this sequence are:

w>f1(y
(∗)
1) + ξ1 ≥ w>f1(y1) + 1I(y1 6= y

(∗)
1)−m1,12(y1), ∀y1;

w>f2(y
(∗)
2) + ξ2 ≥ w>f2(y2) + 1I(y2 6= y

(∗)
2)−m2,12(y2)−m2,23(y2), ∀y2;

w>f3(y
(∗)
3) + ξ3 ≥ w>f3(y3) + 1I(y3 6= y

(∗)
3)−m3,23(y3)−m3,34(y3), ∀y3;

w>f4(y
(∗)
4) + ξ4 ≥ w>f4(y4) + 1I(y4 6= y

(∗)
4)−m4,34(y4)−m4,45(y4), ∀y4;

w>f5(y
(∗)
5) + ξ5 ≥ w>f5(y5) + 1I(y5 6= y

(∗)
5)−m5,45(y5), ∀y5.

5.3. M3N DUAL AND KERNELS 65

The edge constraints are:

w>f12(y
(∗)
1 , y

(∗)
2) + ξ12 ≥ w>f12(y1, y2) + m1,12(y1) + m2,12(y2), ∀y1, y2;

w>f23(y
(∗)
2 , y

(∗)
3) + ξ23 ≥ w>f23(y2, y3) + m2,23(y2) + m3,23(y3), ∀y2, y3;

w>f34(y
(∗)
3 , y

(∗)
4) + ξ34 ≥ w>f34(y3, y4) + m3,34(y3) + m4,34(y4), ∀y3, y4;

w>f45(y
(∗)
4 , y

(∗)
5) + ξ45 ≥ w>f45(y4, y5) + m4,45(y4) + m5,45(y5), ∀y4, y5.

5.3 M3N dual and kernels

In the previous section, we showed a derivation of a compact formulation based on LP

inference. In this section, we develop an alternative dual derivation that provides a very

interesting interpretation of the problem and is a departure for special-purpose algorithms

we develop. We begin with the formulation as in Eq. (4.3):

min
1

2
||w||2 + C

∑
i

ξi (5.8)

s.t. w>∆fi(y) ≥ `i(y)− ξi, ∀i,y,

where∆fi(y) ≡ f(x(i),y(i))− f(x(i),y). The dual is given by:

max
∑
i,y

αi(y)`i(y)− 1

2

∣∣∣∣∣

∣∣∣∣∣
∑
i,y

αi(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

(5.9)

s.t.
∑
y

αi(y) = C, ∀i; αi(y) ≥ 0, ∀i,y.

In the dual, the exponential number ofαi(y) variables correspond to the exponential num-

ber of constraints in the primal. We make two small transformations to the dual that do not

change the problem: we normalizeα’s by C (by lettingαi(y) = Cα′i(y)), so that they sum

66 CHAPTER 5. MARKOV NETWORKS

to 1 and divide the objective byC. The resulting dual is given by:

max
∑
i,y

αi(y)`i(y)− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑
i,y

αi(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

(5.10)

s.t.
∑
y

αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i,y.

As in multi-class SVMs, the solution to the dualα gives the solution to the primal as a

weighted combination:w∗ = C
∑

i,y α∗i (y)∆fi(y).

Our main insight is that the variablesαi(y) in the dual formulation Eq. (5.10) can be

interpreted as a kind ofdistributionovery, since they lie in the simplex

∑
y

αi(y) = 1; αi(y) ≥ 0, ∀y.

This dual distribution does not represent the probability that the model assigns to an instan-

tiation, but the importance of the constraint associated with the instantiation to the solution.

The dual objective is a function of expectations of`i(y) and∆fi(y) with respect toαi(y).

Since`i(y) =
∑

c `i,c(yc) and∆fi(y) =
∑

c ∆fi,c(yc) decompose over the cliques of the

Markov network, we only need clique marginals of the distributionαi(y) to compute their

expectations. We define the marginal dual variables as follows:

µi,c(yc) =
∑

y′∼yc

αi(y
′), ∀i, ∀c ∈ C(i), ∀yc, (5.11)

wherey′ ∼ yc denotes whether the partial assignmentyc is consistent with the full assign-

menty′. Note that the number ofµi,c(yc) variables is small (polynomial) compared to the

number ofαi(y) variables (exponential) if the size of the largest clique is constant with

respect to the size of the network.

Now we can reformulate our entire QP (5.10) in terms of these marginal dual variables.

Consider, for example, the first term in the objective function (fixing a particulari):

∑
y

αi(y)`i(y) =
∑
y

αi(y)
∑

c

`i,c(yc) =
∑
c,yc

`i,c(yc)
∑

y′∼yc

αi(y
′) =

∑
c,yc

µi,c(yc)`i,c(yc).

5.3. M3N DUAL AND KERNELS 67

The decomposition of the second term in the objective is analogous.

∑
y

αi(y)∆fi(y) =
∑
c,yc

∆fi,c(yc)
∑

y′∼yc

αi(y
′) =

∑
c,yc

µi,c(yc)∆fi,c(yc).

Let us denote the the objective of Eq. (5.10) asQ(α). Note that it only depends on

αi(y) through its marginalsµi,c(yc), that is,Q(α) = Q′(M(α)), whereM denotes the

marginalization operator defined by Eq. (5.11) . The domain of this operator,D[M], is

the product of simplices for all them examples. What is its range,R[M], the set of legal

marginals? Characterizing this set (also known asmarginal polytope) compactly will allow

us to work in the space ofµ’s:

max
α∈D[M]

Q(α) ⇔ max
µ∈R[M]

Q′(µ).

Hence we must ensure thatµi corresponds tosomedistributionαi, which is exactly

what the constraints in the LP for MAP inference enforce (see discussion of Lemma 3.3.5).

Therefore, when allG(i) are triangulated, the followingstructureddual QP has the same

primal solution (w∗) as the originalexponentialdual QP in Eq. (5.10):

max
∑
i,c,yc

µi,c(yc)`i,c(yc)− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑
i,c,yc

µi,c(yc)∆fi,c(yc)

∣∣∣∣∣

∣∣∣∣∣

2

(5.12)

s.t.
∑
yc

µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀i, ∀c ∈ C(i), ∀yc;

µi,s(ys) =
∑

y′c∼ys

µi,c(y
′
c), ∀i, ∀s, c ∈ C(i), s ⊂ c, ∀ys.

The solution to the structured dualµ∗ gives us the primal solution:

w∗ = C
∑
i,c,yc

µ∗i,c(yc)∆fi,c(yc).

In this structured dual, we only enforce that there exists anαi consistent withµi, but do

not make a commitment about what it is. In general, theα distribution is not unique, but

there is a continuum of distributions consistent with a set of marginals. The objective of

68 CHAPTER 5. MARKOV NETWORKS

the QP Eq. (5.10) does not distinguish between these distributions, since it only depends on

their marginals. The maximum-entropy distributionαi consistent with a set of marginals

µi, however, is unique for a triangulated model and can be computed using the junction tree

T (i) for the network [Cowellet al., 1999].

Specifically, associated with each edge(c, c′) in the treeT (i) is a set of variables called

the separators = c ∩ c′. Note that each separators and complement of a separatorc \ s is

also a clique of the original graph, since it is a subclique of a larger clique. We denote the

set of separators asS(i). Now we can define the maximum-entropy distributionαi(y) as

follows:

αi(y) =

∏
c∈T (i) µi,c(yc)∏
s∈S(i) µi,s(ys)

. (5.13)

Again, by convention0/0 ≡ 0.

Kernels

Note that the solution is a weighted combination of local basis functions and the objective

of Eq. (5.12) can be expressed in terms of dot products between local basis functions

∆fi,c(yc)
>∆fj,c̄(yc̄) = [f(x(i)

c ,y(i)
c)− f(x(i)

c ,yc)]
>[f(x

(j)
c̄ ,y

(j)
c̄)− f(x

(j)
c̄ ,yc̄)].

Hence, we can locally kernelize our models and solve Eq. (5.12) efficiently. Kernels are

typically defined on the input, e.g.k(x
(i)
c ,x

(j)
c̄). In our handwriting example, we use a

polynomial kernel on the pixel values for the node cliques. We usually extend the kernel

over the input space to the joint input and output space by simply defining

f(xc,yc)
>f(xc̄,yc̄) ≡ 1I(yc = yc̄)k(xc,xc̄).

Of course, other definitions are possible and may be useful when the assignments in each

clique yc have interesting structure. In Sec. 6.2 we experiment with several kernels for

the handwriting example. As in SVMs, the solutions to the max-margin QP are typically

sparse in theµ variables. Hence, each log-potential in the network “remembers” only a

small proportion of the relevant training data inputs.

5.4. UNTRIANGULATED MODELS 69

Figure 5.2: Diamond Markov network (added triangulation edge is dashed and three-node
marginals are in dashed rectangles).

5.4 Untriangulated models

If the underlying Markov net is not chordal, we must address the problem by triangulating

the graph, that is, adding fill-in edges to ensure triangulation. For example, if our graph is

a 4-cycleY1—Y2—Y3—Y4—Y1 as in Fig. 5.2, we can triangulate the graph by adding an

arcY1—Y3. This will introduce new cliquesY1, Y2, Y3 andY1, Y3, Y4 and the corresponding

marginals,µ123(y1, y2, y3) andµ134(y1, y3, y4). We can then use this new graph to produce

the constraints on the marginals:

∑
y1

µ123(y1, y2, y3) = µ23(y2, y3), ∀y2, y3;

∑
y3

µ123(y1, y2, y3) = µ12(y1, y2), ∀y1, y2;

∑
y1

µ134(y1, y3, y4) = µ34(y3, y4), ∀y3, y4;

∑
y3

µ134(y1, y3, y4) = µ13(y1, y3), ∀y1, y3.

The new marginal variables appear only in the constraints; they do not add any new basis

functions nor change the objective function.

70 CHAPTER 5. MARKOV NETWORKS

In general, the number of constraints introduced is exponential in the number of vari-

ables in the new cliques — the tree-width of the graph. Unfortunately, even sparsely con-

nected networks, for example 2D grids often used in image analysis, have large tree-width.

However, we can still solve the QP in the structured primal Eq. (5.6) or the structured

dual Eq. (5.12) defined by an untriangulated graph. Such a formulation, which enforces

only local consistency of marginals, optimizes our objective only over a relaxation of the

marginal polytope. However, the learned parameters produce very accurate approximate

models in practice, as experiments in Ch. 8 demonstrate.

Note that we could also strengthen the untriangulated relaxation without introducing

an exponential number of constraints. For example, we can add positive semidefinite con-

straints on the marginalsµ used by Wainwright and Jordan [2003], which tend to improve

the approximation of the marginal polytope. Although this and other more complex relax-

ations are a very interesting area of future development, they are often much more expen-

sive.

The approximate QP does not guarantee that the learned model usingexactinference

minimizes the true objective: (upper-bound on) empirical risk plus regularization. But do

we really need these optimal parameters if we cannot perform exact inference? A more

useful goal is to make sure that training error is minimized using theapproximateinfer-

ence procedure via the untriangulated LP. We conjecture that the parameters learned by

the approximate QP in fact do that to some degree. For instance, consider the separable

case, where 100% accuracy is achievable on the training data by some parameter settingw

such that approximate inference (using the untriangulated LP) produces integral solutions.

Solving the problem asC → ∞ will find this solution even though it may not be optimal

(in terms of the norm of thew) using exact inference. ForC in intermediate range, the

formulation trades off fractionality of the untriangulated LP solutions with complexity of

the weights||w||2.

5.5 Generalization bound

In this section, we show a generalization bound for the task of structured classification that

allows us to relate the error rate on the training set to the generalization error. To the best

5.5. GENERALIZATION BOUND 71

of our knowledge, this bound is the first to deal with structured error, such as the Hamming

distance. Our analysis of Hamming loss allows to prove a significantly stronger result than

previous bounds for the0/1 loss, as we detail below.

Our goal in structured classification is often to minimize the number of misclassified

labels, or the Hamming distance betweeny andh(x). An appropriate error function is the

average per-label loss

L(w,x,y) =
1

L
`H(y, arg max

y′
w>f(x,y′)),

whereL is the number of label variables iny. As in other generalization bounds for margin-

based classifiers, we relate the generalization error to the margin of the classifier. Consider

an upper bound on the above loss:

L(w,x,y) ≤ L(w,x,y) = max
y′: w>f(y)≤w>f(y′)

1

L
`H(y,y′).

This upper bound is tight ify = arg maxy′ w
>f(x,y′), Otherwise, it is adversarial: it

picks from ally′ which are better (w>f(y) ≤ w>f(y′)), one that maximizes the Hamming

distance fromy. We can now define aγ-margin per-label loss:

L(w,x,y) ≤ L(w,x,y) ≤ Lγ(w,x,y) = max
y′: w>f(y)≤w>f(y′)+γ`H(y,y′)

1

L
`H(y,y′).

This upper bound is even more adversarial: it is tight ify = arg maxy′ [w
>f(x,y′) +

`H(y,y′)], otherwise, it picks from ally′ which are betterwhen helped byγ`H(y,y′), one

that maximizes the Hamming distance fromy. Note that the loss we minimize in the max-

margin formulation is very closely related (although not identical to) this upper bound.

We can now prove that the generalization accuracy of any hypothesisw is bounded by

its empiricalγ-margin per-label loss, plus a term that grows inversely with the margin.To

state the bound, we need to define several other factors it depends upon. LetNc be the

maximum number of cliques inG(x), Vc be the maximum number of values in a clique

|Yc|, q be the maximum number of cliques that have a variable in common, andRc be

an upper-bound on the 2-norm of clique basis functions. Consider a first-order sequence

72 CHAPTER 5. MARKOV NETWORKS

model as an example, withL as the maximum length, andV the number of values a variable

takes. ThenNc = 2L − 1 since we haveL node cliques andL − 1 edge cliques;Vc = V 2

because of the edge cliques; andq = 3 since nodes in the middle of the sequence participate

in 3 cliques: previous-current edge clique, node clique, and current-next edge clique.

Theorem 5.5.1 For the family of hypotheses parameterized byw, and anyδ > 0, there
exists a constantK such that for anyγ > 0 per-label margin, andm > 1 samples, the
expected per-label loss is bounded by:

ED[L(w,x,y)] ≤ ES [Lγ(w,x,y)] +

√
K

m

[
R2

c ||w||2q2

γ2
[ln m + ln Nc + ln Vc] + ln

1
δ

]
,

with probability at least1− δ.

Proof: See Appendix A.1 for the proof details and the exact value of the constantK.

The first term upper bounds the training error ofw. Low lossES[Lγ(w,x,y)] at high

marginγ quantifies the confidence of the prediction model. The second term depends on

||w||/γ, which corresponds to the complexity of the classifier (normalized by the margin

level). Thus, the result provides a bound to the generalization error that trades off the

effectivecomplexity of the hypothesis space with the training error.

The proof uses a covering number argument analogous to previous results in SVMs [Zhang,

2002]. However we propose a novel method for covering the space of structured prediction

models by using a cover of the individual clique basis function differences∆fi,c(yc). This

new type of cover is polynomial in the number of cliques, yielding significant improve-

ments in the bound. Specifically, our bound has a logarithmic dependence on the number

of cliques (ln Nc) and depends only on the 2-norm of the basis functions per-clique (Rc).

This is a significant gain over the previous result of Collins [2001] for0/1 loss, which has

linear dependence (inside the square root) on the number of nodes (L), and depends on

the joint 2-norm of all of the basis functions for an example (which is∼ NcRc). Such a

result was, until now, an open problem for margin-based sequence classification [Collins,

2001]. Finally, for sequences, note that ifL
m

= O(1) (for example, in OCR, if the number

of instances is at least a constant times the length of a word), then our bound is independent

of the number of labelsL.

5.6. RELATED WORK 73

5.6 Related work

The application of margin-based estimation methods to parsing and sequence modeling was

pioneered by Collins [2001] using the Voted-Perceptron algorithm [Freund & Schapire,

1998]. He provides generalization guarantees (for0/1 loss) that hold for separable case and

depend on the number of mistakes the perceptron makes before convergence. Remarkably,

the bound does not explicitly depend on the length of the sequence, although undoubtedly

the number of mistakes does.

Collins [2004] also suggested an SVM-like formulation (with exponentially many con-

straints) and a constraint generation method for solving it. His generalization bound (for

0/1 loss) based on the SVM-like margin, however, has linear dependence (inside the square

root) on the number of nodes (L). It also depends on the joint 2-norm of all of the basis

functions for an example (which is∼ NcRc). By considering the more natural Hamming

loss, we achieve a much tighter analysis.

Altun et al. [2003] have applied the exponential-size formulation with constraint gen-

eration we described in Sec. 4.2.1 to problems natural language processing. In a follow-up

paper, Tsochantaridiset al. [2004] show that only a polynomial number of constraints are

needed to be generated to guarantee a fixed level of precision of the solution. However,

the number of constraints in many important cases is several orders higher (inL) than in

the the approach we present. In addition, the corresponding problem needs to be resolved

(or at least approximately resolved) after each additional constraint is added, which is pro-

hibitively expensive for large number of examples and label variables.

The work of Guestrinet al. [2003] presents LP decompositions based on graphical

model structure for the value function approximation problem in factored MDPs (Markov

decision processes with structure). Describing the exact setting is beyond our scope, but it

suffices to say that our original decomposition of the max-margin QP was inspired by the

proposed technique to transform an exponential set of constraints into a polynomial one

using a triangulated graph.

There has been a recent explosion of work in maximum conditional likelihood estima-

tion of Markov networks. The work of Laffertyet al. [2001] has inspired many applications

in natural language, computational biology, computer vision and relational modeling [Sha

74 CHAPTER 5. MARKOV NETWORKS

& Pereira, 2003; Pintoet al., 2003; Kumar & Hebert, 2003; Suttonet al., 2004; Taskar

et al., 2002; Taskaret al., 2003b]. As in the case of logistic regression, maximum condi-

tional likelihood estimation for Markov networks can also be kernelized [Altunet al., 2004;

Lafferty et al., 2004]. However, the solutions are non-sparse and the proposed algorithms

are forced to use greedy selection of support vectors or heuristic pruning methods.

5.7 Conclusion

We use graph decomposition to derive an exact, compact, convex max-margin formulation

for Markov networks with sequence and other low-treewidth structure. Our formulation

avoids the exponential blow-up in the number of constraints in the max-margin QP that

plagued previous approaches. The seamless integration of kernels with graphical models

allows us to create very rich models that leverage the immense amount of research in kernel

design and graphical model decompositions. We also use approximate graph decomposi-

tion to derive a compact approximate formulation for Markov networks in which inference

is intractable.

We provide theoretical guarantees on the averageper-labelgeneralization error of our

models in terms of the training set margin. Our generalization bound significantly tightens

previous results of Collins [Collins, 2001] and suggests possibilities for analyzing per-label

generalization properties of graphical models.

In the next chapter, we present an efficient algorithm that exploits graphical model

inference and show experiments on a large handwriting recognition task that utilize the

powerful representational capability of kernels.

Chapter 6

M3N algorithms and experiments

Although the number of variables and constraints in the structured dual in Eq. (5.12) is

polynomial in the size of the data, unfortunately, for standard QP solvers, the problem is

often too large even for small training sets. Instead, we use a coordinate dual ascent method

analogous to the sequential minimal optimization (SMO) used for SVMs [Platt, 1999].

We apply our M3N framework and structured SMO algorithm to a handwriting recogni-

tion task. We show that our models significantly outperform other approaches by incorpo-

rating high-dimensional decision boundaries of polynomial kernels over character images

while capturing correlations between consecutive characters.

6.1 Solving the M3N QP

Let us begin by considering the primal and dual QPs for multi-class SVMs:

min
1
2
||w||2 + C

∑

i

ξi max
∑

i,y

αi(y)`i(y)− 1
2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,y

αi(y)∆fi(y)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. w>∆fi(y) ≥ `(y)− ξi, ∀i, y. s.t.
∑

y

αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i, y.

The KKT conditions [Bertsekas, 1999; Boyd & Vandenberghe, 2004] provide sufficient

and necessary criteria for optimality of a dual solutionα. As we describe below, these

conditions have certain locality with respect to each examplei, which allows us to perform

75

76 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

the search for optimalα by repeatedly considering one example at a time.

A feasible dual solutionα and a primal solution defined by:

w = C
∑
i,y

αi(y)∆fi(y) (6.1)

ξi = max
y

[`i(y)−w∆fi(y)] = max
y

[`i(y) + w>fi(y)]−w>fi(y(i)),

are optimal if they satisfy the following two types of constraints:

αi(y) = 0 ⇒ w>∆fi(y) > `i(y)− ξi; (KKT1)

αi(y) > 0 ⇒ w>∆fi(y) = `i(y)− ξi. (KKT2),

We can express these conditions as

αi(y) = 0 ⇒ w>fi(y) + `i(y) < max
y′

[w>fi(y′) + `i(y
′)]; (KKT1)

αi(y) > 0 ⇒ w>fi(y) + `i(y) = max
y′

[w>fi(y′) + `i(y
′)]. (KKT2)

To simplify the notation, we define

vi(y) = w>fi(y) + `i(y); vi(y) = max
y′ 6=y

[w>fi(y
′) + `i(y

′)].

With these definitions, we have

αi(y) = 0 ⇒ vi(y) < vi(y); (KKT1) αi(y) > 0 ⇒ vi(y) ≥ vi(y); (KKT2).

In practice, however, we will enforce KKT conditions up to a given tolerance0 < ε ¿ 1.

αi(y) = 0 ⇒ vi(y) ≤ vi(y) + ε; αi(y) > 0 ⇒ vi(y) ≥ vi(y)− ε. (6.2)

Essentially,αi(y) can bezeroonly if vi(y) is at mostε larger than the all others. Con-

versely,αi(y) can benon-zeroonly if vi(y) is at mostε smaller than the all others.

Note that the normalization constraints on the dual variablesα are local to each exam-

ple i. This allows us to perform dual block-coordinate ascent where a block corresponds to

6.1. SOLVING THE M3N QP 77

1. Initialize: αi(y) = 1I(y = y(i)), ∀ i, y.

2. Setviolation = 0,

3. For eachi,

4. If αi violates (KKT1) or (KKT2),

5. Setviolation = 1,

6. Find feasibleα′i such thatQ(α′i, α−i) > Q(αi, α−i) and setαi = α′i.

7. If violation = 1 goto 2.

Figure 6.1: Block-coordinate dual ascent.

the vector of dual variablesαi for a single examplei. The general form of block-coordinate

ascent algorithm as shown in Fig. 6.1 is essentially coordinate ascent on blocksαi, main-

taining the feasibility of the dual. When optimizing with respect to a single blocki, the

objective function can be split into two terms:

Q(α) = Q(α−i) +Q(αi, α−i),

whereα−i denotes all dualαk variables fork other thani. Only the second part of the

objectiveQ(αi, α−i) matters for optimizing with respect toαi. The algorithm starts with

a feasible dual solutionα and improves the objective block-wise until all KKT condi-

tions are satisfied. Checking the constraints requires computingw andξ from α according

to Eq. (6.1).

As long as the local ascent step overαi is guaranteed to improve the objective when

KKT conditions are violated, the algorithm will converge to the global maximum in a finite

number of steps (within the precision). This allows us to focus on efficient updates to a

single block ofαi at a time.

Let α′i(y) = αi(y) + λ(y). Note that
∑

y λ(y) = 0 andαi(y) + λ(y) ≥ 0 so thatα′i is

feasible. We can write the objectiveQ(α−i) +Q(α′i, α−i) in terms ofλ andα:

∑
j,y

αj(y)`j(y) +
∑

y

λ(y)`i(y)− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

y

λ(y)∆fi(y) +
∑
j,y

αj(y)∆fj(y)

∣∣∣∣∣

∣∣∣∣∣

2

.

78 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

By dropping all terms that do not involveλ, and making the substitution

w = C
∑

j,y αj(y)∆fj(y), we get:

∑
y

λ(y)`i(y)−w>
(∑

y

λ(y)∆fi(y)

)
− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

y

λ(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

.

Since
∑

y λ(y) = 0,

∑
y

λ(y)∆fi(y) =
∑

y

λ(y)fi(y
(i))−

∑
y

λ(y)fi(y) = −
∑

y

λ(y)fi(y).

Below we also make the substitutionvi(y) = w>fi(y) + `i(y) to get the optimization

problem forλ:

max
∑

y

λ(y)vi(y)− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

y

λ(y)fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

s.t.
∑

y

λ(y) = 0; αi(y) + λ(y) ≥ 0, ∀y.

6.1.1 SMO

We do not need to solve the optimization subproblem above at each pass through the data.

All that is required is an ascent step, not a full optimization. Sequential Minimal Opti-

mization (SMO) approach takes an ascent step that modifies the least number of variables.

In our case, we have the simplex constraint, so we must change at least two variables in

order to respect the normalization constraint (by moving weight from one dual variable to

another). We address a strategy for selecting the two variables in the next section, but for

now assume we have pickedλ(y′) andλ(y′′). Then we haveδ = λ(y′) = −λ(y′′) in order

to sum to 1. The optimization problem becomes a single variable quadratic program inδ:

max [vi(y
′)− vi(y

′′)]δ − 1

2
C||fi(y′)− fi(y

′′)||2δ2 (6.3)

s.t. αi(y
′) + δ ≥ 0; αi(y

′′)− δ ≥ 0.

6.1. SOLVING THE M3N QP 79

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2

−1.5

−1

−0.5

0

0.5

Figure 6.2: Representative examples of the SMO subproblem. Horizonal axis representsδ
with two vertical lines depicting the upper and lower boundsc andd. Vertical axis repre-
sents the objective. Optimum either occurs at the maximum of the parabola if it is feasible
or the upper or lower bound otherwise.

With a = vi(y
′)− vi(y

′′), b = C||fi(y′)− fi(y
′′)||2, c = −αi(y

′), d = αi(y
′′), we have:

max [aδ − b

2
δ2] s.t. c ≤ δ ≤ d, (6.4)

where the optimum is achieved at the maximum of the parabolaa/b if c ≤ a/b ≤ d or at

the boundaryc or d (see Fig. 6.1.1). Hence the solution is given by simply clippinga/b:

δ∗ = max(c, min(d, a/b)).

The key advantage of SMO is the simplicity of this update. Computing the coefficients

involves dot products (or kernel evaluations) to computew>fi(y
′) andw>fi(y′′) as well as

(fi(y
′)− fi(y

′′))>(fi(y
′)− fi(y

′′)).

6.1.2 Selecting SMO pairs

How do we actually select such a pair to guarantee that we make progress in optimizing

the objective? Note that at least one of the assignmentsy must violate (KKT1) or (KKT2),

80 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

1. Setviolation = 0.

2. For eachy,

3. KKT1: If αi(y) = 0 andvi(y) > vi(y) + ε,

4. Sety′ = y andviolation = 1 and goto 7.

5. KKT2: If αi(y) > 0 andvi(y) < vi(y)− ε,

6. Sety′ = y andviolation = 2 and goto 7.

7. If violation > 0,

8. For eachy 6= y′,

9. If violation = 1 andαi(y) > 0,

10. Sety′′ = y and goto 13.

11. If violation = 2 andvi(y) > vi(y
′),

12. Sety′′ = y and goto 13.

13. Returny′ andy′′.

Figure 6.3: SMO pair selection.

because otherwiseαi is optimal with respect to the currentα−i. The selection algorithm is

outlined in Fig. 6.3.

The first variable in the pair,y′, corresponds to a violated condition, while the second

variable,y′′, is chosen to guarantee that solving Eq. (6.3) will result in improving the ob-

jective. There are two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. αi(y
′) = 0 but vi(y

′) > vi(y′) + ε. This is the case wherei, y′ is a not

support vector but should be. We would like to increaseαi(y
′), so we needαi(y

′′) > 0

to borrow from. There will always be a such ay′′ since
∑

y αi(y) = 1 andαi(y
′) = 0.

Sincevi(y
′) > vi(y′) + ε, vi(y

′) > vi(y
′′) + ε, so the linear coefficient in Eq. (6.4) is

a = vi(y
′)− vi(y

′′) > ε. Hence the unconstrained maximum is positivea/b > 0. Since the

upper-boundd = αi(y
′′) > 0, we have enough freedom to improve the objective.

Case KKT2. αi(y
′) > 0 butvi(y

′) < vi(y′)− ε. This is the case wherei, y′ is a support

vector but should not be. We would like to decreaseαi(y
′), so we needvi(y

′′) > vi(y
′)

so thata/b < 0. There will always be a such ay′′ sincevi(y
′) < vi(y′) − ε. Since the

6.1. SOLVING THE M3N QP 81

lower-boundc = −αi(y
′) < 0, again we have enough freedom to improve the objective.

Since at each iteration we are guaranteed to improve the objective if the KKT conditions

are violated and the objective is bounded, we can use the SMO in the block-coordinate

ascent algorithm to converge in a finite number of steps. To the best of our knowledge,

there are no upper bounds on the speed of convergence of SMO, but experimental evidence

has shown it a very effective algorithm for SVMs [Platt, 1999]. Of course, we can improve

the speed of convergence by adding heuristics in the selection of the pair, as long as we

guarantee that improvement is possible when KKT conditions are violated.

6.1.3 Structured SMO

Clearly, we cannot perform the above SMO updates in the space ofα directly for the

structured problems, since the number ofα variables is exponential. The constraints onµ

variables are much more complicated, since eachµ participates not only in non-negativity

and normalization constraints, but also clique-agreement constraints. We cannot limit our

ascent steps to changing only twoµ variables at a time, because in order to make a change

in one clique and stay feasible, we need to modify variables in overlapping cliques. For-

tunately, we can perform SMO updates onα variables implicitly in terms of the marginal

dual variablesµ.

The diagram in Fig. 6.1.3 shows the abstract outline of the algorithm. The key steps in

the SMO algorithm are checking for violations of the KKT conditions, selecting the pairy′

andy′′, computing the corresponding coefficientsa, b, c, d and updating the dual. We will

show how to do these operations by doing all the hard work in terms of the polynomially

many marginalµi variables and auxiliary “max-marginals” variables.

Structured KKT conditions

As before, we definevi(y) = w>fi(y) + `i(y). The KKT conditions are, for ally:

αi(y) = 0 ⇒ vi(y) ≤ vi(y); αi(y) > 0 ⇒ vi(y) ≥ vi(y). (6.5)

82 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

select
& lift

SMO
update

project

Figure 6.4: Structured SMO diagram. We use marginalsµ to select an appropriate pair of
instantiationsy′ andy′′ and reconstruct theirα values. We then perform the simple SMO
update and project the result back onto the marginals.

Of course, we cannot check these explicitly. Instead, we define max-marginals for each

clique in the junction treec ∈ T (i) and its valuesyc, as:

v̂i,c(yc) = max
y∼yc

[w>fi(y) + `i(y)], α̂i,c(yc) = max
y∼yc

αi(y).

We also definêvi,c(yc) = maxy′c 6=yc v̂i,c(y
′
c) = maxy 6∼yc [w>fi(y) + `i(y)]. Note that we

do not explicitly representαi(y), but we can reconstruct the maximum-entropy one from

the marginalsµi by using Eq. (5.13). Botĥvi,c(yc) andα̂i,c(yc) can be computed by using

the Viterbi algorithm (one pass propagation towards the root and one outwards from the

root [Cowellet al., 1999]). We can now express the KKT conditions in terms of the max-

marginals for each cliquec ∈ T (i) and its valuesyc:

α̂i,c(yc) = 0 ⇒ v̂i,c(yc) ≤ v̂i,c(yc); α̂i,c(yc) > 0 ⇒ v̂i,c(yc) ≥ v̂i,c(yc). (6.6)

Theorem 6.1.1 The KKT conditions in Eq. (6.5) and Eq. (6.6) are equivalent.

Proof:

Eq. (6.5)⇒ Eq. (6.6). Assume Eq. (6.5). Suppose, we have a violation of KKT1: for

somec,yc, α̂i,c(yc) = 0, but v̂i,c(yc) > v̂i,c(yc). Sinceα̂i,c(yc) = maxy∼yc αi(y) = 0,

6.1. SOLVING THE M3N QP 83

thenαi(y) = 0, ∀y ∼ yc. Hence, by Eq. (6.5),vi(y) ≤ vi(y), ∀y ∼ yc. But v̂i,c(yc) >

v̂i,c(yc) implies the opposite: there existsy ∼ yc such thatvi(y) > v̂i,c(yc), which also

impliesvi(y) > vi(y), a contradiction.

Now suppose we have a violation of KKT2: for somei,yc, α̂i,c(yc) > 0, but v̂i,c(yc) <

v̂i,c(yc). Thenvi(y) < vi(y), ∀y ∼ yc. But α̂i,c(yc) > 0 implies there existsy ∼ yc such

thatαi(y) > 0. For thaty, by Eq. (6.5),vi(y) ≥ vi(y), a contradiction.

Eq. (6.6)⇒ Eq. (6.5). Assume Eq. (6.6). Suppose we have a violation of KKT1:

for somey, αi(y) = 0, but vi(y) > vi(y). This means thaty is the optimum ofvi(·),
hencev̂i,c(yc) = vi(y) > vi(y) > v̂i,c(yc), ∀c ∈ T (i),yc ∼ y. But by Eq. (6.6), if

v̂i,c(yc) > v̂i,c(yc), then we cannot havêαi,c(yc) = 0. Hence all they-consistentαi max-

marginals are positivêαi,c(yc) > 0, ∀c ∈ T (i), and it follows that all they-consistent

marginalsµi are positive as wellµi,c(yc) > 0, ∀c ∈ T (i) (since sum upper-bounds max).

Butαi(y) =
∏

c∈T (i) µi,c(yc)∏
c∈S(i) µi,s(ys)

, so if all they-consistent marginals are positive, thenαi(y) > 0,

a contradiction.

Now suppose we have a violation of KKT2: for somey, αi(y) > 0, but vi(y) <

vi(y). Sinceαi(y) > 0, we know that all they-consistentαi max-marginals are positive

α̂i,c(yc) > 0, ∀c ∈ T (i). By Eq. (6.6),v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i). Note that trivially

maxy′ vi(y
′) = max(v̂i,c(y

′
c), v̂i,c(y′c)) for any cliquec and clique assignmenty′c. Since

v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i), thenmaxy′ vi(y
′) = v̂i,c(yc), , ∀c ∈ T (i). That is,v̂i,c(yc)

is the optimal value. We will show thatvi(y) = v̂i,c(yc), a contradiction. To show that this,

we consider any two adjacent nodes in the treeT (i), cliquesa andb, with a separators, and

show that̂vi,a∪b(ya∪b) = v̂i,a(ya) = v̂i,b(yb). By chaining this equality from the root of the

tree to all the leaves, we getvi(y) = v̂i,c(yc) for anyc.

We need to introduce some more notation to deal with the two parts of the tree induced

by cutting the edge betweena andb. Let {A,B} be a partition of the nodesT (i) (cliques

of C(i)) resulting from removing the edge betweena andb such thata ∈ A andb ∈ B.

We denote the two subsets of an assignmenty asyA andyB (with overlap atys). The

value of an assignmentvi(y) can be decomposed into two parts:vi(y) = vi,A(yA) +

vi,B(yB), wherevi,A(yA) and vi,B(yB) only count the contributions of their constituent

cliques. Take any maximizer,y(a) ∼ ya with vi(y
(a)) = v̂i,a(ya) ≥ v̂i,a(ya) and any

maximizery(b) ∼ yb with vi(y
(b)) = v̂i,b(yb) ≥ v̂i,b(yb), which by definition agree withy

84 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

on the intersections. We decompose the two associated values into the corresponding parts:

vi(y
(a)) = vi(y

(a)
A)+vi(y

(a)
B) andvi(y

(b)) = vi(y
(b)
A)+vi(y

(b)
B). We create a new assignment

that combines the best of the two:y(s) = y
(b)
A ∪ y

(a)
B . Note thatvi(y

(s)) = vi(y
(b)
A) +

vi(y
(a)
B) = v̂i,s(ys), since we essentially fixed the intersections and maximized over the

rest of the variables inA andB separately. Noŵvi,a(ya) = v̂i,b(yb) ≥ v̂i,s(ys) since they

are optimal as we said above. Hence we havevi(y
(a)
A) + vi(y

(a)
B) = vi(y

(b)
A) + vi(y

(b)
B) ≥

vi(y
(b)
A) + vi(y

(a)
B) which implies thatvi(y

(a)
A) ≥ vi(y

(b)
A) andvi(y

(b)
B) ≥ vi(y

(a)
B). Now we

create another assignment that clamps the value of botha andb: y(a∪b) = y
(a)
A ∪ y

(b)
B . The

value of this assignment is optimalvi(y
(a∪b)) = vi(y

(a)
A) + vi(y

(b)
B) = vi(y

(a)) = vi(y
(b)).

Structured SMO pair selection and update

As in multi-class problems, we will select the first variable in the pair,y′, corresponding to

a violated condition, while the second variable,y′′, to guarantee that solving Eq. (6.3) will

result in improving the objective. Having selectedy′ andy′′, the coefficients for the one-

variable QP in Eq. (6.4) area = vi(y
′)−vi(y

′′), b = C||fi(y′)−fi(y
′′)||2, c = −αi(y

′), d =

αi(y
′′). As before, we enforce approximate KKT conditions in the algorithm in Fig. 6.5.

We have two cases, corresponding to violation of KKT1 and violation of KKT2.

Case KKT1. α̂i,c(y
′
c) = 0 but v̂i,c(y

′
c) > v̂i,c(y′c)+ε. We have sety′ = arg maxy∼yc

vi(y),

sovi(y
′) = v̂i,c(y

′
c) > v̂i,c(y′c) + ε > vi(y′) + ε andαi(y

′) = 0. This is the case where

i,y′ is a not support vector but should be. We would like to increaseαi(y
′), so we need

αi(y
′′) > 0 to borrow from. There will always be a such ay′′ (with y′′c 6= y′c) since∑

y αi(y) = 1 andαi(y
′) = 0. We can find one by choosingyc for which α̂i,c(yc) > 0,

which guarantees that fory′′c = arg maxy∼yc
αi(y), αi(y

′′) > 0. Sincevi(y
′) ≥ vi(y′) + ε,

vi(y
′) ≥ vi(y

′′) + ε, so the linear coefficient in Eq. (6.4) isa = vi(y
′)− vi(y

′′) > ε. Hence

the unconstrained maximum is positivea/b > 0. Since the upper-boundd = αi(y
′′) > 0,

we have enough freedom to improve the objective.

Case KKT2. α̂i,c(y
′
c) > 0 but v̂i,c(y

′
c) < v̂i,c(y′c)−ε. We have sety′ = arg maxy∼yc

αi(y),

soαi(y
′) = α̂i,c(y

′
c) > 0 andvi(y

′) < v̂i,c(y
′
c) < v̂i,c(y′c) − ε < vi(y′) − ε. This is the

case wherei,y′ is a support vector but should not be. We would like to decreaseαi(y
′),

so we needvi(y
′′) > vi(y

′) so thata/b < 0. There will always be a such ay′′ since

6.2. EXPERIMENTS 85

1. Setviolation = 0.

2. For eachc ∈ T (i), yc

3. KKT1: If α̂i,c(yc) = 0, andv̂i,c(yc) > v̂i,c(yc) + ε,

4. Sety′c = yc, y′ = arg maxy∼yc
vi(y) andviolation = 1 and goto 7.

5. KKT2: If α̂i,c(yc) > 0, andv̂i,c(yc) < v̂i,c(yc)− ε,

6. Sety′c = yc, y′ = arg maxy∼yc
αi(y) andviolation = 2 and goto 7.

7. If violation > 0,

8. For eachyc 6= y′c,

9. If violation = 1 andα̂i,c(yc) > 0,

10. Sety′′c = arg maxy∼yc
αi(y) and goto 13.

11. If violation = 2 andv̂i,c(yc) > v̂i,c(y
′
c),

12. Sety′′ = arg maxy∼yc
vi(y) and goto 13.

13. Returny′ andy′′.

Figure 6.5: Structured SMO pair selection.

vi(y
′) < vi(y′) − ε. We can find one by choosingyc for which v̂i,c(yc) > v̂i,c(yc) − ε,

which guarantees that fory′′c = arg maxy∼yc
vi(y), vi(y

′′) > vi(y
′) − ε, Since the lower-

boundc = −αi(y
′) < 0, again we have enough freedom to improve the objective.

Having computed new valuesα′i(y
′) = αi(y

′) + δ andα′i(y
′′) = αi(y

′) − δ, we need

to project this change onto the marginal dual variablesµi. The only marginal affected are

the ones consistent withy′ and/ory′′, and the change is very simple:

µ′i,c(yc) = µi,c(yc) + δ1I(yc ∼ y′)− δ1I(yc ∼ y′′).

6.2 Experiments

We selected a subset of∼ 6100 handwritten words, with average length of∼ 8 characters,

from 150 human subjects, from the data set collected by Kassel [1995]. Each word was

divided into characters, each character was rasterized into an image of16 by 8 binary

86 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Log-Reg CRF mSVM M^3N

T
es

t e
rr

or
 (

av
er

ag
e

pe
r-

ch
ar

ac
te

r)

linear quadratic cubic

(a) (b)

Figure 6.6: (a) 3 example words from the OCR data set; (b) OCR: Average per-
character test error for logistic regression, CRFs, multiclass SVMs, and M3Ns, using linear,
quadratic, and cubic kernels.

pixels. (See Fig. 6.6(a).) In our framework, the image for each word corresponds tox, a

label of an individual character toYj, and a labeling for a complete word toY. Each label

Yj takes values from one of26 classes{a, . . . , z}.
The data set is divided into10 folds of∼ 600 training and∼ 5500 testing examples.

The accuracy results, summarized in Fig. 6.6(b), are averages over the10 folds. We im-

plemented a selection of state-of-the-art classification algorithms:independent label ap-

proaches, which do not consider the correlation between neighboring characters — lo-

gistic regression, multi-class SVMs as described in Eq. (2.9), and one-against-all SVMs

(whose performance was slightly lower than multi-class SVMs); andsequence approaches

— CRFs, and our proposed M3 networks. Logistic regression and CRFs are both trained by

maximizing the conditional likelihood of the labels given the features, using a zero-mean

diagonal Gaussian prior over the parameters, with a standard deviation between 0.1 and

1. The other methods are trained by margin maximization. Our features for each label

Yj are the corresponding image ofith character. For the sequence approaches (CRFs and

M3), we used an indicator basis function to represent the correlation betweenYj andYi+1.

6.3. RELATED WORK 87

For margin-based methods (SVMs and M3), we were able to use kernels (both quadratic

and cubic were evaluated) to increase the dimensionality of the feature space. We used

the structured SMO algorithm with about 30-40 iterations through the data. Using these

high-dimensional feature spaces in CRFs is not feasible because of the enormous number

of parameters.

Fig. 6.6(b) shows two types of gains in accuracy: First, by using kernels, margin-based

methods achieve a very significant gain over the respective likelihood maximizing methods.

Second, by using sequences, we obtain another significant gain in accuracy. Interestingly,

the error rate of our method using linear features is16% lower than that of CRFs, and

about the same as multi-class SVMs with cubic kernels. Once we use cubic kernels our

error rate is45% lower than CRFs and about33% lower than the best previous approach.

For comparison, the previously published results, although using a different setup (e.g., a

larger training set), are about comparable to those of multiclass SVMs.

6.3 Related work

The kernel-adatron [Friesset al., 1998] and voted-perceptron algorithms [Freund & Schapire,

1998] for large-margin classifiers have a similar online optimization scheme. Collins

[2001] have applied voted-perceptron to structured problems in natural language. Although

head-to-head comparisons have not been performed, it seems that, empirically, less passes

(about 30-40) are needed for our algorithm than in the perceptron literature.

Recently, the Exponentiated Gradient [Kivinen & Warmuth, 1997] algorithm has been

adopted to solve our structured QP for max-margin estimation [Bartlettet al., 2004]. Al-

though the EG algorithm has attractive convergence properties, it has yet to be shown to

learn faster than Structured SMO, particularly in the early iterations through the dataset.

6.4 Conclusion

In this chapter, we address the large (though polynomial) size of our quadratic program

using an effective optimization procedure inspired by SMO. In our experiments with the

OCR task, our sequence model significantly outperforms other approaches by incorporating

88 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS

high-dimensional decision boundaries of polynomial kernels over character images while

capturing correlations between consecutive characters. Overall, we believe that M3 net-

works will significantly further the applicability of high accuracy margin-based methods to

real-world structured data. In the next two chapters, we apply this framework to important

classes of Markov networks for spatial and relational data.

Chapter 7

Associative Markov networks

In the previous chapter, we considered applications of sequence-structured Markov net-

works, which allow very efficient inference and learning. The chief computational bottle-

neck in applying Markov networks for other large-scale prediction problems is inference,

which is NP-hard in general networks suitable in a broad range of practical Markov network

structures, including grid-topology networks [Besag, 1986].

One can address the tractability issue by limiting the structure of the underlying net-

work. In some cases, such as the quad-tree model used for image segmentation [Bouman &

Shapiro, 1994], a tractable structure is determined in advance. In other cases (e.g., [Bach &

Jordan, 2001]), the network structure is learned, subject to the constraint that inference on

these networks is tractable. In many cases, however, the topology of the Markov network

does not allow tractable inference. For example, in hypertext, the network structure can

mirror the hyperlink graph, which is usually highly interconnected, leading to computa-

tionally intractable networks.

In this chapter, we show that optimal learning is feasible for an important subclass of

Markov networks — networks withattractive potentials. This subclass, calledassocia-

tive Markov networks (AMNs), contains networks of discrete variables withK labels and

arbitrary-size clique potentials withK parameters that favor the same labels for all vari-

ables in the clique. Such positive interactions capture the “guilt by association” pattern of

reasoning present in many domains, in which connected (“associated”) variables tend to

have the same label. AMNs are a natural fit object recognition and segmentation, webpage

89

90 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

classification, and many other applications.

In the max-margin estimation framework, the inference subtask is one of finding the

best joint (MAP) assignment to all of the variables in a Markov network. By contrast, other

learning tasks (e.g., maximizing the conditional likelihood of the target labels given the

features) require that we compute the posterior probabilities of different label assignments,

rather than just the MAP.

The MAP problem can naturally be expressed as an integer programming problem. We

use a linear program relaxation of this integer program in the min-max formulation. We

show that, for associative Markov networks of over binary variables (K = 2), this linear

program provides exact answers. To our knowledge, our method is the first to allow training

Markov networks of arbitrary connectivity and topology. For the non-binary case (K > 2),

the approximate linear program is not guaranteed to be optimal but we can bound its relative

error. Our empirical results suggest that the solutions of the resulting approximate max-

margin formulation work well in practice.

We present an AMN-based method for object segmentation of complex from 3D range

data. By constraining the class of Markov networks to AMNs, our models can be learned

efficiently and at run-time, scale up to tens of millions of nodes and edges. The proposed

learning formulation effectively and directly learns to exploit a large set of complex surface

and volumetric features, while balancing the spatial coherence modeled by the AMN.

7.1 Associative networks

Associative interactions arise naturally in the context of image processing, where nearby

pixels are likely to have the same label [Besag, 1986; Boykovet al., 1999b]. In this setting,

a common approach is to use ageneralized Potts model[Potts, 1952], which penalizes

assignments that do not have the same label across the edge:φij(k, l) = λij, ∀k 6= l and

φij(k, k) = 1, whereλij ≤ 1.

For binary-valued Potts models, Greiget al. [1989] show that the MAP problem can be

formulated as a min-cut in an appropriately constructed graph. Thus, the MAP problem can

be solved exactly for this class of models in polynomial time. ForL > 2, the MAP problem

7.2. LP INFERENCE 91

is NP-hard, but a procedure based on a relaxed linear program guarantees a factor 2 approx-

imation of the optimal solution [Boykovet al., 1999b; Kleinberg & Tardos, 1999]. Our

associative potentials extend the Potts model in several ways. Importantly, AMNs allow

different labels to have different attraction strength:φij(k, k) = λij(k), whereλij(k) ≥ 1,

andφij(k, l) = 1, ∀k 6= l. This additional flexibility is important in many domains, as

different labels can have very diverse affinities. For example, foreground pixels tend to

have locally coherent values while background is much more varied.

In a second important extension, AMNs admit non-pairwise interactions between vari-

ables, with potentials over cliques involvingm variablesφ(µi1, . . . , µim). In this case, the

clique potentials are constrained to have the same type of structure as the edge potentials:

There areK parametersφc(k, . . . , k) = λc(k) ≥ 1 and the rest of the entries are set to1.

In particular, using this additional expressive power, AMNs allow us to encode the pattern

of (soft) transitivity present in many domains. For example, consider the problem of pre-

dicting whether two proteins interact [Vazquezet al., 2003]; this probability may increase

if they both interact with another protein. This type of transitivity could be modeled by a

ternary clique that has highλ for the assignment with all interactions present.

More formally, we defineassociativefunctions and potentials as follows.

Definition 7.1.1 A functiong : Y 7→ IR isassociative for a graphG overK-ary variablesif

it can be written as:

g(y) =
∑
v∈V

K∑

k=1

gv(k)1I(yv = k) +
∑

c∈C\V

K∑

k=1

gc(k)1I(yc = k, . . . , k); gc(k) ≥ 0, ∀c ∈ C\V ,

whereV are the nodes andC are the cliques of the graphG. A set of potentialsφ(y) is

associative ifφ(y) = eg(y) andg(y) is associative.

7.2 LP Inference

We can write an integer linear program for the problem of finding the maximum of an

associative functiong(y), where we have a “marginal” variableµv(k) for each nodev ∈ V
and each labelk, which indicates whether nodev has valuek, andµc(k) for each cliquec

92 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

(containing more than one variable) and labelk, which represents the event that all nodes

in the cliquec have labelk:

max
∑
v∈V

K∑

k=1

µv(k)gv(k) +
∑

c∈C\V

K∑

k=1

µc(k)gc(k) (7.1)

s.t. µc(k) ∈ {0, 1}, ∀c ∈ C, k;
K∑

k=1

µv(k) = 1, ∀v ∈ V ;

µc(k) ≤ µv(k), ∀c ∈ C \ V , v ∈ c, k.

Note that we substitute the constraintµc(k) =
∧

v∈c µv(k) by linear inequality con-

straintsµc(k) ≤ µv(k). This works because the coefficientgc(k) is non-negative and we

are maximizing the objective function. Hence at the optimum,µc(k) = minv µv(k) , which

is equivalent toµc(k) =
∧

v∈c µv(k), whenµv(k) are binary.

It can be shown that in the binary case, the linear relaxation of Eq. (7.1), (where the

constraintsµc(k) ∈ {0, 1} are replaced byµc(k) ≥ 0), is guaranteed to produce an integer

solution when a unique solution exists.

Theorem 7.2.1 If K = 2, for any associative functiong, the linear relaxation of Eq. (7.1)

has an integral optimal solution.

See Appendix A.2.1 for the proof. This result states that the MAP problem in binary AMNs

is tractable, regardless of network topology or clique size. In the non-binary case (L > 2),

these LPs can produce fractional solutions and we use a rounding procedure to get an

integral solution.

Theorem 7.2.2 If K > 2, for any associative functiong, the linear relaxation of Eq. (7.1)

has a solution that is larger than the solution of the integer program by at most the number

of variables in the largest clique.

In the appendix, we also show that the approximation ratio of the rounding procedure is the

inverse of the size of the largest clique (e.g.,1
2

for pairwise networks). Although artificial

examples with fractional solutions can be easily constructed by using symmetry, it seems

that in real data such symmetries are often broken. In fact, in all our experiments with

L > 2 on real data, we never encountered fractional solutions.

7.3. MIN-CUT INFERENCE 93

7.3 Min-cut inference

We can also use efficient min-cut algorithms to perform exact inference on the learned

models forK = 2 and approximate inference forK > 2. For simplicity, we focus on the

pairwise AMN case. We first consider the case of binary AMNs, and later show how to use

the local search algorithm developed by Boykovet al. [1999a] to perform (approximate)

inference in the general multi-class case. For pairwise, binary AMNs, the objective of the

integer program in Eq. (7.1) is:

max
∑
v∈V

[µv(1)gv(1) + µv(2)gv(2)] +
∑
uv∈E

[µuv(1)guv(1) + µuv(2)guv(2)]. (7.2)

7.3.1 Graph construction

We construct a graph in which themin-cutwill correspond to the optimal MAP labeling

for the above objective. First, we recast the objective as minimization by simply reversing

the signs on the value of eachθ.

min −
∑
v∈V

[µv(1)gv(1) + µv(2)gv(2)]−
∑
uv∈E

[µuv(1)guv(1) + µuv(2)guv(2)]. (7.3)

The graph will consist of a vertex for each node in the AMN, along with the1 and2

terminals. In the final(V1,V2) cut, theV1 set will correspond to label1, and theV2 set will

correspond to label2. We will show how to deal with the node terms (those depending only

on a single variable) and the edge terms (those depending on a pair of variables), and then

how to combine the two.

Node terms

Consider a node term−µv(1)gv(1)− µv(2)gv(2). Such a term corresponds to the node po-

tential contribution to our objective function for nodev. For each node term corresponding

to nodev we add a vertexv to the min-cut graph. We then look at∆v = gv(1) − gv(2),

and create an edge of weight|∆v| from v to either1 or 2, depending on the sign of∆v.

The reason for that is that the final min-cut graph must consist of only positive weights. An

94 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

1 2v

1 2v

1

2

u v

Figure 7.1: Min-cut graph construction of node (left) and edge (right) terms.

example is presented in Fig. 7.3.1.

From Fig. 7.3.1, we see that if the AMN consisted of only node potentials, the graph

construction above would add an edge from each node to its more likely label. Thus if we

run min-cut, we would simply get a cut with cost0, since for each introduced vertex we

have only one edge of positive weight to either1 or 2, and we would always choose not to

cut any edges.

Edge Terms

Now consider an edge term of the form−µuv(1)guv(1) − µuv(2)guv(2). To construct a

min-cut graph for the edge term we will introduce two verticesu andv. We will connect

vertexu to 1 with an edge of weightguv(1), connectv to 2 with an edge of weightguv(2)

and connectu to v with an edge of weightguv(1) + guv(2). Fig. 7.3.1 shows an example.

Observe what happens when both nodes are on theV2 side of the cut: the value of the

min-cut isguv(1), which must be less thanguv(2) or the min-cut would have placed them

both on the1 side. When looking at edge terms in isolation, a cut that places each node

in different sets will not occur, but when we combine the graphs for node terms and edge

terms, such cuts will be possible.

We can take the individual graphs we created for node and edge terms and merge them

7.3. MIN-CUT INFERENCE 95

by adding edge weights together (and treating missing edges as edges with weight0). It

can be shown that the resulting graph will represent the same objective (in the sense that

running min-cut on it will optimize the same objective) as the sum of the objectives of each

graph. Since our MAP-inference objective is simply a sum of node and edge terms, merging

the node and edge term graphs will result in a graph in which min-cut will correspond to

the MAP labeling.

7.3.2 Multi-class case

The graph construction above finds the best MAP labeling for the binary case, but in prac-

tice we would often like to handle multiple classes in AMNs. One of the most effective

algorithms for minimizing energy functions like ours is theα-expansion algorithm pro-

posed by Boykovet al. [1999a]. The algorithm performs a series of “expansion” moves

each of which involves optimization over two labels, and it can be shown that it converges

to within a factor of 2 of the global minimum.

Expansion Algorithm

Consider a current labelingµ and a particular labelk ∈ 1, . . . , K. Another labelingµ′ is

called an “α-expansion” move (following Boykovet al. [1999a]) fromµ if µ′v 6= k implies

µ′v = µv (whereµv is the label of the nodev in the AMN.) In other words, ak-expansion

from a current labeling allows each label to either stay the same, or change tok.

Theα-expansion algorithm cycles through all labelsk in either a fixed or random order,

and finds the new labeling whose objective has the lowest value. It terminates when there

is noα-expansion move for any labelk that has a lower objective than the current labeling

(Fig. 7.2).

The key part of the algorithm is computing the bestα-expansion labeling for a fixed

k and a fixed current labelingµ. The min-cut construction from earlier allows us to do

exactly that since anα-expansion move essentially minimizes a MAP-objective over two

labels: it either allows a node to retain its current label, or switch to the labelα. In this

new binary problem we will let label1 represent a node keeping its current label and label

2 will denote a node taking on the new labelk. In order to construct the right coefficients

96 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

1. Begin with arbitrary labelingµ

2. Setsuccess := 0

3. For each labelk ∈ {1, . . . K}
3.1 Computêµ = arg min−g(µ′) amongµ′ within oneα-expansion ofµ.

3.2 If E(µ̂) < E(µ), setµ := µ̂ and success:= 1

4. If success = 1 goto 2.

5. Returnµ

Figure 7.2:α-expansion algorithm

for the new binary objective we need to consider several factors. Below, letθ′ki andθ′k,k
ij

denote the node and edge coefficients associated with the new binary objective:

◦ Node PotentialsFor each nodei in the current labeling whose current label is notα,

we letθ′0i = θyi

i , andθ′1i = θα
i , whereyi denotes the current label of nodei, andθyi

denotes the coefficient in the multiclass AMN MAP objective. Note that we ignore

nodes with labelα altogether since anα-expansion move cannot change their label.

◦ Edge PotentialsFor each edge(i, j) ∈ E whose nodes have labels different fromα,

we add a new edge potential, with weightsθ′1ij = θα,α
ij . If the two nodes of the edge

currently have the same label, we setθ′0ij = θ
yi,yj

ij , and if the two nodes currently have

different labels we letθ′0ij = 0. For each edge(i, j) ∈ E in which exactly one of the

nodes has labelα in the current labeling, we addθα,α
ij , to the node potentialθ′1i of the

node whose label is different fromα.

After we have constructed the new binary MAP objective as above, we can apply the

min-cut construction from before to get the optimal labeling within oneα-expansion from

the current one. Veksler [1999] shows that theα-expansion algorithm converges inO(N)

iterations whereN is the number of nodes. As noted in Boykovet al. [1999a] and as we

have observed in our experiments, the algorithm terminates only after a few iterations with

most of the improvement occurring in the first 2-3 expansion moves.

7.4. MAX-MARGIN ESTIMATION 97

7.4 Max-margin estimation

The potentials of the AMN are once again log-linear combinations of basis functions. We

will need the following assumption to ensure thatw>f(x,y) is associative:

Assumption 7.4.1 Basis functionsf are component-wise associative forG(x) for any(x,y).

Recall that this implies that for cliques larger than one, all basis functions evaluate to0

for assignments where the values of the nodes are not equal and are non-negative for the

assignments where the values of the nodes are equal. To ensure thatw>f(x,y) is associa-

tive, it is useful to separate the basis functions with support only on nodes from those with

support on larger cliques.

Definition 7.4.2 Let ḟ be the subset of basis functionsf with support only on singleton

cliques:

ḟ = {f ∈ f : ∀x ∈ X , y ∈ Y , c ∈ C(G(x)), |c| > 1, fc(xc,yc) = 0}.

Let f̈ = f \ ḟ be the rest of the basis functions. Let{ẇ, ẅ} = w be the corresponding

subsets of parameters.

It is easy to verify that any non-negative combination of associative functions is asso-

ciative, and any combination of basis functions with support only on singleton cliques is

also associative, so we have:

Lemma 7.4.3 w>f(x,y) is associative forG(x) for any(x,y) whenever Assumption 7.4.1

holds andẅ ≥ 0.

We must make similar associative assumption on the loss function in order to guarantee

that the LP inference can handle it.

Assumption 7.4.4 The loss functioǹ(x(i),y(i),y) is associative forG(i) for all i.

In practice, this restriction is fairly mild, and the Hamming loss, which we use in general-

ization bounds and experiments, is associative.

98 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Using the above Assumptions 7.4.1 and 7.4.4 and some algebra (see Appendix A.2.3

for derivation), we have the following max-margin QP for AMNs:

min
1

2
||w||2 + C

∑

i,v∈V(i)

ξi,v (7.4)

s.t. w>∆fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V (i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;

mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c)/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;

ẅ ≥ 0;

wherefi,c(k) = fi,c(k, . . . , k) and`i,c(k) = `i,c(k, . . . , k).

While this primal is more complex than the regular M3N factored primal in Eq. (5.4),

the basic structure of the first two sets of constraints remains the same: we have local

margin requirements and “credit” passed around through messagesmi,c,v(k). The extra

constraints are due to the associativity constraints on the resulting model.

The dual of Eq. (7.4) (see derivation in Sec. A.2.3) is given by:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− C

2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

− C

2

∣∣∣∣∣∣

∣∣∣∣∣∣
ν̈ +

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = 1, ∀i, ∀v ∈ V(i);

µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k;

ν̈ ≥ 0.

In the dual, there are marginalsµ for each node and clique, for each valuek, similar

to Eq. (5.12). However, the constraints are different, and not surprisingly, are essentially

the constraints from the inference LP relaxation in Eq. (7.1).

7.5. EXPERIMENTS 99

The dual and primal solutions are related by

ẇ =
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v(k); ẅ = ν̈ +
∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k).

Theν̈ variables simply ensure thatẅ are positive (if any component
∑

i,c∈C(i), k µi,c(k)∆f̈i,c(k)

is negative, maximizing the objective will force the corresponding component ofν̈ to cancel

it out). Note that the objective can be written in terms of dot products of node basis func-

tions∆ḟi,v(k)>∆ḟj,v̄(k̄), so they can be kernelized. Unfortunately, the edge basis functions

cannot be kernelized because of the non-negativity constraint.

ForK = 2, the LP inference is exact, so that Eq. (7.4) learnsexactmax-margin weights

for Markov networks ofarbitrary topology. ForK > 2, the linear relaxation leads to a

strengthening of the constraints onw by potentially adding constraints corresponding to

fractional assignments as in the case of untriangualated networks. Thus, the optimal choice

w, ξ for the original QP may no longer be feasible, leading to a different choice of weights.

However, as our experiments show, these weights tend to do well in practice.

7.5 Experiments

We applied associative Markov networks to the task of terrain classification. Terrain clas-

sification is very useful for autonomous mobile robots in real-world environments for path

planning, target detection, and as a pre-processing step for other perceptual tasks. The

Stanford Segbot Project1 has provided us with a laser range maps of the Stanford campus

collected by a moving robot equipped with SICK2 laser sensors Fig. 7.5. The data consists

of around 35 million points, represented as 3D coordinates in an absolute frame of refer-

ence Fig. 7.5. Thus, the only available information is the location of points. Each reading

was a point in 3D space, represented by its(x, y, z) coordinates in an absolute frame of

reference. Thus, the only available information is the location of points, which was fairly

noisy because of localization errors.

Our task is to classify the laser range points into four classes:ground, building, tree,

1Many thanks to Michael Montemerlo and Sebastian Thrun for sharing the data.

100 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Figure 7.3: Segbot: roving robot equipped with SICK2 laser sensors.

and shrubbery. Since classifying ground points is trivial given their absolute z-coordinate

(height), we classify them deterministically by thresholding the z coordinate at a value

close to 0. After we do that, we are left with approximately 20 million non-ground points.

Each point is represented simply as a location in an absolute 3D coordinate system. The

features we use require pre-processing to infer properties of the local neighborhood of a

point, such as how planar the neighborhood is, or how much of the neighbors are close to

the ground. The features we use are invariant to rotation in the x-y plane, as well as the

density of the range scan, since scans tend to be sparser in regions farther from the robot.

Our first type of feature is based on the principal plane around it. For each point we

sample 100 points in a cube of radius0.5 meters. We run PCA on these points to get the

plane of maximum variance (spanned by the first two principal components). We then par-

tition the cube into3 × 3 × 3 bins around the point, oriented with respect to the principal

plane, and compute the percentage of points lying in the various sub-cubes. We use a num-

ber of features derived from the cube such as the percentage of points in the central column,

the outside corners, the central plane, etc. These features capture the local distribution well

and are especially useful in finding planes. Our second type of feature is based on a column

7.5. EXPERIMENTS 101

Figure 7.4: 3D laser scan range map of the Stanford Quad.

around each point. We take a cylinder of radius0.25 meters, which extends vertically to

include all the points in a “column”. We then compute what percentage of the points lie in

various segments of this vertical column (e.g., between 2m and 2.5m). Finally, we also use

an indicator feature of whether or not a point lies within2m of the ground. This feature is

especially useful in classifying shrubbery.

For training we select roughly 30 thousand points that represent the classes well: a

segment of a wall, a tree, some bushes. We considered three different models:SVM,

Voted-SVM and AMNs. All methods use the same set of features, augmented with a

quadratic kernel.

The first model is a multi-class SVM with a quadratic kernel over the above features.

This model (Fig. 7.5, right panel and Fig. 7.7, top panel) achieves reasonable performance

102 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Figure 7.5: Terrain classification results showing Stanford Memorial Church obtained
with SVM, Voted-SVM and AMN models. (Color legend: buildings/red, trees/green,
shrubs/blue, ground/gray).

in many places, but fails to enforce local consistency of the classification predictions. For

example arches on buildings and other less planar regions are consistently confused for

trees, even though they are surrounded entirely by buildings.

We improved upon the SVM by smoothing its predictions using voting. For each point

we took its local neighborhood (we varied the radius to get the best possible results) and

assigned the point the label of the majority of its 100 neighbors. TheVoted-SVM model

(Fig. 7.5, middle panel and Fig. 7.7, middle panel) performs slightly better thanSVM: for

example, it smooths out trees and some parts of the buildings. Yet it still fails in areas like

arches of buildings where theSVM classifier has a locally consistent wrong prediction.

The final model is a pairwise AMN over laser scan points, with associative potentials

to ensure smoothness. Each point is connected to 6 of its neighbors: 3 of them are sampled

randomly from the local neighborhood in a sphere of radius0.5m, and the other 3 are

sampled at random from the vertical cylinder column of radius0.25m. It is important to

ensure vertical consistency since theSVM classifier is wrong in areas that are higher off the

7.5. EXPERIMENTS 103

0 0.5 1 1.5 2 2.5

x 10
7

0

50

100

150

200

250

Problem size (nodes and edges)

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Mincut inference performance

Figure 7.6: The running time (in seconds) of the min-cut-based inference algorithm for
different problem sizes. The problem size is the sum of the number of nodes and the
number of edges. Note the near linear performance of the algorithm and its efficiency even
for large models.

ground (due to the decrease in point density) or because objects tend to look different as we

vary their z-coordinate (for example, tree trunks and tree crowns look different). While we

experimented with a variety of edge features including various distances between points,

we found that even using only a constant feature performs well.

We trained the AMN model using CPLEX to solve the quadratic program; the train-

ing took about an hour on a Pentium 3 desktop. The inference over each segment was

performed using min-cut withα-expansion moves as described above. We used a pub-

licly available implementation of the min-cut algorithm, which uses bidirectional search

trees for augmenting paths (see Boykov and Kolmogorov [2004]). The implementation is

largely dominated by I/O time, with the actual min-cut taking less than two minutes even

for the largest segment. The performance is summarized in Fig. 7.6, and as we can see, it

is roughly linear in the size of the problem (number of nodes and number of edges).

We can see that the predictions of the AMN (Fig. 7.5, left panel and Fig. 7.7, bot-

tom panel) are much smoother: for example building arches and tree trunks are predicted

104 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

correctly. We also hand-labeled around 180 thousand points of the test set (Fig. 7.8) and

computed accuracies of the predictions shown in Fig. 7.9 (excluding ground, which was

classified by pre-processing). The differences are dramatic:SVM: 68%,Voted-SVM: 73%

andAMN: 93%. See more results, including a fly-through movie of the data, at

http://ai.stanford.edu/˜btaskar/3Dmap/ .

7.6 Related work

Several authors have considered extensions to the Potts model. Kleinberg and Tardos

[1999] extend the multi-class Potts model to have more general edge potentials, under the

constraints that negative log of the edge potentials form a metric on the set of labels. They

also provide a solution based on a relaxed LP that has certain approximation guarantees.

More recently, Kolmogorov and Zabih [2002] showed how to optimize energy func-

tions containing binary and ternary interactions using graph cuts, as long as the parameters

satisfy a certain regularity condition. Our definition of associative potentials below also

satisfies the Kolmogorov and Zabih regularity condition forK = 2. However, the structure

of our potentials is simpler to describe and extend for the multi-class case. In fact, we can

extend our max-margin framework to estimate their more general potentials by expressing

inference as a linear program.

Our terrain classification approach is most closely related to work in vision applying

conditional random fields (CRFs) to 2D images. Kumar and Hebert [2003] train CRFs

using a pseudo-likelihood approximation to the distributionP (Y | X) since estimating

the true conditional distribution is intractable. Unlike their work, our learning formulation

provides an exact and tractable optimization algorithm, as well as formal guarantees for

binary classification problems. Moreover, unlike their work, our approach can also handle

multi-class problems in a straightforward manner.

7.7 Conclusion

In this chapter, we provide an algorithm for max-margin training of associative Markov

networks, a subclass of Markov networks that allows only positive interactions between

7.7. CONCLUSION 105

related variables. Our approach relies on a linear programming relaxation of the MAP

problem, which is the key component in the quadratic program associated with the max-

margin formulation. We thus provide a polynomial time algorithm which approximately

solves the maximum margin estimation problem for any associative Markov network. Im-

portantly, our method is guaranteed to find the optimal (margin-maximizing) solution for all

binary-valued AMNs, regardless of the clique size or the connectivity. To our knowledge,

this algorithm is the first to provide an effective learning procedure for Markov networks

of such general structure.

Our results in the binary case rely on the fact that the LP relaxation of the MAP problem

provides exact solutions. In the non-binary case, we are not guaranteed exact solutions, but

we can prove constant-factor approximation bounds on the MAP solution returned by the

relaxed LP. It would be interesting to see whether these bounds provide us with guarantees

on the quality (e.g., the margin) of our learned model.

We present large-scale experiments with terrain segmentation and classification from

3D range data involving AMNs with tens of millions of nodes and edges. The class of

associative Markov networks appears to cover a large number of interesting applications.

We have explored only a computer vision application in this chapter, and consider another

one (hypertext classification) in the next. It would be very interesting to consider other

applications, such as extracting protein complexes from protein-protein interaction data, or

predicting links in relational data. The min-cut based inference is able to handle very large

networks, and it is an interesting challenge to apply the algorithm to even larger models

and develop efficient distributed implementations.

However, despite the prevalence of fully associative Markov networks, it is clear that

many applications call for repulsive potentials. While clearly we cannot introduce fully

general potentials into AMNs without running against the NP-hardness of the general prob-

lem, it would be interesting to see whether we can extend the class of networks we can learn

effectively.

106 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Figure 7.7: Results from theSVM, Voted-SVM andAMN models.

7.7. CONCLUSION 107

Figure 7.8: Labeled part of the test set: ground truth (top) andSVM predictions (bottom).

108 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS

Figure 7.9: Predictions of theVoted-SVM (top) andAMN (bottom) models.

Chapter 8

Relational Markov networks

In the previous chapters, we have seen how sequential and spatial correlation between

labels can be exploited for tremendous accuracy gains. In many other supervised learning

tasks, the entities to be labeled are related with each other in very complex ways, not just

sequentially or spatially. For example, in hypertext classification, the labels of linked pages

are highly correlated. A standard approach is to classify each entity independently, ignoring

the correlations between them. In this chapter, we present a framework that builds on

Markov networks and provides a flexible language for modeling rich interaction patterns in

structured data. We provide experimental results on a webpage classification task, showing

that accuracy can be significantly improved by modeling relational dependencies.

Many real-world data sets are innately relational: hyperlinked webpages, cross-citations

in patents and scientific papers, social networks, medical records, and more. Such data con-

sist of entities of different types, where each entity type is characterized by a different set

of attributes. Entities are related to each other via different types of links, and the link

structure is an important source of information.

Consider a collection of hypertext documents that we want to classify using some set

of labels. Most naively, we can use a bag of words model, classifying each webpage solely

using the words that appear on the page. However, hypertext has a very rich structure that

this approach loses entirely. One document has hyperlinks to others, typically indicating

that their topics are related. Each document also has internal structure, such as a partition

into sections; hyperlinks that emanate from the same section of the document are even

109

110 CHAPTER 8. RELATIONAL MARKOV NETWORKS

more likely to point to similar documents. When classifying a collection of documents,

these are important cues, that can potentially help us achieve better classification accuracy.

Therefore, rather than classifying each document separately, we want to provide a form of

collective classification, where we simultaneously decide on the class labels of all of the

entities together, and thereby can explicitly take advantage of the correlations between the

labels of related entities.

We propose the use of a joint probabilistic model for an entire collection of related enti-

ties. We introduce the framework ofrelational Markov networks (RMNs), which compactly

defines a Markov network over a relational data set. The graphical structure of an RMN is

based on the relational structure of the domain, and can easily model complex patterns over

related entities. For example, we can represent a pattern where two linked documents are

likely to have the same topic. We can also capture patterns that involve groups of links: for

example, consecutive links in a document tend to refer to documents with the same label.

As we show, the use of an undirected graphical model avoids the difficulties of defining

a coherent generative model for graph structures in directed models. It thereby allows us

tremendous flexibility in representing complex patterns.

8.1 Relational classification

Consider hypertext as a simple example of a relational domain. A relational domain is

defined by a schema, which describes entities, their attributes and relations between them.

In our domain, there are two entity types:Doc andLink. If a webpage is represented as a

bag of words,Doc would have a set of boolean attributesDoc.HasWordk indicating whether

the wordk occurs on the page. It would also have the label attributeDoc.Label, indicating

the topic of the page, which takes on a set of categorical values. TheLink entity type has

two attributes:Link.From andLink.To, both of which refer toDoc entities.

In general, aschemaspecifies of a set of entity typesE = {E1, . . . , En}. Each typeE is

associated with three sets of attributes: content attributesE.X (for example,Doc.HasWordk),

label attributesE.Y (for example,Doc.Label), and reference attributesE.R (for example,

Link.To). For simplicity, we restrict label and content attributes to take on categorical val-

ues. Reference attributes include a special unique key attributeE.K that identifies each

8.1. RELATIONAL CLASSIFICATION 111

entity. Other reference attributesE.R refer to entities of a single typeE ′ = Range(E.R)

and take values inDomain(E ′.K).

An instantiationI of a schemaE specifies the set of entitiesI(E) of each entity type

E ∈ E and the values of all attributes for all of the entities. For example, an instantiation

of the hypertext schema is a collection of webpages, specifying their labels, words they

contain and links between them. We will useI.X, I.Y andI.R to denote the content,

label and reference attributes in the instantiationI; I.x, I.y andI.r to denote the values

of those attributes. The componentI.r, which we call aninstantiation skeletonor instan-

tiation graph, specifies the set of entities (nodes) and their reference attributes (edges). A

hypertext instantiation graph specifies a set of webpages and links between them, but not

their words or labels. Taskaret al. [2001] suggest the use ofprobabilistic relational mod-

els (PRMs)for the collective classification task. PRMs [Koller & Pfeffer, 1998; Friedman

et al., 1999; Getooret al., 2002] are a relational extension of Bayesian networks [Pearl,

1988]. A PRM specifies a probability distribution over instantiations consistent with a

given instantiation graph by specifying a Bayesian-network-like template-level probabilis-

tic model for each entity type. Given a particular instantiation graph, the PRM induces

a large Bayesian network over that instantiation that specifies a joint probability distribu-

tion over all attributes of all of the entities. This network reflects the interactions between

related instances by allowing us to represent correlations between their attributes.

In our hypertext example, a PRM might use a naive Bayes model for words, with a di-

rected edge betweenDoc.Labeland each attributeDoc.HadWordk; each of these attributes

would have aconditional probability distributionP (Doc.HasWordk | Doc.Label) associ-

ated with it, indicating the probability that wordk appears in the document given each of

the possible topic labels. More importantly, a PRM can represent the inter-dependencies

between topics of linked documents by introducing an edge fromDoc.Label to Doc.Label

of two documents if there is a link between them. Given a particular instantiation graph

containing some set of documents and links, the PRM specifies a Bayesian network over all

of the documents in the collection. We would have a probabilistic dependency from each

document’s label to the words on the document, and a dependency from each document’s

label to the labels of all of the documents to which it points. Taskaret al. show that this

approach works well for classifying scientific documents, using both the words in the title

112 CHAPTER 8. RELATIONAL MARKOV NETWORKS

and abstract and the citation-link structure.

However the application of this idea to other domains, such as webpages, is problematic

since there are many cycles in the link graph, leading to cycles in the induced “Bayesian

network”, which is therefore not a coherent probabilistic model. Getooret al. [2001] sug-

gest an approach where we do not include direct dependencies between the labels of linked

webpages, but rather treat links themselves as random variables. Each two pages have a

“potential link”, which may or may not exist in the data. The model defines the probability

of the link existence as a function of the labels of the two endpoints. In this link exis-

tence model, labels have no incoming edges from other labels, and the cyclicity problem

disappears. This model, however, has other fundamental limitations. In particular, the re-

sulting Bayesian network has a random variable for each potential link —N2 variables for

collections containingN pages. This quadratic blowup occurs even when the actual link

graph is very sparse. WhenN is large (e.g., the set of all webpages), a quadratic growth is

intractable. Even more problematic are the inherent limitations on the expressive power im-

posed by the constraint that the directed graph must represent a coherent generative model

over graph structures. The link existence model assumes that the presence of different

edges is a conditionally independent event. Representing more complex patterns involving

correlations between multiple edges is very difficult. For example, if two pages point to the

same page, it is more likely that they point to each other as well. Such interactions between

many overlapping triples of links do not fit well into the generative framework.

Furthermore, directed models such as Bayesian networks and PRMs are usually trained

to optimize the joint probability of the labels and other attributes, while the goal of clas-

sification is a discriminative model of labels given the other attributes. The advantage

of training a model only to discriminate between labels is that it does not have to trade

off between classification accuracy and modeling the joint distribution over non-label at-

tributes. In many cases, discriminatively trained models are more robust to violations of

independence assumptions and achieve higher classification accuracy than their generative

counterparts.

8.2. RELATIONAL MARKOV NETWORKS 113

Label 1
Label 2
Label 3

Figure 8.1: An unrolled Markov net over linked documents. The links follow a common
pattern: documents with the same label tend to link to each other more often.

8.2 Relational Markov networks

We now extend the framework of Markov networks to the relational setting. Arelational

Markov network (RMN)specifies a conditional distribution over all of the labels of all

of the entities in an instantiation given the relational structure and the content attributes.

(We provide the definitions directly for the conditional case, as the unconditional case is a

special case where the set of content attributes is empty.) Roughly speaking, it specifies the

cliques and potentials between attributes of related entities at a template level, so a single

model provides a coherent distribution for any collection of instances from the schema.

For example, suppose that pages with the same label tend to link to each other, as

in Fig. 8.1. We can capture this correlation between labels by introducing, for each link, a

clique between the labels of the source and the target page. The potential on the clique will

have higher values for assignments that give a common label to the linked pages.

To specify what cliques should be constructed in an instantiation, we will define a no-

tion of arelational clique template. A relational clique template specifies tuples of variables

in the instantiation by using a relational query language. For our link example, we can write

the template as a kind of SQL query:

SELECT doc1.Category, doc2.Category

114 CHAPTER 8. RELATIONAL MARKOV NETWORKS

FROM Doc doc1, Doc doc2, Link link

WHERE link.From = doc1.Key and link.To = doc2.Key

Note the three clauses that define a query: the FROM clause specifies the cross prod-

uct of entities to be filtered by the WHERE clause and the SELECT clause picks out the

attributes of interest. Our definition of clique templates contains the corresponding three

parts.

A relational clique templateC = (F,W,S) consists of three components:

◦ F = {Fi} — a set of entity variables, where an entity variableFi is of typeE(Fi).

◦ W(F.R) — a boolean formula using conditions of the formFi.Rj = Fk.Rl.

◦ F.S ⊆ F.X ∪ F.Y — a selected subset of content and label attributes inF.

For the clique template corresponding to the SQL query above,F consists ofdoc1, doc2

andlink of typesDoc, Doc andLink, respectively.W(F.R) is link.From = doc1.Key ∧
link.To = doc2.Key andF.S is doc1.Category anddoc2.Category.

A clique template specifies a set of cliques in an instantiationI:

C(I) ≡ {c = f .S : f ∈ I(F) ∧W(f .r)},

wheref is a tuple of entities{fi} in which eachfi is of typeE(Fi); I(F) = I(E(F1)) ×
. . .×I(E(Fn)) denotes the cross-product of entities in the instantiation; the clauseW(f .r)

ensures that the entities are related to each other in specified ways; and finally,f .S selects

the appropriate attributes of the entities. Note that the clique template does not specify the

nature of the interaction between the attributes; that is determined by the clique potentials,

which will be associated with the template.

This definition of a clique template is very flexible, as the WHERE clause of a tem-

plate can be an arbitrary predicate. It allows modeling complex relational patterns on the

instantiation graphs. To continue our webpage example, consider another common pattern

in hypertext: links in a webpage tend to point to pages of the same category. This pattern

can be expressed by the following template:

SELECT doc1.Category, doc2.Category

8.2. RELATIONAL MARKOV NETWORKS 115

FROM Doc doc1, Doc doc2, Link link1, Link link2

WHERE link1.From = link2.From and link1.To = doc1.Key

and link2.To = doc2.Key and not doc1.Key = doc2.Key

Depending on the expressive power of our template definition language, we may be able

to construct very complex templates that select entire subgraph structures of an instantia-

tion. We can easily represent patterns involving three (or more) interconnected documents

without worrying about the acyclicity constraint imposed by directed models. Since the

clique templates do not explicitly depend on the identities of entities, the same template can

select subgraphs whose structure is fairly different. The RMN allows us to associate the

same clique potential parameters with all of the subgraphs satisfying the template, thereby

allowing generalization over a wide range of different structures.

A Relational Markov network (RMN)M = (C, Φ) specifies a set of clique templates

C and corresponding potentialsΦ = {φC}C∈C to define a conditional distribution:

P (I.y | I.x, I.r)

=
1

Z(I.x, I.r)

∏
C∈C

∏

c∈C(I)

φC(I.xc, I.yc)

whereZ(I.x, I.r) is the normalizing partition function:

Z(I.x, I.r) =
∑

I.y′

∏
C∈C

∏

c∈C(I)

φC(I.xc, I.y′c)

.

Using the log-linear representation of potentials,φC(VC) = exp{w>
C fC(VC)}, we can

write

log P (I.y | I.x, I.r) = w>f(I.x, I.y, I.r)− log Z(I.x, I.r)

where

fC(I.x, I.y, I.r) =
∑

c∈C(I)

fC(I.xc, I.yc)

is the sum over all appearances of the templateC(I) in the instantiation, andf is the vector

116 CHAPTER 8. RELATIONAL MARKOV NETWORKS

of all fC .

Given a particular instantiationI of the schema, the RMNM produces anunrolled

Markov network over the attributes of entities inI. The cliques in the unrolled network

are determined by the clique templatesC. We have one clique for eachc ∈ C(I), and

all of these cliques are associated with the same clique potentialφC . In our webpage

example, an RMN with the link basis function described above would define a Markov net

in which, for every link between two pages, there is an edge between the labels of these

pages. Fig. 8.1 illustrates a simple instance of this unrolled Markov network.

8.3 Approximate inference and learning

Applying both maximum likelihood and maximum margin learning in the relational setting

is requires inference in very large and complicated networks, where exact inference is

typically intractable. We therefore resort to approximate methods.

Maximum likelihood estimation

For maximum likelihood learning, we need to compute basis function expectations, not

just the most likely assignment. There is a wide variety of approximation schemes for this

problem, including MCMC and variational methods. We chose to usebelief propagation

for its simplicity and relative efficiency and accuracy. Belief Propagation (BP) is a local

message passing algorithm introduced by Pearl [1988]. It is guaranteed to converge to the

correct marginal probabilities for each node only for singly connected Markov networks.

However, recent analysis [Yedidiaet al., 2000] provides some theoretical justification. Em-

pirical results [Murphyet al., 1999] show that it often converges in general networks, and

when it does, the marginals are a good approximation to the correct posteriors. As our

results in Sec. 8.4 show, this approach works well in our domain. We refer the reader to

Yedidiaet al. for a detailed description of the BP algorithm.

We provide a brief outline of one variant of BP, referring to [Murphyet al., 1999]

for more details. For simplicity, we assume a pairwise network where all potentials are

associated only with nodes and edges given by:

8.3. APPROXIMATE INFERENCE AND LEARNING 117

P (Y1, . . . , Yn) =
1

Z

∏
ij

ψij(Yi, Yj)
∏

i

ψi(Yi)

whereij ranges over the edges of the network andψij(Yi, Yj) = φ(xij, Yi, Yj), ψi(Yi) =

φ(xi, Yi).

The belief propagation algorithm is very simple. At each iteration, each nodeYi sends

the following messages to all its neighborsN(i):

mij(Yj) ← α
∑
yi

ψij(yi, Yj)ψi(yi)
∏

k∈N(i)−j

mki(Yi)

whereα is a (different) normalizing constant. This process is repeated until the messages

converge. At any point in the algorithm, the marginal distribution of any nodeYi is approx-

imated by

bi(Yi) = αψi(Yi)
∏

k∈N(i)

mki(Yi)

and the marginal distribution of a pair of nodes connected by an edge is approximated by

bij(Yi, Yj) = αψij(Yi, Yj)ψi(Yi)ψj(Yj)
∏

k∈N(i)−j

mki(Yi)
∏

l∈N(j)−i

mlj(Yj)

These approximate marginals are precisely what we need for the computation of the

basis function expectations and performing classification. Computing the expected basis

function expectations involves summing their expected values for each clique using the

approximate marginalsbi(Yi) andbij(Yi, Yj). Similarly, we usemaxyi
bi(Yi) at prediction

time. Note that we can alsomax− product variant of loopy BP, with

mij(Yj) ← α max
yi

ψij(yi, Yj)ψi(yi)
∏

k∈N(i)−j

mki(Yi)

to compute approximate posterior “max”-marginals and use those for prediction. In our

experiments, this results in less accurate classification, so we use posterior marginal pre-

diction.

118 CHAPTER 8. RELATIONAL MARKOV NETWORKS

Maximum margin estimation

For maximum margin estimation, we used approximate LP inference inside the max-margin

QP, using commercial Ilog CPLEX software to solve it. For networks with general poten-

tials, we used the untriangulated LP we described in Sec. 5.4. The untriangulated LP

produced fractional solutions for inference on the test data in several settings, which we

rounded independently for each label. For networks with attractive potentials (AMNs), we

used the LP in Sec. 7.2, which always produced integral solutions on test data.

8.4 Experiments

We tried out our framework on theWebKBdataset [Cravenet al., 1998], which is an in-

stance of our hypertext example. The data set contains webpages from four different Com-

puter Science departments: Cornell, Texas, Washington and Wisconsin. Each page has a

label attribute, representing the type of webpage which is one ofcourse, faculty, student,

project or other. The data set is problematic in that the categoryother is a grab-bag of

pages of many different types. The number of pages classified asother is quite large,

so that a baseline algorithm that simply always selectedother as the label would get an

average accuracy of 75%. We could restrict attention to just the pages with the four other

labels, but in a relational classification setting, the deleted webpages might be useful in

terms of their interactions with other webpages. Hence, we compromised by eliminating

all other pages with fewer than three outlinks, making the number ofother pages com-

mensurate with the other categories. The resulting category distribution is: course (237),

faculty (148), other (332), research-project (82) and student (542). The number of remain-

ing pages for each school are: Cornell (280), Texas (292), Washington (315) and Wisconsin

(454). The number of links for each school are: Cornell (574), Texas (574), Washington

(728) and Wisconsin (1614).

For each page, we have access to the entire html of the page and the links to other

pages. Our goal is to collectively classify webpages into one of these five categories. In all

of our experiments, we learn a model from three schools and test the performance of the

learned model on the remaining school, thus evaluating the generalization performance of

8.4. EXPERIMENTS 119

the different models. We usedC ∈ [0.1, 10] and took the best setting for all models.

Unfortunately, we cannot directly compare our accuracy results with previous work

because different papers use different subsets of the data and different training/test splits.

However, we compare to standard text classifiers such as Naive Bayes, Logistic Regression,

and Support Vector Machines, which have been demonstrated to be successful on this data

set [Joachims, 1999].

8.4.1 Flat models

The simplest approach we tried predicts the categories based on just the text content on

the webpage. The text of the webpage is represented using a set of binary attributes that

indicate the presence of different words on the page. We found that stemming and feature

selection did not provide much benefit and simply pruned words that appeared in fewer

than three documents in each of the three schools in the training data. We also experi-

mented with incorporating meta-data: words appearing in the title of the page, in anchors

of links to the page and in the last header before a link to the page [Yanget al., 2002].

Note that meta-data, although mostly originating from pages linking into the considered

page, are easily incorporated as features, i.e. the resulting classification task is still flat

feature-based classification. Our first experimental setup compares three well-known text

classifiers —Naive Bayes, linear support vector machines (Svm), and logistic regression

(Logistic) — using words and meta-words. The results, shown in Fig. 8.2, show that the

two discriminative approaches outperformNaive Bayes. Logistic andSvm give very sim-

ilar results. The average error over the 4 schools was reduced by around 4% by introducing

the meta-data attributes.

Incorporating meta-data gives a significant improvement, but we can take additional

advantage of the correlation in labels of related pages by classifying them collectively. We

want to capture these correlations in our model and use them for transmitting informa-

tion between linked pages to provide more accurate classification. We experimented with

several relational models.

120 CHAPTER 8. RELATIONAL MARKOV NETWORKS

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Naïve Bayes Svm Logistic

T
es

t E
rr

or

Words Words+Meta

Figure 8.2: Comparison ofNaive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

8.4.2 Link model

Our first model captures direct correlations between labels of linked pages. These corre-

lations are very common in our data: courses and research projects almost never link to

each other; faculty rarely link to each other; students have links to all categories but mostly

courses. TheLink model, shown in Fig. 8.1, captures this correlation through links: in

addition to the local bag of words and meta-data attributes, we introduce a relational clique

template over the labels of two pages that are linked.We train this model using maximum

conditional likelihood (labels given the words and the links) and maximum margin.

We also compare to a directed graphical model to contrast discriminative and genera-

tive models of relational structure. TheExists-ML model is a (partially) generative model

proposed by Getooret al. [2001]. For each page, a logistic regression model predicts

the page label given the words and meta-features. Then a simple generative model speci-

fies a probability distribution over the existence of links between pages conditioned on both

pages’ labels. Concretely, we learn the probability of existence of a link between two pages

given their labels. Note that this model does not require inference during learning. Max-

imum likelihood estimation (with regularization) of the generative component is closed

8.4. EXPERIMENTS 121

0%

5%

10%

15%

20%

25%

30%

Cor Tex Was Wis Average

 E
rr

or

Exists-ML
SVM
Link-ML
Link-MM

Figure 8.3: Comparison of flat versus collective classification on WebKB: SVM, Exists
model with logistic regression and theLink model estimated using the maximum likelihood
(ML) and the maximum margin (MM) criteria.

form given appropriate co-occurrence counts of linked pages’ labels. However, the predic-

tion phase is much more expensive, since the resulting graphical model includes edges not

only for the existing hyperlinks, but also those that do not exist. Intuitively, observing the

link structure directly correlates all page labels in a website, linked or not. By contrast,

theLink model avoids this problem by only modeling the conditional distribution given the

existing links.

Fig. 8.3 shows a gain in accuracy from SVMs to theLink model by using the corre-

lations between labels of linked web pages. There is also very significant additional gain

by using maximum margin training: the error rate ofLink-MM is 40% lower than that of

Link-ML, and51% lower than multi-class SVMs. TheExists model doesn’t perform very

well in comparison. This can be attributed to the simplicity of the generative model and the

difficulty of the resulting inference problem.

8.4.3 Cocite model

The second relational model uses the insight that a webpage often has internal structure

that allows it to be broken up intosections. For example, a faculty webpage might have

122 CHAPTER 8. RELATIONAL MARKOV NETWORKS

0%

5%

10%

15%

20%

25%

Cor Tex Was Wis Average

 E
rr

or

SVM
Cocite-ML
Cocite-MM

Figure 8.4: Comparison ofNaive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)

one section that discusses research, with a list of links to all of the projects of the faculty

member, a second section might contain links to the courses taught by the faculty member,

and a third to his advisees. We can view a section of a webpage as a fine-grained version of

Kleinberg’s hub [Kleinberg, 1999] (a page that contains a lot of links to pages of particular

category). Intuitively, if two pages arecocited, or linked to from the same section, they are

likely to be on similar topics. Note that we expect the correlation between the labels in this

case to be positive, so we can use AMN-type potentials in the max-margin estimation. The

Cocite model captures this type of correlation.

To take advantage of this trend, we need to enrich our schema by adding the attribute

Sectionto Link to refer to the section number it appears in. We defined a section as a

sequence of three or more links that have the same path to the root in the html parse tree.

In the RMN, we have a relational clique template defined by:

SELECT doc1.Category, doc2.Category

FROM Doc doc1, Doc doc2, Link link1, Link link2

WHERE link1.From = link2.From and link1.Section = link2.Section and

link1.To = doc1.Key and link2.To = doc2.Key and not doc1.Key = doc2.Key

We compared the performance ofSVM, Cocite-ML and Cocite-MM. The results,

8.5. RELATED WORK 123

shown in Fig. 8.4, also demonstrate significant improvements of the relational models over

theSVM. The improvement is present when testing on each of the schools. Again, maxi-

mum likelihood trained modelCocite-ML achieves a worse test error than maximum mar-

gin Cocite-MM model, which shows a 30% relative reduction in test error overSVM.

We note that, in our experiments, the learnedCocite-MM weights never produced frac-

tional solutions when used for inference, which suggests that the optimization successfully

avoided problematic parameterizations of the network, even in the case of the non-optimal

multi-class relaxation.

8.5 Related work

Our RMN representation is most closely related to the work on PRMs [Koller & Pfeffer,

1998]. Later work showed how to efficiently learn model parameters and structure (equiv-

alent of clique selection in Markov networks) from data [Friedmanet al., 1999]. Getoor

et al. [2002] propose several generative models of relational structure. Their approach

easily captures the dependence of link existence on attributes of entities. However there

are many patterns that we are difficult to model in PRMs, in particular those that involve

several links at a time. We give some examples here.

One useful type of pattern type is asimilarity template, where objects that share a cer-

tain graph-based property are more likely to have the same label. Consider, for example,

a professor X and two other entities Y and Z. If X’s webpage mentions Y and Z in the

same context, it is likely that the X-Y relation and the Y-Z relation are of the same type; for

example, if Y is Professor X’s advisee, then probably so is Z. Our framework accommo-

dates these patterns easily, by introducing pairwise cliques between the appropriate relation

variables.

Another useful type of subgraph template involvestransitivitypatterns, where the pres-

ence of an A-B link and of a B-C link increases (or decreases) the likelihood of an A-C link.

For example, students often assist in courses taught by their advisor. Note that this type

of interaction cannot be accounted for just using pairwise cliques. By introducing cliques

over triples of relations, we can capture such patterns as well. We can incorporate even

more complicated patterns, but of course we are limited by the ability of belief propagation

124 CHAPTER 8. RELATIONAL MARKOV NETWORKS

to scale up as we introduce larger cliques and tighter loops in the Markov network.

We describe and exploit these patterns in our work on RMNs using maximum likelihood

estimation [Taskaret al., 2003b]. Attempts to model such pattern in PRMs run into the

constraint that the probabilistic dependency graph (Bayesian network) must be a directed

acyclic graph. For example, for the transitivity pattern, we might consider simply directing

the correlation edges between link existence variables arbitrarily. However, it is not clear

how to parameterize a link existence variable for a link that is involved in multiple triangles.

The structure of the relational graph has been used extensively to infer importance in

scientific publications [Egghe & Rousseau, 1990] and hypertext [Kleinberg, 1999]. Sev-

eral recent papers have proposed algorithms that use the link graph to aid classification.

Chakrabartiet al. [1998] use system-predicted labels of linked documents to iteratively

re-label each document in the test set, achieving a significant improvement compared to a

baseline of using the text in each document alone. A similar approach was used by Neville

and Jensen [2000] in a different domain. Slattery and Mitchell [2000] tried to identify di-

rectory (or hub) pages that commonly list pages of the same topic, and used these pages to

improve classification of university webpages. However, none of these approaches provide

a coherent model for the correlations between linked webpages, applying combinations of

classifiers in a procedural way, with no formal justification.

8.6 Conclusion

In this chapter, we propose a new approach for classification in relational domains. Our ap-

proach provides a coherent foundation for the process of collective classification, where we

want to classify multiple entities, exploiting the interactions between their labels. We have

shown that we can exploit a very rich set of relational patterns in classification, significantly

improving the classification accuracy over standard flat classification.

In some cases, we can incorporate relational features into standard flat classification.

For example, when classifying papers into topics, it is possible to simply view the presence

of particular citations as atomic features. However, this approach is limited in cases where

some or even all of the relational features that occur in the test data are not observed in

the training data. In our WebKB example, there is no overlap between the webpages in the

8.6. CONCLUSION 125

different schools, so we cannot learn anything from the training data about the significance

of a hyperlink to/from a particular webpage in the test data. Incorporating basic features

(e.g., words) from the related entities can aid in classification, but cannot exploit the strong

correlation between thelabelsof related entities that RMNs capture.

Hypertext is the most easily available source of structured data, however, RMNs are

generally applicable to any relational domain. The results in this chapter represent only

a subset of the domains we have worked on (see [Taskaret al., 2003b]). In particular,

social networks provide extensive information about interactions among people and orga-

nizations. RMNs offer a principled method for learning to predict communities of and

hierarchical structure between people and organizations based on both the local attributes

and the patterns of static and dynamic interaction. Given the wealth of possible patterns, it

is particularly interesting to explore the problem of inducing them automatically.

126 CHAPTER 8. RELATIONAL MARKOV NETWORKS

Part III

Broader applications: parsing,

matching, clustering

127

Chapter 9

Context free grammars

We present a novel discriminative approach to parsing using structured max-margin crite-

rion based on the decomposition properties of context free grammars. We show that this

framework allows high-accuracy parsing in cubic time by exploiting novel kinds of lexical

information. Our models can condition on arbitrary features of input sentences, thus incor-

porating an important kind of lexical information not usually used by conventional parsers.

We show experimental evidence of the model’s improved performance over a natural base-

line model and a lexicalized probabilistic context-free grammar.

9.1 Context free grammar model

CFGs are one of the primary formalisms for capturing the recursive structure of syntactic

constructions, although many others have also been proposed [Manning & Schütze, 1999].

For clarity of presentation, we restrict our grammars to be in Chomsky normal form as

in Sec. 3.4. The non-terminal symbols correspond to syntactic categories such as noun

phrase (NP) or verbal phrase (VP). The terminal symbols are usually words of the sen-

tence. However, in the discriminative framework that we adopt, we are not concerned with

defining a distribution over sequences of words (language model). Instead, wecondition

on the words in a sentence to produce a model of the syntactic structure. Terminal sym-

bols for our purposes are part-of-speech tags like nouns (NN), verbs (VBD), determiners

(DT). For example, Fig. 9.1(a) shows a parse tree for the sentenceThe screen was a sea of

128

9.1. CONTEXT FREE GRAMMAR MODEL 129

red. The set of symbols we use is based on the Penn Treebank [Marcuset al., 1993]. The

non-terminal symbols with bars (for example,DT, NN, VBD) are added to conform to the

CNF restrictions. For convenience, we repeat our definition of a CFG from Sec. 3.4 here:

Definition 9.1.1 (CFG) A CFGG consists of:

◦ A set of non-terminal symbols,N
◦ A designated set of start symbols,NS ⊆ N
◦ A set of terminal symbols,T
◦ A set of productions,P = {PB,PU}, divided into

. Binary productions,PB = {A → B C : A,B,C ∈ N} and

. Unary productions,PU = {A → D : A ∈ N , D ∈ T }.

A CFG defines a set of valid parse trees in a natural manner:

Definition 9.1.2 (CFG tree) A CFG treeis a labeled directed tree, where the set of valid

labels of the internal nodes other than the root isN and the set of valid labels for the leaves

is T . The root’s label set isNS. Additionally, each pre-leaf node has a single child and

this pair of nodes can be labeled asA andD, respectively, if and only if there is a unary

productionA → D ∈ PU . All other internal nodes have two children, left and right, and

this triple of nodes can be labeled asA, B and C, respectively, if and only if there is a

binary productionA → B C ∈ PB.

In general, there are exponentially many parse trees that produce a sentence of lengthn.

This tree representation seems quite different from the graphical models we have been

considering thus far. However, we can use an equivalent representation that essentially

encodes a tree as an assignment to a set of appropriate variables. For each span starting

with s and an ending withe, we introduce a variableYs,e taking values inN∪⊥ to represent

the label of the subtree that exactly covers, ordominates, the words of the sentence from

s to e. The value⊥ is assigned if no subtree dominates the span. Indicess ande refer to

positions between words, rather than to words themselves, hence0 ≤ s < e ≤ n for a

sentence of lengthn. The “top” symbolY0,n is constrained to be inNS, since it represents

130 CHAPTER 9. CONTEXT FREE GRAMMARS

(a) (b)

Figure 9.1: Two representations of a binary parse tree: (a) nested tree structure, and (b)
grid of labeled spans. The row and column number are the beginning and end of the span,
respectively. Empty squares correspond to non-constituent spans. The gray squares on the
diagonal represent part-of-speech tags.

the starting symbol of the sentence. We also introduce variablesYs,s taking values inT to

represent the terminal symbol (part-of-speech) betweens ands + 1. If Ys,e 6= ⊥, it is often

called aconstituent. Fig. 9.1(b) shows the representation of the tree in Fig. 9.1(a) as a grid

where each square corresponds toYs,e. The row and column number in the grid correspond

to the beginning and end of the span, respectively. Empty squares correspond to⊥ values.

The gray squares on the diagonal represent the terminal variables. For example, the figure

showsY0,0 = DT, Y6,6 = NN, Y3,5 = NP andY1,4 = ⊥.

While any parse tree corresponds to an assignment to this set of variables in a straight-

forward manner, the converse is not true: there are assignments that do not correspond

to valid parse trees. In order to characterize the set of valid assignmentsY, consider the

9.1. CONTEXT FREE GRAMMAR MODEL 131

constraints that hold for a valid assignmenty:

1I(ys,e = A) =
∑

A→B C∈PB
s<m<e

1I(ys,m,e = (A,B, C)), 0 ≤ s < e ≤ n, ∀A ∈ N ; (9.1)

1I(ys,e = A) =
∑

B→A C∈PB
0≤s′<s

1I(ys′,s,e = (B, A, C))

+
∑

B→C A∈PB
e<e′≤n

1I(ys,e,e′ = (B, C, A)), 0 ≤ s < e ≤ n, ∀A ∈ N ; (9.2)

1I(ys,s+1 = A) =
∑

A→D∈PU

1I(ys,s,s+1 = (A,D)), 0 ≤ s < n, ∀A ∈ N ; (9.3)

1I(ys,s = D) =
∑

A→D∈PU

1I(ys,s,s+1 = (A,D)), 0 ≤ s < n, ∀D ∈ T . (9.4)

The notationys,m,e = (A,B,C) abbreviatesys,e = A ∧ ys,m = B ∧ ym,e = C and

ys,s,s+1 = (A,D) abbreviatesys,s+1 = A ∧ ys,s = D. The first set of constraints (9.1)

holds because if the span froms to e is dominated by a subtree starting withA (that is,

ys,e = A), then there must be a unique production starting withA and some split pointm,

s < m < e, that produces that subtree. Conversely, ifys,e 6= A, no productions start with

A and covers to e. The second set of constraints (9.2) holds because that if the span from

s to e is dominated by a subtree starting withA (ys,e = A), then there must be a (unique)

production that generated it: either starting befores or aftere. Similarly, the third and

fourth set of constraints (9.3 and 9.4) hold since the terminals are generated using valid

unary productions. We denote the set of assignmentsy satisfying (9.1-9.4) asY. In fact

the converse is true as well:

Theorem 9.1.3 If y ∈ Y, theny represents a valid CFG tree.

Proof sketch: It is straightforward to construct a parse tree fromy ∈ Y in a top-down

manner. Starting from the root symbol,y0,n, the first set of constraints (9.1) ensures that a

unique production spans0 to n, say splitting atm and specifying the values fory0,m and

ym,n. The second set of constraints (9.2) ensures that all other spansy0,m′ andym′,n, for

m′ 6= m are labeled by⊥. Recursing on the two subtrees,y0,m andym,n, will produce the

rest of the tree down to the pre-terminals. The last two sets of constraints (9.3 and 9.4)

132 CHAPTER 9. CONTEXT FREE GRAMMARS

ensure that the terminals are generated by an appropriate unary productions from the pre-

terminals.

9.2 Context free parsing

A standard approach to parsing is to use a CFG to define a probability distribution over

parse trees. This can be done simply by assigning a probability to each production and

making sure that the sum of probabilities of all productions starting with each symbol is1:

∑
B,C:A→B C∈PB

P (A → B C) = 1,
∑

D:A→D∈PU

P (A → D) = 1, ∀A ∈ N .

The probability of a tree is simply the product of probabilities of the productions used in

the tree. More generally, a weighted CFG assigns a score to each production (this score

may depend on the position of the productions,m, e) such that the total score of a tree is

the sum of the score of all the productions used:

S(y) =
∑

0≤s<m<e≤n

Ss,m,e(ys,m,e) +
∑

0≤s<n

Ss,s+1(ys,s+1),

whereSs,m,e(ys,m,e) = 0 if (ys,e = ⊥ ∨ ys,m = ⊥ ∨ ym,e = ⊥). If the production scores

are production log probabilities, then the tree score is the tree log probability. However,

weighted CFGs do not have the local normalization constraints Eq. (9.5).

We can use a Viterbi-style dynamic programming algorithm called CKY to compute

the highest score parse tree inO(|P|n3) time [Younger, 1967; Manning & Schütze, 1999].

The algorithm computes the highest score of any subtree starting with a symbol over each

span0 ≤ s < e ≤ n recursively:

S∗s,s+1(A) = max
A→D∈PU

Ss,s+1(A,D), 0 ≤ s < n, ∀A ∈ N ; (9.5)

S∗s,e(A) = max
A→B C∈PB

s<m<e

Ss,m,e(A,B,C) + S∗s,m(B) + S∗m,e(C), 0 ≤ s < e ≤ n, ∀A ∈ N .

The highest scoring tree has scoremaxA∈NS
S∗0,n(A). Using thearg max’s of themax’s in

9.3. DISCRIMINATIVE PARSING MODELS 133

the computation ofS∗, we can back-trace the highest scoring tree itself. We assume that

score ties are broken in a predetermined way, say according to some lexicographic order of

the symbols.

9.3 Discriminative parsing models

We cast parsing as a structured classification task, where we want to learn a functionh :

X 7→ Y , whereX is a set of sentences, andY is a set of valid parse trees according to a

fixed CFG grammar.

The functions we consider take the following linear discriminant form:

hw(x) = arg max
y

w>f(x,y),

wherew ∈ IRd andf is a basis function representation of a sentence and parse tree pair

f : X ×Y → IRd. We assume that the basis functions decompose with the CFG structure:

f(x,y) =
∑

0≤s≤e≤n

f(xs,e, ys,e) +
∑

0≤s≤m<e≤n

f(xs,m,e,ys,m,e),

wheren is the length of the sentencex and xs,e and xs,m,e are the relevant subsets of

the sentence the basis functions depend on. To simplify notation, we introduce the set of

indices,C, which includes both spans and span triplets:

C = {(s,m) : 0 ≤ s ≤ e ≤ n} ∪ {(s,m, e) : 0 ≤ s ≤ m < e ≤ n}.

Hence,f(x,y) =
∑

c∈C f(xc, yc).

Note that this class of discriminants includes PCFG models, where the basis func-

tions consist of the counts of the productions used in the parse, and the parametersw are

the log-probabilities of those productions. For example,f could include functions which

identify the production used together with features of the words at positionss,m, e, and

neighboring positions in the sentencex (e.g.f(xs,m,e,ys,m,e) = 1I(ys,m,e = S, NP, VP) ∧
mthword(x) = was)). We could also include functions that identify the label of the span

134 CHAPTER 9. CONTEXT FREE GRAMMARS

from s to e together with features of the word (e.g.f(xs,m, ys,m) = 1I(ys,m = NP) ∧
sthword(x) = the)).

9.3.1 Maximum likelihood estimation

The traditional method of estimating the parameters of PCFGs assumes a generative model

that definesP (x,y) by assigning normalized probabilities to CFG productions. We then

maximize the joint log-likelihood
∑

i log P (x(i),y(i)) (with some regularization). We com-

pare to such a generative grammar of Collins [1999] in our experiments.

A alternative probabilistic approach is to estimate the parameters discriminatively by

maximizingconditionallog-likelihood. For example, the maximum entropy approach [John-

son, 2001] defines a conditional log-linear model:

Pw(y | x) =
1

Zw(x)
exp{w>f(x,y)},

whereZw(x) =
∑

y exp{w>f(x,y)}, and maximizes the conditional log-likelihood of

the sample,
∑

i log P (y(i) | y(i)), (with some regularization). The same assumption that

the basis functions decompose as sums of local functions over spans and productions is

typically made in such models. Hence, as in Markov networks, the gradient depends

on the expectations of the basis functions, which can be computed inO(|P|n3) time by

dynamic programming algorithm called inside-outside, which is similar to the CKY al-

gorithm. However, computing the expectations over trees is actually more expensive in

practice than finding the best tree for several reasons. CKY works entirely in the log-space,

while inside-outside needs to compute actual probabilities. Branch-and-prune techniques,

which save a lot of useless computation, are only applicable in CKY.

A typical method for finding the parameters is to use Conjugate Gradients or L-BFGS

methods [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004], which repeatedly com-

pute these expectations to calculate the gradient. Clark and Curran [2004] report experi-

ments involving 479 iterations of training for one model, and 1550 iterations for another

using similar methods.

9.3. DISCRIMINATIVE PARSING MODELS 135

9.3.2 Maximum margin estimation

We assume that loss function also decomposes with the CFG structure:

`(x,y, ŷ) =
∑

0≤s≤e≤n

`(xs,e, ys,e, ŷs,e) +
∑

0≤s≤m<e≤n

`(xs,m,e,ys,m,e, ŷs,m,e) =
∑
c∈C

`(xc,yc, ŷc).

One approach would be to define`(xs,e, ys,e, ŷs,e) = 1I(ys,e 6= ŷs,e). This would lead to

`(x,y, ŷ) tracking the number of “constituent errors” in̂y. Another, more strict definition

would be to definè(xs,m,e,ys,m,e, ŷs,m,e) = 1I(ys,m,e 6= ŷs,m,e). This definition would lead

to `(x,y, ŷ) being the number of productions in̂y which are not seen iny. The constituent

loss function does not exactly correspond to the standard scoring metrics, such as F1 or

crossing brackets, but shares the sensitivity to the number of differences between trees. We

have not thoroughly investigated the exact interplay between the various loss choices and

the various parsing metrics. We used the constituent loss in our experiments.

As in the max-margin estimation for Markov networks, we can formulate an exponen-

tial size QP:

min
1

2
||w||2 + C

∑
i

ξi (9.6)

s.t. w>∆fi(y) ≥ `i(y)− ξi ∀i,y,

where∆fi(y) = f(x(i),y(i))− f(x(i),y), and`i(y) = `(x(i),y(i),y).

The dual of Eq. (9.6) (after normalizing byC) is given by:

max
∑
i,y

αi(y)`i(y)− 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑
i,y

αi(y)∆fi(y)

∣∣∣∣∣

∣∣∣∣∣

2

(9.7)

s.t.
∑
y

αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i,y.

Both of the above formulations are exponential (in the number of variables or con-

straints) in the lengths (ni’s) of the sentences. But we can exploit the context-free structure

of the basis functions and the loss to define a polynomial-size dual formulation in terms of

136 CHAPTER 9. CONTEXT FREE GRAMMARS

marginal variablesµi(y):

µi,s,e(A) ≡
∑

y:ys,e=A

αi(y), 0 ≤ s ≤ e ≤ n, ∀A ∈ N ;

µi,s,s(D) ≡
∑

y:ys,s=D

αi(y), 0 ≤ s ≤ e ≤ n, ∀D ∈ T ;

µi,s,m,e(A,B, C) ≡
∑

y:ys,m,e=(A,B,C)

αi(y), 0 ≤ s < m < e ≤ n, ∀A → B C ∈ PB,

µi,s,s,s+1(A,D) ≡
∑

y:ys,s,s+1=(A,D)

αi(y), 0 ≤ s < n, ∀A → D ∈ PU .

There areO(|PB|n3
i + |PU |ni) such variables for each sentence of lengthni, instead of

exponentially manyαi variables. We can now express the objective function in terms of

the marginals. Using these variables, the first set of terms in the objective becomes:

∑
i,y

αi(y)`i(y) =
∑
i,y

αi(y)
∑

c∈C(i)

`i,c(yc) =
∑

i,c∈C(i),yc

µi,c(yc)`i,c(yc).

Similarly, the second set of terms (inside the 2-norm) becomes:

∑
i,y

αi(y)∆fi(y) =
∑
i,y

αi(y)
∑

c∈C(i)

∆fi,c(yc) =
∑

i,c∈C(i),yc

µi,c(yc)∆fi,c(yc).

As in M3Ns, we must characterize the set of marginalsµ that corresponds to valid

α. The constraints onµ are essentially based on the those that defineY in (9.1-9.4). In

addition, we require that the marginals over the root nodes,µi,0,ni
(y0,ni

), sums to 1 over the

possible start symbolsNS.

9.3. DISCRIMINATIVE PARSING MODELS 137

Putting the pieces together, the factored dual is:

max
∑

i,c∈C(i)

µi,c(yc)`i,c(yc) + C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,c∈C(i)

µi,c(yc)∆fi,c(yc)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(9.8)

s.t.
∑

A∈NS

µi,0,ni
(A) = 1, ∀i; µi,c(yc) ≥ 0; ∀i, ∀c ∈ C(i);

µi,s,e(A) =
∑

A→B C∈PB
s<m<e

µi,s,m,e(A,B, C), ∀i, 0 ≤ s < e ≤ ni, ∀A ∈ N ;

µi,s,e(A) =
∑

B→A C∈PB
0≤s′<s

µi,s′,s,e(B,A, C)

+
∑

B→C A∈PB
e<e′≤ni

µi,s,e,e′(B, C, A), ∀i, 0 ≤ s < e ≤ ni,∀A ∈ N ;

µi,s,s+1(A) =
∑

A→D∈PU

µi,s,s,s+1(A,D), ∀i, 0 ≤ s < ni, ∀A ∈ N ;

µi,s,s(D) =
∑

A→D∈PU

µi,s,s,s+1(A, D), ∀i, 0 ≤ s < ni, ∀D ∈ T .

The constraints onµ is necessary, since they must correspond to marginals of a distri-

bution over trees. They are also sufficient:

Theorem 9.3.1 A set of marginalsµi(y) satisfying the constraints in Eq. (9.8) corresponds

to a valid distribution over the legal parse treesy ∈ Y (i). A consistent distributionαi(y)

is given by

αi(y) = µi,0,ni
(y0,ni

)
∏

0≤s≤m<e≤ni

µi,s,m,e(ys,m,e)

µi,s,e(ys,e)
,

where0/0 = 0 by convention.

Proof sketch: The proof follows from inside-outside probability relations [Manning &

Scḧutze, 1999]. The first term is a valid distribution of starting symbols. Eachµi,s,m,e(ys,m,e)

µi,s,e(ys,e)

term form > s corresponds to a conditional distribution over binary productions(ys,e →
ys,m ym,e) that are guaranteed to sum to 1 over split pointsm and possible productions.

Similarly, eachµi,s,s,s+1(ys,s,s+1)

µi,s,s+1(ys,s+1)
term for corresponds to a conditional distribution over

138 CHAPTER 9. CONTEXT FREE GRAMMARS

unary productions(ys,s+1 → ys,s) that are guaranteed to sum to 1 over possible produc-

tions. Hence, we have defined a kind of PCFG (where production probabilities depend on

the location of the symbol), which induces a valid distributionαi over trees. It straightfor-

ward to verify that this distribution has marginalsµi.

9.4 Structured SMO for CFGs

We trained our max-margin models using the Structured SMO algorithm with block-coordinate

descent adopted from graphical models (see Sec. 6.1). The CKY algorithm computes sim-

ilar max-marginals in the course of computing the best tree as does Viterbi in Markov

networks.

v̂i,c(yc) = max
y∼yc

[w>fi(y) + `i(y)], α̂i,c(yc) = max
y∼yc

αi(y).

We also definêvi,c(yc) = maxy′c 6=yc v̂i,c(y
′
c) = maxy 6∼yc [w>fi(y) + `i(y)]. Note that we

do not explicitly representαi(y), but we can reconstruct the maximum-entropy one from

the marginalsµi as in Theorem 9.3.1.

We again express the KKT conditions in terms of the max-marginals for each span and

span triplec ∈ C(i) and its valuesyc:

α̂i,c(yc) = 0 ⇒ v̂i,c(yc) ≤ v̂i,c(yc); α̂i,c(yc) > 0 ⇒ v̂i,c(yc) ≥ v̂i,c(yc). (9.9)

The algorithm cycles through the training sentences, runs CKY to compute the max-

marginals and performs an SMO update on the violated constraints. We typically find that

20-40 iterations through the data are sufficient for convergence in terms of the objective

function improvements.

9.5 Experiments

We used the Penn English Treebank for all of our experiments. We report results here for

each model and setting trained and tested on only the sentences of length≤ 15 words. Aside

9.5. EXPERIMENTS 139

from the length restriction, we used the standard splits: sections 2-21 for training (9753

sentences), 22 for development (603 sentences), and 23 for final testing (421 sentences).

As a baseline, we trained a CNF transformation of the unlexicalized model of Klein and

Manning [2003] on this data. The resulting grammar had 3975 non-terminal symbols and

contained two kinds of productions: binary non-terminal rewrites and tag-word rewrites.

Unary rewrites were compiled into a single compound symbol, so for example a subject-

gapped sentence would have label likeS+VP. These symbols were expanded back into

their source unary chain before parses were evaluated. The scores for the binary rewrites

were estimated using unsmoothed relative frequency estimators. The tagging rewrites were

estimated with a smoothed model ofP (w|t), also using the model from Klein and Manning

[2003]. In particular, Table 9.2 shows the performance of this model (GENERATIVE): 87.99

F1 on the test set.

For theBASIC max-margin model, we used exactly the same set of allowed rewrites

(and therefore the same set of candidate parses) as in the generative case, but estimated

their weights using the max-margin formulation with a loss that counts the number of

wrong spans. Tag-word production weights were fixed to be the log of the generative

P (w|t) model. That is, the only change betweenGENERATIVE andBASIC is the use of the

discriminative maximum-margin criterion in place of the generative maximum likelihood

one for learning production weights. This change alone results in a small improvement

(88.20 vs. 87.99 F1).

On top of the basic model, we first added lexical features of each span; this gave a

LEXICAL model. For a span〈s, e〉 of a sentencex, the base lexical features were:

◦ xs, the first word in the span

◦ xs−1, the preceding adjacent word

◦ xe−1, the last word in the span

◦ xe, the following adjacent word

◦ 〈xs−1, xs〉
◦ 〈xe−1, xe〉
◦ xs+1 for spans of length 3

140 CHAPTER 9. CONTEXT FREE GRAMMARS

Model P R F1

GENERATIVE 87.70 88.06 87.88
BASIC 87.51 88.44 87.98
LEXICAL 88.15 88.62 88.39
LEXICAL+AUX 89.74 90.22 89.98

Table 9.1: Development set results of the various models when trained and tested on Penn
treebank sentences of length≤ 15.

Model P R F1

GENERATIVE 88.25 87.73 87.99
BASIC 88.08 88.31 88.20
LEXICAL 88.55 88.34 88.44
LEXICAL+AUX 89.14 89.10 89.12
COLLINS 99 89.18 88.20 88.69

Table 9.2: Test set results of the various models when trained and tested on Penn treebank
sentences of length≤ 15.

These base features were conjoined with the span length for spans of length 3 and below,

since short spans have highly distinct behaviors (see the examples below). The features are

lexical in the sense than they allow specific words and word pairs to influence the parse

scores, but are distinct from traditional lexical features in several ways. First, there is no

notion of headword here, nor is there any modeling of word-to-word attachment. Rather,

these features pick up on lexical trends in constituent boundaries, for example the trend

that in the sentenceThe screen was a sea of red., the (length 2) span between the wordwas

and the wordof is unlikely to be a constituent. These non-head lexical features capture a

potentially very different source of constraint on tree structures than head-argument pairs,

one having to do more with linear syntactic preferences than lexical selection. Regardless

of the relative merit of the two kinds of information, one clear advantage of the present

approach is that inference in the resulting model remains cubic (as opposed toO(n5)),

since the dynamic program need not track items with distinguished headwords. With the

addition of these features, the accuracy moved past the generative baseline, to 88.44.

9.5. EXPERIMENTS 141

As a concrete (and particularly clean) example of how these features can sway a de-

cision, consider the sentenceThe Egyptian president said he would visit Libya today to

resume the talks. The generative model incorrectly considersLibya todayto be a baseNP.

However, this analysis is counter to the trend oftodayto be a one-word constituent. Two

features relevant to this trend are: (CONSTITUENT∧ first-word = today∧ length = 1) and

(CONSTITUENT∧ last-word =today∧ length = 1). These features represent the preference

of the wordtodayfor being the first and last word in constituent spans of length 1.1 In the

LEXICAL model, these features have quite large positive weights: 0.62 each. As a result,

this model makes this parse decision correctly.

Another kind of feature that can usefully be incorporated into the classification process

is the output of other, auxiliary classifiers. For this kind of feature, one must take care

that its reliability on the training not be vastly greater than its reliability on the test set.

Otherwise, its weight will be artificially (and detrimentally) high. To ensure that such

features are as noisy on the training data as the test data, we split the training into two

folds. We then trained the auxiliary classifiers on each fold, and using their predictions as

features on the other fold. The auxiliary classifiers were then retrained on the entire training

set, and their predictions used as features on the development and test sets.

We used two such auxiliary classifiers, giving a prediction feature for each span (these

classifiers predicted only the presence or absence of a bracket over that span, not bracket

labels). The first feature was the prediction of the generative baseline; this feature added

little information, but made the learning phase faster. The second feature was the output

of a flat classifier which was trained to predict whether single spans, in isolation, were

constituents or not, based on a bundle of features including the list above, but also the

following: the preceding, first, last, and following tag in the span, pairs of tags such as

preceding-first, last-following, preceding-following, first-last, and the entire tag sequence.

Tag features on the test sets were taken from a pretagging of the sentence by the tagger

described in [Toutanovaet al., 2003].While the flat classifier alone was quite poor (P 78.77

/ R 63.94 / F1 70.58), the resulting max-margin model (LEXICAL +AUX) scored 89.12 F1.

To situate these numbers with respect to other models, the parser in [Collins, 1999],which

1In this length 1 case, these are the same feature. Note also that the features are conjoined with only one
generic label class “constituent” rather than specific constituent types.

142 CHAPTER 9. CONTEXT FREE GRAMMARS

is generative, lexicalized, and intricately smoothed scores 88.69 over the same train/test

configuration.

9.6 Related work

A number of recent papers have considered discriminative approaches for natural language

parsing [Johnsonet al., 1999; Collins, 2000; Johnson, 2001; Geman & Johnson, 2002;

Miyao & Tsujii, 2002; Clark & Curran, 2004; Kaplanet al., 2004; Collins, 2004]. Broadly

speaking, these approaches fall into two categories,rerankinganddynamic programming

approaches. In reranking methods [Johnsonet al., 1999; Collins, 2000; Shenet al., 2003],

an initial parser is used to generate a number of candidate parses. A discriminative model

is then used to choose between these candidates. In dynamic programming methods, a

large number of candidate parse trees are represented compactly in a parse tree forest or

chart. Given sufficiently “local” features, the decoding and parameter estimation problems

can be solved using dynamic programming algorithms. For example, several approaches

[Johnson, 2001; Geman & Johnson, 2002; Miyao & Tsujii, 2002; Clark & Curran, 2004;

Kaplanet al., 2004] are based on conditional log-linear (maximum entropy) models, where

variants of the inside-outside algorithm can be used to efficiently calculate gradients of the

log-likelihood function, despite the exponential number of trees represented by the parse

forest.

The method we presented has several compelling advantages. Unlike reranking meth-

ods, which consider only a pre-pruned selection of “good” parses, our method is an end-

to-end discriminative model over the full space of parses. This distinction can be very

significant, as the set ofn-best parses often does not contain the true parse. For example,

in the work of Collins [2000], 41% of the correct parses were not in the candidate pool of

∼30-best parses. Unlike previous dynamic programming approaches, which were based on

maximum entropy estimation, our method incorporates an articulated loss function which

penalizes larger tree discrepancies more severely than smaller ones.

Moreover, the structured SMO we use requires only the calculation of Viterbi trees,

rather than expectations over all trees (for example using the inside-outside algorithm).

9.7. CONCLUSION 143

This allows a range of optimizations that prune the space of parses (without making ap-

proximations) not possible for maximum likelihood approaches which must extract basis

function expectations from the entire set of parses. In our experiments,20-40 iterations

were generally required for convergence (except theBASIC model, which took about 100

iterations.)

9.7 Conclusion

We have presented a maximum-margin approach to parsing, which allows a discriminative

SVM-like objective to be applied to the parsing problem. Our framework permits the use

of a rich variety of input features, while still decomposing in a way that exploits the shared

substructure of parse trees in the standard way.

It is worth considering the cost of this kind of method. At training time, discriminative

methods are inherently expensive, since they all involve iteratively checking current model

performance on the training set, which means parsing the training set (usually many times).

Generative approaches are vastly cheaper to train, since they must only collect counts from

the training set.

On the other hand, the max-margin approach does have the potential to incorporate

many new kinds of features over the input, and the current feature set allows limited lexi-

calization in cubic time, unlike other lexicalized models (including the Collins model which

it outperforms in the present limited experiments). This trade-off between the complexity,

accuracy and efficiency of a parsing model is an important area of future research.

Chapter 10

Matchings

We address the problem of learning to match: given a set of input graphs and corresponding

matchings, find a parameterized edge scoring function such that the correct matchings have

the highest score. Bipartite matchings are used in many fields, for example, to find marker

correspondences in vision problems, to map words of a sentence in one language to another,

to identify functional genetic analogues in different organisms. We have shown a compact

max-margin formulation for bipartite matchings in Ch. 4. In this chapter, we focus on a

more complex problem of non-bipartite matchings. We motivate this problem using an

application in computational biology, disulfide connectivity prediction, but non-bipartite

matchings can be used for many other tasks.

Identifying disulfide bridges formed by cysteine residues is critical in determining the

structure of proteins. Recently proposed models have formulated this prediction task as a

maximum weight perfect matching problem in a graph containing cysteines as nodes with

edge weights measuring the attraction strength of the potential bridges. We exploit combi-

natorial properties of the perfect matching problem to define a compact, convex, quadratic

program. We use kernels to efficiently learn very rich (in-fact, infinite-dimensional) mod-

els and present experiments on standard protein databases, showing that our framework

achieves state-of-the-art performance on the task.

Throughout this chapter, we use the problem of disulfide connectivity prediction as an

example. We provide some background on this problem.

144

10.1. DISULFIDE CONNECTIVITY PREDICTION 145

10.1 Disulfide connectivity prediction

Proteins containing cysteine residues form intra-chain covalent bonds known asdisulfide

bridges. Such bonds are a very important feature of protein structure since they enhance

conformational stability by reducing the number of configurational states and decreasing

the entropic cost of folding a protein into its native state [Matsumuraet al., 1989]. They do

so mostly by imposing strict structural constraints due to the resulting links between distant

regions of the protein sequence [Harrison & Sternberg, 1994].

Knowledge of the exact disulfide bonding pattern in a protein provides information

about protein structure and possibly its function and evolution. Furthermore, since the

disulfide connectivity pattern imposes structure constraints, it can be used to reduce the

search space in both protein folding prediction as well as protein 3D structure prediction.

Thus, the development of efficient, scalable and accurate methods for the prediction of

disulfide bonds has numerous practical applications.

Recently, there has been increased interest in applying computational techniques to

the task of predicting the intra-chain disulfide connectivity [Fariselli & Casadio, 2001;

Fariselliet al., 2002; Vullo & Frasconi, 2004; Klepeis & Floudas, 2003; Baldiet al., 2004].

Since a sequence may contain any number of cysteine residues, which may or may not

participate in disulfide bonds, the task of predicting the connectivity pattern is typically

decomposed into two subproblems: predicting the bonding state of each cysteine in the

sequence, and predicting the exact connectivity among bonded cysteines. Alternatively,

there are methods [Baldiet al., 2004] that predict the connectivity pattern without knowing

the bonding state of each cysteine1.

We predict the connectivity pattern by finding the maximum weighted matching in a

graph in which each vertex represents a cysteine residue, and each edge represents the

“attraction strength” between the cysteines it connects [Fariselli & Casadio, 2001]. We

parameterize the this attraction strength via a linear combination of features, which can

include the protein sequence around the two residues, evolutionary information in the form

of multiple alignment profiles, secondary structure or solvent accessibility information, etc.

1We thank Pierre Baldi and Jianlin Cheng for introducing us to the problem of disulfide connectivity
prediction and providing us with preliminary draft of their paper and results of their model, as well as the
protein datasets.

146 CHAPTER 10. MATCHINGS

10.2 Learning to match

Formally, we seek a functionh : X 7→ Y that maps inputsx ∈ X to output matchings

y ∈ Y, for example,X is the space of protein sequences andY is the space of matchings

of their cysteines. The space of matchingsY is very large, in fact, superexponential in

the number of nodes in a graph. However,Y has interesting and complex combinatorial

structure which we exploit to learnh efficiently.

The training data consists ofm examplesS = {(x(i),y(i))}m
i=1 of input graphs and

output matchings. We assume that the inputx defines the space of possible matchings

using some deterministic procedure. For example, given a protein sequence, we construct

a complete graph where each node corresponds to a cysteine. We represent each possible

edge between nodesj andk (j < k) in examplei using a binary variabley(i)
jk . For simplicity,

we assume complete graphs, but very little needs to be changed to handle sparse graphs.

If examplei hasLi nodes, then there areLi(Li − 1)/2 edge variables, soy(i) is a

binary vector of dimensionLi(Li − 1)/2. In a perfect matching, each node is connected

exactlyone other node. In non-perfect matchings, each node is connected toat mostone

other node. Letni = Li/2, then for complete graphs with even number of verticesLi, the

number of possible perfect matchings is(2ni)!
2nini!

(which is Ω((ni

2
)ni), super-exponential in

ni). For example, 1ANS protein in Fig. 10.1 has6 cysteines (nodes),15 potential bonds

(edges) and15 possible perfect matchings.

Our hypothesis class is maximum weight matchings:

hs(x) = arg max
y∈Y

∑

jk

sjk(x)yjk, (10.1)

For disulfide connectivity prediction, this model was used by Fariselli and Casadio [2001].

Their model assigns an attraction strengthsjk(x) to each pair of cysteines, calculated by

assuming that all residues in the local neighborhoods of the two cysteines make contact,

and summing contact potentials for pairs of residues. We consider a simple but very general

class of attraction scoring functions defined by a weighted combination of features orbasis

functions:

sjk(x) =
∑

d

wdfd(xjk) = w>f(xjk), (10.2)

10.2. LEARNING TO MATCH 147

1

2 3

4

5 6

1

2 3

4

5 6

RSCCPCYWGGCPWGQNCYPEGCSGPKV
1 2 3 4 5 6

Figure 10.1: PDB protein 1ANS: amino acid sequence, 3D structure, and graph of potential
disulfide bonds. Actual disulfide connectivity is shown in yellow in the 3D model and the
graph of potential bonds.

wherexjk is the portion of the inputx that directly relates to nodesj andk, fd(xjk) is

a real-valued basis function andwd ∈ IR. For example, the basis functions can represent

arbitrary information about the two cysteine neighborhoods: the identity of the residues

at specific positions around the two cysteines, or the predicted secondary structure in the

neighborhood of each cysteine. We assume that the user provides the basis functions, and

that our goal is to learn the weightsw, for the model:

hw(x) = arg max
y∈Y

∑

jk

w>f(xjk)yjk. (10.3)

Below, we will abbreviatew>f(x,y) ≡ ∑
jk w>f(xjk)yjk, andw>fi(y) ≡ w>f(x(i),y),

The naive formulation of the max-margin estimation, which enumerates all perfect

matchings for each examplei, is:

min
1

2
||w||2 s.t. w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i). (10.4)

The number of constraints in this formulation is super-exponential in the number of nodes

in each example. In the following sections we present two max-margin formulations,

first with an exponential set of constraints (Sec. 10.3), and then with a polynomial one

(Sec. 10.4).

148 CHAPTER 10. MATCHINGS

10.3 Min-max formulation

Using the min-max formulation from Ch. 4, we have a singlemax constraint for eachi:

min
1

2
||w||2 s.t. w>fi(y(i)) ≥ max

y∈Y(i)
[w>fi(y) + `i(y)], ∀i. (10.5)

The key to solving this problem efficiently is theloss-augmentedinference

maxy∈Y(i) [w>fi(y) + `i(y)]. Under the assumption of Hamming distance loss (or any loss

function that can be written as a sum of terms corresponding to edges), this maximization

is equivalent (up to a constant term) to a maximum weighted matching problem. Note that

since they variables are binary, the Hamming distance betweeny(i) andy can be written

as(1 − y)>y(i) + (1 − y(i))>y = 1>y(i) + (1 − 2y(i))>y. Hence, the maximum weight

matching where edgejk has weightw>f(x(i)
jk)+(1−2y

(i)
jk) (plus the constant1>y(i)) gives

the value ofmaxy∈Y(i) [w>fi(y) + `i(y)].

This problem can be solved inO(L3) time [Gabow, 1973; Lawler, 1976]. It can also be

solved as a linear program, where we introduce continuous variablesµi,jk instead of binary

variablesy(i)
jk .

max
∑

jk

µi,jk[w
>f(x(i)

jk) + (1− 2y
(i)
jk)] (10.6)

s.t. µi,jk ≥ 0, 1 ≤ j < k ≤ Li;
∑

k

µi,jk ≤ 1, 1 ≤ j ≤ Li;

∑

j,k∈V

µi,jk ≤ 1

2
(|V | − 1), V ⊆ {1, . . . , Li}, |V | ≥ 3 and odd.

The constraints
∑

k µi,jk ≤ 1 require that the number of bonds incident on a node is less

or equal to one. For perfect matchings, these constraints are changed to
∑

k µi,jk = 1 to

ensure exactly one bond. The subset constraints (in the last line of Eq. (10.6)) ensure that

solutions to the LP are integral [Edmonds, 1965]. Note that we have an exponential number

of constraints (O(2(Li−1))), but this number is asymptotically smaller than the number of

possible matchings . It is an open problem to derive a polynomial sized LP formulation for

perfect matchings [Schrijver, 2003].

10.3. MIN-MAX FORMULATION 149

We can write the loss-augmented inference problem in terms of the LP in Eq. (10.6):

max
y∈Y(i)

[w>fi(y) + `i(y)] = di + max
Aiµi≤bi

µi≥0

µ>i [Fiw + ci],

where:di = 1>y(i); µi is a vector of lengthLi(Li − 1)/2 indexed by bondjk; Ai andbi

are the appropriate constraint coefficient matrix and right hand side vector, respectively.Fi

is a matrix of basis function coefficients such that the componentjk of the vectorFiw is

w>f(x
(i)
jk) andci = (1 − 2y(i)). Note that the dependence onw is linear and occurs only

in the objective of the LP.

The dual of the LP in Eq. (10.6) is

min λ>i bi s.t. A>
i λi ≥ Fiw + ci; λi ≥ 0. (10.7)

We plug it into Eq. (10.5) and combine the minimization overλ with minimization overw.

min
1

2
||w||2 (10.8)

s.t. w>fi(y
(i)) ≥ di + λ>i bi, ∀i;

A>
i λi ≥ Fiw + ci, ∀i;

λi ≥ 0, ∀i.

In case that our basis functions are not rich enough to predict the training data perfectly,

we can introduce a slack variableξi for each examplei to allow violations of the constraints

and minimize the sum of the violations:

min
1

2
||w||2 + C

∑
i

ξi (10.9)

s.t. w>fi(y(i)) + ξi ≥ di + λ>i bi, ∀i;
A>

i λi ≥ Fiw + ci, ∀i;
λi ≥ 0, ∀i; ξi ≥ 0, ∀i.

The parameterC allows the user to trade off violations of the constraints with fit to the

150 CHAPTER 10. MATCHINGS

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Bonds

Lo
g-

N
um

be
r o

f
 C

on
st

ra
in

ts

Perfect Matchings

Min-max

Certificate

Figure 10.2: Log of the number of QP constraints (y-axis) vs. number of bonds (x-axis) in
the three formulations (perfect matching enumeration, min-max and certificate).

data.

Our formulation is a linearly-constrained quadratic program, albeit with an exponen-

tial number of constraints. In the next section, we develop an equivalent polynomial size

formulation.

10.4 Certificate formulation

Rather than solving the loss-augmented inference problem explicitly, we can focus on find-

ing a compactcertificate of optimalitythat guarantees thaty(i) = arg maxy[w>fi(y) +

`i(y)]. We consider perfect matchings and then provide a reduction for the non-perfect

case. LetM be a perfect matching for a complete undirected graphG = (V, E). In an

alternating cycle/pathin G with respect toM , the edges alternate between those that be-

long toM and those that do not. An alternating cycle isaugmentingwith respect toM if

the score of the edges in the matchingM is smaller that the score of the edges not in the

matchingM .

Theorem 10.4.1 [Edmonds, 1965]A perfect matchingM is a maximum weight perfect

matching if and only if there are no augmenting alternating cycles.

10.4. CERTIFICATE FORMULATION 151

The number of alternating cycles is exponential in the number of vertices, so simply enu-

merating all of them will not do. Instead, we can rule out such cycles by considering

shortest paths.

We begin by negating the score of those edges not inM . In the discussion below we

assume that each edge scoresjk has been modified this way. We also refer to the scoresjk

as the length of the edgejk. An alternating cycle is augmenting if and only if its length is

negative. A condition ruling out negative length alternating cycles can be stated succinctly

using a kind of distance function. Pick an arbitrary root noder. Let de
j, with j ∈ V ,

e ∈ {0, 1}, denote the length of the shortest distance alternating path fromr to j, where

e = 1 if the last edge of the path is inM , 0 otherwise. These shortest distances are well-

defined if and only if there are no negative alternating cycles. The following constraints

capture this distance function.

sjk ≥ d0
k − d1

j , sjk ≥ d0
j − d1

k, ∀ jk /∈ M ; (10.10)

sjk ≥ d1
k − d0

j , sjk ≥ d1
j − d0

k, ∀ jk ∈ M.

Theorem 10.4.2There exists a distance function{de
j} satisfying the constraints in

Eq. (10.10) if and only if no augmenting alternating cycles exist.

Proof.

(If) Suppose there are no augmenting alternating cycles. Since any alternating paths

from r to j can be shortened (or left the same length) by removing the cycles they contain,

the two shortest paths toj (one ending withM -edge and one not) contain no cycles. Then

let d0
j andd1

j be the length of those paths, for allj (for j = r, setd0
r = d1

r = 0). Then for

anyjk (or kj) in M , the shortest path toj ending with an edge not inM plus the edgejk

(or kj) is an alternating path tok ending with an edge inM . This path is longer or same

length as the shortest path tok ending with an edge inM : sjk +d0
j ≥ d1

k (or skj +d0
j ≥ d1

k),

so the constraint is satisfied. Similarly forjk, kj /∈ M .

(Only if) Suppose a distance function{de
j} satisfies the constraints in Eq. (10.10). Con-

sider an alternating cycleC. We renumber the nodes such that the cycle passes through

nodes1, 2, . . . , l and the first edge,(1, 2), is in M . The length of the path iss(C) =

s1,l +
∑l−1

j=1 sj,j+1. For each oddj, the edge(j, j + 1) is in M , sosj,j+1 ≥ d1
j+1 − d0

j . For

152 CHAPTER 10. MATCHINGS

evenj, the edge(j, j + 1) is not inM , sosj,j+1 ≥ d0
j+1 − d1

j . Finally, the last edge,(1, l),

is not inM , sos1,l ≥ d0
1 − d1

l . Summing the edges, we have:

s(C) ≥ d0
1 − d1

l +
l−1∑

j=1,odd

[d1
j+1 − d0

j] +
l−1∑

j=2,even

[d0
j+1 − d1

j] = 0.

Hence all alternating cycles have nonnegative length.

In our learning formulation we have the loss-augmented edge weightss
(i)
jk = (2y

(i)
jk −

1)(w>f(xjk)+1−2y
(i)
jk). Letdi be a vector of distance variablesde

j, Hi andGi be matrices

of coefficients andqi be a vector such thatHiw + Gidi ≥ qi represents the constraints

in Eq. (10.10) for examplei. Then the following joint convex program inw andd computes

the max-margin parameters:

min
1

2
||w||2 (10.11)

s.t. Hiw + Gidi ≥ qi, ∀i.

Once again, in case that our basis functions are not rich enough to predict the training data

perfectly, we can introduce a slack variable vectorξi to allow violations of the constraints.

The case of non-perfect matchings can be handled by a reduction to perfect matchings

as follows [Schrijver, 2003]. We create a new graph by making a copy of the nodes and

the edges and adding edges between each node and the corresponding node in the copy.

We extend the matching by replicating its edges in the copy and for each unmatched node,

introduce an edge to its copy. We definef(xjk) ≡ 0 for edges between the original and

the copy. Perfect matchings in this graph projected onto the original graph correspond to

non-perfect matchings in the original graph.

The comparison between the log-number of constraints for our three equivalent QP

formulations (enumeration of all perfect matchings, min-max and certificate) is shown

in Fig. 10.2. The x-axis is the number of edges in the matching (number of nodes divided

by two).

10.5. KERNELS 153

10.5 Kernels

Instead of directly optimizing the primal problem in Eq. (10.8), we can work with its dual.

Each training examplei hasLi(Li − 1)/2 dual variables, andα(i)
jk is the dual variable

associated with the features corresponding to the edgejk. Let α(i) be the vector of dual

variables for examplei. The dual quadratic optimization problem has the form:

max
∑

i

c>i α(i) − 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i

∑

jk∈E(i)

[(
Cy

(i)
jk − α

(i)
jk

)
f(x

(i)
jk)

]
∣∣∣∣∣∣

∣∣∣∣∣∣

2

(10.12)

s.t. Aiα
(i) ≤ Cbi, ∀i.

α(i) ≥ 0, ∀i.

The only occurrence of feature vectors is in the expansion of the squared-norm term in the

objective:

∑
i,j

∑

kl∈E(i)

∑

mn∈E(j)

(
Cy

(i)
jk − α

(i)
jk

)
f(x

(i)
kl)

>
f(x(j)

mn)
(
Cy

(j)
jk − α

(j)
jk

)
(10.13)

Therefore, we can apply the kernel trick and letf(x
(i)
kl)

>
f(x

(j)
mn) = K(x

(i)
kl ,x

(j)
mn). Thus, we

can efficiently map the original featuresf(xjk) to a high-dimensional space. The primal

and dual solutions are related by:

w =
∑

i

∑

jk

(Cy
(i)
jk − α

(i)
jk)f(x

(i)
jk) (10.14)

Eq. (10.14) can be used to compute the attraction strengthsjk(x) in a kernelized manner at

prediction time. The polynomial-sized representation in Eq. (10.11) is similarly kerneliz-

able.

154 CHAPTER 10. MATCHINGS

10.6 Experiments

We assess the performance of our method on two datasets containing sequences with ex-

perimentally verified bonding patterns: DIPRO2 and SP39. The DIPRO2 dataset2 was

compiled and made publicly available by Baldiet al. [2004]. It consists of all proteins

from PDB [Bermanet al., 2000], as of May 2004, which contain intra-chain disulfide

bonds. After redundance reduction there are a total of 1018 sequences. In addition, the

sequences are annotated with secondary structure and solvent accessibility information de-

rived from the DSSP database [Kabsch & Sander, 1983]. The SP39 dataset is extracted

from the Swiss-Prot database of proteins [Bairoch & Apweiler, 2000], release 39. It con-

tains only sequences with experimentally verified disulfide bridges, and has a total of 726

proteins. The same dataset was used in earlier work [Baldiet al., 2004; Vullo & Frasconi,

2004; Fariselli & Casadio, 2001], and we have followed the same procedure for extracting

sequences from the database.

Even though our method is applicable to both sequences with a high number of bonds

or sequences in which the bonding state of cysteine residues is unknown, we report results

for the case where the bonding state is known, and the number of bonds is between 2 and

5 (since the case of 1 bond is trivial). The DIPRO2 contains 567 such sequences, and only

53 sequences with a higher number of bonds, so we are able to perform learning on over

90% of all proteins. There are 430 proteins with 2 and 3 bonds and 137 with 4 and 5 bonds.

SP39 contains 446 sequences containing between 2 and 5 bonds.

In order to avoid biases during testing, we adopt the same dataset splitting procedure

as the one used in previous work [Fariselli & Casadio, 2001; Vullo & Frasconi, 2004;

Baldi et al., 2004]. We split SP39 into 4 different subsets, with the constraint that pro-

teins no proteins with sequence similarity of more than 30% belong to different subsets.

Sequence similarity was derived using an all-against-all rigorous Smith-Waterman local

pairwise alignment [Smith & Waterman, 1981] (with the BLOSUM65 scoring matrix, gap

penalty 12 and gap extension 4). Pairs of chains whose alignment is less than 30 residues

were considered unrelated. The DIPRO2 dataset was split similarly into 5 folds, although

the procedure had less effect due to the redundance reduction applied by the authors of the

2http://contact.ics.uci.edu/bridge.html

10.6. EXPERIMENTS 155

dataset.

Models

The experimental results we report use the dual formulation of Sec. 10.5 and an RBF kernel

K(xjk,xlm) = exp(
‖xjk−xlm‖2

γ
), with γ ∈ [0.1, 10]. We use the exponential sized represen-

tation of Sec. 10.3 since for the case of proteins containing between two and five bonds, it

is more efficient due to the low constants in the exponential problem size. We used com-

mercial QP software (CPLEX) to train our models. Training time took around 70 minutes

for 450 examples, using a sequential optimization procedure which solves QP subproblems

associated with blocks of training examples. We are currently working on an implemen-

tation of the certificate formulation Sec. 10.4 to handle longer sequences and non-perfect

matchings (when bonding state is unknown). Below, we describe several models we used.

The features we experimented with were all based on the local regions around candidate

cysteine pairs. For each pair of candidate cysteines{j, k}, wherej < k, we extract the

amino-acid sequence in windows of sizen centered atj andk. As in Baldi et al. [2004],

we augment the features of each model with the number of residues betweenj andk. The

models below use windows of sizen = 9.

The first model,SEQUENCE, uses the features described above: for each window, the

actual sequence is expanded to a20× n binary vector, in which the entries denote whether

or not a particular amino acid occurs at the particular position. For example, the21st entry

in the vector represents whether or not the amino-acid Alanine occurs at position2 of the

local window, counting from the left end of the window. The final set of features for each

{j, k} pair of cysteines is simply the two local windows concatenated together, augmented

with the linear distance between the cysteine residues.

The second model,PROFILE, is the same asSEQUENCE, except that instead of us-

ing the actual protein sequence, we use multiple sequence alignment profile information.

Multiple alignments were computed by running PSI-BLAST using default settings to align

the sequence with all sequences in the NR database [Altschulet al., 1997]. Thus, the in-

put at each position of a local window is the frequency of occurrence of each of the20

amino-acids in the alignments.

156 CHAPTER 10. MATCHINGS

K PROFILE DAG-RNN

2 0.75/ 0.75 0.74 / 0.74
3 0.60 / 0.48 0.61/ 0.51
4 0.46/ 0.24 0.44 /0.27
5 0.43/ 0.16 0.41 / 0.11

K SEQUENCE PROFILE PROFILE-SS

2 0.70 / 0.70 0.73 / 0.73 0.79 / 0.79
3 0.62 / 0.52 0.67 / 0.59 0.74 / 0.69
4 0.44 / 0.21 0.59 / 0.44 0.70 / 0.56
5 0.29 / 0.06 0.43 / 0.17 0.62 / 0.27

(a) (b)

Table 10.1: Numbers indicatePrecision / Accuracy. (a) Performance ofPROFILEmodel
on SP39 vs. preliminary results of the DAG-RNN model [Baldiet al., 2004] which repre-
sent the best currently published results. In each row, the best performance is inbold. (b)
Performance ofSEQUENCE, PROFILE, PROFILE-SSmodels on the DIPRO2 dataset.

The third model,PROFILE-SS, augments thePROFILEmodel with secondary structure

and solvent-accessibility information. The DSSP program produces 8 types of secondary

structure, so we augment each local window of sizen with an additional length8 × n

binary vector, as well as a lengthn binary vector representing the solvent accessibility at

each position.

Results and discussion

We evaluate our algorithm using two metrics: accuracy and precision. The accuracy mea-

sure counts how many full connectivity patterns were predicted correctly, whereas preci-

sion measures the number of correctly predicted bonds as a fraction of the total number of

possible bonds.

The first set of experiments compares our model to preliminary results reported in Baldi

et al. [2004], which represent the current top-performing system. We perform 4-fold cross-

validation on SP39 in order to replicate their setup. As Table 10.1 shows, thePROFILE

model achieves comparable results, with similar or better levels of precision for all bond

numbers, and slightly lower accuracies for the case of 2 and 3 bonds.

In another experiment, we show the performance gained by using multiple alignment

information by comparing the results of theSEQUENCEmodel with thePROFILE. As we

can see from Table 10.1(b), the evolutionary information captured by the amino-acid align-

ment frequencies plays an important role in increasing the performance of the algorithm.

10.7. RELATED WORK 157

2 and 3 bonds

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 150 200 250 300 350 400 450
Training Set Size

Accuracy (2 Bonds)

Precision (3 Bonds)

Accuracy (3 Bonds)

4 and 5 bonds

5%

15%

25%

35%

45%

55%

65%

75%

85%

100 150 200 250 300 350 400 450
Training Set Size

Precision (4 Bonds)
Accuracy (4 Bonds)
Precision (5 Bonds)
Accuracy (5 Bonds)

(a) (b)

Figure 10.3: Performance ofPROFILEmodel as training set size changes for proteins with
(a) 2 and 3 bonds (b) 4 and 5 bonds.

The same phenomenon is observed by Vullo and Frasconi [2004] in their comparison of

sequence and profile-based models.

As a final experiment, we examine the role that secondary structure and solvent-accessibility

information plays in the modelPROFILE-SS. Table 10.1(b) shows that the gains are sig-

nificant, especially for sequences with3 and4 bonds. This highlights the importance of

developing even richer features, perhaps through more complex kernels.

Fig. 10.3 shows the performance of thePROFILEmodel as training set size grows. We

can see that for sequences of all bond numbers, both accuracy and precision increase as the

amount of data grows. The trend is more pronounced for sequences with4 and5 bonds

because they are sparsely distributed in the dataset. Such behavior is very promising, since

it validates the applicability of our algorithm as the availability of high-quality disulfide

bridge annotations increases with time.

10.7 Related work

The problem of inverse perfect matching has been studied by Liu and Zhang [2003] in

the inverse combinatorial optimization framework we describe in Sec. 4.3: Given a set of

nominal weightsw0 and a perfect matchingM , which is not a maximum one with respect

to w0, find a new weight vectorw that makesM optimal and minimizes||w0 − w||p
for p = 1,∞. They do not provide a compact optimization problem for this related but

158 CHAPTER 10. MATCHINGS

different task, relying instead on the ellipsoid method with constraint generation.

The problem of disulfide bond prediction first received comprehensive computational

treatment in Fariselli and Casadio [2001]. They modeled the prediction problem as finding

a perfect matching in a weighted graph where vertices represent bonded cysteine residues,

and edge weights correspond to attraction strength. The problem of learning the edge

weights was addressed using a simulated annealing procedure. Their method is only ap-

plicable to the case when bonding state is known. In Fariselliet al. [2002], the authors

switch to using a neural network for learning edge weights and achieve better performance,

especially for the case of 2 and 3 disulfide bonds.

The method in Vullo and Frasconi [2004] takes a different approach to the problem. It

scores candidate connectivity patterns according to their similarity with respect to the cor-

rect pattern, and uses a recursive neural network architecture [Frasconiet al., 1998] to score

candidate patterns. At prediction time the pattern scores are used to perform an exhaustive

search on the space of all matchings. The method is computationally limited to sequences

of 2 to 5 bonds. It also uses multiple alignment profile information and demonstrates its

benefits over sequence information.

In Baldi et al. [2004], the authors achieve the current state-of-the-art performance on

the task. Their method uses Directed Acyclic Graph Recursive Neural Networks [Baldi

& Pollastri, 2003] to predict bonding probabilities between cysteine pairs. The prediction

problem is solved using a weighted graph matching based on these probabilities. Their

method performs better than the one in Vullo and Frasconi [2004] and is also the only

one which can cope with sequences with more than 5 bonds. It also improves on previous

methods by not assuming knowledge of bonding state.

A different approach to predicting disulfide bridges is reported in Klepeis and Floudas

[2003], where bond prediction occurs as part of predictingβ-sheet topology in proteins.

Residue-to-residue contacts (which include disulphide bridges) are predicted by solving a

series of constrained integer programming problems. Interestingly, the approach can be

used to predict disulfide bonds with no knowledge of bonding state, but the results are not

comparable with those in other publications.

The task of predicting whether or not a cysteine is bonded has also been addressed using

a variety of machine learning techniques including neural networks, SVMs, and HMMs

10.8. CONCLUSION 159

[Fariselli et al., 1999; Fiser & Simon, 2000; Martelliet al., 2002; Frasconiet al., 2002;

Ceroniet al., 2003] Currently the top performing systems have accuracies around 85%.

10.8 Conclusion

In this chapter, we derive a compact convex quadratic program for the problem of learning

to match. Our approach learns a parameterized scoring function that reproduces the ob-

served matchings in a training set. We present two formulations: one which is based on a

linear programming approach to matching, requiring an exponential number of constraints,

and one which develops a certificate of matching optimality for a compact polynomial-sized

representation. We apply our framework to the task of disulfide connectivity prediction, for-

mulated as a weighted matching problem. Our experimental results show that the method

can achieve performance comparable to current top-performing systems. Furthermore, the

use of kernels makes it easy to incorporate rich sets of features such as secondary structure

information, or extended local neighborhoods of the protein sequence. In the future, it will

be worthwhile to examine how other kernels, such as convolution kernels for protein se-

quences, will affect performance. We also hope to explore the more challenging problem

of disulfide connectivity prediction when the bonding state of cysteines is unknown. While

we have developed the framework to handle that task, it remains to experimentally deter-

mine how well the method performs, especially in comparison to existing methods [Baldi

et al., 2004], which have already addressed the more challenging setting.

Chapter 11

Correlation clustering

Data can often be grouped in many different reasonable clusterings. For example, one user

may organize her email messages by project and time, another by sender and topic. Images

can be segmented by hue or object boundaries. For a given application, there might be

only one of these clusterings that is desirable. Learning to cluster considers the problem of

finding desirable clusterings on new data, given example desirable clusterings on training

data.

We focus on correlation clustering, a novel clustering method that has recently en-

joyed significant attention from the theoretical computer science community [Bansalet al.,

2002; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003]. It is formulated as a vertex

partitioning problem: Given a graph with real-valued edge scores (both positive and neg-

ative), partition the vertices into clusters to maximize the score of intra-cluster edges, and

minimize the weight of inter-cluster edges. Positive edge weights represent correlations be-

tween vertices, encouraging those vertices to belong to a common cluster; negative weights

encourage the vertices to belong to different clusters. Unlike most clustering formulations,

correlation clustering does not require the user to specify the number of clusters nor a dis-

tance threshold for clustering; both of these parameters are effectively chosen to be the best

possible by the problem definition. These properties make correlation clustering a promis-

ing approach to many clustering problems; in machine learning, it has been successfully

applied to coreference resolution for proper nouns [McCallum & Wellner, 2003].

Recently, several algorithms based on linear programming and positive-semidefinite

160

11.1. CLUSTERING FORMULATION 161

programming relaxations have been proposed to approximately solve this problem. In this

chapter, we employ these relaxations to derive a max-margin formulation for learning the

edge scores for correlation clustering from clustered training data. We formulate the ap-

proximate learning problem as a compact convex program with quadratic objective and

linear or positive-semidefinite constraints. Experiments on synthetic and real-world data

show the ability of the algorithm to learn an appropriate clustering metric for a variety of

desired clusterings.

11.1 Clustering formulation

An instance of correlation clustering is specified by an undirected graphG = (V , E) with

N nodes and edge scoresjk for eachjk in E , (j < k). We assume that the graph is fully

connected (if it is not, we can make it fully connected by adding appropriate edgesjk with

sjk = 0). We define binary variablesyjk, one for each edgejk, that represent whether node

j andk belong to the same cluster. LetY be the space of assignmentsy that define legal

partitions. For notational convenience, we introduce bothyjk andykj variables, which will

be constrained to have the same value. We also introduceyjj variables, and fix them to

have value1 and setsjj = 0.

Bansalet al. [2002] consider two related problems:

max
y∈Y

∑

jk:sjk>0

sjkyjk −
∑

jk:sjk<0

sjk(1− yjk); (MAX AGREE)

min
y∈Y

∑

jk:sjk>0

sjk(1− yjk)−
∑

jk:sjk<0

sjkyjk; (M INDISAGREE)

The motivation for the names of the two problems comes from separating the set of edges

into positive weight edges and negative weight edges. The best score is obviously achieved

by including all the positive and excluding all the negative edges, but this will not generally

produce a valid partition. InMAX AGREE, we maximize the “agreement” of the partition

with the positive/negative designations: the weight of thepositive includededges minus

the weight ofnegative excludededges. InM INDISAGREE, we minimize the disagreement:

the weight ofpositive excludededges minus the weight ofnegative includededges. In

162 CHAPTER 11. CORRELATION CLUSTERING

particular, let

s∗ = max
y∈Y

∑
sjkyjk; s− =

∑

jk:sjk<0

sjk; s+ =
∑

jk:sjk>0

sjk.

Then the value ofMAX AGREE is s∗ − s− and the value ofM INDISAGREEs+ − s∗. The

optimal partition for the two problems is of course the same (if it is unique). Bansal

et al. [2002] show that both of these problems are NP-hard (but have different approxi-

mation hardness). We will concentrate on the maximization version,MAX AGREE. Several

approximation algorithms have been developed based on Linear and Semidefinite Program-

ming [Charikaret al., 2003; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003], which

we consider in the next sections.

11.1.1 Linear programming relaxation

In order to insure thaty defines a partition, it is sufficient to enforce a kind of triangle

inequality for each triple of nodesj < k < l:

yjk + ykl ≤ yjl + 1; yjk + yjl ≤ ykl + 1; yjl + ykl ≤ yjk + 1. (11.1)

The triangle inequality enforces transitivity: ifj andk are in the same cluster (yjk = 1)

andk and l are in the same cluster (ykl = 1), thenj and l will be forced to be in this

cluster (yjl = 1). The other two cases are similar. Any symmetric, transitive binary relation

induces a partition of the objects.

With these definitions, we can express theMAX AGREE problem as an integer linear

program (ignoring the constant−s−):

max
∑

jk

sjkyjk (11.2)

s.t. yjk + ykl ≤ ylj + 1, ∀j, k, l; yjj = 1, ∀j; yjk ∈ {0, 1}, ∀j, k.

Note that the constraints imply thatyab = yba for any two nodesa and b. To see this,

consider the inequalities involving nodea andb with j = a, k = b, l = b andj = b, k =

11.1. CLUSTERING FORMULATION 163

a, l = a:

yab + ybb ≤ yba + 1; yba + yaa ≤ yab + 1;

Sinceyaa = ybb = 1, we haveyab = yba.

The LP relaxation is obtained by replacing the binary variablesyjk ∈ {0, 1} in Eq. (11.2)

with continuous variables0 ≤ µjk ≤ 1.

µjk + µkl ≤ µlj + 1, ∀j, k, l; µjj = 1, ∀j; µjk ≥ 0, ∀j, k. (11.3)

Note thatµjk ≤ 1 is implied since the triangle inequality withj = l givesµjk + µkj ≤
µjj + 1, and sinceµjj = 1 andµjk = µkj, we haveµjk ≤ 1.

We are not guaranteed that this relaxation will produce integral solutions. The LP

solution,sLP , is an upper bound on thes∗. Charikaret al. [2003] show that the integrality

gap of this upper bound is at least2/3:

s∗ − s−

sLP − s−
<

2

3
.

11.1.2 Semidefinite programming relaxation

An alternative formulation [Charikaret al., 2003] is the SDP relaxation. Letmat(µ) denote

the variablesµjk arranged into a matrix.

max
∑

jk

sjkµjk (11.4)

s.t. mat(µ) º 0; µjj = 1, ∀j; µjk ≥ 0, ∀j, k.

In effect, we substituted the triangle inequalities by the semidefinite constraint. To motivate

this relaxation, consider any clustering solution. Choose a collection of orthogonal unit

vectors{v1, . . . ,vK}, one for each cluster in the solution. Every vertexj in the cluster

is assigned the unit vectorvj corresponding to the cluster it is in. If verticesj and k

are in the same cluster, thenv>j vk = 1, if not, v>j vk = 0. The score of the clustering

164 CHAPTER 11. CORRELATION CLUSTERING

solution can now be expressed in terms of the dot productsv>j vk. In the SDP relaxation

in Eq. (11.4), we havemat(µ) º 0, which can be decomposed into a sum of outer products

mat(µ) =
∑

j vjv
>
j .

The entriesµjk correspond to inner productsv>j vk. The vectors generating the inner

products are unit vectors by the requirementµjj = 1. However, they do not necessarily

form a set of orthogonal vectors.

The SDP solution,sSDP , is also an upper bound on thes∗ and Charikaret al. [2003]

show that the integrality gap of this upper bound is at least0.82843:

s∗ − s−

sSDP − s−
≤ 0.82843.

11.2 Learning formulation

The score for an edge is commonly derived from the characteristics of the pair of nodes.

Specifically, we parameterize the score as a weighted combination of basis functions

sjk = w>f(xjk),

w, f(xjk) ∈ IRn, wherexjk is a set of features associated with nodesj andk. In document

clustering, the entries offxjk
might be the words shared by the documentsj andk, while if

one is clustering points in IRn, features might be distances along different dimensions. We

assumef(xjj) = 0 so thatsjj = 0. Hence we write

w>f(x,y) =
∑

jk

yjkw
>f(xjk).

Furthermore, we assume that the loss function decomposes over the edges, into a sum

of edge losses̀i,jk(yjk):

`i(y) =
∑

jk

`i,jk(yjk) =
∑

jk

yjk`i,jk(1) + (1− yjk)`i,jk(0) = `i(0) +
∑

jk

yjk`i,jk,

where`i,jk = `i,jk(1) − `i,jk(0). For example, the Hamming loss counts the number of

11.2. LEARNING FORMULATION 165

edges incorrectly cut or uncut by a partition.

`H
i (y) =

∑

jk

1I(yjk 6= y
(i)
jk) =

∑

jk

y
(i)
jk +

∑

jk

yjk(1− 2y
(i)
jk) = `H

i (0) +
∑

jk

yjk`i,jk,

where`i,jk = 1− 2y
(i)
jk .

With this assumption, the loss augmented maximization is

`i(0) + max
y∈Y

∑

jk

yjk[w
>f(x(i)

jk) + `i,jk]. (11.5)

We can now use the LP relaxation in Eq. (11.3) and the SDP relaxation in Eq. (11.4) as

upper bounds on Eq. (11.5). We use these upper-bounds in the min-max formulation to

achieve approximate max-margin estimation.

The dual of the LP based upper bound for examplei is `i(0)+

min
∑

jkl

λi,jkl +
∑

j

zi,j (11.6)

s.t.
∑

l

[λi,jkl + λi,ljk − λi,klj] ≥ w>f(x(i)
jk) + `i,jk, ∀j 6= k;

zi,j +
∑

l

[λi,jjl + λi,ljj − λi,jlj] ≥ `i,jj, ∀j;

λi,jkl ≥ 0, ∀j, k, l.

Above, we introduced a dual variableλi,jkl for each triangle inequality andzi,j for the

identity on the diagonal. Note the righthand-side of the second set of inequalities follows

from the assumptionf(xjj) = 0.

166 CHAPTER 11. CORRELATION CLUSTERING

Plugging this dual into the min-max formulation, we have:

min
1

2
||w||2 + C

∑
ξi (11.7)

s.t. w>f(x(i),y(i)) + ξi ≥ `i(0) +
∑

jkl

λi,jkl +
∑

j

zi,j, ∀i;
∑

l

[λi,jkl + λi,ljk − λi,klj] ≥ w>f(x(i)
jk) + `i,jk, ∀i,∀j 6= k;

zi,j +
∑

l

[λi,jjl + λi,ljj − λi,jlj] ≥ `i,jj, ∀i, ∀j;

λi,jkl ≥ 0, ∀i,∀j, k, l.

Similarly, the dual of the SDP based upper bound is`i(0)+

min
∑

j

zi,j (11.8)

s.t. −λi,jk ≥ w>f(x
(i)
jk) + `i,jk, ∀j 6= k;

zi,j − λi,jj ≥ `i,jj ∀j;
mat(λi) º 0.

Plugging the SDP dual into the min-max formulation, we have:

min
1

2
||w||2 + C

∑
ξi (11.9)

s.t. w>f(x(i),y(i)) + ξi ≥ `i(0) +
∑

j

zi,j, ∀i;

−λi,jk ≥ w>f(x(i)
jk) + `i,jk, ∀i,∀j 6= k;

zi,j − λi,jj ≥ `i,jj, ∀i,∀j;
mat(λi) º 0, ∀i,∀j, k, l.

11.3. DUAL FORMULATION AND KERNELS 167

11.3 Dual formulation and kernels

The dual of Eq. (11.7) and Eq. (11.9) provide some insight into the structure of the problem

and enable efficient use of kernels. Here we give the dual of Eq. (11.7):

max
∑

i,jk

µi,jk`i,jk − 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

i,jk

(y
(i)
jk − µi,jk)f(x

(i)
jk)

∣∣∣∣∣

∣∣∣∣∣

2

s.t. µjk + µkl ≤ µlj + 1, ∀i,∀j, k, l; µi,jj = 1, ∀i,∀j; µi,jk ≥ 0, ∀i, ∀j, k.

The dual of Eq. (11.9) is very similar, except that the linear transitivity constraints

µjk + µkl ≤ µlj + 1, ∀i,∀j, k, l are replaced by the correspondingmat(µi) º 0:

max
∑

i,jk

µi,jk`i,jk − 1

2
C

∣∣∣∣∣

∣∣∣∣∣
∑

i,jk

(y
(i)
jk − µi,jk)f(x

(i)
jk)

∣∣∣∣∣

∣∣∣∣∣

2

s.t. mat(µi) º 0, ∀i; µi,jj = 1, ∀i,∀j; µi,jk ≥ 0, ∀i, ∀j, k.

The relation between the primal and dual solution is

w = C
∑

i,jk

(y
(i)
jk − µjk)f(x

(i)
jk). (11.10)

One important consequence of this relationship is that the edge parameters are all sup-

port vector expansions. The dual objective can be expressed in terms of dot-products

f(xjk)
>f(xlm). Therefore, we can use kernelsK(xjk,xlm) to define the space of basis

functions. This kernel looks at two pairs of nodes,(j, k) and (l,m), and measures the

similarity between the relation between the nodes of each pair. If we are clustering points

in Euclidian space, the kernel could be a function of the two segments corresponding to

the pairs of points, for example, a polynomial kernel over their lengths and angle between

them.

168 CHAPTER 11. CORRELATION CLUSTERING

11.4 Experiments

We present experiments on a synthetic problem exploring the effect of irrelevant basis

functions (features), and two real data sets, email clustering and image segmentation.

11.4.1 Irrelevant features

In this section, we explore on a synthetic example how our algorithm deals with irrele-

vant features. In particular, we generate data (100 points) from a mixture of two one-

dimensional Gaussians, where each mixture component corresponds to a cluster. This first

dimension is thus the relevant feature. Then we add noise components inD additional

(irrelevant) dimensions. The noise is independently generated for each dimension, from a

mixture of Gaussians with same difference in means and variance as for the relevant dimen-

sion. Figure 11.1(a) shows the projection of a data sample onto the first two dimensions

and on two irrelevant dimensions.

Let xj denote each point andxj[d] denote thed-th dimension of the point. We used

a basis function for each dimensionfd(xjk) = e−(xj [d]−xk[d])2, plus an additional constant

basis function. The training and test data consists of a 100 samples from the model. The

results in Fig. 11.1(b) illustrate the capability of our algorithm to learn to ignore irrelevant

dimensions. The accuracy is the fraction of edges correctly predicted to be between/within

cluster. Random clustering will give an accuracy of 50%. The comparison with k-means is

simply a baseline to illustrate the effect of the noise on the data.

11.4.2 Email clustering

We also test our approach on the task of clustering email into folders. We gathered the

data from the SRI CALO project.1 Our dataset consisted of email from seven users (ap-

proximately 100 consecutive messages per user), which the users had manually filed into

different folders. The number of folders for each users varied from two to six, with an

average of 3-4 folders. We are interested in the problem of learning to cluster emails.

1http://www.ai.sri.com/project/CALO

11.4. EXPERIMENTS 169

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

0.45

0.55

0.65

0.75

0.85

0.95

1 2 4 8 16 32 64 128

noise dimensions

te
st

 a
cc

ur
ac

y

lcc

k-means

(a) (b)

Figure 11.1: (a) Projection onto first two dimensions (top) and two noise dimensions (bot-
tom); (c) Performance on 2 cluster problem as function of the number of irrelevant noise
dimensions. Learning to cluster is the solid line, k-means the dashed line. Error-bars de-
note one standard deviation, averages are over 20 runs. Accuracy is the fraction of edges
correctly predicted to be between/within cluster.

Specifically, what score functionsjk causes correlation clustering to give clusters similar

to those that human users had chosen?

To test our learning algorithm, we use each user as a training set in turn, learning the

parameters from the partition of a single user’s mailbox into folders. We then use the

learned parameters to cluster the other users’ mail. The basis functionsf(xjk) measured the

similarity between the text of the messages, the similarity between the “From:” field, “To:”

field, and “Cc:” field. One feature was used for each common word in the pair of emails

(except words that appeared in more than half the messages, which were deemed “stop

words” and omitted). Also, additional features captured the proportion of shared tokens

for each email field, including the from, to, Cc, subject and body fields. The algorithm

is therefore able to automatically learn the relative importance of certain email fields to

filing two messages together, as well as importance of meaningful words versus common,

irrelevant ones.

We compare our method to thek-means clustering algorithm using with the same word

170 CHAPTER 11. CORRELATION CLUSTERING

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7

User

P
ai

r
F

1

lcc

k-means

Figure 11.2: Average Pair F1 measure for clustering user mailboxes.

features, and took the best clustering out of five tries. We made this comparison somewhat

easy fork-means by giving it the correct number of clustersk. We also informed our algo-

rithm of the number of clusters by uniformly adding a positive weight to the edge weights

to cause it to give the correct number of clusters. We performed a simple binary search on

this additional bias weight parameter to find the number of clusters comparable tok. The

results in Fig. 11.2 show the averageF1 measure (harmonic mean of precision and recall;

a standard metric in information retrieval [Baeza-Yates & Ribeiro-Neto, 1999]) computed

on the pairs of messages that belonged to the same cluster. Our algorithm significantly

outperformsk-means on several users and does worse only for one of the users.

11.4.3 Image segmentation

We also test our approach on the task of image segmentation. We selected images from

the Berkeley Image Segmentation Dataset [Martinet al., 2001] for which two users had

significantly different segmentations. For example, Fig. 11.3(a) and (b) show two distinct

segmentations: one very coarse, mostly based of overall hue, and one much finer, based

on the hue and intensity. Depending on the task at hand, we may prefer the first over the

second or vice-versa. It is precisely this kind of variability in the similarity judgements that

11.4. EXPERIMENTS 171

(a) (b)

Figure 11.3: Two segmentations by different users: training image with (a) coarse segmen-
tation and (b) fine segmentation.

we want our algorithm to capture.

In order to segment the image, we first divided it contiguous regions of approximately

the same color by running connected components on the pixels. We connected two adjacent

pixels by an edge if their RGB value was the same at a coarse resolution (4 bits per each

of the R,G,B channel). We then selected about a hundred largest regions, which covered

80-90% of the pixels. These regions are the objects that our algorithm learns to cluster.

(We then use the learned metric to greedily assign the remaining small regions to the large

adjoining regions.)

There is a rich space of possible features we can use in our models: for each pair

of regions, we can consider their shape, color distribution, distance, presence of edges

between them, etc. In our experiments, we used a fairly simple set of features that are very

easy to compute. For each region, we calculated the bounding box, area and average color

(averaging the pixels in the RGB space). We then computed three distances (one for each

HSV channel), as well as the distance in pixels between the bounding boxes and the area

of the smaller of the two regions. All features were normalized to have zero mean and

variance 1.

We trained two models, one using Fig. 11.3(a) and the other using Fig. 11.3(b) and

172 CHAPTER 11. CORRELATION CLUSTERING

(a) (b) (c)

Figure 11.4: Test image: (a) input; (b) segmentation based on coarse training data (c)
segmentation based on fine training data.

tested on the image in Fig. 11.4(a). The results are shown in Fig. 11.4(b) and (c), respec-

tively. Note that mountains, rocks and grass are segmented very coarsely based on hue in

(b) while the segmentation in (c) is more detailed and sensitive to saturation and value of

the colors.

11.5 Related work

The performance of most clustering algorithms depends critically on the distance metric

that they are given for measuring the similarity or dissimilarity between different data-

points. Recently, a number of algorithms have been proposed for automatically learning

distance metrics as a preprocessing step for clustering [Xinget al., 2002; Bar-Hillelet al.,

2003]. In contrast to algorithms that learn a metric independently of the algorithm that will

be used to cluster the data, we describe a formulation that tightly integrates metric learning

with the clustering algorithm, tuning one to the other in a joint optimization. Thus, instead

of using an externally-defined criterion for choosing the metric, we will instead seek to

learn a good metricfor the clustering algorithm. An example of work in a similar vein is

the algorithm for learning a distance metric for spectral clustering [Bach & Jordan, 2003].

The clustering algorithm essentially uses an eigenvector decomposition of an appropriate

matrix derived from the pairwise affinity matrix, which is more efficient than correlation

clustering, for which we use LP or SDP formulations. However the objective in the learning

11.6. CONCLUSION 173

formulation proposed in Bach and Jordan [2003] is not convex and difficult to optimize.

11.6 Conclusion

We looked at correlation clustering, and how to learn the edge weights from example clus-

terings. Our approach ties together the inference and learning algorithm, and attempts

to learn a good metric specifically for the clustering algorithm.. We showed results on a

synthetic dataset, showcasing robustness to noise dimensions. Experiments on the CALO

e-mail and image segmentation experiments show the potential of the algorithm on real-

world data. The main limitation of the correlation clustering is scalability: the number of

constraints (|V|3) in the LP relaxation and the size of the positive-semidefinite constraint

in the SDP relaxation. It would be very interesting to explore constraint generation or sim-

ilar approaches to speed up learning and inference. On the theoretical side, it would be

interesting to work out a PAC-like bound for generalization of the learned score metric.

174 CHAPTER 11. CORRELATION CLUSTERING

Part IV

Conclusions and future directions

175

Chapter 12

Conclusions and future directions

This thesis presents a novel statistical estimation framework for structured models based

on the large margin principle underlying support vector machines. The framework results

in several efficient learning formulations for complex prediction tasks. Fundamentally,

we rely on the expressive power of convex optimization problems to compactly capture

inference or solution optimality in structured models. Directly embedding this structure

within the learning formulation produces compact convex problems for efficient estimation

of very complex models. For some of these models, alternative estimation methods are

intractable. We develop theoretical foundations for our approach and show a wide range

of experimental applications, including handwriting recognition, 3D terrain classification,

disulfide connectivity in protein structure prediction, hypertext categorization, natural lan-

guage parsing, email organization and image segmentation.

12.1 Summary of contributions

We view a structured prediction model as a mapping from the space of inputsx ∈ X to

a discrete vector outputy ∈ Y. Essentially, a model defines a compact, parameterized

scoring functionw>f(x,y) and prediction using the model reduces to finding the highest

scoring outputy given the inputx. Our class of models has the following linear form:

hw(x) = arg max
y :g(x,y)≤0

w>f(x,y),

176

12.1. SUMMARY OF CONTRIBUTIONS 177

wherew ∈ IRn is the vector of parameters of the model, constraintsg(x,y) ∈ IRk define

the space of feasible outputsy given the inputx and basis functionsf(x,y) ∈ IRn represent

salient features of the input/output pair. Although the space of outputs{y : g(x,y) ≤ 0} is

usually immense, we assume that the inference problemarg maxy :g(x,y)≤0 w>f(x,y) can

be solved (or closely approximated) by an efficient algorithm that exploits the structure of

the constraintsg and basis functionsf . This definition covers a broad range of models,

from probabilistic models such as Markov networks and context free grammars to more

unconventional models like weighted graph-cuts and matchings.

12.1.1 Structured maximum margin estimation

Given a sampleS = {(x(i),y(i))}m
i=1, we develop methods for finding parametersw such

that:

arg max
y∈Y(i)

w>f(x(i),y) ≈ y(i), ∀i,

whereY(i) = {y : g(x(i),y) ≤ 0}.
The naive formulation1 uses

∑
i |Y(i)| linear constraints, which is generally exponential

in the number of variables in eachy(i).

min
1

2
||w||2

s.t. w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i).

We propose two general approaches that transform the above exponential size QP to an

exactly equivalent polynomial size QP in many important classes of models. These formu-

lations allow us to find globally optimal parameters (with fixed precision) in polynomial

time using standard optimization software. In many models where maximum likelihood

estimation is intractable, we provide exact maximum margin solutions (Ch. 7 and Ch. 10).

1For simplicity, we omit the slack variables in this summary.

178 CHAPTER 12. CONCLUSIONS AND FUTURE DIRECTIONS

Min-max formulation

We can turn the above problem into an equivalent min-max formulation withi non-linear

max-constraints:

min
1

2
||w||2

s.t. w>fi(y(i)) ≥ max
y∈Y(i)

[w>fi(y) + `i(y)], ∀i.

The key to solving the estimation problem above efficiently is the loss-augmented infer-

ence problemmaxy∈Y(i) [w>fi(y) + `i(y)]. Even if maxy∈Y(i) w>fi(y) can be solved in

polynomial time using convex optimization, the form of the loss term`i(y) is crucial for

the loss-augmented inference to remain tractable. We typically use a natural loss func-

tion which is essentially the Hamming distance betweeny(i) andh(x(i)): the number of

variables predicted incorrectly.

We show that if we can express the (loss-augmented) inference as a compact convex

optimization problem (e.g., LP, QP, SDP, etc.), we can embed the maximization inside the

min-max formulation to get a compact convex program equivalent to the naive exponential

formulation. We show that this approach leads to exact polynomial-size formulations for

estimation of low-treewidth Markov networks, associative Markov networks over binary

variables, context-free grammars, bipartite matchings, and many other models.

Certificate formulation

There are several important combinatorial problems which allow polynomial time solu-

tion yet do not have a compact convex optimization formulation. For example, maximum

weight perfect (non-bipartite) matching and spanning tree problems can be expressed as

linear programs withexponentiallymany constraints, but no polynomial formulation is

known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these problems, however,

can be solved in polynomial time using combinatorial algorithms. In some cases, though,

we can find a compactcertificate of optimalitythat guarantees that

y(i) = arg max
y

[w>fi(y) + `i(y)].

12.1. SUMMARY OF CONTRIBUTIONS 179

For perfect (non-bipartite) matchings, this certificate is a condition that ensures there are

no augmenting alternating cycles (see Ch. 10). We can express this condition by defining

an auxiliary distance function on the nodes an a set of linear constraints that are satisfied if

and only if there are no negative cycles. This simple set of linear constraints scales linearly

with the number of edges in the graph. Similarly, we can derive a compact certificate for

the spanning tree problem.

The certificate formulation relies on the fact that verifying optimality of a solution is

often easier than actually finding one. This observation allows us to apply our framework

to an even broader range of models with combinatorial structure than the min-max formu-

lation.

Maximum margin vs. maximum likelihood

There are several theoretical advantages to our approach in addition to the empirical accu-

racy improvements we have shown experimentally. Because our approach only relies on

using the maximum in the model for prediction, and does not require a normalized dis-

tribution P (y | x) over all outputs, maximum margin estimation can be tractable when

maximum likelihood is not. For example, to learn a probabilistic modelP (y | x) over

bipartite matchings using maximum likelihood requires computing the normalizing parti-

tion function, which is#P-complete [Valiant, 1979; Garey & Johnson, 1979]. By contrast,

maximum margin estimation can be formulated as a compact QP with linear constraints.

Similar results hold for an important subclass of Markov networks and non-bipartite match-

ings.

In models that are tractable for both maximum likelihood and maximum margin (such

as low-treewidth Markov networks, context free grammars, many other problems in which

inference is solvable by dynamic programming), our approach has an additional advantage.

Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual

space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-

lihood models with kernels are generally non-sparse and require pruning or greedy support

vector selection methods [Wahbaet al., 1993; Zhu & Hastie, 2001; Laffertyet al., 2004;

Altun et al., 2004].

180 CHAPTER 12. CONCLUSIONS AND FUTURE DIRECTIONS

There are, of course, several advantages to maximum likelihood estimation. In appli-

cations where probabilistic confidence information is a must, maximum likelihood is much

more appropriate. Also, in training settings with missing data and hidden variables, proba-

bilistic interpretation permits the use of well-understood algorithms such as EM [Dempster

et al., 1977].

Approximations

In many problems, the maximization problem we are interested in may be NP-hard, for

example, we consider MAP inference in large treewidth Markov networks in Ch. 8, multi-

way cuts in Ch. 7, graph-partitioning in Ch. 11. Many such problems can be written as

integerprograms. Relaxations of such integer programs into LPs, QPs or SDPs often pro-

vide excellent approximation algorithms and fit well within our framework, particularly the

min-max formulation. We show empirically that these approximations are very effective in

many applications.

12.1.2 Markov networks: max-margin, associative, relational

The largest portion of the thesis is devoted to novel estimation algorithms, representational

extensions, generalization analysis and experimental validation for Markov networks.

◦ Low-treewidth Markov networks

We use a compact LP for MAP inference in Markov networks with sequence and

other low-treewidth structure to derive an exact, compact, convex learning formu-

lation. The dual formulation allows efficient integration of kernels with graphical

models that leverages rich high-dimensional representations for accurate prediction

in real-world tasks.

◦ Scalable online algorithm

Although our convex formulation is a QP with linear number of variables and con-

straints in the size of the data, for large datasets (millions of examples), it is very

difficult to solve using standard software. We present an efficient algorithm for solv-

ing the estimation problem called Structured SMO. Our online-style algorithm uses

12.1. SUMMARY OF CONTRIBUTIONS 181

inference in the model and analytic updates to solve extremely large estimation prob-

lems.

◦ Generalization analysis

We analyze the theoretical generalization properties of max-margin estimation in

Markov networks and derive a novel margin-based bound for structured prediction.

This is the first bound to address structured error (e.g., proportion of mislabeled

pixels in an image).

◦ Learning associative Markov networks (AMNs)

We define an important subclass of Markov networks that captures positive correla-

tions present in many domains. This class of networks extends the Potts model [Potts,

1952] often used in computer vision and allows exact MAP inference in the case of

binary variables. We show how to express the inference problem using an LP which

is exact for binary networks. As a result, for associative Markov networks over bi-

nary variables, our framework allows exact estimation of networks of arbitrary con-

nectivity and topology, for which likelihood methods are believed to be intractable.

For the non-binary case, we provide an approximation that works well in practice.

We present an AMN-based method for object segmentation from 3D range data. By

constraining the class of Markov networks to AMNs, our models are learned effi-

ciently and, at run-time, can scale up to tens of millions of nodes and edges by using

graph-cut based inference [Kolmogorov & Zabih, 2002].

◦ Representation and learning of relational Markov networks

We introduce relational Markov networks (RMNs), which compactly define tem-

plates for Markov networks for domains with relational structure: objects, attributes,

relations. The graphical structure of an RMN is based on the relational structure of

the domain, and can easily model complex interaction patterns over related entities.

We apply this class of models to classification of hypertext using hyperlink structure

to define relations between webpages. We use a compact approximate MAP LP in

these complex Markov networks, in which exact inference is intractable, to derive an

approximate max-margin formulation.

182 CHAPTER 12. CONCLUSIONS AND FUTURE DIRECTIONS

12.1.3 Broader applications: parsing, matching, clustering

The other large portion of the thesis addresses a range of prediction tasks with very diverse

models: context free grammars for natural language parsing, perfect matchings for disulfide

connectivity in protein structure prediction, graph partitions for clustering documents and

segmenting images.

◦ Learning to parse

We exploit dynamic programming decomposition of context free grammars to derive

a compact max-margin formulation. We build on a recently proposed “unlexicalized”

grammar that allows cubic time parsing and we show how to achieve high-accuracy

parsing (still in cubic time) by exploiting novel kinds of lexical information. We show

experimental evidence of the model’s improved performance over several baseline

models.

◦ Learning to match

We use a combinatorial optimality condition, namely the absence of augmenting al-

ternating cycles, to derive an exact, efficient certificate formulation for learning to

match. We apply our framework to prediction of disulfide connectivity in proteins

using perfect matchings. The algorithm we propose uses kernels, which makes it pos-

sible to efficiently embed input features in very high-dimensional spaces and achieve

state-of-the-art accuracy.

◦ Learning to cluster

By expressing the correlation clustering problem as a compact LP and SDP, we use

the min-max formulation to learn a parameterized scoring function for clustering. In

contrast to algorithms that learn a metric independently of the algorithm that will

be used to cluster the data, we describe a formulation that tightly integrates metric

learning with the clustering algorithm, tuning one to the other in a joint optimization.

We formulate the approximate learning problem as a compact convex program. Ex-

periments on synthetic and real-world data show the ability of the algorithm to learn

an appropriate clustering metric for a variety of desired clusterings, including email

folder organization and image segmentation.

12.2. EXTENSIONS AND OPEN PROBLEMS 183

12.2 Extensions and open problems

There are several immediate applications, less immediate extensions and open problems for

our estimation framework. We organize these ideas into several sections below, including

further theoretical analysis and new optimization algorithms, novel prediction tasks, and

more general learning settings.

12.2.1 Theoretical analysis and optimization algorithms

◦ Approximation bounds

In several of the intractable models, like multi-class AMNs in Ch. 7 and correlation

clustering in Ch. 11, we used approximate convex programs within the min-max for-

mulation. These approximate inference programs have strong relative error bounds.

An open question is to translate these error bounds on inference into error bounds on

the resulting max-margin formulations.

◦ Generalization bounds with distributional assumptions

In Ch. 5, we presented a bound on the structured error in Markov networks, with-

out any assumption about the distribution ofP (y | x), relying only on the samples

(x(i),y(i)) being i.i.d. This distribution-free assumption leads to a worst case analy-

sis, while some assumptions about the approximate decompositionP (y | x) may be

warranted. For example, for sequential prediction problems, the Markov assumption

of some finite order is reasonable (i.e., given the input and previousk labels, the next

label is independent of the labels more thank in the past). In spatial prediction tasks,

a label variable is independent of the rest given a large enough ball of labels around

it. Similar assumptions may be made for some “degree of separation” in relational

domains. More generally, it would be interesting to exploit such conditional indepen-

dence assumptions or asymptotic bounds on entropy ofP (y | x) to get generalization

guarantees even from a single structured example(x,y).

◦ Problem-specific optimization methods

Although our convex formulations are polynomial in the size of the data, scaling

184 CHAPTER 12. CONCLUSIONS AND FUTURE DIRECTIONS

up to larger datasets will require problem-specific optimization methods. For low-

treewidth Markov networks and context free grammars, we have presented the Struc-

tured SMO algorithm. Another algorithm useful for such models is Exponentiated

Gradient [Bartlettet al., 2004]. Both algorithms rely on dynamic programming de-

compositions. However, models which do not permit such decompositions, such as

graph-cuts, matchings, and many others, create a need for new algorithms that can ef-

fectively use combinatorial optimization as a subroutine to eliminate the dependence

on general-purpose convex solvers.

12.2.2 Novel prediction tasks

◦ Bipartite matchings

Maximum weight bipartite matchings are used in a variety of problems to predict

mappings between sets of items. In machine translation, matchings are used to

map words of the two languages in aligned sentences [Matusovet al., 2004]. In 2D

shape matching, points on two shapes are matched based on their local contour fea-

tures [Belongieet al., 2002]. Our framework provides an exact, efficient alternative

to the maximum likelihood estimation for learning the matching scoring function.

◦ Sequence alignment

In standard pairwise alignment of biological sequences, a string edit distance is used

to determine which portions of the sequences align to each other [Needleman &

Wunsch, 1970; Durbinet al., 1998]. Finding the best alignment involves a dynamic

program that generalizes the longest common subsequence algorithm. Our frame-

work can be applied (just as in context free grammar estimation) to efficiently learn

a more complex edit function that depends on the contextual string features, perhaps

using novel string kernels [Haussler, 1999; Leslieet al., 2002; Lodhiet al., 2000].

◦ Continuous prediction problems

We have addressed estimation of models with discrete output spaces, generalizing

classification models to multivariate, structured classification. Similarly, we can

consider a whole range of problems where the prediction variables are continuous.

12.2. EXTENSIONS AND OPEN PROBLEMS 185

Such problems are a natural generalizations of regression, involving correlated, inter-

constrained real-valued outputs. For example, several recent models of metabolic

flux in yeast use linear programming formulations involving quantities of various

enzymes, with stoichiometric constraints [Varma & Palsson, 1994]. It would be

interesting to use observed equilibria data under different conditions to learn what

“objective” the cell is maximizing. In financial modeling, convex programs are often

used to model portfolio management; for example, Markowitz portfolio optimization

is formulated as a quadratic program which minimizes risk and maximizes expected

return under budget constraints [Markowitz, 1991; Luenberger, 1997]. In this setting,

one could learn a user’s return projection and risk assessment function from observed

portfolio allocations by the user.

These problems are similar to the discrete structured prediction models we have con-

sidered: inference in the model can formulated as a convex optimization problem.

However, there are obstacles to directly applying the min-max or certificate formu-

lations. Details of this are beyond the scope of this thesis, but it suffices to say that

loss-augmented inference using, Hamming distance equivalent,L1 loss (orL2 loss),

no longer produces a maximization of a concave objective with convex constraints

sinceL1, L2 are convex, not concave (it turns out that it is actually possible to use

L∞ loss). Developing effective loss functions and max-margin formulations for the

continuous setting could provide a novel set of effective models for structured multi-

variate real-valued prediction problems.

12.2.3 More general learning settings

◦ Structure learning

We have focused on the problem of learning parameters of the model (even though

our kernelized models can be considered non-parametric). In the case of Markov

networks, especially in spatial and relational domains, there is a wealth of possible

structures (cliques in the network) one can use to model a problem. It is particularly

interesting to explore the problem of inducing these cliques automatically from data.

The standard method of greedy stepwise selection followed by re-estimation is very

186 CHAPTER 12. CONCLUSIONS AND FUTURE DIRECTIONS

expensive in general networks [Della Pietraet al., 1997; Bach & Jordan, 2001].

Recent work on selecting input features in Markov networks (or CRFs) uses several

approximations to learn efficiently with millions of candidate features [McCallum,

2003]. However, clique selection is still relatively unexplored. It is possible that

AMNs, by restricting the network to be tractable under any structure, may permit

more efficient clique selection methods.

◦ Semi-supervised learning

Throughout the thesis we have assumed completely labeled data. This assumption

often limits us to relatively small training sets where data has been carefully anno-

tated, while much of the easily accessible data is not at all or suitably labeled. There

are several more general settings we would like to extend our framework.

The simplest setting is a mix of labeled and unlabeled examples, where a small su-

pervised dataset is augmented by a large unsupervised one. There has been much

research in this setting for classification [Blum & Mitchell, 1998; Nigamet al., 2000;

Chapelleet al., 2002; Szummer & Jaakkola, 2001; Zhuet al., 2003; Corduneanu &

Jaakkola, 2003]. Although most of this work has been done in a probabilistic set-

ting, the principle of regularizing (discouraging) decision boundaries near densely

clustered inputs could be applicable to our structured setting.

A more complex and rich setting involves presence of hidden variables in each ex-

ample. For example, in machine translation, word correspondences between pairs of

sentences are usually not manually annotated (at least not on a large scale). These

correspondence variables can be treated as hidden variables. Similarly, in handwrit-

ing recognition, we may not have each letter segmented out but instead just get a

word or sentence as a label for the entire image. This setting has been studied mainly

in the probabilistic, generative models often using the EM algorithm [Dempsteret al.,

1977; Cowellet al., 1999]. Discriminative methods have been explored far less. Es-

pecially in the case of combinatorial structures, extensions of our framework allow

opportunities for problem-specific convex approximations to be exploited.

12.3. FUTURE 187

12.3 Future

We have presented a supervised learning framework for a large class of prediction mod-

els with rich and interesting structure. Our approach has several theoretical and practical

advantages over standard probabilistic models and estimation methods for structured pre-

diction. We hope that continued research in this framework will help tackle evermore

sophisticated prediction problems in the future.

Appendix A

Proofs and derivations

A.1 Proof of Theorem 5.5.1

The proof of Theorem 5.5.1 uses the covering number bounds of Zhang [2002] (in the

Data-Dependent Structural Risk Minimization framework [Shawe-Tayloret al., 1998].)

Zhang provides generalization guarantees for linear binary classifiers of the formhw(x) =

sgn(w>x). His analysis is based on the upper bounds on the covering number for the class

of linear functionsFL(w, z) = w>z where the norms of the vectorsw andz are bounded.

We reproduce the relevant definitions and theorems from Zhang [2002] here to highlight

the necessary extensions for structured classification.

The covering number is a key quantity in measuring function complexity. Intuitively,

the covering number of an infinite class of functions (e.g. parameterized by a set of weights

w) is the number of vectors necessary to approximate the values of any function in the class

on a sample. Margin-based analysis of generalization error uses the margin achieved by a

classifier on the training set to approximate the original function class of the classifier by

a finite covering with precision that depends on the margin. Here, we will only define the

∞-norm covering number.

188

A.1. PROOF OF THEOREM 5.5.1 189

A.1.1 Binary classification

In binary classification, we are given a sampleS = {x(i), y(i)}m
i=1, from distributionD over

X × Y, whereX = IRn andY is mapped to±1, so we can foldx andy into z = yx.

Definition A.1.1 (Covering Number) Let V = {v(1), . . . ,v(r)}, wherev(j) ∈ IRm, be a

coveringof a function classF(w, S) with ε-precision under the metricρ, if for all w there

exists av(j) such that for each data samplez(i) ∈ S:

ρ(v
(j)
i ,F(w, z(i))) ≤ ε.

Thecovering number of a sampleS is the size of the smallest covering:N∞(F , ρ, ε, S) =

inf |V| s.t. V is a covering ofF(w, S). We also define thecovering number for any sample

of sizem: N∞(F , ρ, ε, m) = supS: |S|=mN∞(F , ρ, ε, S).

When the norms ofw andz are bounded, we have the following upper bound on the

covering number of linear functions under the linear metricρL(v, v′) = |v − v′|.

Theorem A.1.2 (Theorem 4 from Zhang [2002])If ‖w‖2 ≤ a and ‖z‖2 ≤ b, then∀
ε > 0,

log2N∞(FL, ρL, ε, m) ≤ 36
a2b2

ε2
log2 (2 d4ab/ε + 2em + 1) .

In order to use the classifier’s margin to bound its expected loss, the bounds below use

a stricter, margin-based loss on the training sample that measures the worst loss achieved

by the approximate covering based on this margin. Letf : IR 7→ [0, 1] be a loss function.

In binary classification, we letf(v) = 1I(v ≤ 0) be the step function, so that 0-1 loss of

sgn(w>x) is f(FL(w, z)). The next theorem bounds the expectedf loss in terms of the

γ-margin loss,fγ(v) = supρ(v,v′)<2γ f(v′), on the training sample. For 0-1 loss and linear

metricρL, the correspondingγ-margin loss isfγ(v) = 1I(v ≤ 2γ).

Theorem A.1.3 (Corollary 1 from Zhang [2002]) Let f : IR 7→ [0, 1] be a loss function

andfγ(v) = supρ(v,v′)<2γ f(v′) be theγ-margin loss for a metricρ. Letγ1 > γ2 > . . . be

190 APPENDIX A. PROOFS AND DERIVATIONS

a decreasing sequence of parameters, andpi be a sequence of positive numbers such that∑∞
i=1 pi = 1, then for allδ > 0, with probability of at least1− δ over data:

ED[f(F(w, z))] ≤ ES[fγ(F(w, z))] +

√
32

m

[
ln 4N∞(F , ρ, γi, S) + ln

1

piδ

]

for all w andγ, where for each fixedγ, we usei to denote the smallest index s.t.γi ≤ γ.

A.1.2 Structured classification

We will extend this framework to bound the average per-label loss`H(y)/L for structured

classification by defining an appropriate lossf and a function classF (as well as a metric

ρ) such thatf(F) computes average per-label loss andfγ(F) provides a suitableγ-margin

loss. We will bound the corresponding covering number by building on the bound in The-

orem A.1.2.

We can no longer simply foldx andy, sincey is a vector, so we letz = (x,y). In

order for our loss function to compute average per-label loss, it is convenient to make our

function classvector-valued(instead of scalar-valued as above). We define a new function

classFM(w, z), which is a vector of minimum values ofw>∆fi(y) for each error level

`H(y) from 1 to L as described below.

Definition A.1.4 (dth-error-level function) Thedth-error-level functionMd(w, z) for d ∈
{1, . . . , L} is given by:

Md(w, z) = min
y:`H(y)=d

w>∆fi(y).

Definition A.1.5 (Multi-error-level function class) Themulti-error-level function classFM(w, z)

is given by:

FM(w, z) = (M1(w, z), . . . ,Md(w, z), . . . , ML(w, z)) .

We can now compute the average per-label loss fromFM(w, z) by defining an appropriate

loss functionfM .

A.1. PROOF OF THEOREM 5.5.1 191

Definition A.1.6 (Average per-label loss)Theaverage per-label lossfM : IR L 7→ [0, 1] is

given by:

fM(v) =
1

L
arg min

d:vd≤0
vd,

where in case∀d, vd > 0, we definearg mind:vd≤0 vd ≡ 0.

With the above definitions, we have an upper bound on the average per-label loss

fM(FM(w, z)) =
1

L
arg min

d:Md(w,z)≤0
Md(w, z) ≥ 1

L
`H

(
arg max

y
w>fi(y)

)
.

Note that the case∀d, Md(w, z) > 0 corresponds to the classifier making no mistakes:

arg maxy w>fi(y) = y. This upper bound is tight ify = arg maxy′ w
>f(x,y′), Other-

wise, it is adversarial: it picks from ally′ which are better (w>f(y) ≤ w>f(y′)), one that

maximizes the Hamming distance fromy.

We now need to define an appropriate metricρ that in turn definesγ-margin loss for

structured classification. Since the margin of the hypothesis grows with the number of

mistakes, our metric can become “looser” with the number of mistakes, as there is more

room for error.

Definition A.1.7 (Multi-error-level metric) Let themulti-error-level metricρM : IRL ×
IRL 7→ IR for a vector in IRL be given by:

ρM(v,v′) = max
d

|vd − v′d|
d

.

We now define the correspondingγ-margin loss using the new metric:

Definition A.1.8 (γ-margin average per-label loss)Theγ-margin average per-label loss

fγ
M : IR L 7→ [0, 1] is given by:

fγ
M(v) = sup

ρM (v,v′)≤2γ

fM(v′).

Combining the two definitions, we get:

fγ
M(FM(w, z)) = sup

v:|vd−Md(w,z)|≤2dγ

1

L
arg min

d:vd≤0
vd.

192 APPENDIX A. PROOFS AND DERIVATIONS

We also define the corresponding covering number for our vector-valued function class:

Definition A.1.9 (Multi-error-level covering number) LetV = {V(1), . . . ,V(r)}, where

V(j) = (V
(j)
1 , . . . ,V

(j)
i , . . . ,V

(j)
m) and V

(j)
i ∈ IRL, be acoveringof FM(w, S), with ε-

precision under the metricρM , if for all w there exists aV(j) such that for each data

samplez(i) ∈ S:

ρM(V
(j)
i ,FM(w, z(i))) ≤ ε.

Thecovering number of a sampleS is the size of the smallest covering:N∞(FM , ρM , ε, S) =

inf |V| s.t.V is a covering ofFM(w, S). We also define

N∞(FM , ρM , ε, m) = sup
S: |S|=m

N∞(FM , ρM , ε, S).

We provide a bound on the covering number of our new function class in terms of a

covering number for the linear function class. Recall thatNc is the maximum number of

cliques inG(x), Vc is the maximum number of values in a clique|Yc|, q is the maximum

number of cliques that have a variable in common, andRc is an upper-bound on the 2-norm

of clique basis functions. Consider a first-order sequence model as an example, withL as

the maximum length, andV the number of values a variable takes. ThenNc = 2L−1 since

we haveL node cliques andL− 1 edge cliques;Vc = V 2 because of the edge cliques; and

q = 3 since nodes in the middle of the sequence participate in 3 cliques: previous-current

edge clique, node clique, and current-next edge clique.

Lemma A.1.10 (Bound on multi-error-level covering number)

N∞(FM , ρM , εq, m) ≤ N∞(FL, ρL, ε, mNc(Vc − 1)).

Proof: We will show thatN∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε, S ′) for any sampleS

of sizem, where we construct the sampleS ′ of sizemNc(Vc − 1) in order to cover the

clique potentials as described below. Note that this is sufficient sinceN∞(FL, ρL, ε, S ′) ≤
N∞(FL, ρL, ε, mNc(Vc − 1)), by definition, so

N∞(FM , ρM , εq,m) = sup
S:|S|=m

N∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε, mNc(Vc − 1)).

A.1. PROOF OF THEOREM 5.5.1 193

The construction ofS ′ below is inspired by the proof technique in Collins [2001],

but the key difference is that our construction is linear in the number of cliquesNc and

exponential in the number of label variables per clique, while his is exponential in the total

number of label variables per example. This reduction in size comes about because our

covering approximates the values of clique potentialsw>∆fi,c(yc) for each cliquec and

clique assignmentyc as opposed to the values of entire assignmentsw>∆fi(y).

For each samplez ∈ S, we createNc(Vc − 1) samples∆fi,c(yc), one for each clique

c and each assignmentyc 6= y
(i)
c . We construct a set of vectorsV = {v(1), . . . ,v(r)},

wherev(j) ∈ IRmNc(Vc−1). The component ofv(j) corresponding to the samplez(i) and the

assignmentyc to the labels of the cliquec will be denoted byv(j)
i,c (yc). For convenience,

we definev(j)
i,c (y

(i)
c) = 0 for correct label assignments, as∆fi,c(y

(i)
c) = 0. To makeV an

∞-norm covering ofFL(w, S ′) underρL, we require that for anyw there exists av(j) ∈ V

such that for each samplez(i):

|v(j)
i,c (yc)−w>∆fi,c(yc)| ≤ ε; ∀c ∈ C(i), ∀yc. (A.1)

By Definition A.1.1, the number of vectors inV is given byr = N∞(FL, ρL, ε, mNc(Vc−1)).

We can now useV to construct a coveringV = {V(1), . . . ,V(r)}, where

V(j) = (V
(j)
1 , . . . ,V

(j)
i , . . . ,V(j)

m)

andV
(j)
i ∈ IRL, for our multi-error-level functionFM . Let v(j)

i (y) =
∑

c v
(j)
i,c (yc), and

Md(v
(j)
i , z(i)) = miny:`H

i (y)=d v
(j)
i (y), then

V
(j)
i = (M1(v

(j), z(i)), . . . , Md(v
(j), z(i)), . . . , ML(v(j), z(i))) . (A.2)

Note thatv(j)
i,c (yc) is zero for all cliquesc for which the assignment is correct:yc = y

(i)
c .

Thus for an assignmenty with d mistakes, at mostdq v
(j)
i,c (yc) will be non-zero, as each

label can appear in at mostq cliques. By combining this fact with Eq. (A.1), we obtain:

∣∣∣v(j)
i (y)−w>∆fi(y)

∣∣∣ ≤ dqε, ∀i, ∀y : `H
i (y) = d. (A.3)

194 APPENDIX A. PROOFS AND DERIVATIONS

We conclude the proof by showing thatV is a covering ofFM underρM : For eachw,

pickV(j) ∈ V such that the correspondingv(j) ∈ V satisfies the condition in Eq. (A.1). We

must now bound:

ρM(V
(j)
i ,FM(w, z(i))) = max

d

|miny:`H
i (y)=d v

(j)
i (y)−miny:`H

i (y)=d w>∆fi(y)|
d

.

Fix any i. Letyv
d = arg miny:`H

i (y)=d v
(j)
i (y) andyw

d = arg miny:`H
i (y)=d w>∆fi(y). Con-

sider the case wherev(j)
i (yv

d) ≥ w>∆fi(y
w
d) (the reverse case is analogous), we must

prove that:

v
(j)
i (yv

d)−w>∆fi(y
w
d) ≤ v

(j)
i (yw

d)−w>∆fi(y
w
d) ≤ dqε ; (A.4)

where the first step follows from definition ofyv
d , sincev(j)

i (yv
d) ≤ v

(j)
i (yw

d). The last step

is a direct consequence of Eq. (A.3). HenceρM(V
(j)
i ,FM(w, z(i))) ≤ qε.

Lemma A.1.11 (Numeric bound on multi-error-level covering number)

log2N∞(FM , ρM , ε,m) ≤ 36
R2

c ‖w‖2
2 q2

ε2
log2

(
1 + 2

⌈
4
Rc ‖w‖2 q

ε
+ 2

⌉
mNc(Vc − 1)

)
.

Proof: Substitute Theorem A.1.2 into Lemma A.1.10.

Theorem A.1.12 (Multi-label analog of Theorem A.1.3)LetfM andfγ
M(v) be as defined

above. Letγ1 > γ2 > . . . be a decreasing sequence of parameters, andpi be a sequence

of positive numbers such that
∑∞

i=1 pi = 1, then for allδ > 0, with probability of at least

1− δ over data:

EzfM(FM(w, z)) ≤ ESfγ
M(FM(w, z)) +

√
32

m

[
ln 4N∞(FM , ρM , γi, S) + ln

1

piδ

]

for all w andγ, where for each fixedγ, we usei to denote the smallest index s.t.γi ≤ γ.

Proof: Similar to the proof of Zhang’s Theorem 2 and Corollary 1 [Zhang, 2002] where

in Step 3 (derandomization) we substitute the vector-valuedFM and the metricρM .

Theorem 5.5.1 follows from above theorem withγi = Rc ‖w‖2 /2i andpi = 1/2i using an

A.2. AMN PROOFS AND DERIVATIONS 195

argument identical to the proof of Theorem 6 in Zhang [2002].

A.2 AMN proofs and derivations

In this appendix, we present proofs of the LP inference properties and derivations of the

factored primal and dual max-margin formulation from Ch. 7. Recall that the LP relaxation

for finding the optimalmaxy g(y) is:

max
∑
v∈V

K∑

k=1

µv(k)gv(k) +
∑

c∈C\V

K∑

k=1

µc(k)gc(k) (A.5)

s.t. µc(k) ≥ 0, ∀c ∈ C, k;
K∑

k=1

µv(k) = 1, ∀v ∈ V ;

µc(k) ≤ µv(k), ∀c ∈ C \ V , v ∈ c, k.

A.2.1 Binary AMNs

Proof (For Theorem 7.2.1) Consider any fractional, feasibleµ. We show that we can con-

struct a new feasible assignmentµ′ which increases the objective (or leaves it unchanged)

and furthermore has fewer fractional entries.

Sincegc(k) ≥ 0, we can assume thatµc(k) = minv∈c µv(k); otherwise we could in-

crease the objective by increasingµc(k). We construct an assignmentµ′ from µ by leaving

integral values unchanged and uniformly shifting fractional values byλ:

µ′v(1) = µv(1)− λ1I(0 < µv(1) < 1), µ′v(2) = µv(2) + λ1I(0 < µv(2) < 1),

µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1), µ′c(2) = µc(2) + λ1I(0 < µc(2) < 1).

Now consider the smallest fractionalµv(k), λ(k) = minv : µv(k)>0 yv(k) for k = 1, 2.

Note that ifλ = λ(1) or λ = −λ(2), µ′ will have at least one more integralµ′v(k) thanµ.

Thus if we can show that the update results in a feasible and better scoring assignment, we

can apply it repeatedly to get an optimal integer solution. To show thatµ′ is feasible, we

needµ′v(1) + µ′v(2) = 1, µ′v(k) ≥ 0 andµ′c(k) = mini∈c µ′v(k).

196 APPENDIX A. PROOFS AND DERIVATIONS

First, we show thatµ′v(1) + µ′v(2) = 1.

µ′v(1) + µ′v(2) = µv(1)− λ1I(0 < µv(1) < 1) + µv(2) + λ1I(0 < µv(2) < 1)

= µv(1) + µv(2) = 1.

Above we used the fact that ifµv(1) is fractional, so isµv(2), sinceµv(1) + µv(2) = 1.

To show thatµ′v(k) ≥ 0, we proveminv µ′v(k) = 0.

min
v

µ′v(k) = min
v

[
µv(k)− (min

i:µv(k)>0
µv(k))1I(0 < µv(k) < 1)

]

= min

(
min

i
µv(k), min

i:µv(k)>0

[
µv(k)− min

i:µv(k)>0
µv(k)

])
= 0.

Lastly, we showµ′c(k) = mini∈c µ′v(k).

µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1)

= (min
i∈c

µv(1))− λ1I(0 < min
i∈c

µv(1) < 1) = min
i∈c

µ′v(1);

µ′c(2) = µc(2) + λ1I(0 < µc(1) < 1)

= (min
i∈c

µv(2)) + λ1I(0 < min
i∈c

µv(2) < 1) = min
i∈c

µ′v(2).

We have established that the newµ′ are feasible, and it remains to show that we can

improve the objective. We can show that the change in the objective is alwaysλD for some

constantD that depends only onµ andg. This implies that one of the two cases,λ = λ(1)

or λ = −λ(2), will necessarily increase the objective (or leave it unchanged). The change

in the objective is:

∑
v∈V

∑

k=1,2

[µ′v(k)− µv(k)]gv(k) +
∑

c∈C\V

∑

k=1,2

[µ′c(k)− µc(k)]gc(k)

= λ

∑

v∈V
[Dv(1)−Dv(2)] +

∑

c∈C\V
[Dc(1)−Dc(2)]

 = λD

Dv(k) = gv(k)1I(0 < µv(k) < 1), Dc(k) = gc(k)1I(0 < µc(k) < 1).

Hence the new assignmentµ′ is feasible, does not decrease the objective function, and

A.2. AMN PROOFS AND DERIVATIONS 197

has strictly fewer fractional entries.

A.2.2 Multi-class AMNs

For K > 2, we use the randomized rounding procedure of Kleinberg and Tardos [1999]

to produce an integer solution for the linear relaxation, losing at most a factor ofm =

maxc∈C |c| in the objective function. The basic idea of the rounding procedure is to treat

µv(k) as probabilities and assign labels according to these probabilities in phases. In each

phase, we pick a labelk, uniformly at random, and a thresholdα ∈ [0, 1] uniformly at

random. For each nodei which has not yet been assigned a label, we assign the labelk

if µv(k) ≥ α. The procedure terminates when all nodes have been assigned a label. Our

analysis closely follows that of Kleinberg and Tardos [1999].

Lemma A.2.1 The probability that a nodei is assigned labelk by the randomized proce-

dure isµv(k).

Proof The probability that an unassigned node is assigned labelk during one phase is
1
K

µv(k), which is proportional toµv(k). By symmetry, the probability that a node is as-

signed labelk over all phases is exactlyµv(k).

Lemma A.2.2 The probability that all nodes in a cliquec are assigned labelk by the

procedure is at least1|c|µc(k).

Proof For a single phase, the probability that all nodes in a cliquec are assigned labelk if

none of the nodes were previously assigned is1
K

mini∈c µv(k) = 1
K

µc(k). The probability

thatat least oneof the nodes will be assigned labelk in a phase is1
K

(maxi∈c µv(k)). The

probability thatnoneof the nodes in the clique will be assignedany label in one phase is

1− 1
K

∑K
k=1 maxi∈c µv(k).

Nodes in the cliquec will be assigned labelk by the procedure if they are assigned label

k in one phase. (They can also be assigned labelk as a result of several phases, but we can

ignore this possibility for the purposes of the lower bound.) The probability that all the

198 APPENDIX A. PROOFS AND DERIVATIONS

nodes inc will be assigned labelk by the procedure in a single phase is:

∞∑
j=1

1

K
µc(k)

(
1− 1

K

K∑

k=1

max
i∈c

µv(k)

)j−1

=
µc(k)∑K

k=1 maxi∈c µv(k)

≥ µc(k)∑K
k=1

∑
i∈c µv(k)

=
µc(k)∑

i∈c

∑K
k=1 µv(k)

=
µc(k)

|c| .

Above, we first used the fact that ford < 1,
∑∞

i=0 di = 1
1−d

, and then upper-bounded

themax of the set of positiveµv(k)’s by their sum.

Theorem A.2.3 The expected cost of the assignment found by the randomized procedure

given a solutionµ to the linear program in Eq. (A.5) is at least
∑

v∈V
∑K

k=1 gv(k)µv(k) +∑
c∈C\V

1
|c|

∑K
k=1 gc(k)µk

c .

Proof This is immediate from the previous two lemmas.

The only difference between the expected cost of the rounded solution and the (non-

integer) optimal solution is the1|c| factor in the second term. By pickingm = maxc∈C |c|, we

have that the rounded solution is at mostm times worse than the optimal solution produced

by the LP of Eq. (A.5).

We can also derandomize this procedure to get a deterministic algorithm with the same

guarantees, using the method of conditional probabilities, similar in spirit to the approach

of Kleinberg and Tardos [1999].

Note that the approximation factor ofm applies, in fact, only to the clique poten-

tials. Thus, if we compare the log-probability of the optimal MAP solution and the log-

probability of the assignment produced by this randomized rounding procedure, the terms

corresponding to the log-partition-function and the node potentials are identical. We obtain

an additive error (in log-probability space) only for the clique potentials. As node poten-

tials are often larger in magnitude than clique potentials, the fact that we incur no loss

proportional to node potentials is likely to lead to smaller errors in practice. Along similar

lines, we note that the constant factor approximation is smaller for smaller cliques; again,

we observe, the potentials associated with large cliques are typically smaller in magnitude,

reducing further the actual error in practice.

A.2. AMN PROOFS AND DERIVATIONS 199

A.2.3 Derivation of the factored primal and dual max-margin QP

Using Assumptions 7.4.1 and 7.4.4, we have the dual of the LP used to represent the

interior max subproblemmaxy w>fi(y) + `i(y) in Eq. (3.2):

min
∑
v∈V

ξi,v (A.6)

s.t. −w>fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

−ẅ>f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;

mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;

wherefi,c(k) = fi,c(k, . . . , k) and`i,c(k) = `i,c(k, . . . , k). In the dual, we have a variable

ξi,v for each normalization constraint in Eq. (7.1) and variablesmi,c,v(k) for each of the

inequality constraints.

Substituting this dual into Eq. (5.1), we obtain:

min
1

2
||w||2 + C

∑
i

ξi (A.7)

s.t. w>fi(y(i)) + ξi ≥
∑

v∈V(i)

ξi,v, ∀i;

−w>fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;

−ẅ>f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;

mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;

ẅ ≥ 0.

Now let ξi,v = ξ′i,v + w>fi,v(y
(i)
v) +

∑
c⊃v ẅ>f̈i,c(y

(i)
c)/|c| andmi,c,v(k) = m′

i,c,v(k) +

ẅ>f̈i,c(y
(i)
c)/|c|. Re-expressing the above QP in terms of these new variables, we get:

200 APPENDIX A. PROOFS AND DERIVATIONS

min
1

2
||w||2 + C

∑
i

ξi (A.8)

s.t. ξi ≥
∑

v∈V(i)

ξ′i,v, ∀i;

w>∆fi,v(k)−
∑
c⊃v

m′
i,c,v(k) ≥ `i,v(k)− ξ′i,v, ∀i, v ∈ V (i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

m′
i,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;

m′
i,c,v(k) ≥ −ẅ>f̈i,c(y(i)

c)/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;

ẅ ≥ 0.

Sinceξi =
∑

i,v∈V(i) ξ′i,v at the optimum, we can eliminateξi and the corresponding set

of constraints to get the formulation in Eq. (7.4), repeated here for reference:

min
1

2
||w||2 + C

∑

i,v∈V(i)

ξi,v (A.9)

s.t. w>∆fi,v(k)−
∑
c⊃v

mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V (i), k;

ẅ>∆f̈i,c(k) +
∑
v∈c

mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;

mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c)/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;

ẅ ≥ 0.

A.2. AMN PROOFS AND DERIVATIONS 201

Now the dual of Eq. (A.9) is given by:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− 1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v

∣∣∣∣∣∣

∣∣∣∣∣∣

2

(A.10)

−1

2

∣∣∣∣∣∣

∣∣∣∣∣∣
τ̈ +

∑

i,c∈C(i)\V(i),v∈c, k

λi,c,v(k)f̈i,c(y
(i)
c)/|c|+

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = C, ∀i, ∀v ∈ V(i);

µi,c(k)− µi,v(k) = λi,c,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k;

λi,c,v(k) ≥ 0 ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k,

τ̈ ≥ 0.

In this dual,µ correspond to the first two sets of constraints, whileλ andτ̈ correspond

to third and fourth set of constraints. Using the substitution

ν̈ = τ̈ +
∑

i,c∈C(i)\V(i),v∈c, k

λi,c,v(k)f̈i,c(y
(i)
c)/|c|

and the fact thatλi,c,v(k) ≥ 0 andf̈i,c(y
(i)
c) ≥ 0, we can eliminateλ andτ̈ , as well as divide

µ’s by C, and re-express the above QP as:

max
∑

i,c∈C(i), k

µi,c(k)`i,c(k)− 1

2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

i,v∈V(i), k

µi,v(k)∆ḟi,v

∣∣∣∣∣∣

∣∣∣∣∣∣

2

− 1

2
C

∣∣∣∣∣∣

∣∣∣∣∣∣
ν̈ +

∑

i,c∈C(i), k

µi,c(k)∆f̈i,c(k)

∣∣∣∣∣∣

∣∣∣∣∣∣

2

s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑

k=1

µi,v(k) = 1, ∀i, ∀v ∈ V(i);

µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k; ν̈ ≥ 0.

Bibliography

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning.

Proc. ICML.

Ahuja, R., & Orlin, J. (2001). Inverse optimization, Part I: Linear programming and general

problem.Operations Research, 35, 771–783.

Altschul, S., Madden, T., Schaffer, A., Zhang, A., Miller, W., & Lipman (1997). Gapped

BLAST and PSI-BLAST: a new generation of protein database search programs.Nucleid

Acids Res., 25, 3389–3402.

Altun, Y., Smola, A., & Hofmann, T. (2004). Exponential families for conditional random

fields. Proc. UAI.

Altun, Y., Tsochantaridis, I., & Hofmann, T. (2003). Hidden markov support vector ma-

chines.Proc. ICML.

Bach, F., & Jordan, M. (2001). Thin junction trees.NIPS.

Bach, F., & Jordan, M. (2003). Learning spectral clustering.NIPS.

Baeza-Yates, R., & Ribeiro-Neto, B. (1999).Modern information retrieval. Addison-

Wesley-Longman.

Bairoch, A., & Apweiler, R. (2000). The Swiss-Prot protein sequence database and its

supplement trembl.Nucleic Acids Res., 28, 45–48.

Baldi, P., Cheng, J., & Vullo, A. (2004). Large-scale prediction of disulphide bond connec-

tivity. Proc. NIPS.

202

BIBLIOGRAPHY 203

Baldi, P., & Pollastri, G. (2003). The principled design of large-scale recursive neural

network architectures dag-rnns and the protein structure prediction problem.Journal of

Machine Learning Research, 4, 575–602.

Bansal, N., Blum, A., & Chawla, S. (2002). Correlation clustering.FOCS.

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D. (2003). Learning distance functions

using equivalence relations.Proc. ICML.

Bartlett, P., Collins, M., Taskar, B., & McAllester, D. (2004). Exponentiated gradient

algorithms for large-margin structured classification.NIPS.

Bartlett, P. L., Jordan, M. I., & McAuliffe, J. D. (2003).Convexity, classification, and risk

bounds(Technical Report 638). Department of Statistics, U.C. Berkeley.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using

shape contexts.IEEE Trans. Pattern Anal. Mach. Intell., 24.

Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., &

Bourne, P. (2000). The protein data bank.

Bertsekas, D. (1999).Nonlinear programming. Belmont, MA: Athena Scientific.

Bertsimas, D., & Tsitsiklis, J. (1997).Introduction to linear programming. Athena Scien-

tific.

Besag, J. E. (1986). On the statistical analysis of dirty pictures.Journal of the Royal

Statistical Society B, 48.

Bishop, C. (1995).Neural networks for pattern recognition. Oxford, UK: Oxford Univer-

sity Press.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.

Proc. COLT.

Bouman, C., & Shapiro, M. (1994). A multiscale random field model for bayesian image

segmentation.IP, 3(2).

204 BIBLIOGRAPHY

Boyd, S., & Vandenberghe, L. (2004).Convex optimization. Cambridge University Press.

Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow

algorithms for energy minimization in computer vision.PAMI.

Boykov, Y., Veksler, O., & Zabih, R. (1999a). Fast approximate energy minimization via

graph cuts.ICCV.

Boykov, Y., Veksler, O., & Zabih, R. (1999b). Markov random fields with efficient approx-

imations.CVPR.

Burton, D., & Toint, P. L. (1992). On an instance of the inverse shortest paths problem.

Mathematical Programming, 53, 45–61.

Ceroni, A., Frasconi, P., Passerini, A., & Vullo, A. (2003). Predicting the disulfide bond-

ing state of cysteines with combinations of kernel machines.Journal of VLSI Signal

Processing, 35, 287–295.

Chakrabarti, S., Dom, B., & Indyk, P. (1998). Enhanced hypertext categorization using

hyperlinks.SIGMOD.

Chapelle, O., Weston, J., & Schoelkopf, B. (2002). Cluster kernels for semi-supervised

learning.Proc. NIPS.

Charikar, M., Guruswami, V., & Wirth, A. (2003). Clustering with qualitative information.

FOCS.

Charniak, E. (1993).Statistical language learning. MIT Press.

Clark, S., & Curran, J. R. (2004). Parsing the wsj using ccg and log-linear models.Pro-

ceedings of the 42nd Annual Meeting of the Association for Computational Linguistics

(ACL ’04).

Collins, M. (1999).Head-driven statistical models for natural language parsing. Doctoral

dissertation, University of Pennsylvania.

BIBLIOGRAPHY 205

Collins, M. (2000). Discriminative reranking for natural language parsing.ICML 17 (pp.

175–182).

Collins, M. (2001). Parameter estimation for statistical parsing models: Theory and prac-

tice of distribution-free methods.IWPT.

Collins, M. (2004). Parameter estimation for statistical parsing models: Theory and prac-

tice of distribution-free methods. In H. Bunt, J. Carroll and G. Satta (Eds.),New devel-

opments in parsing technology. Kluwer.

Corduneanu, A., & Jaakkola, T. (2003). On information regularization.Proc. UAI.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2001).Introduction to algorithms. MIT

Press. 2nd edition.

Cover, T. M., & Thomas, J. A. (1991).Elements of information theory. New York: Wiley.

Cowell, R., Dawid, A., Lauritzen, S., & Spiegelhalter, D. (1999).Probabilistic networks

and expert systems. New York: Springer.

Crammer, K., & Singer, Y. (2001). On the algorithmic implementation of multiclass kernel-

based vector machines.Journal of Machine Learning Research, 2(5), 265–292.

Craven, M., DiPasquo, D., Freitag, D., McCallum, A., Mitchell, T., Nigam, K., & Slattery,

S. (1998). Learning to extract symbolic knowledge from the world wide web.Proc

AAAI98(pp. 509–516).

Cristianini, N., & Shawe-Taylor, J. (2000).An introduction to support vector machines and

other kernel-based learning methods. Cambridge University Press.

DeGroot, M. H. (1970).Optimal statistical decisions. New York: McGraw-Hill.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 19(4), 380–393.

Demaine, E. D., & Immorlica, N. (2003). Correlation clustering with partial information.

APPROX.

206 BIBLIOGRAPHY

Dempster, P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete

data via the EM algorithm.Journal of the Royal Statistical Society, 39.

Devroye, L., Gÿorfi, L., & Lugosi, G. (1996).Probabilistic theory of pattern recognition.

New York: Springer-Verlag.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000).Pattern classification. New York: Wiley

Interscience. 2nd edition.

Durbin, R., Eddy, S., Krogh, A., & Mitchison, G. (1998).Biological sequence analysis.

Cambridge University Press.

Edmonds, J. (1965). Maximum matching and a polyhedron with 0-1 vertices.Journal of

Research at the National Bureau of Standards, 69B, 125–130.

Egghe, L., & Rousseau, R. (1990).Introduction to informetrics. Elsevier.

Emanuel, D., & Fiat, A. (2003). Correlation clustering - minimizing disagreements on

arbitrary weighted graphs.ESA.

Fariselli, P., & Casadio, R. (2001). Prediction of disulfide connectivity in proteins.Bioin-

formatics, 17, 957–964.

Fariselli, P., Martelli, P., & Casadio, R. (2002). A neural network-based method for pre-

dicting the disulfide connectivity in proteins.Knowledge based intelligent information

engineering systems and allied technologies (KES 2002), 1, 464–468.

Fariselli, P., Ricobelli, P., & Casadio, R. (1999). Role of evolutionary information in pre-

dicting the disulfide-bonding state of cysteine in proteins.Proteins, 36, 340–346.

Fiser, A., & Simon, I. (2000). Predicting the oxidation state of cysteines by multiple se-

quence alignment.Bionformatics, 3, 251–256.

Forsyth, D. A., & Ponce, J. (2002).Computer vision: A modern approach. Prentice Hall.

Frasconi, P., Gori, M., & Sperduti, A. (1998). A general framework for adaptive structures.

IEEE Transactions on Neural Networks.

BIBLIOGRAPHY 207

Frasconi, P., Passerini, A., & Vullo, A. (2002). A two stage svm architecture for predicting

the disulfide bonding state of cysteines.Proceedings of IEEE Neural Network for signal

processing conference.

Freund, Y., & Schapire, R. (1998). Large margin classification using the perceptron algo-

rithm. Computational Learing Theory.

Friedman, N., Getoor, L., Koller, D., & Pfeffer, A. (1999). Learning probabilistic relational

models.Proc. IJCAI99(pp. 1300–1309). Stockholm, Sweden.

Friess, T., Cristianini, N., & Campbell, C. (1998). The kernel adatron algorithm: a fast and

simple learning procedure for support vector machine.Proc. ICML.

Gabow, H. (1973).Implementation of algorithms for maximum matching on nonbipartite

graphs. Doctoral dissertation, Stanford University.

Garey, M. R., & Johnson, D. S. (1979).Computers and intractability. Freeman.

Geman, S., & Johnson, M. (2002). Dynamic programming for parsing and estimation of

stochastic unification-based grammars.Proceedings of the 40th Annual Meeting of the

Association for Computational Linguistics.

Getoor, L., Friedman, N., Koller, D., & Taskar, B. (2002). Learning probabilistic models

of link structure.Journal of Machine Learning Research, 8.

Getoor, L., Segal, E., Taskar, B., & Koller, D. (2001). Probabilistic models of text and link

structure for hypertext classification.Proc. IJCAI01 Workshop on Text Learning: Beyond

Supervision. Seattle, Wash.

Greig, D. M., Porteous, B. T., & Seheult, A. H. (1989). Exact maximum a posteriori

estimation for binar images.J. R. Statist. Soc. B, 51.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003). Efficient solution algorithms

for factored mdps.Journal of Artificial Intelligence Research, 19.

Gusfield, D. (1997).Algorithms on strings, trees, and sequences : Computer science and

computational biology. Cambridge University Press.

208 BIBLIOGRAPHY

Harrison, P., & Sternberg, M. (1994). Analysis and classification of disulphide connectivity

in proteins. the entropic effect of cross-linkage.Journal of Molecular Biology, 244.

Hastie, T., Tibshirani, R., & Friedman, J. (2001).The elements of statistical learning. New

York: Springer-Verlag.

Haussler, D. (1999).Convolution kernels on discrete structures(Technical Report). UC

Santa Cruz.

Heuberger, C. (2004). Inverse combinatorial optimization: A survey on problems, methods,

and results.Journal of Combinatorial Optimization, 8.

Hochbaum, D. S. (Ed.). (1997).Approximation algorithms for NP-hard problems. PWS

Publishing Company.

Joachims, T. (1999). Transductive inference for text classification using support vector

machines.Proc. ICML99(pp. 200–209). Morgan Kaufmann Publishers, San Francisco,

US.

Johnson, M. (2001). Joint and conditional estimation of tagging and parsing models.ACL

39.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S. (1999). Estimators for stochastic

“unification-based” grammars.Proceedings of ACL 1999.

Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recog-

nition of hydrogen-bonded and geometrical features.

Kaplan, R., Riezler, S., King, T., Maxwell, J., Vasserman, A., & Crouch, R. (2004). Speed

and accuracy in shallow and deep stochastic parsing.Proceedings of HLT-NAACL’04.

Kassel, R. (1995).A comparison of approaches to on-line handwritten character recogni-

tion. Doctoral dissertation, MIT Spoken Language Systems Group.

Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient descent for

linear predictors.Information and Computation, 132(1), 1–63.

BIBLIOGRAPHY 209

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing.ACL 41(pp. 423–

430).

Kleinberg, J., & Tardos, E. (1999). Approximation algorithms for classification problems

with pairwise relationships: Metric labeling and Markov random fields.FOCS.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment.Journal of

the ACM, 46(5), 604–632.

Klepeis, J., & Floudas, C. (2003). Prediction ofβ-sheet topology and disulfide bridges in

polypeptides.Journal of Computational Chemistry, 24, 191–208.

Koller, D., & Pfeffer, A. (1998). Probabilistic frame-based systems.Proc. AAAI98(pp.

580–587). Madison, Wisc.

Kolmogorov, V., & Zabih, R. (2002). What energy functions can be minimized using graph

cuts?PAMI.

Kumar, S., & Hebert, M. (2003). Discriminative fields for modeling spatial dependencies

in natural images.NIPS.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic

models for segmenting and labeling sequence data.ICML.

Lafferty, J., Zhu, X., & Liu, Y. (2004). Kernel conditional random fields: Representation

and clique selection.ICML.

Lawler, E. (1976).Combinatorial optimization: Networks and matroids. New York: Holt,

Rinehart and Winston.

Leslie, C., Eskin, E., & Noble, W. (2002). The spectrum kernel: a string kernel for svm

protein classification.Proc. Pacific Symposium on Biocomputing.

Liu, Z., & Zhang, J. (2003). On inverse problems of optimum perfect matching.Journal

of Combinatorial Optimization, 7.

210 BIBLIOGRAPHY

Lodhi, H., Shawe-Taylor, J., Cristianini, N., & Watkins, C. (2000). Text classification using

string kernels.NIPS.

Luenberger, D. (1997).Investment science. Oxford University Press.

Manning, C., & Scḧutze, H. (1999).Foundations of statistical natural language processing.

Cambridge, Massachusetts: The MIT Press.

Marcus, M. P., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a large annotated

corpus of English: The Penn Treebank.Computational Linguistics, 19(2), 313–330.

Markowitz, H. (1991). Portfolio selection: Efficient diversification of investments. Basil

Blackwell.

Martelli, P., Fariselli, P., Malaguti, L., & Casadio, R. (2002). Prediction of the disulfide-

bonding state of cysteines in proteins at 88% accuracy.Protein Science, 11, 27359.

Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented

natural images and its application to evaluating segmentation algorithms and measuring

ecological statistics.Proc. ICCV.

Matsumura, M., Signor, G., & Matthews, B. (1989). Substantial increase of protein stability

by multiple disulfide bonds.Nature, 342, 291:293.

Matusov, E., Zens, R., & Ney, H. (2004). Symmetric word alignments for statistical ma-

chine translation.Proc. COLING.

McCallum, A. (2003). Efficiently inducing features of conditional random fields.Proc.

UAI.

McCallum, A., & Wellner, B. (2003). Toward conditional models of identity uncertainty

with application to proper noun coreference.IJCAI Workshop on Information Integration

on the Web.

Mitchell, T. (1997).Machine learning. McGraw-Hill.

BIBLIOGRAPHY 211

Miyao, Y., & Tsujii, J. (2002). Maximum entropy estimation for feature forests.Proceed-

ings of Human Language Technology Conference (HLT 2002).

Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate

inference: an empirical study.Proc. UAI99(pp. 467–475).

Needleman, S., & Wunsch, C. (1970). A general method applicable to the search for

similarities in the amino acid sequences of two proteins.Journal of Molecular Biology,

48.

Nemhauser, G. L., & Wolsey, L. A. (1999).Integer and combinatorial optimization. New

York: J. Wiley.

Neville, J., & Jensen, D. (2000). Iterative classification in relational data.Proc. AAAI-2000

Workshop on Learning Statistical Models from Relational Data(pp. 13–20).

Ng, A., & Jordan, M. (2001). On discriminative vs. generative classifiers: A comparison

of logistic regression and naive Bayes.NIPS.

Ng, A. Y., & Russell, S. (2000). Algorithms for inverse reinforcement learning.Proc.

ICML.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. (2000). Text classification from

labeled and unlabeled documents using em.Machine Learning, 39.

Nocedal, J., & Wright, S. J. (1999).Numerical optimization. New York: Springer.

Papadimitriou, C., & Steiglitz, K. (1982).Combinatorial optimization: Algorithms and

complexity. Englewood Cliffs, NJ: Prentice-Hall.

Pearl, J. (1988).Probabilistic reasoning in intelligent systems. San Francisco: Morgan

Kaufmann.

Pinto, D., McCallum, A., Wei, X., & Croft, W. B. (2003). Table extraction using conditional

random fields.Proc. ACM SIGIR.

212 BIBLIOGRAPHY

Platt, J. (1999). Using sparseness and analytic QP to speed training of support vector

machines.NIPS.

Potts, R. B. (1952). Some generalized order-disorder transformations.Proc. Cambridge

Phil. Soc., 48.

Quinlan, J. R. (2001). Induction of decision trees.Machine Learning, 1, 81–106.

Schrijver, A. (2003).Combinatorial optimization: Polyhedra and efficiency. Springer.

Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random fields.Proc. HLT-

NAACL.

Shawe-Taylor, J., Bartlett, P. L., Williamson, R. C., & Anthony, M. (1998). Structural

risk minimization over data-dependent hierarchies.IEEE Trans. on Information Theory,

44(5), 1926–1940.

Shen, L., Sarkar, A., & Joshi, A. K. (2003). Using ltag based features in parse reranking.

Proc. EMNLP.

Slattery, S., & Mitchell, T. (2000). Discovering test set regularities in relational domains.

Proc. ICML00(pp. 895–902).

Smith, T., & Waterman, M. (1981). Identification of common molecular subsequences.J.

Mol. Biol., 147, 195–197.

Sutton, C., Rohanimanesh, K., & McCallum, A. (2004). Dynamic conditional random

fields: Factorized probabilistic models for labeling and segmenting sequence data.Proc.

ICML.

Szummer, M., & Jaakkola, T. (2001). Partially labeled classification with Markov random

walks. Proc. NIPS.

Tarantola, A. (1987).Inverse problem theory: Methods for data fitting and model parame-

ter estimation. Amsterdam: Elsevier.

BIBLIOGRAPHY 213

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for rela-

tional data.UAI.

Taskar, B., Chatalbashev, V., & Koller, D. (2004a). Learning associative Markov networks.

Proc. ICML.

Taskar, B., Guestrin, C., & Koller, D. (2003a). Max margin Markov networks.NIPS.

Taskar, B., Klein, D., Collins, M., Koller, D., & Manning, C. (2004b). Max margin parsing.

EMNLP.

Taskar, B., Segal, E., & Koller, D. (2001). Probabilistic classification and clustering in

relational data.Proc. IJCAI01(pp. 870–876). Seattle, Wash.

Taskar, B., Wong, M., Abbeel, P., & Koller, D. (2003b). Link prediction in relational data.

Proc. NIPS.

Toutanova, K., Klein, D., Manning, C. D., & Singer, Y. (2003). Feature-rich part-of-speech

tagging with a cyclic dependency network.NAACL 3(pp. 252–259).

Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine

learning for interdependent and structured output spaces.Twenty-first international con-

ference on Machine learning.

Valiant, L. G. (1979). The complexity of computing the permanent.Theoretical Computer

Science, 8, 189–201.

Vapnik, V. (1995). The nature of statistical learning theory. New York, New York:

Springer-Verlag.

Varma, A., & Palsson, B. (1994). Metabolic flux balancing: Basic concepts, scientific and

practical use.Bio/Technology, 12.

Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Global protein function

prediction from protein-protein interaction networksh. Nature Biotechnology, 6.

214 BIBLIOGRAPHY

Veksler, O. (1999).Efficient graph-based energy minimization methods in computer vision.

Doctoral dissertation, Cornell University.

Vullo, A., & Frasconi, P. (2004). Disulfide connectivity prediction using recursive neural

networks and evolutionary information.Bioinformatics, 20, 653–659.

Wahba, G., Gu, C., Wang, Y., & Chappell, R. (1993). Soft classification, a.k.a. risk estima-

tion, via penalized log likelihood and smoothing spline analysis of variance.Computa-

tional Learning Theory and Natural Learning Systems.

Wainwright, M., Jaakkola, T., & Willsky, A. (2002). Map estimation via agreement on

(hyper)trees: Message-passing and linear programming approaches.Proc. Allerton Con-

ference on Communication, Control and Computing.

Wainwright, M., & Jordan, M. I. (2003). Variational inference in graphical models: The

view from the marginal polytope.Proc. Allerton Conference on Communication, Control

and Computing.

Weston, J., & Watkins, C. (1998).Multi-class support vector machines(Technical Re-

port CSD-TR-98-04). Department of Computer Science, Royal Holloway, University of

London.

Xing, E., Ng, A., Jordan, M., & Russell, S. (2002). Distance metric learning, with applica-

tion to clustering with side-information.NIPS.

Yang, Y., Slattery, S., & Ghani, R. (2002). A study of approaches to hypertext categoriza-

tion. Journal of Intelligent Information Systems, 18(2).

Yedidia, J., Freeman, W., & Weiss, Y. (2000). Generalized belief propagation.NIPS.

Younger, D. H. (1967). Recognition and parsing of context-free languages in time n3.

Information and Control, 10, 189–208.

Zhang, J., & Ma, Z. (1996). A network flow method for solving inverse combinatorial

optimization problems.Optimization, 37, 59–72.

BIBLIOGRAPHY 215

Zhang, T. (2002). Covering number bounds of certain regularized linear function classes.

Journal of Machine Learning Research, 2, 527–550.

Zhu, J., & Hastie, T. (2001). Kernel logistic regression and the import vector machine.

Proc. NIPS.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian

fields and harmonic functions.Proc. ICML.

