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Abstract


Most questions require more than just true-false or multiple-choice answers. Yet super-


vised learning, like standardized testing, has placed the heaviest emphasis on complex


questions with simple answers. The acquired expertise must now be used to address tasks


that demand answers as complex as the questions. Such complex answers may consist of


multiple interrelated decisions that must be weighed against each other to arrive at a glob-


ally satisfactory and consistent solution to the question. In natural language processing, we


often need to construct a global, coherent analysis of a sentence, such as its corresponding


part-of-speech sequence, parse tree, or translation into another language. In computational


biology, we analyze genetic sequences to predict 3D structure of proteins, find global align-


ment of related DNA strings, and recognize functional portions of a genome. In computer


vision, we segment complex objects in cluttered scenes, reconstruct 3D shapes from stereo


and video, and track motion of articulated bodies.


We typically handle the exponential explosion of possible answers by building mod-


els that compactly capture the structural properties of the problem: sequential, grammat-


ical, chemical, temporal, spatial constraints and correlations. Such structured models in-


clude graphical models such as Markov networks (Markov random fields), recursive lan-


guage models such as context free grammars, combinatorial optimization problems such as


weighted matchings and graph-cuts. This thesis presents a discriminative estimation frame-


work for structured models based on the large margin principle underlying support vector


machines. Intuitively, the large-margin criterion provides an alternative to probabilistic,


likelihood-based estimation methods by concentrating directly on the robustness of the de-


cision boundary of a model. Our framework defines a suite of efficient learning algorithms


that rely on the expressive power of convex optimization to compactly capture inference or
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solution optimality in structured models. For some of these models, alternative estimation


methods are intractable.


The largest portion of the thesis is devoted to Markov networks, which are undirected


probabilistic graphical models widely used to efficiently represent and reason about joint


multivariate distributions. We use graph decomposition to derive an exact, compact, con-


vex formulation for large-margin estimation of Markov networks with sequence and other


low-treewidth structure. Seamless integration of kernels with graphical models allows ef-


ficient, accurate prediction in real-world tasks. We analyze the theoretical generalization


properties of max-margin estimation in Markov networks and derive a novel type of bound


on structured error. Using an efficient online-style algorithm that exploits inference in the


model and analytic updates, we solve very large estimation problems.


We define an important subclass of Markov networks, associative Markov networks


(AMNs), which captures positive correlations between variables and permits exact infer-


ence which scales up to tens of millions of nodes and edges. While likelihood-based meth-


ods are believed to be intractable for AMNs over binary variables, our framework allows


exact estimation of such networks of arbitrary connectivity and topology. We also intro-


duce relational Markov networks (RMNs), which compactly define templates for Markov


networks for domains with relational structure: objects, attributes, relations.


In addition to graphical models, our framework applies to a wide range of other models:


We exploit context free grammar structure to derive a compact max-margin formulation that


allows high-accuracy parsing in cubic time by using novel kinds of lexical information. We


use combinatorial properties of weighted matchings to develop an exact, efficient formu-


lation for learning to match and apply it to prediction of disulfide connectivity in proteins.


Finally, we derive a max-margin formulation for learning the scoring metric for clustering


from clustered training data, which tightly integrates metric learning with the clustering


algorithm, tuning one to the other in a joint optimization.


We describe experimental applications to a diverse range of tasks, including handwrit-


ing recognition, 3D terrain classification, disulfide connectivity prediction in proteins, hy-


pertext categorization, natural language parsing, email organization and image segmen-


tation. These empirical evaluations show significant improvements over state-of-the-art


methods and promise wide practical use for our framework.
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Chapter 1


Introduction


The breadth of tasks addressed by machine learning is rapidly expanding. Major appli-


cations include medical diagnosis, scientific discovery, financial analysis, fraud detection,


DNA sequence analysis, speech and handwriting recognition, game playing, image analy-


sis, robot locomotion and many more. Of course, the list of things we would like a computer


to learn to do is much, much longer. As we work our way down that list, we encounter the


need for very sophisticated decision making from our programs.


Some tasks, for example, handwriting recognition, are performed almost effortlessly


by a person, but remain difficult and error-prone for computers. The complex synthesis


of many levels of signal processing a person executes when confronted by a line of hand-


written text is daunting. The reconstruction of an entire sentence from the photons hitting


the retina off of each tiny patch of an image undoubtedly requires an elaborate interplay of


recognition and representation of the pen-strokes, the individual letters, whole words and


constituent phrases.


Computer scientists, as opposed to, say, neuroscientists, are primarily concerned with


achieving acceptable speed and accuracy of recognition rather than modeling this compli-


cated process with any biological verity. Computational models for handwriting recogni-


tion aim to capture the salient properties of the problem: typical shapes of the letters, likely


letter combinations that make up words, common ways to combine words into phrases, fre-


quent grammatical constructions of the phrases, etc. Machine learning offers an alternative


to encoding all the intricate details of such a model from scratch. One of its primary goals
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is to devise efficient algorithms for training computers to automatically acquire effective


and accurate models from experience.


In this thesis, we present a discriminative learning framework and a novel family of effi-


cient models and algorithms for complex recognition tasks in several disciplines, including


natural language processing, computer vision and computational biology. We develop the-


oretical foundations for our approach and show a wide range of experimental applications,


including handwriting recognition, 3-dimensional terrain classification, disulfide connec-


tivity in protein structure prediction, hypertext categorization, natural language parsing,


email organization and image segmentation.


1.1 Supervised learning


The most basic supervised learning task is classification. Suppose we wish to learn to


recognize a handwritten character from a scanned image. This is a classification task,


because we must assigns a class (an English letter from ‘a’ through ‘z’) to an observation of


an object (an image). Essentially, a classifier is a function that maps an input (an image) to


an output (a letter). In the supervised learning setting, we construct a classifier by observing


labeled training examples, in our case, sample images paired with appropriate letters. The


main problem addressed by supervised learning is generalization. The learning program is


allowed to observe only a small sample of labeled images to produce an accurate classifier


on unseen images of letters.


More formally, letx denote an input. For example, a black-and-white imagex can be


represented as a vector of pixel intensities. We useX to denote the space of all possible


inputs. Lety denote the output, andY be the discrete space of possible outcomes (e.g.,


26 letters ‘a’-‘z’). A classifier (or hypothesis)h is a function fromX to Y, h : X 7→ Y.


We denote the set of all classifiers that our learning program can produce asH (hypothesis


class). Then given a set of labeled examples{x(i), y(i)}, i = 1, . . . , m, a learning program


seeks to produce a classifierh ∈ H that will work well on unseen examplesx, usually by


finding h that accurately classifies training data. The diagram in Fig. 1.1 summarizes the


supervised learning setting.
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Labeled data


Learning


Prediction


Hypotheses


New data


Figure 1.1: Supervised learning setting


The problem of classification has a long history and highly developed theory and prac-


tice (see for example, Mitchell [1997]; Vapnik [1995]; Dudaet al. [2000]; Hastieet al.


[2001]). The two most important dimensions of variation of classification algorithms is the


hypothesis classH and the criterion for selection of a hypothesish fromH given the train-


ing data. In this thesis, we build upon the generalized linear model family, which underlies


standard classifiers such as logistic regression and support vector machines. Through the


use of kernels to implicitly define high-dimensional and even infinite-dimensional input


representations, generalized linear models can approximate arbitrarily complex decision


boundaries.


The task of selecting a hypothesish reduces to estimating model parameters. Broadly


speaking, probabilistic estimation methods associate a joint distributionp(x,y) or condi-


tional distributionp(y | x) with h and select a model based on the likelihood of the data


[Hastieet al., 2001]. Joint distribution models are often called generative, while condi-


tional models are called discriminative. Large margin methods, by contrast, select a model


based on a more direct measure of confidence of its predictions on the training data called


the margin [Vapnik, 1995]. The difference between these two methods is one of the key
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The screen was 
a sea of red


RSCCPCYWGGCPW
GQNCYPEGCSGPKV


brace


(a) (b) (c) (d)


Figure 1.2:Examples of complex prediction problems (inputs-top, outputs-bottom):
(a) handwriting recognition [image7→ word];
(b) natural language parsing [sentence7→ parse tree];
(c) disulfide bond prediction in proteins [amino-acid sequence7→ bond structure (shown in yellow)];
(d) terrain segmentation [3D image7→ segmented objects (trees, bushes, buildings, ground)]


themes in this thesis.


Most of the research has focused on the analysis and classification algorithms for the


case of binary outcomes|Y| = 2, or a small number of classes. In this work, we focus


on prediction tasks that involve not a single decision with a small set of outcomes, but a


complex, interrelated collection of decisions.


1.2 Complex prediction problems


Consider once more the problem of character recognition. In fact, a more natural and useful


task is recognizing words and entire sentences. Fig. 1.2(a) shows an example handwritten


word “brace.” Distinguishing between the second letter and fourth letter (‘r’ and ‘c’)in iso-


lation is actually far from trivial, but in the context of the surrounding letters that together


form a word, this task is much less error-prone for humans and should be for computers


as well. It is also more complicated, as different decisions must be weighed against each


other to arrive at the globally satisfactory prediction. The space of all possible outcomes







1.2. COMPLEX PREDICTION PROBLEMS 5


Y is immense, usually exponential in the number of individual decisions, for example, the


number of 5 letter sequences (265). However, most of these outcomes are unlikely given


the observed input. By capturing the most salient structure of the problem, for example the


strong local correlations between consecutive letters, we will construct compact models


that efficiently deal with this complexity. Below we list several examples from different


fields.


• Natural language processing


Vast amounts of electronically available text have spurred a tremendous amount of


research into automatic analysis and processing of natural language. We mention


some of the lower-level tasks that have received a lot of recent attention [Charniak,


1993; Manning & Scḧutze, 1999]. Part-of-speech tagging involves assigning each


word in a sentence a part-of-speech tag, such asnoun, verb, pronoun, etc. As with


handwriting recognition, capturing sequential structure of correlations between con-


secutive tags is key. In parsing, the goal is to recognize the recursive phrase structure


of a sentence, such as verbal, noun and prepositional phrases and their nesting in


relation to each other. Fig. 1.2(b) shows a parse tree corresponding to the sentence:


“The screen was a sea of red” (more on this in Ch. 9). Many other problems, such as


named-entity and relation extraction, text summarization, translation, involve com-


plex global decision making.


• Computational biology


The last two decades have yielded a wealth of high-throughput experimental data,


including complete sequencing of many genomes, precise measurements of protein


3D structure, genome-wide assays of mRNA levels and protein-protein interactions.


Major research has been devoted to gene-finding, alignment of sequences, protein


structure prediction, molecular pathway discovery [Gusfield, 1997; Durbinet al.,


1998]. Fig. 1.2(c) shows disulfide bond structure (shown in yellow) we would like to


predict from the amino-acid sequence of the protein (more on this in Ch. 10).


• Computer vision


As digital cameras and optical scanners become commonplace accessories, medical


imaging technology produces detailed physiological measurements, laser scanners
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capture 3D environments, satellites and telescopes bring pictures of Earth and distant


stars, we are flooded with images we would like our computer to analyze. Example


tasks include object detection and segmentation, motion tracking, 3D reconstruction


from stereo and video, and much more [Forsyth & Ponce, 2002]. Fig. 1.2(d) shows a


3D laser range data image of the Stanford campus collected by a roving robot which


we would like to segment into objects such as trees, bushes, buildings, ground, etc.


(more on this in Ch. 7).


1.3 Structured models


This wide range of problems have been tackled using various models and methods. We


focus on the models that compactly capture correlation and constraint structure inherent to


many tasks. Abstractly, a model assigns a score (or likelihood in probabilistic models) to


each possible input/output pair(x,y), typically through a compact, parameterized scoring


function. Inference in these models refers to computing the highest scoring output given


the input and usually involves dynamic programming or combinatorial optimization.


• Markov networks


Markov networks (a.k.a. Markov random fields) are extensively used to model com-


plex sequential, spatial, and relational interactions in prediction problems arising in


many fields. These problems involve labeling a set of related objects that exhibit


local consistency. Markov networks compactly represent complex joint distributions


of the label variables by modeling their local interactions. Such models are encoded


by a graph, whose nodes represent the different object labels, and whose edges rep-


resent and quantify direct dependencies between them. The graphical structure of


the models encodes thequalitativeaspects of the distribution: direct dependencies as


well as conditional independencies. Thequantitativeaspect of the model is defined


by thepotentialsthat are associated with nodes and cliques of the graph. The graph-


ical structure of the network (more precisely, the treewidth of the graph, which we


formally define in Ch. 3) is critical to efficient inference and learning in the model.


• Context free grammars
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Context-free grammars are one of the primary formalisms for capturing the recur-


sive structure of syntactic constructions [Manning & Schütze, 1999]. For example,


in Fig. 1.2, the non-terminal symbols (labels of internal nodes) correspond to syntac-


tic categories such as noun phrase (NP), verbal phrase (VP) or prepositional phrase


(PP) and part-of-speech tags like nouns (NN), verbs (VBD), determiners (DT) and


prepositions (IN). The terminal symbols (leaves) are the words of the sentence. A


CFG consists of recursive productions (e.g.V P → V P PP , DT → The) that


can be applied to derive a sentence of the language. The productions define the set


of syntactically allowed phrase structures (derivations). By compactly defining a


probability distribution over individual productions, probabilistic CFGs construct a


distribution over parse trees and sentences, and the prediction task reduces to finding


the most likely tree given the sentence. The context free restriction allows efficient


inference and learning in such models.


• Combinatorial structures


Many important computational tasks are formulated as combinatorial optimization


problems such as the maximum weight bipartite and perfect matching, spanning


tree, graph-cut, edge-cover, and many others [Lawler, 1976; Papadimitriou & Stei-


glitz, 1982; Cormenet al., 2001]. Although the term ‘model’ is often reserved for


probabilistic models, we use the term model very broadly, to include any scheme


that assigns scores to the output spaceY and has a procedure for finding the opti-


mal scoringy. For example, the disulfide connectivity prediction in Fig. 1.2(c) can


be modeled by maximum weight perfect matchings, where the weights define po-


tential bond strength based on the local amino-acid sequence properties. The other


combinatorial structures we consider and apply in this thesis include graph cuts and


partitions, bipartite matchings, and spanning trees.


The standard methods of estimation for Markov networks and context free grammars


are based on maximum likelihood, both joint and conditional. However, maximum like-


lihood estimation of scoring function parameters for combinatorial structures is often in-


tractable because of the problem of defining a normalized distribution over an exponential


set of combinatorial structures.
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1.4 Contributions


This thesis addresses the problem of efficient learning of high-accuracy models for complex


prediction problems. We consider a very large class of structured models, from Markov


networks to context free grammars to combinatorial graph structures such as matchings


and cuts. We focus on those models where exact inference is tractable, or can be efficiently


approximated.


◦ Learning framework for structured models


We propose a general framework for efficient estimation of models for structured


prediction. An alternative to likelihood-based methods, this framework builds upon


the large margin estimation principle. Intuitively, we find parameters such that in-


ference in the model (dynamic programming, combinatorial optimization) predicts


the correct answers on the training data with maximum confidence. We develop gen-


eral conditions under which exact large margin estimation is tractable and present


two formulations for structured max-margin estimation that define compact convex


optimization problems, taking advantage of prediction task structure. The first for-


mulation relies on the ability to express inference in the model as a compact convex


optimization problem. The second one only requires compactly expressing optimal-


ity of a given assignment according to the model and applies to a broader range of


combinatorial problems. These two formulations form the foundation which the rest


of the thesis develops.


◦ Markov networks


The largest portion of the thesis is devoted to novel estimation algorithms, represen-


tational extensions, generalization analysis and experimental validation for Markov


networks, a model class of choice in many structured prediction tasks in language,


vision and biology.


. Low-treewidth Markov networks


We use graph decomposition to derive an exact, compact, convex learning for-


mulation for Markov networks with sequence and other low-treewidth structure.


The seamless integration of kernels with graphical models allows us to create
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very rich models that leverage the immense amount of research in kernel de-


sign and graphical model decompositions for efficient, accurate prediction in


real-world tasks. We also use approximate graph decomposition to derive a


compact approximate formulation for Markov networks in which inference is


intractable.


. Scalable online algorithm


We present an efficient algorithm for solving the estimation problem called


Structured SMO. Our online-style algorithm uses inference in the model and


analytic updates to solve extremely large estimation problems.


. Generalization analysis


We analyze the theoretical generalization properties of max-margin estimation


in Markov networks and derive a novel margin-based bound for structured pre-


diction. This bound is the first to address structured error (e.g. proportion


of mislabeled pixels in an image) and uses a proof that exploits the graphical


model structure.


. Learning associative Markov networks (AMNs)


We define an important subclass of Markov networks that captures positive cor-


relations present in many domains. We show that for AMNs over binary vari-


ables, our framework allows exact estimation of networks of arbitrary connec-


tivity and topology, for which likelihood methods are believed to be intractable.


For the non-binary case, we provide an approximation that works well in prac-


tice. We present an AMN-based method for object segmentation from 3D range


data. By constraining the class of Markov networks to AMNs, our models are


learned efficiently and, at run-time, scale up to tens of millions of nodes and


edges.


. Representation and learning of relational Markov networks


We introduce relational Markov networks (RMNs), which compactly define


templates for Markov networks for domains with relational structure objects,
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attributes, relations. The graphical structure of an RMN is based on the rela-


tional structure of the domain, and can easily model complex interaction pat-


terns over related entities. We use approximate inference in these complex mod-


els, in which exact inference is intractable, to derive an approximate learning


formulation. We apply this class of models to classification of hypertext using


hyperlink structure to define relations between webpages.


◦ Broader applications: parsing, matching, clustering


The other large portion the thesis addresses a range of prediction tasks with very di-


verse models: context free grammars for natural language parsing, perfect matchings


for disulfide connectivity in protein structure prediction, graph partitions for cluster-


ing documents and segmenting images.


. Learning to parse


We exploit context free grammar structure to derive a compact max-margin


formulation and show high-accuracy parsing in cubic time by exploiting novel


kinds of lexical information. We show experimental evidence of the model’s


improved performance over several baseline models.


. Learning to match


We use combinatorial properties of weighted matchings to develop an exact,


efficient algorithm for learning to match. We apply our framework to predic-


tion of disulfide connectivity in proteins using perfect non-bipartite matchings.


The algorithm we propose uses kernels, which makes it possible to efficiently


embed the features in very high-dimensional spaces and achieve state-of-the-art


accuracy.


. Learning to cluster


We derive a max-margin formulation for learning the affinity metric for clus-


tering from clustered training data. In contrast to algorithms that learn a metric


independently of the algorithm that will be used to cluster the data, we describe


a formulation that tightly integrates metric learning with the clustering algo-


rithm, tuning one to the other in a joint optimization. Experiments on synthetic


and real-world data show the ability of the algorithm to learn an appropriate
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clustering metric for a variety of desired clusterings, including email folder or-


ganization and image segmentation.


1.5 Thesis outline


Below is a summary of the rest of the chapters in the thesis:


Chapter 2. Supervised learning: We review basic definitions and statistical framework


for classification. We define hypothesis classes, loss functions, risk. We consider


generalized linear models, including logistic regression and support vector machines,


and review estimation methods based on maximizing likelihood, conditional likeli-


hood and margin. We describe the relationship between the dual estimation problems


and kernels.


Chapter 3. Structured models: In this chapter, we define the abstract class of structured


prediction problems and models addressed by the thesis. We compare probabilistic


models, generative and discriminative and unnormalized models. We describe repre-


sentation and inference for Markov networks, including dynamic and linear program-


ming inference. We also briefly describe context free grammars and combinatorial


structures as models.


Chapter 4. Structured maximum margin estimation: This chapter outlines the main prin-


ciples of maximum margin estimation for structured models. We address the expo-


nential blow-up of the naive problem formulation by deriving two general equivalent


convex formulation. These formulations, min-max and certificate, allow us to ex-


ploit decomposition and combinatorial structure of the prediction task. They lead


to polynomial size programs for estimation of models where the prediction problem


is tractable. We also discuss approximations, in particular using upper and lower


bounds, for solving intractable or very large problems.


Chapter 5. Markov networks: We review maximum conditional likelihood estimation


and present maximum margin estimation for Markov networks. We use graphical


model decomposition to derive a convex, compact formulation that seamlessly in-


tegrates kernels with graphical models. We analyze the theoretical generalization
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properties of max-margin estimation and derive a novel margin-based bound for


structured classification.


Chapter 6. M3N algorithms and experiments: We present an efficient algorithm for solv-


ing the estimation problem in graphical models, called Structured SMO. Our online-


style algorithm uses inference in the model and analytic updates to solve extremely


large quadratic problems. We present experiments with handwriting recognition,


where our models significantly outperform other approaches by effectively capturing


correlation between adjacent letters and incorporating high-dimensional input repre-


sentation via kernels.


Chapter 7. Associative Markov networks: We define an important subclass of Markov


networks, associative Markov networks (AMNs), that captures positive interactions


present in many domains. We show that for associative Markov networks of over bi-


nary variables, max-margin estimation allows exact training of networks of arbitrary


connectivity and topology, for which maximum likelihood methods are believed to


be intractable. For the non-binary case, we provide an approximation that works


well in practice. We present an AMN-based method for object segmentation from


3D range data that scales to very large prediction tasks involving tens of millions of


points.


Chapter 8. Relational Markov networks: We introduce the framework of relational Mar-


kov networks (RMNs), which compactly defines templates for Markov networks in


domains with rich structure modeled by objects, attributes and relations. The graph-


ical structure of an RMN is based on the relational structure of the domain, and can


easily model complex patterns over related entities. As we show, the use of an undi-


rected, discriminative graphical model avoids the difficulties of defining a coherent


generative model for graph structures in directed models and allows us tremendous


flexibility in representing complex patterns. We provide experimental results on a


webpage classification task, showing that accuracy can be significantly improved by


modeling relational dependencies.


Chapter 9. Context free grammars: We present max-margin estimation for natural lan-


guage parsing on the decomposition properties of context free grammars. We show
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that this framework allows high-accuracy parsing in cubic time by exploiting novel


kinds of lexical information. We show experimental evidence of the model’s im-


proved performance over several baseline models.


Chapter 10. Perfect matchings:We apply our framework to learning to predict disulfide


connectivity in proteins using perfect matchings. We use combinatorial properties of


weighted matchings to develop an exact, efficient algorithm for learning the param-


eters of the model. The algorithm we propose uses kernels, which makes it possible


to efficiently embed the features in very high-dimensional spaces and achieve state-


of-the-art accuracy.


Chapter 11. Correlation clustering: In this chapter, we derive a max-margin formula-


tion for learning affinity scores for correlation clustering from clustered training data.


We formulate the approximate learning problem as a compact convex program with


quadratic objective and linear or positive-semidefinite constraints. Experiments on


synthetic and real-world data show the ability of the algorithm to learn an appro-


priate clustering metric for a variety of desired clusterings, including email folder


organization and image segmentation.


Chapter 12. Conclusions and future directions:We review the main contributions of the


thesis and summarize their significance, applicability and limitations. We discuss ex-


tensions and future research directions not addressed in the thesis.


1.6 Previously published work


Some of the work described in this thesis has been published in conference proceedings.


The min-max and certificate formulations for structured max-margin estimation have not


been published in their general form outlined in Ch. 4, although they underly several pa-


pers mentioned below. The polynomial formulation of maximum margin Markov networks


presented in Ch. 5 was published for a less general case, using a dual decomposition tech-


nique [Taskaret al., 2003a]. Work on associative Markov networks (Ch. 7) was published


with experiments on hypertext and news-wire classification [Taskaret al., 2004a]. A paper
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on 3D object segmentation using AMNs, which presents a experiments on terrain classifi-


cation and other tasks, is currently under review (joint work with Drago Anguelov, Vassil


Chatalbashev, Dinkar Gupta, Geremy Heitz, Daphne Koller and Andrew Ng). Taskaret al.


[2002] and Taskaret al. [2003b] defined and applied the Relational Markov networks


(Ch. 8), using maximum (conditional) likelihood estimation. Natural language parsing


in Ch. 9 was published in Taskaret al. [2004b]. Disulfide connectivity prediction using


perfect matchings in Ch. 10 (joint work with Vassil Chatalbashev and Daphne Koller) is


currently under review. Finally, work on correlation clustering in Ch. 11, done jointly with


Pieter Abbeel and Andrew Ng, has not been published.







Part I


Models and methods
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Chapter 2


Supervised learning


In supervised learning, we seek a functionh : X 7→ Y that maps inputsx ∈ X to outputs


y ∈ Y. The input spaceX is an arbitrary set (oftenX = IRn), while the output spaceY
we consider in this chapter discrete. A supervised learning problem with discrete outputs,


Y = {y1, . . . , yk}, wherek is the number of classes, is calledclassification. In handwritten


character recognition, for example,X is the set of images of letters andY is the alphabet


(see Fig. 2.1).


The input to an algorithm istraining data , a set ofm i.i.d. (independent and identically


distributed) samplesS = {(x(i), y(i))}m
i=1 drawn from a fixed but unknown distributionD


overX × Y. The goal of a learning algorithm is to output a hypothesish such thath(x)


will approximatey on new samples from the distribution(x, y) ∼ D.


Learning algorithms can be distinguished among several dimensions, chief among them


is thehypothesis classH of functionsh the algorithm outputs. Numerous classes of func-


tions have been well studied, including decision trees, neural networks, nearest-neighbors,


generalized log-linear models and kernel methods (see Quinlan [2001]; Bishop [1995];


Hastieet al. [2001]; Dudaet al. [2000], for in-depth discussion of these and many other


models). We will concentrate on the last two classes, for several reasons we discuss be-


low, including accuracy, efficiency, and extensibility to more complex structured prediction


tasks will consider in the next chapter.


The second crucial dimension of a learning algorithm is the criterion for selection ofh


fromH. We arrive at such a criterion by quantifying what it means forh(x) to approximate
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y. Therisk functional R`
D[(h)] measures the expected error of the approximation:


R`
D[h] = E(x,y)∼D[`(x, y, h(x))], (2.1)


where theloss function` : X × Y × Y → IR+ measures the penalty for predictingh(x)


on the sample(x, y). In general, we assume that`(x, y, ŷ) = 0 if y = ŷ.


A common loss function for classification is0/1 loss


`0/1(x, y, h(x)) ≡ 1I(y 6= h(x)),


where 1I(·) denotes the indicator function, that is, 1I(true) = 1 and 1I(false) = 0.


Since we do not generally know the distributionD, we estimate the risk ofh using its


empirical risk R`
S, computed on the training sampleS:


R`
S[h] =


1


m


m∑
i=1


`(x(i), y(i), h(x(i))) =
1


m


m∑
i=1


`i(h(x(i))), (2.2)


where we abbreviatè(x(i), y(i), h(x(i))) = `i(h(x(i))). For 0/1 loss,R`
S[h] is simply the


proportion of training examples thath misclassifies.R`
S[h] is often called thetraining


error or training loss.


If our set of hypotheses,H, is large enough, we will be able to findh that has zero or


very small empirical risk. However, simply selecting a hypothesis with lowest risk


h∗ = arg min
h∈H


R`
S[h],


is generally not a good idea. For example, ifX = IR,Y = IR andH includes all polynomi-


als of degreem− 1, we can always find a polynomialh that passes through all the sample


points(x(i), y(i)), i = (1, ..., m) assuming that all thex(i) are unique. This polynomial is


very likely to overfit the training data, that is, it will have zero empirical risk, but high ac-


tual risk. The key to selecting a good hypothesis is to trade-off complexity of classH (e.g.


the degree of the polynomial) with the error on the training data as measured by empirical


riskR`
S. For a vast majority of supervised learning algorithms, this fundamental balance is
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achieved by minimizing the weighted combination of the two criteria:


h∗ = arg min
h∈H


(D[h] + CR`
S[h]


)
, (2.3)


whereD[h] measures the inherent dimension or complexity ofh, andC ≥ 0 is a trade-


off parameter. We will not go into derivation of various complexity measuresD[h] here,


but simply adopt the standard measures as needed and refer the reader to Vapnik [1995];


Devroyeet al. [1996]; Hastieet al. [2001] for details. The termD[h] is often called


regularization.


Depending on the complexity of the classH, the search for the optimalh∗ in (2.3)


may be a daunting task1. For many classes, for example decision trees and multi-layer


neural networks, it is intractable [Bishop, 1995; Quinlan, 2001], and we must resort to


approximate, greedy optimization methods. For these intractable classes, the search pro-


cedure used by the learning algorithm is crucial. Below however, we will concentrate on


models where the optimalh∗ can be found efficiently using convex optimization in poly-


nomial time. Hence, the learning algorithms we consider are completely characterized by


the hypothesis classH, the loss functioǹ, and the regularizationD[h].


In general, we consider hypothesis classes of the following parametric form:


hw(x) = arg max
y∈Y


f(w,x, y), (2.4)


wheref(w,x, y) is a functionf : W×X ×Y 7→ IR, wherew ∈ W is a set of parameters,


usually withW ⊆ IRn. We assume that ties in thearg max are broken using some arbitrary


but fixed rule. As we discuss below, this class of hypotheses is very rich and includes


many standard models. The formulation in (2.4) of the hypothesis class in terms of an


optimization procedure will become crucial to extending supervised learning techniques to


cases where the output spaceY is more complex.


1For classification, minimizing the objective with the usual0/1 training error is generally a very difficult
problem with multiple maxima for most realisticH. See discussion in the next section about approaches to
dealing with0/1 loss.
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a b c d e
Figure 2.1: Handwritten character recognition: sample letters from Kassel [1995] data set.


2.1 Classification with generalized linear models


For classification, we consider thegeneralized linear family of hypothesesH. Givenn


real-valued basis functionsfj : X ×Y 7→ IR, a hypothesishw ∈ H is defined by a set ofn


coefficientswj ∈ IR such that:


hw(x) = arg max
y∈Y


n∑
i=1


wjfj(x, y) = arg max
y∈Y


w>f(x, y). (2.5)


Consider the character recognition example in Fig. 2.1. Our inputx is a vector of


pixel values of the image andy is the alphabet{a, . . . , z}. We might have a basis function


fj(x, y) = 1I(xrow,col = on ∧ y = char) for each possible(row, col) and char ∈ Y,


wherexrow,col denotes the value of pixel(row, col). Since different letters tend to have


different pixels turned on, this very simple model captures enough information to perform


reasonably well.


The most common loss for classification is0/1 loss. Minimizing the0/1 risk is generally


a very difficult problem with multiple maxima for any large classH. The standard solution


is minimizing an upper bound on the0/1 loss,`(x, y, h(x)) ≥ `(x, y, h(x)). (In addition


to computational advantages of this approach, there are statistical benefits of minimizing a


convexupper bound [Bartlettet al., 2003]). Two of the primary classification methods we


consider, logistic regression and support vector machines, differ primarily in their choice of


the upper bound on the training0/1 loss. The regularizationD[hw] for the linear family is


typically the norm of the parameters||w||p for p = 1, 2. Intuitively, a zero, or small weight


wj implies that the hypothesishw does not depend on the value offj(x, y) and hence is


simpler than ahw with a large weightwj.
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Figure 2.2: 0/1-loss upper bounded by log-loss and hinge-loss. Horizontal axis shows
w>f(x, y)−maxy′ 6=y w>f(x, y′), wherey is the correct label forx, while the vertical axis
show the value of the associated loss. The log-loss is shown up to an additive constant for
illustration purposes.


2.2 Logistic regression


In logistic regression, we assign a probabilistic interpretation to the hypothesishw as defin-


ing a conditional distribution:


Pw(y | x) =
1


Zw(x)
exp{w>f(x, y)}, (2.6)


whereZw(x) =
∑


y∈Y exp{w>f(x, y)}. The optimal weights are selected by maximiz-


ing the conditional likelihood of the data (minimizing the log-loss) with some regulariza-


tion. This approach is called the (regularized)maximum likelihood estimation. Common


choices for regularization are1 or 2-norm regularization on the weights; we use2-norm


below:


min
1


2
||w||2 + C


∑
i


log Zw(x(i))−w>f(x(i), y(i)), (2.7)


whereC is a user-specified constant the determines the trade-off between regularization


and likelihood of the data. The log-losslog Zw(x)−w>f(x, y) is an upper bound (up to a


constant) on the0/1 loss`0/1 (see Fig. 2.2).
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2.3 Logistic dual and maximum entropy


The objective function is convex in the parametersw, so we have an unconstrained (differ-


entiable) convex optimization problem. The gradient with respect tow is given by:


w + C
∑


i


Ei,w[fi(x
(i), y)]− fi(x


(i), y(i)) = w − C
∑


i


Ei,w[∆fi(y)],


whereEi,w[f(y)] =
∑


y f(y)Pw(y | x(i)) is the expectation under the conditional distribu-


tion Pw(y | x(i)) and∆fi(y) = f(x(i), y(i)) − f(x(i), y). Ignoring the regularization term,


the gradient is zero when the basis function expectations are equal to the basis functions


evaluated on the labelsy(i). It can be shown [Cover & Thomas, 1991] that the dual of the


maximum likelihood problem (without regularization) is the maximum entropy problem:


max −
∑
i,y


Pw(y | x(i)) log Pw(y | x(i)) (2.8)


s.t. Ei,w[∆fi(y)] = 0, ∀i.


We can interpret logistic regression as trying to match the empirical basis function expec-


tations while maintaining a high entropy conditional distributionPw(y | x).


2.4 Support vector machines


Support vector machines [Vapnik, 1995] select the weights based on the “margin” of con-


fidence ofhw. In the multi-class SVM formulation [Weston & Watkins, 1998; Crammer &


Singer, 2001], the margin on examplei quantifies by how much the true label “wins” over


the wrong ones:


γi =
1


||w|| min
y 6=y(i)


w>f(x(i), y(i))−w>f(x(i), y) =
1


||w|| min
y 6=y(i)


w>∆fi(y),
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where∆fi(y) = f(x(i), y(i))− f(x(i), y). Maximizing the smallest such margin (and allow-


ing for negative margins) is equivalent to solving the following quadratic program:


min
1


2
||w||2 + C


∑
i


ξi (2.9)


s.t. w>∆fi(y) ≥ `0/1(y)− ξi, ∀i, ∀y ∈ Y .


Note that the slack variableξi is constrained to be positive in the above program since


w>∆fi(y
(i)) = 0 and`0/1(y(i)) = 0. We can also expressξi asmaxy `


0/1
i (y) −w>∆fi(y),


and the optimization problem Eq. (2.9) in a form similar to Eq. (2.7):


min
1


2
||w||2 + C


∑
i


max
y


[`
0/1
i (y)−w>∆fi(y)]. (2.10)


The hinge-lossmaxy[`
0/1
i (y) − w>∆fi(y)] is also an upper bound on the0/1 loss `0/1


(see Fig. 2.2).


2.5 SVM dual and kernels


The form of the dual of Eq. (2.9) is crucial to efficient solution of SVM and the ability to


use a high or even infinite dimensional set of basis functions via kernels.


max
∑
i,y


αi(y)`
0/1
i (y)− 1


2


∣∣∣∣∣


∣∣∣∣∣
∑
i,y


αi(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


(2.11)


s.t.
∑


y


αi(y) = C, ∀i; αi(y) ≥ 0, ∀i, y.


In the dual, theαi(y) variables correspond to thew>∆fi(y) ≥ `0/1(y)−ξi constraints in the


primal Eq. (2.9). The solution to the dualα∗ gives the solution to the primal as a weighted


combination of basis functions of examples:


w∗ =
∑
i,y


α∗i (y)∆fi(y).
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The pairings of examples and incorrect labels,(i, y), that have non-zeroα∗i (y), are called


support vectors.


An important feature of the dual formulation is that the basis functionsf appear only as


dot products. Expanding the quadratic term, we have:


∣∣∣∣∣


∣∣∣∣∣
∑
i,y


αi(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


=
∑
i,y


∑
j,ȳ


αi(y)αj(ȳ)∆fi(y)>∆fj(ȳ).


Hence, as long as the dot productf(x, y)>f(x̄, ȳ) can be computed efficiently, we can


solve Eq. (2.11) independently of the actual dimension off . Note that at classification


time, we also do not need to worry about the dimension off since:


w>f(x, ȳ) =
∑
i,y


αi(y)∆fi(y)>f(x, ȳ) =
∑
i,y


αi(y)[f(x(i), y(i))>f(x, ȳ)−f(x(i), y)>f(x, ȳ)].


For example, we might have basis functions that are polynomial of degreed in terms of


image pixels,fj(x, y) = 1I(xrow1,col1 = on ∧ . . . ∧ xrowd,cold = on ∧ y = char) for each


possible(row1, col1) . . . (rowd, cold) and char ∈ Y . Computing this polynomial kernel


can be done independently of the dimensiond, even though the number of basis functions


grows exponentially withd [Vapnik, 1995].


In fact, logistic regression can also be kernelized. However, the hinge loss formulation


usually produces sparse solutions in terms of the number of support vectors, while solutions


to the corresponding kernelized log-loss problem are generally non-sparse (all examples


are support vectors) and require approximations for even relatively small datasets [Wahba


et al., 1993; Zhu & Hastie, 2001].







Chapter 3


Structured models


Consider once more the problem of character recognition. In fact, a more natural and useful


task is recognizing words and entire sentences. Fig. 3.1 shows an example handwritten


word “brace.” Distinguishing between the second letter and fourth letter (‘r’ and ‘c’)in


isolation is far from trivial, but in the context of the surrounding letters that together form


a word, this task is much less error-prone for humans and should be for computers as well.


In this chapter, we consider prediction problems in which the output is not a single


discrete valuey, but a set of valuesy = (y1, . . . , yL), for example an entire sequence


of L characters. For concreteness, let the number of variablesL be fixed. The output


spaceY ⊆ Y1 × . . . × YL we consider is a subset of product of output spaces of single


variables. In word recognition, eachYj is the alphabet, whileY is the dictionary. This


joint output space is often a proper subset of the product of singleton output spaces,Y ⊂
Y1×. . .×YL. In word recognition, we might restrict that the letter ‘q’ never follows by ‘z’ in


English. In addition to “hard” constraints, the output variables are often highly correlated,


e.g. consecutive letters in a word. We refer to joint spaces with constraints and correlations


asstructured. We call problems with discrete output spacesstructured classificationor


structured prediction . Structured modelswe consider in this chapter (and thesis) predict


the outputsjointly, respecting the constraints and exploiting the correlations in the output


space.


The range of prediction problems these broad definitions encompass is immense, aris-


ing in fields as diverse as natural language analysis, machine vision, and computational


24
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b r a c e
Figure 3.1: Handwritten word recognition: sample from Kassel [1995] data set.


biology, to name a few. The class of structured modelsH we consider is essentially of the


same form as in previous chapter, except thaty has been replaced byy:


hw(x) = arg max
y :g(x,y)≤0


w>f(x,y), (3.1)


where as beforef(x,y) is a vector of functionsf : X × Y 7→ IRn. The output space


Y = {y : g(x,y) ≤ 0} is defined using a vector of functionsg(x,y) that define the


constraints, whereg : X × Y 7→ IRk. This formulation is very general. Clearly, for


manyf ,g pairs, finding the optimaly is intractable. For the most part, we will restrict our


attention to models where this optimization problem can be solved in polynomial time. This


includes, for example, probabilistic models like Markov networks (in certain cases) and


context-free grammars, combinatorial optimization problems like min-cut and matching,


convex optimization such as linear, quadratic and semi-definite programming. In other


cases, like intractable Markov networks (Ch. 8) and correlation clustering (Ch. 11), we use


anapproximatepolynomial time optimization procedure.


3.1 Probabilistic models: generative and conditional


The termmodel is often reserved for probabilistic models, which can be subdivided into


generative and conditional with respect to the prediction task. A generative model assigns


a normalized joint densityp(x,y) to the input and output spaceX × Y with


p(x,y) ≥ 0,
∑
y∈Y


∫


x∈X
p(x,y) = 1.
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A conditional model assigns a normalized densityp(y | x) only over the output spaceY
with


p(y | x) ≥ 0,
∑
y∈Y


p(y | x) = 1 ∀x ∈ X .


Probabilistic interpretation of the model offers well-understood semantics and an im-


mense toolbox of methods for inference and learning. It also provides an intuitive measure


of confidence in the predictions of a model in terms of conditional probabilities. In addi-


tion, generative models are typically structured to allow very efficient maximum likelihood


learning. A very common class of generative models is the exponential family:


p(x,y) ∝ exp{w>f(x,y)}.


For exponential families, the maximum likelihood parametersw with respect to the joint


distribution can be computed in closed form using the empirical basis function expectations


ES[f(x,y)] [DeGroot, 1970; Hastieet al., 2001].


Of course, this efficiency comes at a price. Any model is an approximation to the true


distribution underlying the data. A generative model must make simplifying assumptions


(more precisely, independence assumptions) about the entirep(x,y), while a conditional


model makes many fewer assumption by focusing onp(y | y). Because of this, by opti-


mizing the model to fit the joint distributionp(x,y), we may be tuning the approximation


away from optimal conditional distributionp(y | x), which we use to make the predictions.


Given sufficient data, the conditional model will learn the best approximation top(y | x)


possible usingw, while the generative modelp(x,y) will not necessarily do so. Typically,


however, generative models actually need fewer samples to converge to a good estimate of


the joint distribution than conditional models need to accurately represent the conditional


distribution. In a regime with very few training samples (relative to the number of param-


etersw), generative models may actually outperform conditional models [Ng & Jordan,


2001].
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3.2 Prediction models: normalized and unnormalized


Probabilistic semantics are certainly not necessary for a good predictive model if we are


simply interested in the optimal prediction (thearg max in Eq. (3.1)). As we discussed


in the previous chapter, support vector machines, which do not represent a conditional


distribution, typically perform as well or better than logistic regression [Vapnik, 1995;


Cristianini & Shawe-Taylor, 2000].


In general, we can often achieve higher accuracy models when we do not learn a nor-


malized distribution over the outputs, but concentrate on the margin ordecision boundary,


the difference between the optimaly and the rest. Even more importantly, in many cases


we discuss below, normalizing the model (summing over the entireY) is intractable, while


the optimaly can be found in polynomial time. This fact makes standard maximum like-


lihood estimation infeasible. The learning methods we advocate in this thesis circumvent


this problem by requiring only the maximization problem to be tractable. We still heav-


ily rely on the representation and inference tools familiar from probabilistic models for


the construction of and prediction in unnormalized models, but largely dispense with the


probabilistic interpretation when needed. Essentially, we use the termmodelvery broadly,


to include any scheme that assigns scores to the output spaceY and has a procedure for


finding the optimal scoringy.


In this chapter, we review basic concepts in probabilistic graphical models calledMar-


kov networksorMarkov random fields. We also briefly touch upon examples of context-free


grammars and combinatorial problems that will be explained in greater detail in Part III to


illustrate the range of prediction problems we address.


3.3 Markov networks


Markov networks provide a framework for a rich family of models for both discrete and


continuous prediction [Pearl, 1988; Cowellet al., 1999]. The models treat the inputs and


outputs as random variablesX with domainX andY with domainY and compactly de-


fine a conditional densityp(Y | X) or distributionP (Y | X) (we concentrate here on the
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conditional Markov networks or CRFs [Laffertyet al., 2001]). The advantage of agraphi-


cal framework is that it can exploit sparseness in the correlations between outputsY . The


graphical structure of the models encodes thequalitativeaspects of the distribution: direct


dependencies as well as conditional independencies. Thequantitativeaspect of the model


is defined by thepotentialsthat are associated with nodes and cliques of the graph. Before


a formal definition, consider a first-order Markov chain a model for the word recognition


task. In Fig. 3.2, the nodes are associated with output variablesYi and the edges correspond


to direct dependencies or correlations. We do not explicitly represent the inputsX in the


figure. For example, the model encodes thatYj is conditionally independent of the rest of


the variables givenYj−1, Yj+1. Intuitively, adjacent letters in a word are highly correlated,


but the first-order model is making the assertion (which is certainly an approximation) that


once the value of a letterYj is known, the correlation between a letterYb beforej and a


letterYa afterj is negligible. More precisely, we use a model where


P (Yb | Yj, Ya,x) = P (Yb | Yj,x), P (Ya | Yj, Yb,x) = P (Ya | Yj,x), b < j < a.


For the purposes of finding the most likelyy, this conditional independence property means


that the optimization problem is decomposable: given thatYj = yj, it suffices toseparately


find the optimal subsequence from1 to j ending withyj, and the optimal subsequence


starting withyj from j to L.


3.3.1 Representation


The structure of a Markov network is defined by an undirected graphG = (V , E), where


the nodes are associated with variablesV = {Y1, . . . , YL}. A clique is a set of nodesc ⊆ V
that form a fully connected subgraph (every two nodes are connected by an edge). Note that


each subclique of a clique is also a clique, and we consider each node a singleton clique.


In the chain network in Fig. 3.2, the cliques are simply the nodes and the edges:C(G) =


{{Y1}, . . . , {Y5}, {Y1, Y2}, . . . , {Y4, Y5}}. We denote the set of variables in a cliquec as


Yc, an assignment of variables in the clique asyc and the space of all assignments to


the clique asYc. We focus on discrete output spacesY below, but many of the same


representation and inference concepts translate to continuous domains. No assumption is
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Figure 3.2: First-order Markov chain:φi(Yi) are node potentials,φi,i+1(Yi, Yi+1) are edge
potentials (dependence onx is not shown).


made aboutX .


Definition 3.3.1 A Markov network is defined by an undirected graphG = (V , E) and a


set of potentialsΦ = {φc}. The nodes are associated with variablesV = {Y1, . . . , YL}.
Each cliquec ∈ C(G) is associated with apotentialφc(x,yc) with φc : X × Yc 7→ IR+,


which specifies a non-negative value for each assignmentyc to variables inYc and any


inputx. The Markov network(G, Φ) defines a conditional distribution:


P (y | x) =
1


Z(x)


∏


c∈C(G)


φc(x,yc),


whereC(G) is the set of all the cliques of the graph andZ(x) is thepartition function


given byZ(x) =
∑


y∈Y
∏


c∈C(G) φc(x,yc).


In our example Fig. 3.2, we have node and edge potentials. Intuitively, the node poten-


tials quantify the correlation between the inputx and the value of the node, while the edge


potentials quantify the correlation between the pair of adjacent output variables as well as


the inputx. Potentials do not have alocal probabilistic interpretation, but can be thought


of as defining an unnormalized score for each assignment in the clique. Conditioned on


the image input, appropriate node potentials in our network should give high scores to the


correct letters (‘b’,‘r’,‘a’,‘c’,‘e’), though perhaps there would be some ambiguity with the


second and fourth letter. For simplicity, assume that the edge potentials would not depend
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on the images, but simply should give high scores to pairs of letters that tend to appear often


consecutively. Multiplied together, these scores should favor the correct output “brace”.


In fact, a Markov network is a generalized log-linear model, since the potentialsφc(xc,yc)


could be represented (in log-space) as a sum of basis functions overx,yc:


φc(xc,yc) = exp


[
nc∑


k=1


wc,kfc,k(x,yc)


]
= exp


[
w>


c fc(x,yc)
]


wherenc is the number of basis functions for the cliquec. Hence the log of the conditional


probability is given by:


log P (y | x) =
∑


c∈C(G)


w>
c fc(x,yc)− log Zw(x).


In case of node potentials for word recognition, we could use the same basis functions as


for individual character recognition:fj,k(x, yj) = 1I(xj,row,col = on ∧ yj = char) for each


possible(row, col) in xj, the window of the image that corresponds to letterj and each


char ∈ Yj (we assume the input has been segmented into imagesxj that correspond to


letters). In general, we condition a clique only on a portion of the inputx, which we denote


asxc. For the edge potentials, we can define basis functions for each combination of letters


(assume for simplicity no dependence onx) : fj,j+1,k(x, yj, yj+1) = 1I(yj = char1∧yj+1 =


char2) for eachchar1 ∈ Yj andchar2 ∈ Yj+1. In this problem (as well as many others),


we are likely to “tie” or “share” the parameters of the modelwc across cliques. Usually, all


single node potentials would share the same weights and basis functions (albeit the relevant


portion of the inputxc is different) and similarly for the pairwise cliques, no matter in what


position they appear in the sequence.1


With slight abuse of notation, we stack all basis functions into one vectorf . For the


sequence model,f has node functions and edge functions, so whenc is a node, the edge


functions inf(xc,yc) are defined to evaluate to zero. Similarly, whenc is an edge, the node


1Sometimes we might actually want some dependence on the position in the sequence, which can be
accomplished by adding more basis functions that condition on the position of the clique.
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functions inf(xc,yc) are also defined to evaluate to zero. Now we can write:


f(x,y) =
∑


c∈C(G)


f(xc,yc).


We stack the weights in the corresponding manner, so the most likely assignment according


to the model is given by:


arg max
y∈Y


log Pw(y | x) = arg max
y∈Y


w>f(x,y),


in the same form as Eq. (3.1).


3.3.2 Inference


There are several important questions that can be answered by probabilistic models. The


task of finding the most likely assignment, known as maximum a-posteriori (MAP) or most


likely explanation (MPE), is just one of such questions, but most relevant to our discussion.


The Viterbi dynamic programming algorithm solves this problem for chain networks in


O(L) time. Let the highest score of any subsequence from1 to k > 1 ending with valueyk


be defined as


φ∗k(yk) = max
y1..k−1


∏
j


φj(x, yj)φj(x, yj−1, yj).


The algorithm computes the highest scores recursively:


φ∗1(y1) = φ1(x, y1), ∀y1 ∈ Y1;


φ∗k(yk) = max
yk−1∈Yk−1


φ∗k−1(yk−1)φj(x, yk)φj(x, yk−1, yk), 1 < k ≤ L, ∀yk ∈ Yk.


The highest scoring sequence has scoremaxyL
φ∗L(yL). Using thearg max’s of themax’s in


the computation ofφ∗, we can back-trace the highest scoring sequence itself. We assume


that score ties are broken in a predetermined way, say according to some lexicographic


order of the symbols.
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Figure 3.3: Diamond Markov network (added triangulation edge is dashed).


In general Markov networks, MAP inference is NP-hard [Cowellet al., 1999]. How-


ever, there are several important subclasses of networks that allow polynomial time infer-


ence. The most important of these is the class of networks withlow tree-width. We need the


concept of triangulation (or chordality) to formally define tree-width. Recall that acycle


of lengthl in an undirected graphG is a sequence of nodes(v0, v1, . . . , vl), distinct except


thatv0 = vl, which are connected by edges(vi, vi+1) ∈ G. A chordof this cycle is an edge


(vi, vj) ∈ G between non-consecutive nodes.


Definition 3.3.2 (Triangulated graph) An undirected graphG is triangulatedif every one


of its cycles of length≥ 4 possesses a chord.


Singly-connected graphs, like chains and trees, are triangulated since they contain no cy-


cles. The simplest untriangulated network is the diamond in Fig. 3.3. To triangulate it,


we can add the edge(Y1, Y3) or (Y2, Y4). In general, there are many possible sets of edges


that can be added to triangulate a graph. The inference procedure creates a tree of cliques


using the graph augmented by triangulation. The critical property of a triangulation for the


inference procedure is the size of the largest clique.


Definition 3.3.3 (Tree-width of a graph) Thetree-widthof a triangulated graphG is the


size of its largest clique minus1. The tree-width of an untriangulated graphG is the


minimum tree-width of all triangulations ofG.
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The tree-width of a chain or a tree is1 and the tree-width of Fig. 3.3 is2. Finding the mini-


mum tree-width triangulation of a general graph is NP-hard, but good heuristic algorithms


exist [Cowellet al., 1999].


The inference procedure is based on a data structure calledjunction treethat can be


constructed for a triangulated graph. The junction tree is an alternative representation of


the same distribution that allows simple dynamic programming inference similar to the


Viterbi algorithm for chains.


Definition 3.3.4 (Junction tree) A junction treeT = (V , E) for a triangulated graphG is


a tree in which the nodes are a subset of the cliques of the graph,V ⊆ C(G) and the edges


E satisfy therunning intersection property: for any two cliquesc andc′, the variables in


the intersectionc ∩ c′ are contained in the clique of every node of the tree on the (unique)


path betweenc andc′.


Fig. 3.4 shows a junction tree for the diamond network. Each of the original clique poten-


tials must associated with exactly one node in the junction tree. For example, the potentials


for the{Y1, Y3, Y4} and{Y1, Y3, Y4} nodes are the product of the associated clique poten-


tials:


φ134(Y1, Y3, Y4) = φ1(Y1)φ4(Y4)φ14(Y1, Y4)φ34(Y3, Y4),


φ123(Y1, Y2, Y3) = φ2(Y2)φ3(Y3)φ12(Y1, Y2)φ23(Y2, Y3).


Algorithms for constructing junction trees from triangulated graphs are described in detail


in Cowellet al. [1999].


The Viterbi algorithm for junction trees picks an arbitrary rootr for the treeT and


proceeds recursively from the leaves to compute the highest scoring subtree at a node by


combining the subtrees with highest score from its children. We denote the leaves of the


tree asLv(T ) and the children of nodec (relative to the root r) asChr(c):


φ∗l (yl) = φl(x,yl), ∀l ∈ Lv(T ), ∀yl ∈ Yl;


φ∗c(yc) = φc(x,yc)
∏


c′∈Chr(c)


max
yc′∼yc


φ∗c′(yc′), ∀c ∈ V(T ) \ Lv(T ), ∀yc ∈ Yc,
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Figure 3.4: Diamond network junction tree. Each of the original potentials is associated
with a node in the tree.


whereyc′ ∼ yc denotes whether the partial assignmentyc is consistent with the partial


assignmentyc′ on the variables in the intersection ofc andc′. The highest score is given by


maxyr φ∗r(yr). Using thearg max’s of themax’s in the computation ofφ∗, we can back-


trace the highest scoring assignment itself. Note that this algorithm is exponential in the


tree-width, the size of the largest clique. Similar type of computations using the junction


tree can be used to compute the partition functionZw(x) (by simply replacingmax by
∑


)


as well as marginal probabilitiesP (yc|x) for the cliques of the graph [Cowellet al., 1999].


3.3.3 Linear programming MAP inference


In this section, we present an alternative inference method based on linear programming.


Although solving the MAP inference using a general LP solver is less efficient than the


dynamic programming algorithms above, this formulation is crucial in viewing Markov


networks in a unified framework of the structured models we consider and to our develop-


ment of common estimation methods in later chapters. Let us begin with a linear integer


program to compute the optimal assignmenty. We represent an assignment as a set binary


variablesµc(yc), one for each cliquec and each value of the cliqueyc, that denotes whether


the assignment has that value, such that:


log
∏


c


φc(x,yc) =
∑
c,yc


µc(yc) log φc(x,yc).
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Figure 3.5: Example of marginal agreement: row sums ofµ12(y1, y2) agree withµ1(y1),
column sums agree withµ2(y2).


We call these variables marginals, as they correspond to the marginals of a distribution that


has all of its mass centered on the MAP instantiation (assuming it is unique). There are


several elementary constraints that such marginals satisfy. First, they must sum to one for


each clique. Second, the marginals for cliques that share variables are consistent. For any


clique c ∈ C and a subcliques ⊂ c, the assignment of the subclique,µs(ys), must be


consistent with the assignment of the clique,µc(yc). Together, these constraints define a


linear integer program:


max
∑
c,yc


µc(yc) log φc(x,yc) (3.2)


s.t.
∑
yc


µc(yc) = 1, ∀c ∈ C; µc(yc) ∈ {0, 1}, ∀c ∈ C, ∀yc;


µs(ys) =
∑


y′c∼ys


µc(y
′
c), ∀s, c ∈ C, s ⊂ c, ∀ys.


For example, in case the network is a chain or a tree, we will have node and edge marginals


that sum to1 and agree with each other as in Fig. 3.5.


Clearly, for any assignmenty′, we can defineµc(yc) variables that satisfy the above


constraints by settingµc(yc) = 1I(y′c = yc). We can also show that converse is true: any


valid setting ofµc(yc) corresponds to a valid assignmenty. In fact,
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Lemma 3.3.5 For a triangulated network with unique MAP assignment, the integrality


constraint in the integer program in Eq. (3.2) can be relaxed and the resulting LP is guar-


anteed to have integer solutions.


A proof of this lemma appears in Wainwrightet al. [2002]. Intuitively, the constraints force


the marginalsµc(yc) to correspond to some valid joint distribution over the assignments.


The optimal distribution with the respect to the objective puts all its mass on the MAP


assignment. If the MAP assignment is not unique, the value of the LP is the same as


the value of the integer program, and any linear combination of the MAP assignments


maximizes the LP.


In case the network is not triangulated, the set of marginals is not guaranteed to rep-


resent a valid distribution. Consider, for example, the diamond network in Fig. 3.3 with


binary variables, with the following edge marginals that are consistent with the constraints:


µ12(0, 0) = µ12(1, 1) = 0.5, µ12(1, 0) = µ12(0, 1) = 0;


µ23(0, 0) = µ23(1, 1) = 0.5, µ23(1, 0) = µ23(0, 1) = 0;


µ34(0, 0) = µ34(1, 1) = 0.5, µ34(1, 0) = µ34(0, 1) = 0;


µ14(0, 0) = µ34(1, 1) = 0, µ14(1, 0) = µ14(0, 1) = 0.5.


The corresponding node marginals must all be set to0.5. Note that the edge marginals for


(1, 2), (2, 3), (3, 4) disallow any assignment other than0000 or 1111, but the edge marginal


for (1, 4) disallows any assignment that hasY1 = Y4. Hence this set of marginals dis-


allows all assignments. If we triangulate the graph and add the cliques{Y1, Y2, Y3} and


{Y1, Y3, Y4} with their corresponding constraints, the above marginals will be disallowed.


In graphs where triangulation produces very large cliques, exact inference is intractable.


We can resort to the above LPwithouttriangulation as an approximate inference procedure


(augmented with some procedure for rounding possibly fractional solutions). In Ch. 7, we


discuss another subclass of networks where MAP inference using LPs is tractable for any


network topology, but with a restricted type of potentials.
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Figure 3.6: Example parse tree from Penn Treebank [Marcuset al., 1993].


3.4 Context free grammars


Context-free grammars are one of the primary formalisms for capturing the recursive struc-


ture of syntactic constructions [Manning & Schütze, 1999]. For example, Fig. 3.6 shows


a parse tree for the sentenceThe screen was a sea of red. This tree is from the Penn Tree-


bank [Marcuset al., 1993], a primary linguistic resource for expert-annotated English text.


The non-terminal symbols (labels of internal nodes) correspond to syntactic categories such


as noun phrase (NP), verbal phrase (VP) or prepositional phrase (PP) and part-of-speech


tags like nouns (NN), verbs (VBD), determiners (DT) and prepositions (IN). The terminal


symbols (leaves) are the words of the sentence.


For clarity of presentation, we restrict our grammars to be in Chomsky normal form2(CNF),


where all rules in the grammar are of the form:A → B C andA → D, whereA,B andC


are non-terminal symbols, andD is a terminal symbol.


Definition 3.4.1 (CFG) A CFGG consists of:


◦ A set of non-terminal symbols,N
◦ A designated set of start symbols,NS ⊆ N


2Any CFG can be represented by another CFG in CNF that generates the same set of sentences.
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◦ A set of terminal symbols,T
◦ A set of productions,P = {PB,PU}, divided into


. Binary productions,PB = {A → B C : A, B, C ∈ N} and


. Unary productions,PU = {A → D : A ∈ N , D ∈ T }.


Consider a very simple grammar:


◦ N = {S, NP, VP, PP, NN, VBD, DT, IN}
◦ NS = {S}
◦ T = {The, the, cat, dog, tree, saw, from}
◦ PB = {S → NP VP, NP → DT NN, NP → NP PP, VP → VBD NP,


VP → VP PP, PP → IN NP}.
◦ PU = {DT → The, DT → the, NN → cat, NN → dog, NN → tree, VBD → saw,


IN → from}


A grammar generates a sentence by starting with a symbol inNS and applying the


productions inP to rewrite nonterminal symbols. For example, we can generateThe cat


saw the dogby starting withS → NP VP, rewriting theNP asNP → DT NN with DT →
The andNN → cat, then rewriting theVP asVP → VBD NP with VBD → saw, again


usingNP → DT NN, but now withDT → the andNN → dog. We can represent such


derivations using trees like in Fig. 3.6 or (more compactly) using bracketed expressions


like the one below:


[[TheDT catNN]NP [sawVBD [theDT dogNN]NP]VP]S .


The simple grammar above can generate sentences of arbitrary length, since it has sev-


eral recursive productions. It can also generate the same sentence several ways. In general,


there are exponentially many parse trees that produce a sentence of lengthl. Consider the


sentenceThe cat saw the dog from the tree. The likely analysis of the sentence is that


the cat, sitting in the tree, saw the dog. An unlikely but possible alternative is that the cat
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actually saw the dog who lived near the tree or was tied to it in the past. Our grammar


allows both interpretations, with the difference being in the analysis of the top-levelVP:


[sawVBD [theDT dogNN]NP]VP [[fromIN [theDT treeNN]NP]PP,


sawVBD [[theDT dogNN]NP [fromIN [theDT treeNN]NP]PP]NP.


This kind of ambiguity, called prepositional attachment, is very common in many re-


alistic grammars. A standard approach to resolving ambiguity is to use a PCFG to define


a joint probability distribution over the space of parse treesY and sentencesX . Standard


PCFG parsers use a Viterbi-style algorithm to computearg maxy P (x,y) as the most likely


parse tree for a sentencex. The distributionP (x,y) is defined by assigning a probability


to each production and making sure that the sum of probabilities of all productions starting


with a each symbol is1:


∑
B,C:A→B C∈PB


P (A → B C) = 1,
∑


D:A→D∈PU


P (A → D ) = 1, ∀A ∈ N .


We also need to assign a probability to the different starting symbolsP (A) ∈ NS such that∑
A∈NS


P (A) = 1. The probability of a tree is simply the product of probabilities of the


productions used in the tree (times the probability of the starting symbol). Hence the log-


probability of a tree is a sum of the log-probabilities of its productions. By letting our basis


functionsf(x,y) consist of the counts of the productions andw be their log-probabilities,


we can cast PCFG as a structured linear model (in log space). In Ch. 9, we will show how


to represent a parse tree as an assignment of variablesY with appropriate constraints to


express PCFGS (and more generally weighted CFGs) in the form of Eq. (3.1) as


hw(x) = arg max
y :g(x,y)≤0


w>f(x,y),


and describe the associated algorithm to compute the highest scoring parse treey given a


sentencex.
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3.5 Combinatorial problems


Many important computational tasks are formulated as combinatorial optimization prob-


lems such as the maximum weight bipartite and perfect matching, spanning tree, graph-cut,


edge-cover, bin-packing, and many others [Lawler, 1976; Papadimitriou & Steiglitz, 1982;


Cormenet al., 2001]. These problems arise in applications such as resource allocation,


job assignment, routing, scheduling, network design and many more. In some domains,


the weights of the objective function in the optimization problem are simple and natural


to define (for example, Euclidian distance or temporal latency), but in many others, con-


structing the weights is an important and labor-intensive design task. Treated abstractly, a


combinatorial space of structures, such as matchings or graph-cuts or trees), together with


a scoring scheme that assigns weights to candidate outputs is a kind of a model.


As a particularly simple and relevant example, consider modeling the task of assigning


reviewers to papers as a maximum weight bipartite matching problem, where the weights


represent the “expertise” of each reviewer for each paper. More specifically, suppose we


would like to haveR reviewers per paper, and that each reviewer be assigned at mostP pa-


pers. For each paper and reviewer, we have an a weightqjk indicating the qualification level


of reviewerj for evaluating paperk. Our objective is to find an assignment for reviewers


to papers that maximizes the total weight. We represent a matching with a set of binary


variablesyjk that take the value1 if reviewerj is assigned to paperk, and0 otherwise. The


bipartite matching problem can be solved using a combinatorial algorithm or the following


linear program:


max
∑


j,k


µjkqjk (3.3)


s.t.
∑


j


µjk = R,
∑


k


µjk ≤ P, 0 ≤ µjk ≤ 1.


This LP is guaranteed to produce integer solutions (as long asP andR are integers) for


any weightsq(y) [Nemhauser & Wolsey, 1999].


The quality of the solution found depends critically on the choice of weights that de-


fine the objective. A simple scheme could measure the “expertise” as the percent of word







3.5. COMBINATORIAL PROBLEMS 41


overlap in the reviewer’s home page and the paper’s abstract. However, we would want to


weight certain words much more (words that are relevant to the subject and infrequent).


Constructing and tuning the weights for a problem is a difficult and time-consuming pro-


cess, just as it is for Markov networks for handwriting recognition.


As usual, we will represent the objectiveq(y) as a weighted combination of a set of


basis functionsw>f(x,y). Let xjk denote the intersection of the set of words occurring in


webpage(j)∩abstract(k), the web page of a reviewerj and the abstract of the paperk. We


can definefd(x,y) =
∑


jk yjk1I(wordd ∈ xjk), the number of times wordd was in both


the web page of a reviewer and the abstract of the paper that were matched iny. Then the


scoreqjk is simplyqjk =
∑


d wd1I(wordd ∈ xjk), a weighted combination of overlapping


words. In the next chapter we will show how to learn the parametersw in much the same


way we learn the parametersw of a Markov network.


The space of bipartite matchings illustrates an important property of many structured


spaces: the maximization problemarg maxy∈Y w>f(x,y) is easier than the normalization


problem
∑


y∈Y exp{w>f(x,y)}. The maximum weight bipartite matching can be found


in polynomial (cubic) time in the number of nodes in the graph using a combinatorial algo-


rithm. However, even simply counting the number of matchings is#P-complete [Valiant,


1979; Garey & Johnson, 1979]. Note that counting is easier than normalization, which is


essentially weighted counting. This fact makes a probabilistic interpretation of the model as


a distribution over matchings intractable to compute. Similarly, exact maximum likelihood


estimation is intractable, since it requires computing the normalization.







Chapter 4


Structured maximum margin estimation


In the previous chapter, we described several important types of structured models of the


form:


hw(x) = arg max
y :g(x,y)≤0


w>f(x,y), (4.1)


where we assume that the optimization problemmaxy :g(x,y)≤0 w>f(x,y) can be solved


or approximated by a compact convex optimization problem for some convex subset of


parametersw ∈ W . A compactproblem formulation is polynomial in the description


length of the objective and the constraints.


Given a sampleS = {(x(i),y(i))}m
i=1, we develop methods for finding parametersw


such that:


arg max
y∈Y(i)


w>f(x(i),y) ≈ y(i), ∀i,


whereY(i) = {y : g(x(i),y) ≤ 0}. In this chapter, we describe at an abstract level two


general approaches to structured estimation that we apply in the rest of the thesis. Both of


these approaches define a convex optimization problem for finding such parametersw.


There are several reasons to derive compact convex formulations. First and foremost,


we can find globally optimal parameters (with fixed precision) in polynomial time. Sec-


ond, we can use standard optimization software to solve the problem. Although special-


purpose algorithms that exploit the structure of a particular problem are often much faster


42
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(see Ch. 6), the availability of off-the-shelf software is very important for quick develop-


ment and testing of such models. Third, we can analyze the generalization performance of


the framework without worrying about the actual algorithms used to carry out the optimiza-


tion and the associated woes of intractable optimization problems: local minima, greedy


and heuristic methods, etc.


Our framework applies not only to the standard models typically estimated by prob-


abilistic methods, such as Markov networks and context-free grammars, but also to a


wide range of “unconventional” predictive models. Such models include graph cuts and


weighted matchings, where maximum likelihood estimation is intractable. We provide ex-


act maximum margin solutions for several of these problems (Ch. 7 and Ch. 10).


In prediction problems where the maximization in Eq. (4.1) is intractable, we consider


convex programs that provide only an upper or lower bound on the true solution. We


discuss how to use these approximate solutions for approximate learning of parameters.


4.1 Max-margin estimation


As in the univariate prediction, we measure the error of approximation using a loss func-


tion `. In structured problems, where we are jointly predicting multiple variables, the loss


is often not just the simple0-1 loss or squared error. For structured classification, a natural


loss function is a kind of Hamming distance betweeny(i) andh(x(i)): the number of vari-


ables predicted incorrectly. We will explore these and more general loss functions in the


following chapters.


4.1.1 Min-max formulation


Throughout, we will adopt the hinge upper bound`i(h(x(i))) on the loss function for struc-


tured classification inspired by max-margin criterion:


`i(h(x(i))) = max
y∈Y(i)


[w>fi(y) + `i(y)]−w>fi(y
(i)) ≥ `i(h(x(i))),
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where as before,̀i(h(x(i))) = `(x(i),y(i), h(x(i))), `i(h(x(i))) = `(x(i),y(i), h(x(i))), and


fi(y) = f(x(i),y). With this upper bound, the min-max formulation for structured classifi-


cation problem is analogous to multi-class SVM formulation in Eq. (2.9) and Eq. (2.10):


min
1


2
||w||2 + C


∑
i


ξi (4.2)


s.t. w>fi(y(i)) + ξi ≥ max
y∈Y(i)


[w>fi(y) + `i(y)], ∀i.


The above formulation is a convex quadratic program inw, sincemaxy∈Y(i) [w>fi(y) +


`i(y)] is convex inw (maximum of affine functions is a convex function). For brevity, we


did not explicitly include the constraint that the parameters are in some legal convex set


(w ∈ W, most often IRn), but assume this throughout this chapter.


The problem with Eq. (4.2) is that the constraints have a very unwieldy form. An-


other way to express this problem is using
∑


i |Y(i)| linear constraints, which is generally


exponential inLi, the number of variables inyi.


min
1


2
||w||2 + C


∑
i


ξi (4.3)


s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i).


This form reveals the “maximum margin” nature of the formulation. We can interpret
1


||w||w
>[fi(y


(i)) − fi(y)] as themarginof y(i) over anothery ∈ Y (i). Assumingξi are all


zero (say becauseC is very large), the constraints enforce


w>fi(y(i))−w>fi(y) ≥ `i(y),


so minimizing||w|| maximizes the smallest such margin, scaled by the loss`i(y). The


slack variablesξi allow for violations of the constraints at a costCξi. If the loss function is


not uniform over all the mistakesy 6= y(i), then the constraints make costly mistakes (those


with high `i(y)) less likely. In Ch. 5 we analyze the effect of non-uniform loss function


(Hamming distance type loss) on generalization, and show a strong connection between the


loss-scaled margin and expected risk of the learned model.


The formulation in Eq. (4.3) is a standard QP with linear constraints, but its exponential
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size is in general prohibitive. We now return to Eq. (4.2) and transform it to a a more man-


ageable problem. The key to solving Eq. (4.2) efficiently is theloss-augmentedinference


max
y∈Y(i)


[w>fi(y) + `i(y)]. (4.4)


Even ifmaxy∈Y(i) w>fi(y) can be solved in polynomial time using convex optimization, the


form of the loss term̀i(y) is crucial for the loss-augmented inference to remain tractable.


The range of tractable losses will depend strongly on the problem itself (f andY). Even


within the range of tractable losses, some are more efficiently computable than others. A


large part of the development of structured estimation methods in the following chapters


is identifying appropriate loss functions for the application and designing convex formula-


tions for the loss-augmented inference.


Assume that we find such a formulation in terms of a set of variablesµi, with a concave


(in µi) objectivef̃i(w, µi) and subject to convex constraintsg̃i(µi):


max
y∈Y(i)


[w>fi(y) + `i(y)] = max
µi:g̃i(µi)≤0


f̃i(w, µi). (4.5)


We call such formulation compact if the number of variablesµi and constraints̃gi(µi) is


polynomial inLi, the number of variables iny(i).


Note thatmaxµi:g̃i(µi)≤0 f̃i(w, µi) must be convex inw, since Eq. (4.4) is. Likewise,


we can assume that it is feasible and bounded if Eq. (4.4) is. In the next section, we de-


velop a max-margin formulation that uses Lagrangian duality (see [Boyd & Vandenberghe,


2004] for an excellent review) to define a joint, compact convex problem for estimating the


parametersw.


To make the symbols concrete, consider the example of the reviewer-assignment prob-


lem we discussed in the previous chapter: we would like a bipartite matching withR re-


viewers per paper and at mostP papers per reviewer. Each training samplei consists of a


matching ofN (i)
p papers andN (i)


r reviewers from some previous year. Letxjk denote the


intersection of the set of words occurring in the web page of a reviewerj and the abstract of


the paperk. Let yjk indicate whether reviewerj is matched to the paperk. We can define


a basis functionfd(xjk, yjk) = yjk1I(wordd ∈ xjk), which indicates whether the wordd is
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in both the web page of a reviewer and the abstract of the paper that are matched iny. We


abbreviate the vector of all the basis functions for each edgejk asyjkf
(i)
jk = f(x


(i)
jk , yjk).


We assume that the loss function decomposes over the variablesyij. For example, the


Hamming loss simply counts the number of different edges in the matchingsy andy(i):


`H
i (y) =


∑


jk


`
0/1
i,jk(yjk) =


∑


jk


1I(yjk 6= y
(i)
jk ) = RN (i)


p −
∑


jk


yjky
(i)
jk .


The last equality follows from the fact that any valid matching for examplei hasR review-


ers forN (i)
p papers, henceRN


(i)
p −∑


jk yjky
(i)
jk represents exactly the number of edges that


are different betweeny andy(i). Combining the two pieces, we have


w>f(x(i),y) =
∑


jk


[w>f(xjk, yjk) + `
0/1
i,jk(yjk)] = RN (i)


p +
∑


jk


yjk[w
>fjk − y


(i)
jk ].


The loss-augmented inference problem can be then written as an LP inµi similar


to Eq. (3.3) (without the constant termRN
(i)
p ):


max
∑


jk


µi,jk[w
>fjk − y


(i)
jk ]


s.t.
∑


j


µi,jk = R,
∑


k


µi,jk ≤ P, 0 ≤ µi,jk ≤ 1.


In terms of Eq. (4.5),̃fi andg̃i are affine inµi: f̃i(w, µi) = RN
(i)
p +


∑
i,j µi,jk[w


>fjk−y
(i)
jk ]


andg̃i(µi) ≤ 0 ⇔ ∑
j µi,jk = R,


∑
k µi,jk ≤ P, 0 ≤ µi,jk ≤ 1.


In general, when we can expressmaxy∈Y(i) w>f(x(i),y) as an LP and we use a loss


function this is linear in the number of mistakes, we have a linear program of this form for


the loss-augmented inference:


di + max (Fiw + ci)
>µi s.t. Aiµi ≤ bi, µi ≥ 0, (4.6)


for appropriately defineddi,Fi, ci,Ai,bi, which depend only onx(i), y(i), f(x,y) and


g(x,y). Note that the dependence onw is linear and only in the objective of the LP. If


this LP is compact (the number of variables and constraints is polynomial in the number of
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label variables), then we can use it to solve the max-margin estimation problem efficiently


by using convex duality.


TheLagrangian associated with Eq. (4.4) is given by


Li,w(µi, λi) = f̃i(w, µi)− λ>i g̃i(µi), (4.7)


whereλi ≥ 0 is a vector ofLagrange multipliers, one for each constraint function in


g̃i(µi). Since we assume that̃fi(w, µi) is concave inµi and bounded on the non-empty set


µi : g̃i(µi) ≤ 0, we havestrong duality:


max
µi:g̃i(µi)≤0


f̃i(w, µi) = min
λi≥0


max
µi


Li,w(µi, λi).


For many forms of̃f andg̃, we can write the Lagrangian dualminλi≥0 maxµi
Li,w(µi, λi)


explicitly as:


min hi(w, λi) (4.8)


s.t. qi(w, λi) ≤ 0,


wherehi(w, λi) and qi(w, λi) are convex in bothw and λi. (We foldedλi ≥ 0 into


qi(w, λi) for brevity.) Since the original problem had polynomial size, the dual is polyno-


mial size as well. For example, the dual of the LP in Eq. (4.6) is


di + minb>i λi s.t. A>
i λi ≥ Fiw + ci, λi ≥ 0, (4.9)


wherehi(w, λi) = di + b>i λi andqi(w, λi) ≤ 0 is {Fiw + ci −A>
i λi ≤ 0,−λi ≤ 0}.


Plugging Eq. (4.8) into Eq. (4.2), we get


min
1


2
||w||2 + C


∑
i


ξi (4.10)


s.t. w>fi(y(i)) + ξi ≥ min
qi(w,λi)≤0


hi(w, λi), ∀i.


Moreover, we can combine the minimization overλ with minimization over{w, ξ}. The
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reason for this is that if the right hand side is not at the minimum, the constraint is tighter


than necessary, leading to a suboptimal solutionw. Optimizing jointly overλ as well will


produce a solution to{w, ξ} that is optimal.


min
1


2
||w||2 + C


∑
i


ξi (4.11)


s.t. w>fi(y(i)) + ξi ≥ hi(w, λi), ∀i;
qi(w, λi) ≤ 0, ∀i.


Hence we have a joint and compact convex optimization program for estimatingw.


The exact form of this program depends strongly onf̃ andg̃. For our LP-based example,


we have a QP with linear constraints:


min
1


2
||w||2 + C


∑
i


ξi (4.12)


s.t. w>fi(y(i)) + ξi ≥ di + b>i λi, ∀i;
A>


i λi ≥ Fiw + ci, ∀i;
λi ≥ 0, ∀i.


4.1.2 Certificate formulation


In the previous section, we assumed acompactconvex formulation of the loss-augmented


max in Eq. (4.4). There are several important combinatorial problems which allow poly-


nomial time solution yet do not have a compact convex optimization formulation. For


example, maximum weight perfect (non-bipartite) matching and spanning tree problems


can be expressed as linear programs withexponentiallymany constraints, but no polyno-


mial formulation is known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these


problems, however, can be solved in polynomial time using combinatorial algorithms. In


some cases, though, we can find a compactcertificate of optimalitythat guarantees that


y(i) = arg maxy[w>fi(y) + `i(y)] without expressing loss-augmented inference as a com-


pact convex program. Intuitively, just verifying that a given assignment is optimal is some-


times easier than actually finding it.
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Consider the maximum weight spanning tree problem. A basic property of a span-


ning tree is that cutting any edge(j, k) in the tree creates two disconnected sets of nodes


(Vj[jk],Vk[jk]), wherej ∈ Vj[jk] andk ∈ Vk[jk]. A spanning tree is optimal with respect


to a set of edge weights if and only if for every edge(j, k) in the tree connectingVj[jk] and


Vk[jk], the weight of(j, k) is larger than (or equal to) the weight of any other edge(j′, k′)


in the graph withj′ ∈ Vj[jk], k′ ∈ Vk[jk] [Cormenet al., 2001]. We discuss the conditions


for optimality of perfect matchings in Ch. 10. Suppose that we can find acompactconvex


formulation of these conditions via a polynomial (inLi) set of functionsqi(w, νi), jointly


convex inw and auxiliary variablesνi:


∃νi s.t. qi(w, νi) ≤ 0 ⇔ w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀y ∈ Y(i).


Then the following joint convex program inw andν computes the max-margin parameters:


min
1


2
||w||2 (4.13)


s.t. qi(w, νi) ≤ 0, ∀i.


Expressing the spanning tree optimality does not require additional variablesνi, but in


other problems, such as in perfect matching optimality in Ch. 10, such auxiliary variables


are needed. In the spanning tree problem, supposeyjk encodes whether edge(j, k) is in


the tree and the score of the edge is given byw>fi,jk for some basis functionsf(x(i)
jk , yjk).


We also assume that the loss function decomposes into a sum of losses over the edges, with


loss for each wrong edge given by`i,jk. Then the optimality conditions are:


w>fi,jk ≥ w>fi,j′k′ + `i,j′k′ , ∀jk, j′k′ s.t. y
(i)
jk = 1, j′ ∈ Vj[jk], k′ ∈ Vk[jk].


For a full graph, we have
(|V(i)|3) constraints for each examplei, where|V(i)| is the number


of nodes in the graph for examplei.


Note that this formulation does not allow for violations of the margin constraints (it has


no slack variablesξi). If the basis functions are not sufficiently rich to ensure that eachy(i)


is optimal, then Eq. (4.1.2) may be infeasible. Essentially, this formulation requires that


the upper bound on the empirical risk be zero,R`
S[hw] = 0, and minimizes the complexity
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of the hypothesishw as measured by the norm of the weights.


If the problem is infeasible, the designer could add more basis functionsf(x,y) that


take into account additional information aboutx. One could also add slack variables for


each example and each constraint that would allow violations of optimality conditions with


some penalty. However, these slack variables would not represent upper bounds on the loss


as they are in the min-max formulation, and therefore are less justified.


4.2 Approximations: upper and lower bounds


There are structured prediction tasks for which we might not be able to solve the estimation


problem exactly. Often, we cannot computemaxy∈Y(i) [w>fi(y) + `i(y)] exactly or explic-


itly, but can only upper or lower bound it. Fig. 4.1 shows schematically how approximating


of the max subproblem reduces or extends the feasible space ofw andξ and leads to ap-


proximate solutions. The nature of these lower and upper bounds depends on the problem,


but we consider two general cases below.


4.2.1 Constraint generation


When neither compact maximization or optimality formulation is possible, but the max-


imization problem can be solved or approximated by a combinatorial algorithm, we can


resort toconstraint generationor cutting planemethods. Consider Eq. (4.3), where we


have an exponential number of linear constraints, one for eachi andy ∈ Y (i). Only a sub-


set of those constraints will be active at the optimal solutionw. In fact, not more than the


number of parametersn plus the number of examplesm can be active in general, since that


is the number of variables. If we can identify a small number of constraints that are critical


to the solution, we do not have to include all of them. Of course, identifying these con-


straints is in general as difficult as solving the problem, but a greedy approach of adding the


most violated constraints often achieves good approximate solutions after adding a small


(polynomial) number of constraints. If we continue adding constraints until there are no


more violated ones, the resulting solution is optimal.


We assume that we have an algorithm that producesy = arg maxy∈Y(i) [w>fi(y) +
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Upper-bound
Exact 
Lower-bound 


×
+


Figure 4.1: Exact and approximate constraints on the max-margin quadratic program. The
solid red line represents the constraints imposed by the assignmentsy ∈ Y(i), whereas the
dashed and dotted lines represent approximate constraints. The approximate constraints
may coincide with the exact constraints in some cases, and be more stringent or relaxed in
others. The parabolic contours represent the value of the objective function and ‘+’, ‘x’ and
‘o’ mark the different optima.


`i(y)]. The algorithm is described in Fig. 4.2. We maintain, for each examplei, a small


but growing set of assignments̃Y(i) ⊂ Y(i). At each iteration, we solve the problem with a


subset of constraints:


min
1


2
||w||2 + C


∑
i


ξi (4.14)


s.t. w>fi(y(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).


The only difference between Eq. (4.3) and Eq. (4.14) is thatY(i) has been replaced bỹY(i).


We then computey = arg maxy∈Y(i) [w>fi(y) + `i(y)] for eachi and check whether the


constraintw>fi(y(i)) + ξi + ε ≥ w>fi(y) + `i(y), is violated, whereε is a user defined


precision parameter. If it is violated, we setỸ(i) = Ỹ(i) ∪ y. The algorithm terminates


when no constraints are violated. In Fig. 4.1, the lower-bound on the constraints provided


by Ỹ(i)∪y keeps tightening with each iteration, terminating when the desired precisionε is


reached. We note that if the algorithm that producesy = arg maxy∈Y(i) [w>fi(y)+`i(y)] is
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Input: precision parameterε.


1. Initialize: Ỹ(i) = {}, ∀ i.


2. Setviolation = 0 and solve forw andξ by optimizing


min
1


2
||w||2 + C


∑
i


ξi


s.t. w>fi(y
(i)) + ξi ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Ỹ(i).


3. For eachi,
Computey = arg maxy∈Y(i) [w>fi(y) + `i(y)],
if w>fi(y(i)) + ξi + ε ≤ w>fi(y) + `i(y),
then setỸ(i) = Ỹ(i) ∪ y andviolation = 1


4. if violation = 1 goto 2.


Returnw.


Figure 4.2: A constraint generation algorithm.


suboptimal, the approximation error of the solution we achieve might be much greater than


ε. The number of constraints that must be added before the algorithm terminates depends


on the precisionε and problem specific characteristics. See [Bertsimas & Tsitsiklis, 1997;


Boyd & Vandenberghe, 2004] for a more in-depth discussion of cutting planes methods.


This approach may also be computationally faster in providing a very good approximation


in practice if the explicit convex programming formulation is polynomial in size, but very


large, while the maximization algorithm is comparatively fast.


4.2.2 Constraint strengthening


In many problems, the maximization problem we are interested in may be very expensive


or intractable. For example, we consider MAP inference in large tree-width Markov net-


works in Ch. 8, multi-way cut in Ch. 7, graph-partitioning in Ch. 11. Many such problems


can be written asintegerprograms. Relaxations of such integer programs into LPs, QPs


or SDPs often provide excellent approximation algorithms [Hochbaum, 1997; Nemhauser


& Wolsey, 1999]. The relaxation usually defines a larger feasible spaceỸ (i) ⊃ Y(i) over
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which the maximization is done, wherey ∈ Ỹ(i) may correspond to a “fractional” assign-


ment. For example, a solution to the MAP LP in Eq. (3.2) for an untriangulated network


may not correspond to any valid assignment. In such a case, the approximation is an over-


estimate of the constraints:


max
y∈Ỹ(i)


[w>fi(y) + `i(y)] ≥ max
y∈Y(i)


[w>fi(y) + `i(y)].


Hence the constraint set is tightened with such invalid assignments. Fig. 4.1 shows how the


over-estimate reduces the feasible space ofw andξ.


Note that for every setting of the weightsw that produces fractional solutions for the


relaxation, the approximate constraints are tightened because of the additional invalid as-


signments. In this case, the approximate MAP solution has higher value than any integer


solution, including the true assignmenty(i), thereby driving up the corresponding slackξi.


By contrast, for weightsw for which the MAP approximation is integer-valued, the margin


has the standard interpretation as the difference between the score ofy(i) and the MAPy


(according tow). As the objective includes a penalty for the slack variable, intuitively,


minimizing the objective tends to drive the weightsw away from the regions where the so-


lutions to the approximation are fractional. In essence, the estimation algorithm is finding


weights that are not necessarily optimal for anexactmaximization algorithm, but (close to)


optimal for the particularapproximatemaximization algorithm used. In practice, we will


show experimentally that such approximations often work very well.


4.3 Related work


Our max-margin formulation is related to a body of work called inverse combinatorial and


convex optimization [Burton & Toint, 1992; Zhang & Ma, 1996; Ahuja & Orlin, 2001;


Heuberger, 2004]. Aninverse optimization problemis defined by an instance of an opti-


mization problemmaxy∈Y w>f(y), a set of nominal weightsw0, and a target solutionyt.


The goal is to find the weightsw closest to the nominalw0 in some norm, which make the
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target solution optimal:


min ||w −w0||p
s.t. w>f(yt) ≥ w>f(y), ∀y ∈ Y .


Most of the attention has been onL1 andL∞ norms, butL2 norm is also used.


The study of inverse problems began with geophysical scientists (see [Tarantola, 1987]


for in-depth discussion of a wide range of applications). Modeling a complex physical


system often involves a large number of parameters which scientists find hard or impossible


to set correctly. Provided educated guesses for the parametersw0 and the behavior of the


system as a target, the inverse optimization problem attempts to match the behavior while


not perturbing the “guesstimate” too much.


Although there is a strong connection between inverse optimization problems and our


formulations, the goals are very different than ours. In our framework, we are learning


a parameterized objective function that depends on the inputx and will generalize well


in prediction on new instances. Moreover, we do not assume as given a nominal set of


weights. Note that if we setw0 = 0, thenw = 0 is trivially the optimal solution. The


solutionw depends critically on the choice of nominal weights, which is not appropriate in


the learning setting.


The inverse reinforcement learning problem [Ng & Russell, 2000; Abbeel & Ng, 2004]


is much closer to our setting. The goal is to learn a reward function that will cause a rational


agent to act similar to the observed behavior of an expert. A full description of the problem


is beyond our scope, but we briefly describe the Markov decision process (MDP) model


commonly used for sequential decision making problems where an agent interacts with its


environment. The environment is modeled as a system that can be in one of a set of discrete


states. At every time step, the agent chooses an action from a discrete set of actions and the


system transitions to a next state with a probability that depends on the current state and


the action taken. The agent collects a reward at each step, which generally depends on the


on the current and the next state and the action taken. A rational agent executes a policy


(essentially, a state to action mapping) that maximizes its expected reward. To map this


problem (approximately) to our setting, note that a policy roughly corresponds to the labels
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y, the state sequence correspond to the inputx and the reward for a state/action sequence is


assumed to bew>f(x,y) for some basis functionsw>f(x,y). The goal is to learnw from a


set of state/action sequences(x(i),y(i)) of the expert such that the maximizing the expected


reward according to the system model makes the agent imitate the expert. This and related


problems are formulated as a convex program in Ng and Russell [2000] and Abbeel and


Ng [2004].


4.4 Conclusion


In this chapter, we presented two formulations of structured max-margin estimation that


define a compact convex optimization problem. The first formulation,min-max, relies on


the ability to express inference in the model as a compact convex optimization problem.


The second one,certificate, only requires expressing optimality of a given assignment ac-


cording to the model. Our framework applies to a wide range of prediction problems that


we explore in the rest of the thesis, including Markov networks, context free grammars, and


many combinatorial structures such as matchings and graph-cuts. The estimation problem


is tractable and exact whenever the prediction problem can be formulated as a compact


convex optimization problem or a polynomial time combinatorial algorithm with compact


convex optimality conditions. When the prediction problem is intractable or very expen-


sive to solve exactly, we resort to approximations that only provide upper/lower bounds


on the predictions. The estimated parameters are then approximate, but produce accurate


approximateprediction models in practice.


Because our approach only relies using the maximum in the model for prediction, and


does not require a normalized distributionP (y | x) over all outputs, maximum margin


estimation can be tractable when maximum likelihood is not. For example, to learn a prob-


abilistic modelP (y | x) over bipartite matchings using maximum likelihood requires com-


puting the normalizing partition function, which is#P-complete [Valiant, 1979; Garey &


Johnson, 1979]. By contrast, maximum margin estimation can be formulated as a compact


QP with linear constraints. Similar results hold for non-bipartite matchings and min-cuts.


In models that are tractable for both maximum likelihood and maximum margin, (such


as low-treewidth Markov networks, context free grammars, many other problems in which
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inference is solvable by dynamic programming), our approach has an additional advantage.


Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual


space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-


lihood estimation with kernels results in models that are generally non-sparse and require


pruning or greedy support vector selection methods [Laffertyet al., 2004; Altunet al.,


2004].


The forthcoming formulations in the thesis follow the principles laid out in this chapter.


The range of applications of these principles is very broad and leads to estimation prob-


lems with very interesting structure in each particular problem, from Markov networks and


context-free grammars to graph cuts and perfect matchings.







Part II


Markov networks
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Chapter 5


Markov networks


Markov networks are extensively used to model complex sequential, spatial, and relational


interactions in prediction problems arising in many fields. These problems involve labeling


a set of related objects that exhibitlocal consistency. Insequentiallabeling problems (such


as handwriting recognition), the labels (letters) of adjacent inputs (images) are highly corre-


lated. Sequential prediction problems arise in natural language processing (part-of-speech


tagging, speech recognition, information extraction [Manning & Schütze, 1999]), compu-


tational biology (gene finding, protein structure prediction, sequence alignment [Durbin


et al., 1998]), and many other fields. In image processing, neighboring pixels exhibitspa-


tial label coherence in denoising, segmentation and stereo correspondence [Besag, 1986;


Boykov et al., 1999a]. In hypertext or bibliographic classification, labels of linked and


co-cited documents tend to be similar [Chakrabartiet al., 1998; Taskaret al., 2002]. In


proteomic analysis, location and function of proteins that interact are often highly corre-


lated [Vazquezet al., 2003]. Markov networks compactly represent complex joint distribu-


tions of the label variables by modeling their local interactions. Such models are encoded


by a graph, whose nodes represent the different object labels, and whose edges represent


and quantify direct dependencies between them. For example, a Markov network for the


hypertext domain would include a node for each webpage, encoding its label, and an edge


between any pair of webpages whose labels are directly correlated (e.g., because one links


to the other).


We address the problem of max-margin estimation the parameters of Markov networks
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for such structured classification problems. We show a compact convex formulation that


seamlessly integrates kernels with graphical models. We analyze the theoretical general-


ization properties of max-margin estimation and derive a novel margin-based bound for


structured classification.


We are given a labeled training sampleS = {(x(i),y(i))}m
i=1, drawn from a fixed dis-


tribution D overX × Y. We assume the structure of the network is given: we have a


mapping from an inputx to the corresponding Markov network graphG(x) = {V , E}
where the nodesV map to the variables iny. We abbreviateG(x(i)) asG(i) below. In hand-


writing recognition, this mapping depends on the segmentation algorithm that determines


how many letters the sample image contains and splits the image into individual images


for each letter. It also depends on the basis functions we use to model the dependencies of


the problem, for example, first-order Markov chain or a higher-order models. Note that the


topology and size of the graphG(i), might be different for each examplei. For instance, the


training sequences might have different lengths.


We focus onconditional Markov networks (or CRFs [Laffertyet al., 2001]), which


representP (y | x) instead ofgenerativemodelsP (x,y). The log-linear representation we


have described in Sec. 3.3.1 is defined via a vector ofn basis functionsf(x,y):


log Pw(y | x) = w>f(x,y)− log Zw(x),


whereZw(x) =
∑


y exp{w>f(x,y)} andw ∈ IRn. Before we present the maximum


margin estimation, we review the standard maximum likelihood method.


5.1 Maximum likelihood estimation


The regularized maximum likelihood approach of learning the weightsw of a Markov net-


work is similar to logistic regression we described in Sec. 2.2. The objective is to minimize


the training log-loss with an additional regularization term, usually the squared-norm of the


weightsw [Lafferty et al., 2001]:


1


2
||w||2 − C


∑
i


log Pw(y(i) | x(i)) =
1


2
||w||2 + C


∑
i


log Zw(x(i))−w>fi(y(i)),
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wherefi(y) = f(x(i),y).


This objective function is convex in the parametersw, so we have an unconstrained


convex optimization problem. The gradient with respect tow is given by:


w + C
∑


i


[
Ei,w[fi(y)]− fi(y


(i))
]


= w − C
∑


i


Ei,w[∆fi(y)],


whereEi,w[fi(y)] =
∑


y∈Y fi(y)Pw(y | x(i)) is the expectation under the conditional dis-


tributionPw(y | x(i)) and∆fi(y) = f(x(i),y(i))− f(x(i),y), as before. To compute the ex-


pectations, we can use inference in the Markov network to calculate marginalsPw(yc | x(i))


for each cliquec in the network Sec. 3.3.2. Since the basis functions decompose over the


cliques of the network, the expectation decomposes as well:


Ei,w[fi(y)] =
∑


c∈C(i)


∑


yc∈Y(i)
c


fi,c(yc)Pw(yc | x(i)).


Second order methods for solving unconstrained convex optimization problems, such


as Newton’s method, require the second derivatives as well as the gradient. Letδfi(y) =


fi(y) − Ei,w[fi(y)]. The Hessian of the objective depends on the covariances of the basis


functions:


I + C
∑


i


Ei,w


[
δfi(y)δfi(y)>


]
,


whereI is a n × n identity matrix. Computing the Hessian is more expensive than the


gradient, since we need to calculate joint marginals of every pair of cliquesc and c′,


Pw(yc∪c′ | xi) as well as covariances of all basis functions, which is quadratic in the num-


ber of cliques and the number of functions. A standard approach is to use an approximate


second order method that does not need to compute the Hessian, but uses only the gradient


information [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004]. Conjugate Gradients


or L-BFGS methods have been shown to work very well on large estimation problems [Sha


& Pereira, 2003; Pintoet al., 2003], even with millions of parametersw.
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5.2 Maximum margin estimation


For maximum-margin estimation, we begin with the min-max formulation from Sec. 4.1:


min
1


2
||w||2 + C


∑
i


ξi (5.1)


s.t. w>fi(y(i)) + ξi ≥ max
y


[w>fi(y) + `i(y)], ∀i.


We know from Sec. 3.3.3 how to expressmaxy w>fi(y) as an LP, but the important differ-


ence is the loss functioǹi. The simplest loss is the0/1 loss`i(y) ≡ 1I(y(i) 6= y). In fact


this loss for sequence models was used by Collins [2001] and Altunet al. [2003]. However,


in structured problems, where we are predicting multiple labels, the loss is often not just


the simple0/1 loss, but may depend on the number of labels and type of labels predicted


incorrectly or perhaps the number of cliques of labels predicted incorrectly. In general, we


assume that the loss, like the basis functions, decomposes over the cliques of labels.


Assumption 5.2.1 The loss functioǹi(y) is decomposable:


`i(y) =
∑


c∈C(G(i))


`(x(i)
c ,y(i)


c ,yc) =
∑


c∈C(G(i))


`i,c(yc).


We will focus on decomposable loss functions below. A natural choice that we use in our


experiments is the Hamming distance:


`H(x(i),y(i),y) =
∑


v∈V(i)


1I(y(i)
v 6= yv).


With this assumption, we can express this inference problem for a triangulated graph


as a linear program for each examplei as in Sec. 3.3.3:


max
∑
c,yc


µi,c(yc)[w
>fi,c(yc) + `i,c(yc)] (5.2)


s.t.
∑
yc


µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀c ∈ C(i), ∀yc;


µi,s(ys) =
∑


y′c∼ys


µi,c(y
′
c), ∀s, c ∈ C(i), s ⊂ c, ∀ys,
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whereC(i) = C(G(i)) are the cliques of the Markov network for examplei.


As we showed before, the constraints ensure that theµi’s form a proper distribution. If


the most likely assignment is unique, then the distribution that maximizes the objective puts


all its weight on that assignment. (If thearg max is not unique, any convex combination of


the assignments is a valid solution). The dual of Eq. (5.2) is given by:


min
∑


c


λi,c (5.3)


s.t. λi,c +
∑
s⊃c


mi,s,c(yc)−
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i), ∀yc.


In this dual, theλi,c variables correspond to the normalization constraints, whilemi,c,s(yc)


variables correspond to the agreement constraints in the primal in Eq. (5.2).


Plugging the dual into Eq. (5.1) for each examplei and maximizing jointly over all the


variables (w, ξ, λ andm), we have:


min
1


2
||w||2 + C


∑
i


ξi (5.4)


s.t. w>fi(y(i)) + ξi ≥
∑
i,c


λi,c, ∀i;


λi,c +
∑
s⊃c


mi,s,c(yc)−
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s) ≥ w>fi,c(yc) + `i,c(yc), ∀c ∈ C(i),∀yc.


In order to gain some intuition about this formulation, we make a change of variables from


λi,c to ξi,c:


λi,c = w>fi,c(y(i)
c ) + ξi,c, ∀i, ∀c ∈ C(i).


The reason for naming the new variables using the letterξ will be clear in the following. For


readability, we also introduce variables that capture the effect of all the agreement variables


m:


Mi,c(yc) =
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s)−


∑
s⊃c


mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.
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With these new variables, we have:


min
1


2
||w||2 + C


∑
i


ξi (5.5)


s.t. ξi ≥
∑


c


ξi,c, ∀i;


w>fi,c(y(i)
c ) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;


Mi,c(yc) =
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s)−


∑
s⊃c


mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.


Note thatξi =
∑


c ξi,c at the optimum, since the slack variableξi only appears only in the


constraintξi ≥
∑


c ξi,c and the objective minimizesCξi. Hence we can simply eliminate


this set of variables:


min
1


2
||w||2 + C


∑
i,c


ξi,c (5.6)


s.t. w>fi,c(y(i)
c ) + ξi,c ≥ w>fi,c(yc) + `i,c(yc) + Mi,c(yc), ∀i, ∀c ∈ C(i), ∀yc;


Mi,c(yc) =
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s)−


∑
s⊃c


mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.


Finally, we can write this in a form that resembles our original formulation Eq. (5.1), but


defined at a local level, for each clique:


min
1


2
||w||2 + C


∑
i,c


ξi,c (5.7)


s.t. w>fi,c(y(i)
c ) + ξi,c ≥ max


yc


[w>fi,c(yc) + `i,c(yc) + Mi,c(yc)], ∀i, ∀c ∈ C(i);


Mi,c(yc) =
∑


s⊂c, y′s∼yc


mi,c,s(y
′
s)−


∑
s⊃c


mi,s,c(yc), ∀i, ∀c ∈ C(i), ∀yc.


Note that withoutMi,c andmi,c,s variables, we essentially treat each clique as an indepen-


dent classification problem: for each clique we have a hinge upper-bound on the local loss,


or a margin requirement. Themi,c,s(ys) variables correspond to a certain kind of messages


between cliques that distribute “credit” to cliques to fulfill this margin requirement from


other cliques which have sufficient margin.
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Figure 5.1: First-order chain shown as a set of cliques (nodes and edges). Also shown are
the corresponding local slack variablesξ for each clique and messagesm between cliques.


As an example, consider the first-order Markov chain in Fig. 5.1. The set of cliques


consists of the five nodes and the four edges. Suppose for the sake of this example that


our training data consists of only one training sample. The figure shows the local slack


variablesξ and messagesm between cliques for this sample. For brevity of notion in this


example, we drop the dependence on the sample indexi in the indexing of the variables


(we also usedy(∗)
j instead ofy(i)


j below). For concreteness, below we use the Hamming


loss`H , which decomposes into local terms`j(yj) = 1I(yj 6= y
(∗)
j ) for each node and is


zero for the edges.


The constraints associated with the node cliques in this sequence are:


w>f1(y
(∗)
1 ) + ξ1 ≥ w>f1(y1) + 1I(y1 6= y


(∗)
1 )−m1,12(y1), ∀y1;


w>f2(y
(∗)
2 ) + ξ2 ≥ w>f2(y2) + 1I(y2 6= y


(∗)
2 )−m2,12(y2)−m2,23(y2), ∀y2;


w>f3(y
(∗)
3 ) + ξ3 ≥ w>f3(y3) + 1I(y3 6= y


(∗)
3 )−m3,23(y3)−m3,34(y3), ∀y3;


w>f4(y
(∗)
4 ) + ξ4 ≥ w>f4(y4) + 1I(y4 6= y


(∗)
4 )−m4,34(y4)−m4,45(y4), ∀y4;


w>f5(y
(∗)
5 ) + ξ5 ≥ w>f5(y5) + 1I(y5 6= y


(∗)
5 )−m5,45(y5), ∀y5.
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The edge constraints are:


w>f12(y
(∗)
1 , y


(∗)
2 ) + ξ12 ≥ w>f12(y1, y2) + m1,12(y1) + m2,12(y2), ∀y1, y2;


w>f23(y
(∗)
2 , y


(∗)
3 ) + ξ23 ≥ w>f23(y2, y3) + m2,23(y2) + m3,23(y3), ∀y2, y3;


w>f34(y
(∗)
3 , y


(∗)
4 ) + ξ34 ≥ w>f34(y3, y4) + m3,34(y3) + m4,34(y4), ∀y3, y4;


w>f45(y
(∗)
4 , y


(∗)
5 ) + ξ45 ≥ w>f45(y4, y5) + m4,45(y4) + m5,45(y5), ∀y4, y5.


5.3 M3N dual and kernels


In the previous section, we showed a derivation of a compact formulation based on LP


inference. In this section, we develop an alternative dual derivation that provides a very


interesting interpretation of the problem and is a departure for special-purpose algorithms


we develop. We begin with the formulation as in Eq. (4.3):


min
1


2
||w||2 + C


∑
i


ξi (5.8)


s.t. w>∆fi(y) ≥ `i(y)− ξi, ∀i,y,


where∆fi(y) ≡ f(x(i),y(i))− f(x(i),y). The dual is given by:


max
∑
i,y


αi(y)`i(y)− 1


2


∣∣∣∣∣


∣∣∣∣∣
∑
i,y


αi(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


(5.9)


s.t.
∑
y


αi(y) = C, ∀i; αi(y) ≥ 0, ∀i,y.


In the dual, the exponential number ofαi(y) variables correspond to the exponential num-


ber of constraints in the primal. We make two small transformations to the dual that do not


change the problem: we normalizeα’s by C (by lettingαi(y) = Cα′i(y)), so that they sum
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to 1 and divide the objective byC. The resulting dual is given by:


max
∑
i,y


αi(y)`i(y)− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑
i,y


αi(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


(5.10)


s.t.
∑
y


αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i,y.


As in multi-class SVMs, the solution to the dualα gives the solution to the primal as a


weighted combination:w∗ = C
∑


i,y α∗i (y)∆fi(y).


Our main insight is that the variablesαi(y) in the dual formulation Eq. (5.10) can be


interpreted as a kind ofdistributionovery, since they lie in the simplex


∑
y


αi(y) = 1; αi(y) ≥ 0, ∀y.


This dual distribution does not represent the probability that the model assigns to an instan-


tiation, but the importance of the constraint associated with the instantiation to the solution.


The dual objective is a function of expectations of`i(y) and∆fi(y) with respect toαi(y).


Since`i(y) =
∑


c `i,c(yc) and∆fi(y) =
∑


c ∆fi,c(yc) decompose over the cliques of the


Markov network, we only need clique marginals of the distributionαi(y) to compute their


expectations. We define the marginal dual variables as follows:


µi,c(yc) =
∑


y′∼yc


αi(y
′), ∀i, ∀c ∈ C(i), ∀yc, (5.11)


wherey′ ∼ yc denotes whether the partial assignmentyc is consistent with the full assign-


menty′. Note that the number ofµi,c(yc) variables is small (polynomial) compared to the


number ofαi(y) variables (exponential) if the size of the largest clique is constant with


respect to the size of the network.


Now we can reformulate our entire QP (5.10) in terms of these marginal dual variables.


Consider, for example, the first term in the objective function (fixing a particulari):


∑
y


αi(y)`i(y) =
∑
y


αi(y)
∑


c


`i,c(yc) =
∑
c,yc


`i,c(yc)
∑


y′∼yc


αi(y
′) =


∑
c,yc


µi,c(yc)`i,c(yc).
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The decomposition of the second term in the objective is analogous.


∑
y


αi(y)∆fi(y) =
∑
c,yc


∆fi,c(yc)
∑


y′∼yc


αi(y
′) =


∑
c,yc


µi,c(yc)∆fi,c(yc).


Let us denote the the objective of Eq. (5.10) asQ(α). Note that it only depends on


αi(y) through its marginalsµi,c(yc), that is,Q(α) = Q′(M(α)), whereM denotes the


marginalization operator defined by Eq. (5.11) . The domain of this operator,D[M], is


the product of simplices for all them examples. What is its range,R[M], the set of legal


marginals? Characterizing this set (also known asmarginal polytope) compactly will allow


us to work in the space ofµ’s:


max
α∈D[M]


Q(α) ⇔ max
µ∈R[M]


Q′(µ).


Hence we must ensure thatµi corresponds tosomedistributionαi, which is exactly


what the constraints in the LP for MAP inference enforce (see discussion of Lemma 3.3.5).


Therefore, when allG(i) are triangulated, the followingstructureddual QP has the same


primal solution (w∗) as the originalexponentialdual QP in Eq. (5.10):


max
∑
i,c,yc


µi,c(yc)`i,c(yc)− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑
i,c,yc


µi,c(yc)∆fi,c(yc)


∣∣∣∣∣


∣∣∣∣∣


2


(5.12)


s.t.
∑
yc


µi,c(yc) = 1, ∀i, ∀c ∈ C(i); µi,c(yc) ≥ 0, ∀i, ∀c ∈ C(i), ∀yc;


µi,s(ys) =
∑


y′c∼ys


µi,c(y
′
c), ∀i, ∀s, c ∈ C(i), s ⊂ c, ∀ys.


The solution to the structured dualµ∗ gives us the primal solution:


w∗ = C
∑
i,c,yc


µ∗i,c(yc)∆fi,c(yc).


In this structured dual, we only enforce that there exists anαi consistent withµi, but do


not make a commitment about what it is. In general, theα distribution is not unique, but


there is a continuum of distributions consistent with a set of marginals. The objective of
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the QP Eq. (5.10) does not distinguish between these distributions, since it only depends on


their marginals. The maximum-entropy distributionαi consistent with a set of marginals


µi, however, is unique for a triangulated model and can be computed using the junction tree


T (i) for the network [Cowellet al., 1999].


Specifically, associated with each edge(c, c′) in the treeT (i) is a set of variables called


the separators = c ∩ c′. Note that each separators and complement of a separatorc \ s is


also a clique of the original graph, since it is a subclique of a larger clique. We denote the


set of separators asS(i). Now we can define the maximum-entropy distributionαi(y) as


follows:


αi(y) =


∏
c∈T (i) µi,c(yc)∏
s∈S(i) µi,s(ys)


. (5.13)


Again, by convention0/0 ≡ 0.


Kernels


Note that the solution is a weighted combination of local basis functions and the objective


of Eq. (5.12) can be expressed in terms of dot products between local basis functions


∆fi,c(yc)
>∆fj,c̄(yc̄) = [f(x(i)


c ,y(i)
c )− f(x(i)


c ,yc)]
>[f(x


(j)
c̄ ,y


(j)
c̄ )− f(x


(j)
c̄ ,yc̄)].


Hence, we can locally kernelize our models and solve Eq. (5.12) efficiently. Kernels are


typically defined on the input, e.g.k(x
(i)
c ,x


(j)
c̄ ). In our handwriting example, we use a


polynomial kernel on the pixel values for the node cliques. We usually extend the kernel


over the input space to the joint input and output space by simply defining


f(xc,yc)
>f(xc̄,yc̄) ≡ 1I(yc = yc̄)k(xc,xc̄).


Of course, other definitions are possible and may be useful when the assignments in each


clique yc have interesting structure. In Sec. 6.2 we experiment with several kernels for


the handwriting example. As in SVMs, the solutions to the max-margin QP are typically


sparse in theµ variables. Hence, each log-potential in the network “remembers” only a


small proportion of the relevant training data inputs.
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Figure 5.2: Diamond Markov network (added triangulation edge is dashed and three-node
marginals are in dashed rectangles).


5.4 Untriangulated models


If the underlying Markov net is not chordal, we must address the problem by triangulating


the graph, that is, adding fill-in edges to ensure triangulation. For example, if our graph is


a 4-cycleY1—Y2—Y3—Y4—Y1 as in Fig. 5.2, we can triangulate the graph by adding an


arcY1—Y3. This will introduce new cliquesY1, Y2, Y3 andY1, Y3, Y4 and the corresponding


marginals,µ123(y1, y2, y3) andµ134(y1, y3, y4). We can then use this new graph to produce


the constraints on the marginals:


∑
y1


µ123(y1, y2, y3) = µ23(y2, y3), ∀y2, y3;


∑
y3


µ123(y1, y2, y3) = µ12(y1, y2), ∀y1, y2;


∑
y1


µ134(y1, y3, y4) = µ34(y3, y4), ∀y3, y4;


∑
y3


µ134(y1, y3, y4) = µ13(y1, y3), ∀y1, y3.


The new marginal variables appear only in the constraints; they do not add any new basis


functions nor change the objective function.
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In general, the number of constraints introduced is exponential in the number of vari-


ables in the new cliques — the tree-width of the graph. Unfortunately, even sparsely con-


nected networks, for example 2D grids often used in image analysis, have large tree-width.


However, we can still solve the QP in the structured primal Eq. (5.6) or the structured


dual Eq. (5.12) defined by an untriangulated graph. Such a formulation, which enforces


only local consistency of marginals, optimizes our objective only over a relaxation of the


marginal polytope. However, the learned parameters produce very accurate approximate


models in practice, as experiments in Ch. 8 demonstrate.


Note that we could also strengthen the untriangulated relaxation without introducing


an exponential number of constraints. For example, we can add positive semidefinite con-


straints on the marginalsµ used by Wainwright and Jordan [2003], which tend to improve


the approximation of the marginal polytope. Although this and other more complex relax-


ations are a very interesting area of future development, they are often much more expen-


sive.


The approximate QP does not guarantee that the learned model usingexactinference


minimizes the true objective: (upper-bound on) empirical risk plus regularization. But do


we really need these optimal parameters if we cannot perform exact inference? A more


useful goal is to make sure that training error is minimized using theapproximateinfer-


ence procedure via the untriangulated LP. We conjecture that the parameters learned by


the approximate QP in fact do that to some degree. For instance, consider the separable


case, where 100% accuracy is achievable on the training data by some parameter settingw


such that approximate inference (using the untriangulated LP) produces integral solutions.


Solving the problem asC → ∞ will find this solution even though it may not be optimal


(in terms of the norm of thew) using exact inference. ForC in intermediate range, the


formulation trades off fractionality of the untriangulated LP solutions with complexity of


the weights||w||2.


5.5 Generalization bound


In this section, we show a generalization bound for the task of structured classification that


allows us to relate the error rate on the training set to the generalization error. To the best
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of our knowledge, this bound is the first to deal with structured error, such as the Hamming


distance. Our analysis of Hamming loss allows to prove a significantly stronger result than


previous bounds for the0/1 loss, as we detail below.


Our goal in structured classification is often to minimize the number of misclassified


labels, or the Hamming distance betweeny andh(x). An appropriate error function is the


average per-label loss


L(w,x,y) =
1


L
`H(y, arg max


y′
w>f(x,y′)),


whereL is the number of label variables iny. As in other generalization bounds for margin-


based classifiers, we relate the generalization error to the margin of the classifier. Consider


an upper bound on the above loss:


L(w,x,y) ≤ L(w,x,y) = max
y′: w>f(y)≤w>f(y′)


1


L
`H(y,y′).


This upper bound is tight ify = arg maxy′ w
>f(x,y′), Otherwise, it is adversarial: it


picks from ally′ which are better (w>f(y) ≤ w>f(y′)), one that maximizes the Hamming


distance fromy. We can now define aγ-margin per-label loss:


L(w,x,y) ≤ L(w,x,y) ≤ Lγ(w,x,y) = max
y′: w>f(y)≤w>f(y′)+γ`H(y,y′)


1


L
`H(y,y′).


This upper bound is even more adversarial: it is tight ify = arg maxy′ [w
>f(x,y′) +


`H(y,y′)], otherwise, it picks from ally′ which are betterwhen helped byγ`H(y,y′), one


that maximizes the Hamming distance fromy. Note that the loss we minimize in the max-


margin formulation is very closely related (although not identical to) this upper bound.


We can now prove that the generalization accuracy of any hypothesisw is bounded by


its empiricalγ-margin per-label loss, plus a term that grows inversely with the margin.To


state the bound, we need to define several other factors it depends upon. LetNc be the


maximum number of cliques inG(x), Vc be the maximum number of values in a clique


|Yc|, q be the maximum number of cliques that have a variable in common, andRc be


an upper-bound on the 2-norm of clique basis functions. Consider a first-order sequence
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model as an example, withL as the maximum length, andV the number of values a variable


takes. ThenNc = 2L − 1 since we haveL node cliques andL − 1 edge cliques;Vc = V 2


because of the edge cliques; andq = 3 since nodes in the middle of the sequence participate


in 3 cliques: previous-current edge clique, node clique, and current-next edge clique.


Theorem 5.5.1 For the family of hypotheses parameterized byw, and anyδ > 0, there
exists a constantK such that for anyγ > 0 per-label margin, andm > 1 samples, the
expected per-label loss is bounded by:


ED[L(w,x,y)] ≤ ES [Lγ(w,x,y)] +


√
K


m


[
R2


c ||w||2q2


γ2
[ln m + ln Nc + ln Vc] + ln


1
δ


]
,


with probability at least1− δ.


Proof: See Appendix A.1 for the proof details and the exact value of the constantK.


The first term upper bounds the training error ofw. Low lossES[Lγ(w,x,y)] at high


marginγ quantifies the confidence of the prediction model. The second term depends on


||w||/γ, which corresponds to the complexity of the classifier (normalized by the margin


level). Thus, the result provides a bound to the generalization error that trades off the


effectivecomplexity of the hypothesis space with the training error.


The proof uses a covering number argument analogous to previous results in SVMs [Zhang,


2002]. However we propose a novel method for covering the space of structured prediction


models by using a cover of the individual clique basis function differences∆fi,c(yc). This


new type of cover is polynomial in the number of cliques, yielding significant improve-


ments in the bound. Specifically, our bound has a logarithmic dependence on the number


of cliques (ln Nc) and depends only on the 2-norm of the basis functions per-clique (Rc).


This is a significant gain over the previous result of Collins [2001] for0/1 loss, which has


linear dependence (inside the square root) on the number of nodes (L), and depends on


the joint 2-norm of all of the basis functions for an example (which is∼ NcRc). Such a


result was, until now, an open problem for margin-based sequence classification [Collins,


2001]. Finally, for sequences, note that ifL
m


= O(1) (for example, in OCR, if the number


of instances is at least a constant times the length of a word), then our bound is independent


of the number of labelsL.
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5.6 Related work


The application of margin-based estimation methods to parsing and sequence modeling was


pioneered by Collins [2001] using the Voted-Perceptron algorithm [Freund & Schapire,


1998]. He provides generalization guarantees (for0/1 loss) that hold for separable case and


depend on the number of mistakes the perceptron makes before convergence. Remarkably,


the bound does not explicitly depend on the length of the sequence, although undoubtedly


the number of mistakes does.


Collins [2004] also suggested an SVM-like formulation (with exponentially many con-


straints) and a constraint generation method for solving it. His generalization bound (for


0/1 loss) based on the SVM-like margin, however, has linear dependence (inside the square


root) on the number of nodes (L). It also depends on the joint 2-norm of all of the basis


functions for an example (which is∼ NcRc). By considering the more natural Hamming


loss, we achieve a much tighter analysis.


Altun et al. [2003] have applied the exponential-size formulation with constraint gen-


eration we described in Sec. 4.2.1 to problems natural language processing. In a follow-up


paper, Tsochantaridiset al. [2004] show that only a polynomial number of constraints are


needed to be generated to guarantee a fixed level of precision of the solution. However,


the number of constraints in many important cases is several orders higher (inL) than in


the the approach we present. In addition, the corresponding problem needs to be resolved


(or at least approximately resolved) after each additional constraint is added, which is pro-


hibitively expensive for large number of examples and label variables.


The work of Guestrinet al. [2003] presents LP decompositions based on graphical


model structure for the value function approximation problem in factored MDPs (Markov


decision processes with structure). Describing the exact setting is beyond our scope, but it


suffices to say that our original decomposition of the max-margin QP was inspired by the


proposed technique to transform an exponential set of constraints into a polynomial one


using a triangulated graph.


There has been a recent explosion of work in maximum conditional likelihood estima-


tion of Markov networks. The work of Laffertyet al. [2001] has inspired many applications


in natural language, computational biology, computer vision and relational modeling [Sha
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& Pereira, 2003; Pintoet al., 2003; Kumar & Hebert, 2003; Suttonet al., 2004; Taskar


et al., 2002; Taskaret al., 2003b]. As in the case of logistic regression, maximum condi-


tional likelihood estimation for Markov networks can also be kernelized [Altunet al., 2004;


Lafferty et al., 2004]. However, the solutions are non-sparse and the proposed algorithms


are forced to use greedy selection of support vectors or heuristic pruning methods.


5.7 Conclusion


We use graph decomposition to derive an exact, compact, convex max-margin formulation


for Markov networks with sequence and other low-treewidth structure. Our formulation


avoids the exponential blow-up in the number of constraints in the max-margin QP that


plagued previous approaches. The seamless integration of kernels with graphical models


allows us to create very rich models that leverage the immense amount of research in kernel


design and graphical model decompositions. We also use approximate graph decomposi-


tion to derive a compact approximate formulation for Markov networks in which inference


is intractable.


We provide theoretical guarantees on the averageper-labelgeneralization error of our


models in terms of the training set margin. Our generalization bound significantly tightens


previous results of Collins [Collins, 2001] and suggests possibilities for analyzing per-label


generalization properties of graphical models.


In the next chapter, we present an efficient algorithm that exploits graphical model


inference and show experiments on a large handwriting recognition task that utilize the


powerful representational capability of kernels.







Chapter 6


M3N algorithms and experiments


Although the number of variables and constraints in the structured dual in Eq. (5.12) is


polynomial in the size of the data, unfortunately, for standard QP solvers, the problem is


often too large even for small training sets. Instead, we use a coordinate dual ascent method


analogous to the sequential minimal optimization (SMO) used for SVMs [Platt, 1999].


We apply our M3N framework and structured SMO algorithm to a handwriting recogni-


tion task. We show that our models significantly outperform other approaches by incorpo-


rating high-dimensional decision boundaries of polynomial kernels over character images


while capturing correlations between consecutive characters.


6.1 Solving the M3N QP


Let us begin by considering the primal and dual QPs for multi-class SVMs:


min
1
2
||w||2 + C


∑


i


ξi max
∑


i,y


αi(y)`i(y)− 1
2
C


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i,y


αi(y)∆fi(y)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


s.t. w>∆fi(y) ≥ `(y)− ξi, ∀i, y. s.t.
∑


y


αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i, y.


The KKT conditions [Bertsekas, 1999; Boyd & Vandenberghe, 2004] provide sufficient


and necessary criteria for optimality of a dual solutionα. As we describe below, these


conditions have certain locality with respect to each examplei, which allows us to perform


75







76 CHAPTER 6. M3N ALGORITHMS AND EXPERIMENTS


the search for optimalα by repeatedly considering one example at a time.


A feasible dual solutionα and a primal solution defined by:


w = C
∑
i,y


αi(y)∆fi(y) (6.1)


ξi = max
y


[`i(y)−w∆fi(y)] = max
y


[`i(y) + w>fi(y)]−w>fi(y(i)),


are optimal if they satisfy the following two types of constraints:


αi(y) = 0 ⇒ w>∆fi(y) > `i(y)− ξi; (KKT1)


αi(y) > 0 ⇒ w>∆fi(y) = `i(y)− ξi. (KKT2),


We can express these conditions as


αi(y) = 0 ⇒ w>fi(y) + `i(y) < max
y′


[w>fi(y′) + `i(y
′)]; (KKT1)


αi(y) > 0 ⇒ w>fi(y) + `i(y) = max
y′


[w>fi(y′) + `i(y
′)]. (KKT2)


To simplify the notation, we define


vi(y) = w>fi(y) + `i(y); vi(y) = max
y′ 6=y


[w>fi(y
′) + `i(y


′)].


With these definitions, we have


αi(y) = 0 ⇒ vi(y) < vi(y); (KKT1) αi(y) > 0 ⇒ vi(y) ≥ vi(y); (KKT2).


In practice, however, we will enforce KKT conditions up to a given tolerance0 < ε ¿ 1.


αi(y) = 0 ⇒ vi(y) ≤ vi(y) + ε; αi(y) > 0 ⇒ vi(y) ≥ vi(y)− ε. (6.2)


Essentially,αi(y) can bezeroonly if vi(y) is at mostε larger than the all others. Con-


versely,αi(y) can benon-zeroonly if vi(y) is at mostε smaller than the all others.


Note that the normalization constraints on the dual variablesα are local to each exam-


ple i. This allows us to perform dual block-coordinate ascent where a block corresponds to
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1. Initialize: αi(y) = 1I(y = y(i)), ∀ i, y.


2. Setviolation = 0,


3. For eachi,


4. If αi violates (KKT1) or (KKT2),


5. Setviolation = 1,


6. Find feasibleα′i such thatQ(α′i, α−i) > Q(αi, α−i) and setαi = α′i.


7. If violation = 1 goto 2.


Figure 6.1: Block-coordinate dual ascent.


the vector of dual variablesαi for a single examplei. The general form of block-coordinate


ascent algorithm as shown in Fig. 6.1 is essentially coordinate ascent on blocksαi, main-


taining the feasibility of the dual. When optimizing with respect to a single blocki, the


objective function can be split into two terms:


Q(α) = Q(α−i) +Q(αi, α−i),


whereα−i denotes all dualαk variables fork other thani. Only the second part of the


objectiveQ(αi, α−i) matters for optimizing with respect toαi. The algorithm starts with


a feasible dual solutionα and improves the objective block-wise until all KKT condi-


tions are satisfied. Checking the constraints requires computingw andξ from α according


to Eq. (6.1).


As long as the local ascent step overαi is guaranteed to improve the objective when


KKT conditions are violated, the algorithm will converge to the global maximum in a finite


number of steps (within the precision). This allows us to focus on efficient updates to a


single block ofαi at a time.


Let α′i(y) = αi(y) + λ(y). Note that
∑


y λ(y) = 0 andαi(y) + λ(y) ≥ 0 so thatα′i is


feasible. We can write the objectiveQ(α−i) +Q(α′i, α−i) in terms ofλ andα:


∑
j,y


αj(y)`j(y) +
∑


y


λ(y)`i(y)− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑


y


λ(y)∆fi(y) +
∑
j,y


αj(y)∆fj(y)


∣∣∣∣∣


∣∣∣∣∣


2


.
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By dropping all terms that do not involveλ, and making the substitution


w = C
∑


j,y αj(y)∆fj(y), we get:


∑
y


λ(y)`i(y)−w>
(∑


y


λ(y)∆fi(y)


)
− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑


y


λ(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


.


Since
∑


y λ(y) = 0,


∑
y


λ(y)∆fi(y) =
∑


y


λ(y)fi(y
(i))−


∑
y


λ(y)fi(y) = −
∑


y


λ(y)fi(y).


Below we also make the substitutionvi(y) = w>fi(y) + `i(y) to get the optimization


problem forλ:


max
∑


y


λ(y)vi(y)− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑


y


λ(y)fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


s.t.
∑


y


λ(y) = 0; αi(y) + λ(y) ≥ 0, ∀y.


6.1.1 SMO


We do not need to solve the optimization subproblem above at each pass through the data.


All that is required is an ascent step, not a full optimization. Sequential Minimal Opti-


mization (SMO) approach takes an ascent step that modifies the least number of variables.


In our case, we have the simplex constraint, so we must change at least two variables in


order to respect the normalization constraint (by moving weight from one dual variable to


another). We address a strategy for selecting the two variables in the next section, but for


now assume we have pickedλ(y′) andλ(y′′). Then we haveδ = λ(y′) = −λ(y′′) in order


to sum to 1. The optimization problem becomes a single variable quadratic program inδ:


max [vi(y
′)− vi(y


′′)]δ − 1


2
C||fi(y′)− fi(y


′′)||2δ2 (6.3)


s.t. αi(y
′) + δ ≥ 0; αi(y


′′)− δ ≥ 0.







6.1. SOLVING THE M3N QP 79


−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−2


−1.5


−1


−0.5


0


0.5


Figure 6.2: Representative examples of the SMO subproblem. Horizonal axis representsδ
with two vertical lines depicting the upper and lower boundsc andd. Vertical axis repre-
sents the objective. Optimum either occurs at the maximum of the parabola if it is feasible
or the upper or lower bound otherwise.


With a = vi(y
′)− vi(y


′′), b = C||fi(y′)− fi(y
′′)||2, c = −αi(y


′), d = αi(y
′′), we have:


max [aδ − b


2
δ2] s.t. c ≤ δ ≤ d, (6.4)


where the optimum is achieved at the maximum of the parabolaa/b if c ≤ a/b ≤ d or at


the boundaryc or d (see Fig. 6.1.1). Hence the solution is given by simply clippinga/b:


δ∗ = max(c, min(d, a/b)).


The key advantage of SMO is the simplicity of this update. Computing the coefficients


involves dot products (or kernel evaluations) to computew>fi(y
′) andw>fi(y′′) as well as


(fi(y
′)− fi(y


′′))>(fi(y
′)− fi(y


′′)).


6.1.2 Selecting SMO pairs


How do we actually select such a pair to guarantee that we make progress in optimizing


the objective? Note that at least one of the assignmentsy must violate (KKT1) or (KKT2),
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1. Setviolation = 0.


2. For eachy,


3. KKT1: If αi(y) = 0 andvi(y) > vi(y) + ε,


4. Sety′ = y andviolation = 1 and goto 7.


5. KKT2: If αi(y) > 0 andvi(y) < vi(y)− ε,


6. Sety′ = y andviolation = 2 and goto 7.


7. If violation > 0,


8. For eachy 6= y′,


9. If violation = 1 andαi(y) > 0,


10. Sety′′ = y and goto 13.


11. If violation = 2 andvi(y) > vi(y
′),


12. Sety′′ = y and goto 13.


13. Returny′ andy′′.


Figure 6.3: SMO pair selection.


because otherwiseαi is optimal with respect to the currentα−i. The selection algorithm is


outlined in Fig. 6.3.


The first variable in the pair,y′, corresponds to a violated condition, while the second


variable,y′′, is chosen to guarantee that solving Eq. (6.3) will result in improving the ob-


jective. There are two cases, corresponding to violation of KKT1 and violation of KKT2.


Case KKT1. αi(y
′) = 0 but vi(y


′) > vi(y′) + ε. This is the case wherei, y′ is a not


support vector but should be. We would like to increaseαi(y
′), so we needαi(y


′′) > 0


to borrow from. There will always be a such ay′′ since
∑


y αi(y) = 1 andαi(y
′) = 0.


Sincevi(y
′) > vi(y′) + ε, vi(y


′) > vi(y
′′) + ε, so the linear coefficient in Eq. (6.4) is


a = vi(y
′)− vi(y


′′) > ε. Hence the unconstrained maximum is positivea/b > 0. Since the


upper-boundd = αi(y
′′) > 0, we have enough freedom to improve the objective.


Case KKT2. αi(y
′) > 0 butvi(y


′) < vi(y′)− ε. This is the case wherei, y′ is a support


vector but should not be. We would like to decreaseαi(y
′), so we needvi(y


′′) > vi(y
′)


so thata/b < 0. There will always be a such ay′′ sincevi(y
′) < vi(y′) − ε. Since the
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lower-boundc = −αi(y
′) < 0, again we have enough freedom to improve the objective.


Since at each iteration we are guaranteed to improve the objective if the KKT conditions


are violated and the objective is bounded, we can use the SMO in the block-coordinate


ascent algorithm to converge in a finite number of steps. To the best of our knowledge,


there are no upper bounds on the speed of convergence of SMO, but experimental evidence


has shown it a very effective algorithm for SVMs [Platt, 1999]. Of course, we can improve


the speed of convergence by adding heuristics in the selection of the pair, as long as we


guarantee that improvement is possible when KKT conditions are violated.


6.1.3 Structured SMO


Clearly, we cannot perform the above SMO updates in the space ofα directly for the


structured problems, since the number ofα variables is exponential. The constraints onµ


variables are much more complicated, since eachµ participates not only in non-negativity


and normalization constraints, but also clique-agreement constraints. We cannot limit our


ascent steps to changing only twoµ variables at a time, because in order to make a change


in one clique and stay feasible, we need to modify variables in overlapping cliques. For-


tunately, we can perform SMO updates onα variables implicitly in terms of the marginal


dual variablesµ.


The diagram in Fig. 6.1.3 shows the abstract outline of the algorithm. The key steps in


the SMO algorithm are checking for violations of the KKT conditions, selecting the pairy′


andy′′, computing the corresponding coefficientsa, b, c, d and updating the dual. We will


show how to do these operations by doing all the hard work in terms of the polynomially


many marginalµi variables and auxiliary “max-marginals” variables.


Structured KKT conditions


As before, we definevi(y) = w>fi(y) + `i(y). The KKT conditions are, for ally:


αi(y) = 0 ⇒ vi(y) ≤ vi(y); αi(y) > 0 ⇒ vi(y) ≥ vi(y). (6.5)
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select
& lift


SMO
update


project


Figure 6.4: Structured SMO diagram. We use marginalsµ to select an appropriate pair of
instantiationsy′ andy′′ and reconstruct theirα values. We then perform the simple SMO
update and project the result back onto the marginals.


Of course, we cannot check these explicitly. Instead, we define max-marginals for each


clique in the junction treec ∈ T (i) and its valuesyc, as:


v̂i,c(yc) = max
y∼yc


[w>fi(y) + `i(y)], α̂i,c(yc) = max
y∼yc


αi(y).


We also definêvi,c(yc) = maxy′c 6=yc v̂i,c(y
′
c) = maxy 6∼yc [w>fi(y) + `i(y)]. Note that we


do not explicitly representαi(y), but we can reconstruct the maximum-entropy one from


the marginalsµi by using Eq. (5.13). Botĥvi,c(yc) andα̂i,c(yc) can be computed by using


the Viterbi algorithm (one pass propagation towards the root and one outwards from the


root [Cowellet al., 1999]). We can now express the KKT conditions in terms of the max-


marginals for each cliquec ∈ T (i) and its valuesyc:


α̂i,c(yc) = 0 ⇒ v̂i,c(yc) ≤ v̂i,c(yc); α̂i,c(yc) > 0 ⇒ v̂i,c(yc) ≥ v̂i,c(yc). (6.6)


Theorem 6.1.1 The KKT conditions in Eq. (6.5) and Eq. (6.6) are equivalent.


Proof:


Eq. (6.5)⇒ Eq. (6.6). Assume Eq. (6.5). Suppose, we have a violation of KKT1: for


somec,yc, α̂i,c(yc) = 0, but v̂i,c(yc) > v̂i,c(yc). Sinceα̂i,c(yc) = maxy∼yc αi(y) = 0,
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thenαi(y) = 0, ∀y ∼ yc. Hence, by Eq. (6.5),vi(y) ≤ vi(y), ∀y ∼ yc. But v̂i,c(yc) >


v̂i,c(yc) implies the opposite: there existsy ∼ yc such thatvi(y) > v̂i,c(yc), which also


impliesvi(y) > vi(y), a contradiction.


Now suppose we have a violation of KKT2: for somei,yc, α̂i,c(yc) > 0, but v̂i,c(yc) <


v̂i,c(yc). Thenvi(y) < vi(y), ∀y ∼ yc. But α̂i,c(yc) > 0 implies there existsy ∼ yc such


thatαi(y) > 0. For thaty, by Eq. (6.5),vi(y) ≥ vi(y), a contradiction.


Eq. (6.6)⇒ Eq. (6.5). Assume Eq. (6.6). Suppose we have a violation of KKT1:


for somey, αi(y) = 0, but vi(y) > vi(y). This means thaty is the optimum ofvi(·),
hencev̂i,c(yc) = vi(y) > vi(y) > v̂i,c(yc), ∀c ∈ T (i),yc ∼ y. But by Eq. (6.6), if


v̂i,c(yc) > v̂i,c(yc), then we cannot havêαi,c(yc) = 0. Hence all they-consistentαi max-


marginals are positivêαi,c(yc) > 0, ∀c ∈ T (i), and it follows that all they-consistent


marginalsµi are positive as wellµi,c(yc) > 0, ∀c ∈ T (i) (since sum upper-bounds max).


Butαi(y) =
∏


c∈T (i) µi,c(yc)∏
c∈S(i) µi,s(ys)


, so if all they-consistent marginals are positive, thenαi(y) > 0,


a contradiction.


Now suppose we have a violation of KKT2: for somey, αi(y) > 0, but vi(y) <


vi(y). Sinceαi(y) > 0, we know that all they-consistentαi max-marginals are positive


α̂i,c(yc) > 0, ∀c ∈ T (i). By Eq. (6.6),v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i). Note that trivially


maxy′ vi(y
′) = max(v̂i,c(y


′
c), v̂i,c(y′c)) for any cliquec and clique assignmenty′c. Since


v̂i,c(yc) ≥ v̂i,c(yc), ∀c ∈ T (i), thenmaxy′ vi(y
′) = v̂i,c(yc), , ∀c ∈ T (i). That is,v̂i,c(yc)


is the optimal value. We will show thatvi(y) = v̂i,c(yc), a contradiction. To show that this,


we consider any two adjacent nodes in the treeT (i), cliquesa andb, with a separators, and


show that̂vi,a∪b(ya∪b) = v̂i,a(ya) = v̂i,b(yb). By chaining this equality from the root of the


tree to all the leaves, we getvi(y) = v̂i,c(yc) for anyc.


We need to introduce some more notation to deal with the two parts of the tree induced


by cutting the edge betweena andb. Let {A,B} be a partition of the nodesT (i) (cliques


of C(i)) resulting from removing the edge betweena andb such thata ∈ A andb ∈ B.


We denote the two subsets of an assignmenty asyA andyB (with overlap atys). The


value of an assignmentvi(y) can be decomposed into two parts:vi(y) = vi,A(yA) +


vi,B(yB), wherevi,A(yA) and vi,B(yB) only count the contributions of their constituent


cliques. Take any maximizer,y(a) ∼ ya with vi(y
(a)) = v̂i,a(ya) ≥ v̂i,a(ya) and any


maximizery(b) ∼ yb with vi(y
(b)) = v̂i,b(yb) ≥ v̂i,b(yb), which by definition agree withy
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on the intersections. We decompose the two associated values into the corresponding parts:


vi(y
(a)) = vi(y


(a)
A )+vi(y


(a)
B ) andvi(y


(b)) = vi(y
(b)
A )+vi(y


(b)
B ). We create a new assignment


that combines the best of the two:y(s) = y
(b)
A ∪ y


(a)
B . Note thatvi(y


(s)) = vi(y
(b)
A ) +


vi(y
(a)
B ) = v̂i,s(ys), since we essentially fixed the intersections and maximized over the


rest of the variables inA andB separately. Noŵvi,a(ya) = v̂i,b(yb) ≥ v̂i,s(ys) since they


are optimal as we said above. Hence we havevi(y
(a)
A ) + vi(y


(a)
B ) = vi(y


(b)
A ) + vi(y


(b)
B ) ≥


vi(y
(b)
A ) + vi(y


(a)
B ) which implies thatvi(y


(a)
A ) ≥ vi(y


(b)
A ) andvi(y


(b)
B ) ≥ vi(y


(a)
B ). Now we


create another assignment that clamps the value of botha andb: y(a∪b) = y
(a)
A ∪ y


(b)
B . The


value of this assignment is optimalvi(y
(a∪b)) = vi(y


(a)
A ) + vi(y


(b)
B ) = vi(y


(a)) = vi(y
(b)).


Structured SMO pair selection and update


As in multi-class problems, we will select the first variable in the pair,y′, corresponding to


a violated condition, while the second variable,y′′, to guarantee that solving Eq. (6.3) will


result in improving the objective. Having selectedy′ andy′′, the coefficients for the one-


variable QP in Eq. (6.4) area = vi(y
′)−vi(y


′′), b = C||fi(y′)−fi(y
′′)||2, c = −αi(y


′), d =


αi(y
′′). As before, we enforce approximate KKT conditions in the algorithm in Fig. 6.5.


We have two cases, corresponding to violation of KKT1 and violation of KKT2.


Case KKT1. α̂i,c(y
′
c) = 0 but v̂i,c(y


′
c) > v̂i,c(y′c)+ε. We have sety′ = arg maxy∼yc


vi(y),


sovi(y
′) = v̂i,c(y


′
c) > v̂i,c(y′c) + ε > vi(y′) + ε andαi(y


′) = 0. This is the case where


i,y′ is a not support vector but should be. We would like to increaseαi(y
′), so we need


αi(y
′′) > 0 to borrow from. There will always be a such ay′′ (with y′′c 6= y′c) since∑


y αi(y) = 1 andαi(y
′) = 0. We can find one by choosingyc for which α̂i,c(yc) > 0,


which guarantees that fory′′c = arg maxy∼yc
αi(y), αi(y


′′) > 0. Sincevi(y
′) ≥ vi(y′) + ε,


vi(y
′) ≥ vi(y


′′) + ε, so the linear coefficient in Eq. (6.4) isa = vi(y
′)− vi(y


′′) > ε. Hence


the unconstrained maximum is positivea/b > 0. Since the upper-boundd = αi(y
′′) > 0,


we have enough freedom to improve the objective.


Case KKT2. α̂i,c(y
′
c) > 0 but v̂i,c(y


′
c) < v̂i,c(y′c)−ε. We have sety′ = arg maxy∼yc


αi(y),


soαi(y
′) = α̂i,c(y


′
c) > 0 andvi(y


′) < v̂i,c(y
′
c) < v̂i,c(y′c) − ε < vi(y′) − ε. This is the


case wherei,y′ is a support vector but should not be. We would like to decreaseαi(y
′),


so we needvi(y
′′) > vi(y


′) so thata/b < 0. There will always be a such ay′′ since
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1. Setviolation = 0.


2. For eachc ∈ T (i), yc


3. KKT1: If α̂i,c(yc) = 0, andv̂i,c(yc) > v̂i,c(yc) + ε,


4. Sety′c = yc, y′ = arg maxy∼yc
vi(y) andviolation = 1 and goto 7.


5. KKT2: If α̂i,c(yc) > 0, andv̂i,c(yc) < v̂i,c(yc)− ε,


6. Sety′c = yc, y′ = arg maxy∼yc
αi(y) andviolation = 2 and goto 7.


7. If violation > 0,


8. For eachyc 6= y′c,


9. If violation = 1 andα̂i,c(yc) > 0,


10. Sety′′c = arg maxy∼yc
αi(y) and goto 13.


11. If violation = 2 andv̂i,c(yc) > v̂i,c(y
′
c),


12. Sety′′ = arg maxy∼yc
vi(y) and goto 13.


13. Returny′ andy′′.


Figure 6.5: Structured SMO pair selection.


vi(y
′) < vi(y′) − ε. We can find one by choosingyc for which v̂i,c(yc) > v̂i,c(yc) − ε,


which guarantees that fory′′c = arg maxy∼yc
vi(y), vi(y


′′) > vi(y
′) − ε, Since the lower-


boundc = −αi(y
′) < 0, again we have enough freedom to improve the objective.


Having computed new valuesα′i(y
′) = αi(y


′) + δ andα′i(y
′′) = αi(y


′) − δ, we need


to project this change onto the marginal dual variablesµi. The only marginal affected are


the ones consistent withy′ and/ory′′, and the change is very simple:


µ′i,c(yc) = µi,c(yc) + δ1I(yc ∼ y′)− δ1I(yc ∼ y′′).


6.2 Experiments


We selected a subset of∼ 6100 handwritten words, with average length of∼ 8 characters,


from 150 human subjects, from the data set collected by Kassel [1995]. Each word was


divided into characters, each character was rasterized into an image of16 by 8 binary
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Figure 6.6: (a) 3 example words from the OCR data set; (b) OCR: Average per-
character test error for logistic regression, CRFs, multiclass SVMs, and M3Ns, using linear,
quadratic, and cubic kernels.


pixels. (See Fig. 6.6(a).) In our framework, the image for each word corresponds tox, a


label of an individual character toYj, and a labeling for a complete word toY. Each label


Yj takes values from one of26 classes{a, . . . , z}.
The data set is divided into10 folds of∼ 600 training and∼ 5500 testing examples.


The accuracy results, summarized in Fig. 6.6(b), are averages over the10 folds. We im-


plemented a selection of state-of-the-art classification algorithms:independent label ap-


proaches, which do not consider the correlation between neighboring characters — lo-


gistic regression, multi-class SVMs as described in Eq. (2.9), and one-against-all SVMs


(whose performance was slightly lower than multi-class SVMs); andsequence approaches


— CRFs, and our proposed M3 networks. Logistic regression and CRFs are both trained by


maximizing the conditional likelihood of the labels given the features, using a zero-mean


diagonal Gaussian prior over the parameters, with a standard deviation between 0.1 and


1. The other methods are trained by margin maximization. Our features for each label


Yj are the corresponding image ofith character. For the sequence approaches (CRFs and


M3), we used an indicator basis function to represent the correlation betweenYj andYi+1.







6.3. RELATED WORK 87


For margin-based methods (SVMs and M3), we were able to use kernels (both quadratic


and cubic were evaluated) to increase the dimensionality of the feature space. We used


the structured SMO algorithm with about 30-40 iterations through the data. Using these


high-dimensional feature spaces in CRFs is not feasible because of the enormous number


of parameters.


Fig. 6.6(b) shows two types of gains in accuracy: First, by using kernels, margin-based


methods achieve a very significant gain over the respective likelihood maximizing methods.


Second, by using sequences, we obtain another significant gain in accuracy. Interestingly,


the error rate of our method using linear features is16% lower than that of CRFs, and


about the same as multi-class SVMs with cubic kernels. Once we use cubic kernels our


error rate is45% lower than CRFs and about33% lower than the best previous approach.


For comparison, the previously published results, although using a different setup (e.g., a


larger training set), are about comparable to those of multiclass SVMs.


6.3 Related work


The kernel-adatron [Friesset al., 1998] and voted-perceptron algorithms [Freund & Schapire,


1998] for large-margin classifiers have a similar online optimization scheme. Collins


[2001] have applied voted-perceptron to structured problems in natural language. Although


head-to-head comparisons have not been performed, it seems that, empirically, less passes


(about 30-40) are needed for our algorithm than in the perceptron literature.


Recently, the Exponentiated Gradient [Kivinen & Warmuth, 1997] algorithm has been


adopted to solve our structured QP for max-margin estimation [Bartlettet al., 2004]. Al-


though the EG algorithm has attractive convergence properties, it has yet to be shown to


learn faster than Structured SMO, particularly in the early iterations through the dataset.


6.4 Conclusion


In this chapter, we address the large (though polynomial) size of our quadratic program


using an effective optimization procedure inspired by SMO. In our experiments with the


OCR task, our sequence model significantly outperforms other approaches by incorporating
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high-dimensional decision boundaries of polynomial kernels over character images while


capturing correlations between consecutive characters. Overall, we believe that M3 net-


works will significantly further the applicability of high accuracy margin-based methods to


real-world structured data. In the next two chapters, we apply this framework to important


classes of Markov networks for spatial and relational data.







Chapter 7


Associative Markov networks


In the previous chapter, we considered applications of sequence-structured Markov net-


works, which allow very efficient inference and learning. The chief computational bottle-


neck in applying Markov networks for other large-scale prediction problems is inference,


which is NP-hard in general networks suitable in a broad range of practical Markov network


structures, including grid-topology networks [Besag, 1986].


One can address the tractability issue by limiting the structure of the underlying net-


work. In some cases, such as the quad-tree model used for image segmentation [Bouman &


Shapiro, 1994], a tractable structure is determined in advance. In other cases (e.g., [Bach &


Jordan, 2001]), the network structure is learned, subject to the constraint that inference on


these networks is tractable. In many cases, however, the topology of the Markov network


does not allow tractable inference. For example, in hypertext, the network structure can


mirror the hyperlink graph, which is usually highly interconnected, leading to computa-


tionally intractable networks.


In this chapter, we show that optimal learning is feasible for an important subclass of


Markov networks — networks withattractive potentials. This subclass, calledassocia-


tive Markov networks (AMNs), contains networks of discrete variables withK labels and


arbitrary-size clique potentials withK parameters that favor the same labels for all vari-


ables in the clique. Such positive interactions capture the “guilt by association” pattern of


reasoning present in many domains, in which connected (“associated”) variables tend to


have the same label. AMNs are a natural fit object recognition and segmentation, webpage


89







90 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS


classification, and many other applications.


In the max-margin estimation framework, the inference subtask is one of finding the


best joint (MAP) assignment to all of the variables in a Markov network. By contrast, other


learning tasks (e.g., maximizing the conditional likelihood of the target labels given the


features) require that we compute the posterior probabilities of different label assignments,


rather than just the MAP.


The MAP problem can naturally be expressed as an integer programming problem. We


use a linear program relaxation of this integer program in the min-max formulation. We


show that, for associative Markov networks of over binary variables (K = 2), this linear


program provides exact answers. To our knowledge, our method is the first to allow training


Markov networks of arbitrary connectivity and topology. For the non-binary case (K > 2),


the approximate linear program is not guaranteed to be optimal but we can bound its relative


error. Our empirical results suggest that the solutions of the resulting approximate max-


margin formulation work well in practice.


We present an AMN-based method for object segmentation of complex from 3D range


data. By constraining the class of Markov networks to AMNs, our models can be learned


efficiently and at run-time, scale up to tens of millions of nodes and edges. The proposed


learning formulation effectively and directly learns to exploit a large set of complex surface


and volumetric features, while balancing the spatial coherence modeled by the AMN.


7.1 Associative networks


Associative interactions arise naturally in the context of image processing, where nearby


pixels are likely to have the same label [Besag, 1986; Boykovet al., 1999b]. In this setting,


a common approach is to use ageneralized Potts model[Potts, 1952], which penalizes


assignments that do not have the same label across the edge:φij(k, l) = λij, ∀k 6= l and


φij(k, k) = 1, whereλij ≤ 1.


For binary-valued Potts models, Greiget al. [1989] show that the MAP problem can be


formulated as a min-cut in an appropriately constructed graph. Thus, the MAP problem can


be solved exactly for this class of models in polynomial time. ForL > 2, the MAP problem
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is NP-hard, but a procedure based on a relaxed linear program guarantees a factor 2 approx-


imation of the optimal solution [Boykovet al., 1999b; Kleinberg & Tardos, 1999]. Our


associative potentials extend the Potts model in several ways. Importantly, AMNs allow


different labels to have different attraction strength:φij(k, k) = λij(k), whereλij(k) ≥ 1,


andφij(k, l) = 1, ∀k 6= l. This additional flexibility is important in many domains, as


different labels can have very diverse affinities. For example, foreground pixels tend to


have locally coherent values while background is much more varied.


In a second important extension, AMNs admit non-pairwise interactions between vari-


ables, with potentials over cliques involvingm variablesφ(µi1, . . . , µim). In this case, the


clique potentials are constrained to have the same type of structure as the edge potentials:


There areK parametersφc(k, . . . , k) = λc(k) ≥ 1 and the rest of the entries are set to1.


In particular, using this additional expressive power, AMNs allow us to encode the pattern


of (soft) transitivity present in many domains. For example, consider the problem of pre-


dicting whether two proteins interact [Vazquezet al., 2003]; this probability may increase


if they both interact with another protein. This type of transitivity could be modeled by a


ternary clique that has highλ for the assignment with all interactions present.


More formally, we defineassociativefunctions and potentials as follows.


Definition 7.1.1 A functiong : Y 7→ IR isassociative for a graphG overK-ary variablesif


it can be written as:


g(y) =
∑
v∈V


K∑


k=1


gv(k)1I(yv = k) +
∑


c∈C\V


K∑


k=1


gc(k)1I(yc = k, . . . , k); gc(k) ≥ 0, ∀c ∈ C\V ,


whereV are the nodes andC are the cliques of the graphG. A set of potentialsφ(y) is


associative ifφ(y) = eg(y) andg(y) is associative.


7.2 LP Inference


We can write an integer linear program for the problem of finding the maximum of an


associative functiong(y), where we have a “marginal” variableµv(k) for each nodev ∈ V
and each labelk, which indicates whether nodev has valuek, andµc(k) for each cliquec
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(containing more than one variable) and labelk, which represents the event that all nodes


in the cliquec have labelk:


max
∑
v∈V


K∑


k=1


µv(k)gv(k) +
∑


c∈C\V


K∑


k=1


µc(k)gc(k) (7.1)


s.t. µc(k) ∈ {0, 1}, ∀c ∈ C, k;
K∑


k=1


µv(k) = 1, ∀v ∈ V ;


µc(k) ≤ µv(k), ∀c ∈ C \ V , v ∈ c, k.


Note that we substitute the constraintµc(k) =
∧


v∈c µv(k) by linear inequality con-


straintsµc(k) ≤ µv(k). This works because the coefficientgc(k) is non-negative and we


are maximizing the objective function. Hence at the optimum,µc(k) = minv µv(k) , which


is equivalent toµc(k) =
∧


v∈c µv(k), whenµv(k) are binary.


It can be shown that in the binary case, the linear relaxation of Eq. (7.1), (where the


constraintsµc(k) ∈ {0, 1} are replaced byµc(k) ≥ 0), is guaranteed to produce an integer


solution when a unique solution exists.


Theorem 7.2.1 If K = 2, for any associative functiong, the linear relaxation of Eq. (7.1)


has an integral optimal solution.


See Appendix A.2.1 for the proof. This result states that the MAP problem in binary AMNs


is tractable, regardless of network topology or clique size. In the non-binary case (L > 2),


these LPs can produce fractional solutions and we use a rounding procedure to get an


integral solution.


Theorem 7.2.2 If K > 2, for any associative functiong, the linear relaxation of Eq. (7.1)


has a solution that is larger than the solution of the integer program by at most the number


of variables in the largest clique.


In the appendix, we also show that the approximation ratio of the rounding procedure is the


inverse of the size of the largest clique (e.g.,1
2


for pairwise networks). Although artificial


examples with fractional solutions can be easily constructed by using symmetry, it seems


that in real data such symmetries are often broken. In fact, in all our experiments with


L > 2 on real data, we never encountered fractional solutions.
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7.3 Min-cut inference


We can also use efficient min-cut algorithms to perform exact inference on the learned


models forK = 2 and approximate inference forK > 2. For simplicity, we focus on the


pairwise AMN case. We first consider the case of binary AMNs, and later show how to use


the local search algorithm developed by Boykovet al. [1999a] to perform (approximate)


inference in the general multi-class case. For pairwise, binary AMNs, the objective of the


integer program in Eq. (7.1) is:


max
∑
v∈V


[µv(1)gv(1) + µv(2)gv(2)] +
∑
uv∈E


[µuv(1)guv(1) + µuv(2)guv(2)]. (7.2)


7.3.1 Graph construction


We construct a graph in which themin-cutwill correspond to the optimal MAP labeling


for the above objective. First, we recast the objective as minimization by simply reversing


the signs on the value of eachθ.


min −
∑
v∈V


[µv(1)gv(1) + µv(2)gv(2)]−
∑
uv∈E


[µuv(1)guv(1) + µuv(2)guv(2)]. (7.3)


The graph will consist of a vertex for each node in the AMN, along with the1 and2


terminals. In the final(V1,V2) cut, theV1 set will correspond to label1, and theV2 set will


correspond to label2. We will show how to deal with the node terms (those depending only


on a single variable) and the edge terms (those depending on a pair of variables), and then


how to combine the two.


Node terms


Consider a node term−µv(1)gv(1)− µv(2)gv(2). Such a term corresponds to the node po-


tential contribution to our objective function for nodev. For each node term corresponding


to nodev we add a vertexv to the min-cut graph. We then look at∆v = gv(1) − gv(2),


and create an edge of weight|∆v| from v to either1 or 2, depending on the sign of∆v.


The reason for that is that the final min-cut graph must consist of only positive weights. An
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1 2v


1 2v


1


2


u v


Figure 7.1: Min-cut graph construction of node (left) and edge (right) terms.


example is presented in Fig. 7.3.1.


From Fig. 7.3.1, we see that if the AMN consisted of only node potentials, the graph


construction above would add an edge from each node to its more likely label. Thus if we


run min-cut, we would simply get a cut with cost0, since for each introduced vertex we


have only one edge of positive weight to either1 or 2, and we would always choose not to


cut any edges.


Edge Terms


Now consider an edge term of the form−µuv(1)guv(1) − µuv(2)guv(2). To construct a


min-cut graph for the edge term we will introduce two verticesu andv. We will connect


vertexu to 1 with an edge of weightguv(1), connectv to 2 with an edge of weightguv(2)


and connectu to v with an edge of weightguv(1) + guv(2). Fig. 7.3.1 shows an example.


Observe what happens when both nodes are on theV2 side of the cut: the value of the


min-cut isguv(1), which must be less thanguv(2) or the min-cut would have placed them


both on the1 side. When looking at edge terms in isolation, a cut that places each node


in different sets will not occur, but when we combine the graphs for node terms and edge


terms, such cuts will be possible.


We can take the individual graphs we created for node and edge terms and merge them
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by adding edge weights together (and treating missing edges as edges with weight0). It


can be shown that the resulting graph will represent the same objective (in the sense that


running min-cut on it will optimize the same objective) as the sum of the objectives of each


graph. Since our MAP-inference objective is simply a sum of node and edge terms, merging


the node and edge term graphs will result in a graph in which min-cut will correspond to


the MAP labeling.


7.3.2 Multi-class case


The graph construction above finds the best MAP labeling for the binary case, but in prac-


tice we would often like to handle multiple classes in AMNs. One of the most effective


algorithms for minimizing energy functions like ours is theα-expansion algorithm pro-


posed by Boykovet al. [1999a]. The algorithm performs a series of “expansion” moves


each of which involves optimization over two labels, and it can be shown that it converges


to within a factor of 2 of the global minimum.


Expansion Algorithm


Consider a current labelingµ and a particular labelk ∈ 1, . . . , K. Another labelingµ′ is


called an “α-expansion” move (following Boykovet al. [1999a]) fromµ if µ′v 6= k implies


µ′v = µv (whereµv is the label of the nodev in the AMN.) In other words, ak-expansion


from a current labeling allows each label to either stay the same, or change tok.


Theα-expansion algorithm cycles through all labelsk in either a fixed or random order,


and finds the new labeling whose objective has the lowest value. It terminates when there


is noα-expansion move for any labelk that has a lower objective than the current labeling


(Fig. 7.2).


The key part of the algorithm is computing the bestα-expansion labeling for a fixed


k and a fixed current labelingµ. The min-cut construction from earlier allows us to do


exactly that since anα-expansion move essentially minimizes a MAP-objective over two


labels: it either allows a node to retain its current label, or switch to the labelα. In this


new binary problem we will let label1 represent a node keeping its current label and label


2 will denote a node taking on the new labelk. In order to construct the right coefficients
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1. Begin with arbitrary labelingµ


2. Setsuccess := 0


3. For each labelk ∈ {1, . . . K}
3.1 Computêµ = arg min−g(µ′) amongµ′ within oneα-expansion ofµ.


3.2 If E(µ̂) < E(µ), setµ := µ̂ and success:= 1


4. If success = 1 goto 2.


5. Returnµ


Figure 7.2:α-expansion algorithm


for the new binary objective we need to consider several factors. Below, letθ′ki andθ′k,k
ij


denote the node and edge coefficients associated with the new binary objective:


◦ Node PotentialsFor each nodei in the current labeling whose current label is notα,


we letθ′0i = θyi


i , andθ′1i = θα
i , whereyi denotes the current label of nodei, andθyi


denotes the coefficient in the multiclass AMN MAP objective. Note that we ignore


nodes with labelα altogether since anα-expansion move cannot change their label.


◦ Edge PotentialsFor each edge(i, j) ∈ E whose nodes have labels different fromα,


we add a new edge potential, with weightsθ′1ij = θα,α
ij . If the two nodes of the edge


currently have the same label, we setθ′0ij = θ
yi,yj


ij , and if the two nodes currently have


different labels we letθ′0ij = 0. For each edge(i, j) ∈ E in which exactly one of the


nodes has labelα in the current labeling, we addθα,α
ij , to the node potentialθ′1i of the


node whose label is different fromα.


After we have constructed the new binary MAP objective as above, we can apply the


min-cut construction from before to get the optimal labeling within oneα-expansion from


the current one. Veksler [1999] shows that theα-expansion algorithm converges inO(N)


iterations whereN is the number of nodes. As noted in Boykovet al. [1999a] and as we


have observed in our experiments, the algorithm terminates only after a few iterations with


most of the improvement occurring in the first 2-3 expansion moves.
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7.4 Max-margin estimation


The potentials of the AMN are once again log-linear combinations of basis functions. We


will need the following assumption to ensure thatw>f(x,y) is associative:


Assumption 7.4.1 Basis functionsf are component-wise associative forG(x) for any(x,y).


Recall that this implies that for cliques larger than one, all basis functions evaluate to0


for assignments where the values of the nodes are not equal and are non-negative for the


assignments where the values of the nodes are equal. To ensure thatw>f(x,y) is associa-


tive, it is useful to separate the basis functions with support only on nodes from those with


support on larger cliques.


Definition 7.4.2 Let ḟ be the subset of basis functionsf with support only on singleton


cliques:


ḟ = {f ∈ f : ∀x ∈ X , y ∈ Y , c ∈ C(G(x)), |c| > 1, fc(xc,yc) = 0}.


Let f̈ = f \ ḟ be the rest of the basis functions. Let{ẇ, ẅ} = w be the corresponding


subsets of parameters.


It is easy to verify that any non-negative combination of associative functions is asso-


ciative, and any combination of basis functions with support only on singleton cliques is


also associative, so we have:


Lemma 7.4.3 w>f(x,y) is associative forG(x) for any(x,y) whenever Assumption 7.4.1


holds andẅ ≥ 0.


We must make similar associative assumption on the loss function in order to guarantee


that the LP inference can handle it.


Assumption 7.4.4 The loss functioǹ(x(i),y(i),y) is associative forG(i) for all i.


In practice, this restriction is fairly mild, and the Hamming loss, which we use in general-


ization bounds and experiments, is associative.
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Using the above Assumptions 7.4.1 and 7.4.4 and some algebra (see Appendix A.2.3


for derivation), we have the following max-margin QP for AMNs:


min
1


2
||w||2 + C


∑


i,v∈V(i)


ξi,v (7.4)


s.t. w>∆fi,v(k)−
∑
c⊃v


mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V (i), k;


ẅ>∆f̈i,c(k) +
∑
v∈c


mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;


mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c )/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;


ẅ ≥ 0;


wherefi,c(k) = fi,c(k, . . . , k) and`i,c(k) = `i,c(k, . . . , k).


While this primal is more complex than the regular M3N factored primal in Eq. (5.4),


the basic structure of the first two sets of constraints remains the same: we have local


margin requirements and “credit” passed around through messagesmi,c,v(k). The extra


constraints are due to the associativity constraints on the resulting model.


The dual of Eq. (7.4) (see derivation in Sec. A.2.3) is given by:


max
∑


i,c∈C(i), k


µi,c(k)`i,c(k)− C


2


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i,v∈V(i), k


µi,v(k)∆ḟi,v(k)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


− C


2


∣∣∣∣∣∣


∣∣∣∣∣∣
ν̈ +


∑


i,c∈C(i), k


µi,c(k)∆f̈i,c(k)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑


k=1


µi,v(k) = 1, ∀i, ∀v ∈ V(i);


µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k;


ν̈ ≥ 0.


In the dual, there are marginalsµ for each node and clique, for each valuek, similar


to Eq. (5.12). However, the constraints are different, and not surprisingly, are essentially


the constraints from the inference LP relaxation in Eq. (7.1).
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The dual and primal solutions are related by


ẇ =
∑


i,v∈V(i), k


µi,v(k)∆ḟi,v(k); ẅ = ν̈ +
∑


i,c∈C(i), k


µi,c(k)∆f̈i,c(k).


Theν̈ variables simply ensure thatẅ are positive (if any component
∑


i,c∈C(i), k µi,c(k)∆f̈i,c(k)


is negative, maximizing the objective will force the corresponding component ofν̈ to cancel


it out). Note that the objective can be written in terms of dot products of node basis func-


tions∆ḟi,v(k)>∆ḟj,v̄(k̄), so they can be kernelized. Unfortunately, the edge basis functions


cannot be kernelized because of the non-negativity constraint.


ForK = 2, the LP inference is exact, so that Eq. (7.4) learnsexactmax-margin weights


for Markov networks ofarbitrary topology. ForK > 2, the linear relaxation leads to a


strengthening of the constraints onw by potentially adding constraints corresponding to


fractional assignments as in the case of untriangualated networks. Thus, the optimal choice


w, ξ for the original QP may no longer be feasible, leading to a different choice of weights.


However, as our experiments show, these weights tend to do well in practice.


7.5 Experiments


We applied associative Markov networks to the task of terrain classification. Terrain clas-


sification is very useful for autonomous mobile robots in real-world environments for path


planning, target detection, and as a pre-processing step for other perceptual tasks. The


Stanford Segbot Project1 has provided us with a laser range maps of the Stanford campus


collected by a moving robot equipped with SICK2 laser sensors Fig. 7.5. The data consists


of around 35 million points, represented as 3D coordinates in an absolute frame of refer-


ence Fig. 7.5. Thus, the only available information is the location of points. Each reading


was a point in 3D space, represented by its(x, y, z) coordinates in an absolute frame of


reference. Thus, the only available information is the location of points, which was fairly


noisy because of localization errors.


Our task is to classify the laser range points into four classes:ground, building, tree,


1Many thanks to Michael Montemerlo and Sebastian Thrun for sharing the data.
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Figure 7.3: Segbot: roving robot equipped with SICK2 laser sensors.


and shrubbery. Since classifying ground points is trivial given their absolute z-coordinate


(height), we classify them deterministically by thresholding the z coordinate at a value


close to 0. After we do that, we are left with approximately 20 million non-ground points.


Each point is represented simply as a location in an absolute 3D coordinate system. The


features we use require pre-processing to infer properties of the local neighborhood of a


point, such as how planar the neighborhood is, or how much of the neighbors are close to


the ground. The features we use are invariant to rotation in the x-y plane, as well as the


density of the range scan, since scans tend to be sparser in regions farther from the robot.


Our first type of feature is based on the principal plane around it. For each point we


sample 100 points in a cube of radius0.5 meters. We run PCA on these points to get the


plane of maximum variance (spanned by the first two principal components). We then par-


tition the cube into3 × 3 × 3 bins around the point, oriented with respect to the principal


plane, and compute the percentage of points lying in the various sub-cubes. We use a num-


ber of features derived from the cube such as the percentage of points in the central column,


the outside corners, the central plane, etc. These features capture the local distribution well


and are especially useful in finding planes. Our second type of feature is based on a column
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Figure 7.4: 3D laser scan range map of the Stanford Quad.


around each point. We take a cylinder of radius0.25 meters, which extends vertically to


include all the points in a “column”. We then compute what percentage of the points lie in


various segments of this vertical column (e.g., between 2m and 2.5m). Finally, we also use


an indicator feature of whether or not a point lies within2m of the ground. This feature is


especially useful in classifying shrubbery.


For training we select roughly 30 thousand points that represent the classes well: a


segment of a wall, a tree, some bushes. We considered three different models:SVM,


Voted-SVM and AMNs. All methods use the same set of features, augmented with a


quadratic kernel.


The first model is a multi-class SVM with a quadratic kernel over the above features.


This model (Fig. 7.5, right panel and Fig. 7.7, top panel) achieves reasonable performance
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Figure 7.5: Terrain classification results showing Stanford Memorial Church obtained
with SVM, Voted-SVM and AMN models. (Color legend: buildings/red, trees/green,
shrubs/blue, ground/gray).


in many places, but fails to enforce local consistency of the classification predictions. For


example arches on buildings and other less planar regions are consistently confused for


trees, even though they are surrounded entirely by buildings.


We improved upon the SVM by smoothing its predictions using voting. For each point


we took its local neighborhood (we varied the radius to get the best possible results) and


assigned the point the label of the majority of its 100 neighbors. TheVoted-SVM model


(Fig. 7.5, middle panel and Fig. 7.7, middle panel) performs slightly better thanSVM: for


example, it smooths out trees and some parts of the buildings. Yet it still fails in areas like


arches of buildings where theSVM classifier has a locally consistent wrong prediction.


The final model is a pairwise AMN over laser scan points, with associative potentials


to ensure smoothness. Each point is connected to 6 of its neighbors: 3 of them are sampled


randomly from the local neighborhood in a sphere of radius0.5m, and the other 3 are


sampled at random from the vertical cylinder column of radius0.25m. It is important to


ensure vertical consistency since theSVM classifier is wrong in areas that are higher off the
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Figure 7.6: The running time (in seconds) of the min-cut-based inference algorithm for
different problem sizes. The problem size is the sum of the number of nodes and the
number of edges. Note the near linear performance of the algorithm and its efficiency even
for large models.


ground (due to the decrease in point density) or because objects tend to look different as we


vary their z-coordinate (for example, tree trunks and tree crowns look different). While we


experimented with a variety of edge features including various distances between points,


we found that even using only a constant feature performs well.


We trained the AMN model using CPLEX to solve the quadratic program; the train-


ing took about an hour on a Pentium 3 desktop. The inference over each segment was


performed using min-cut withα-expansion moves as described above. We used a pub-


licly available implementation of the min-cut algorithm, which uses bidirectional search


trees for augmenting paths (see Boykov and Kolmogorov [2004]). The implementation is


largely dominated by I/O time, with the actual min-cut taking less than two minutes even


for the largest segment. The performance is summarized in Fig. 7.6, and as we can see, it


is roughly linear in the size of the problem (number of nodes and number of edges).


We can see that the predictions of the AMN (Fig. 7.5, left panel and Fig. 7.7, bot-


tom panel) are much smoother: for example building arches and tree trunks are predicted
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correctly. We also hand-labeled around 180 thousand points of the test set (Fig. 7.8) and


computed accuracies of the predictions shown in Fig. 7.9 (excluding ground, which was


classified by pre-processing). The differences are dramatic:SVM: 68%,Voted-SVM: 73%


andAMN: 93%. See more results, including a fly-through movie of the data, at


http://ai.stanford.edu/˜btaskar/3Dmap/ .


7.6 Related work


Several authors have considered extensions to the Potts model. Kleinberg and Tardos


[1999] extend the multi-class Potts model to have more general edge potentials, under the


constraints that negative log of the edge potentials form a metric on the set of labels. They


also provide a solution based on a relaxed LP that has certain approximation guarantees.


More recently, Kolmogorov and Zabih [2002] showed how to optimize energy func-


tions containing binary and ternary interactions using graph cuts, as long as the parameters


satisfy a certain regularity condition. Our definition of associative potentials below also


satisfies the Kolmogorov and Zabih regularity condition forK = 2. However, the structure


of our potentials is simpler to describe and extend for the multi-class case. In fact, we can


extend our max-margin framework to estimate their more general potentials by expressing


inference as a linear program.


Our terrain classification approach is most closely related to work in vision applying


conditional random fields (CRFs) to 2D images. Kumar and Hebert [2003] train CRFs


using a pseudo-likelihood approximation to the distributionP (Y | X) since estimating


the true conditional distribution is intractable. Unlike their work, our learning formulation


provides an exact and tractable optimization algorithm, as well as formal guarantees for


binary classification problems. Moreover, unlike their work, our approach can also handle


multi-class problems in a straightforward manner.


7.7 Conclusion


In this chapter, we provide an algorithm for max-margin training of associative Markov


networks, a subclass of Markov networks that allows only positive interactions between
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related variables. Our approach relies on a linear programming relaxation of the MAP


problem, which is the key component in the quadratic program associated with the max-


margin formulation. We thus provide a polynomial time algorithm which approximately


solves the maximum margin estimation problem for any associative Markov network. Im-


portantly, our method is guaranteed to find the optimal (margin-maximizing) solution for all


binary-valued AMNs, regardless of the clique size or the connectivity. To our knowledge,


this algorithm is the first to provide an effective learning procedure for Markov networks


of such general structure.


Our results in the binary case rely on the fact that the LP relaxation of the MAP problem


provides exact solutions. In the non-binary case, we are not guaranteed exact solutions, but


we can prove constant-factor approximation bounds on the MAP solution returned by the


relaxed LP. It would be interesting to see whether these bounds provide us with guarantees


on the quality (e.g., the margin) of our learned model.


We present large-scale experiments with terrain segmentation and classification from


3D range data involving AMNs with tens of millions of nodes and edges. The class of


associative Markov networks appears to cover a large number of interesting applications.


We have explored only a computer vision application in this chapter, and consider another


one (hypertext classification) in the next. It would be very interesting to consider other


applications, such as extracting protein complexes from protein-protein interaction data, or


predicting links in relational data. The min-cut based inference is able to handle very large


networks, and it is an interesting challenge to apply the algorithm to even larger models


and develop efficient distributed implementations.


However, despite the prevalence of fully associative Markov networks, it is clear that


many applications call for repulsive potentials. While clearly we cannot introduce fully


general potentials into AMNs without running against the NP-hardness of the general prob-


lem, it would be interesting to see whether we can extend the class of networks we can learn


effectively.
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Figure 7.7: Results from theSVM, Voted-SVM andAMN models.
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Figure 7.8: Labeled part of the test set: ground truth (top) andSVM predictions (bottom).







108 CHAPTER 7. ASSOCIATIVE MARKOV NETWORKS


Figure 7.9: Predictions of theVoted-SVM (top) andAMN (bottom) models.







Chapter 8


Relational Markov networks


In the previous chapters, we have seen how sequential and spatial correlation between


labels can be exploited for tremendous accuracy gains. In many other supervised learning


tasks, the entities to be labeled are related with each other in very complex ways, not just


sequentially or spatially. For example, in hypertext classification, the labels of linked pages


are highly correlated. A standard approach is to classify each entity independently, ignoring


the correlations between them. In this chapter, we present a framework that builds on


Markov networks and provides a flexible language for modeling rich interaction patterns in


structured data. We provide experimental results on a webpage classification task, showing


that accuracy can be significantly improved by modeling relational dependencies.


Many real-world data sets are innately relational: hyperlinked webpages, cross-citations


in patents and scientific papers, social networks, medical records, and more. Such data con-


sist of entities of different types, where each entity type is characterized by a different set


of attributes. Entities are related to each other via different types of links, and the link


structure is an important source of information.


Consider a collection of hypertext documents that we want to classify using some set


of labels. Most naively, we can use a bag of words model, classifying each webpage solely


using the words that appear on the page. However, hypertext has a very rich structure that


this approach loses entirely. One document has hyperlinks to others, typically indicating


that their topics are related. Each document also has internal structure, such as a partition


into sections; hyperlinks that emanate from the same section of the document are even
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more likely to point to similar documents. When classifying a collection of documents,


these are important cues, that can potentially help us achieve better classification accuracy.


Therefore, rather than classifying each document separately, we want to provide a form of


collective classification, where we simultaneously decide on the class labels of all of the


entities together, and thereby can explicitly take advantage of the correlations between the


labels of related entities.


We propose the use of a joint probabilistic model for an entire collection of related enti-


ties. We introduce the framework ofrelational Markov networks (RMNs), which compactly


defines a Markov network over a relational data set. The graphical structure of an RMN is


based on the relational structure of the domain, and can easily model complex patterns over


related entities. For example, we can represent a pattern where two linked documents are


likely to have the same topic. We can also capture patterns that involve groups of links: for


example, consecutive links in a document tend to refer to documents with the same label.


As we show, the use of an undirected graphical model avoids the difficulties of defining


a coherent generative model for graph structures in directed models. It thereby allows us


tremendous flexibility in representing complex patterns.


8.1 Relational classification


Consider hypertext as a simple example of a relational domain. A relational domain is


defined by a schema, which describes entities, their attributes and relations between them.


In our domain, there are two entity types:Doc andLink. If a webpage is represented as a


bag of words,Doc would have a set of boolean attributesDoc.HasWordk indicating whether


the wordk occurs on the page. It would also have the label attributeDoc.Label, indicating


the topic of the page, which takes on a set of categorical values. TheLink entity type has


two attributes:Link.From andLink.To, both of which refer toDoc entities.


In general, aschemaspecifies of a set of entity typesE = {E1, . . . , En}. Each typeE is


associated with three sets of attributes: content attributesE.X (for example,Doc.HasWordk),


label attributesE.Y (for example,Doc.Label), and reference attributesE.R (for example,


Link.To). For simplicity, we restrict label and content attributes to take on categorical val-


ues. Reference attributes include a special unique key attributeE.K that identifies each
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entity. Other reference attributesE.R refer to entities of a single typeE ′ = Range(E.R)


and take values inDomain(E ′.K).


An instantiationI of a schemaE specifies the set of entitiesI(E) of each entity type


E ∈ E and the values of all attributes for all of the entities. For example, an instantiation


of the hypertext schema is a collection of webpages, specifying their labels, words they


contain and links between them. We will useI.X, I.Y andI.R to denote the content,


label and reference attributes in the instantiationI; I.x, I.y andI.r to denote the values


of those attributes. The componentI.r, which we call aninstantiation skeletonor instan-


tiation graph, specifies the set of entities (nodes) and their reference attributes (edges). A


hypertext instantiation graph specifies a set of webpages and links between them, but not


their words or labels. Taskaret al. [2001] suggest the use ofprobabilistic relational mod-


els (PRMs)for the collective classification task. PRMs [Koller & Pfeffer, 1998; Friedman


et al., 1999; Getooret al., 2002] are a relational extension of Bayesian networks [Pearl,


1988]. A PRM specifies a probability distribution over instantiations consistent with a


given instantiation graph by specifying a Bayesian-network-like template-level probabilis-


tic model for each entity type. Given a particular instantiation graph, the PRM induces


a large Bayesian network over that instantiation that specifies a joint probability distribu-


tion over all attributes of all of the entities. This network reflects the interactions between


related instances by allowing us to represent correlations between their attributes.


In our hypertext example, a PRM might use a naive Bayes model for words, with a di-


rected edge betweenDoc.Labeland each attributeDoc.HadWordk; each of these attributes


would have aconditional probability distributionP (Doc.HasWordk | Doc.Label) associ-


ated with it, indicating the probability that wordk appears in the document given each of


the possible topic labels. More importantly, a PRM can represent the inter-dependencies


between topics of linked documents by introducing an edge fromDoc.Label to Doc.Label


of two documents if there is a link between them. Given a particular instantiation graph


containing some set of documents and links, the PRM specifies a Bayesian network over all


of the documents in the collection. We would have a probabilistic dependency from each


document’s label to the words on the document, and a dependency from each document’s


label to the labels of all of the documents to which it points. Taskaret al. show that this


approach works well for classifying scientific documents, using both the words in the title
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and abstract and the citation-link structure.


However the application of this idea to other domains, such as webpages, is problematic


since there are many cycles in the link graph, leading to cycles in the induced “Bayesian


network”, which is therefore not a coherent probabilistic model. Getooret al. [2001] sug-


gest an approach where we do not include direct dependencies between the labels of linked


webpages, but rather treat links themselves as random variables. Each two pages have a


“potential link”, which may or may not exist in the data. The model defines the probability


of the link existence as a function of the labels of the two endpoints. In this link exis-


tence model, labels have no incoming edges from other labels, and the cyclicity problem


disappears. This model, however, has other fundamental limitations. In particular, the re-


sulting Bayesian network has a random variable for each potential link —N2 variables for


collections containingN pages. This quadratic blowup occurs even when the actual link


graph is very sparse. WhenN is large (e.g., the set of all webpages), a quadratic growth is


intractable. Even more problematic are the inherent limitations on the expressive power im-


posed by the constraint that the directed graph must represent a coherent generative model


over graph structures. The link existence model assumes that the presence of different


edges is a conditionally independent event. Representing more complex patterns involving


correlations between multiple edges is very difficult. For example, if two pages point to the


same page, it is more likely that they point to each other as well. Such interactions between


many overlapping triples of links do not fit well into the generative framework.


Furthermore, directed models such as Bayesian networks and PRMs are usually trained


to optimize the joint probability of the labels and other attributes, while the goal of clas-


sification is a discriminative model of labels given the other attributes. The advantage


of training a model only to discriminate between labels is that it does not have to trade


off between classification accuracy and modeling the joint distribution over non-label at-


tributes. In many cases, discriminatively trained models are more robust to violations of


independence assumptions and achieve higher classification accuracy than their generative


counterparts.
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Label 1
Label 2
Label 3


Figure 8.1: An unrolled Markov net over linked documents. The links follow a common
pattern: documents with the same label tend to link to each other more often.


8.2 Relational Markov networks


We now extend the framework of Markov networks to the relational setting. Arelational


Markov network (RMN)specifies a conditional distribution over all of the labels of all


of the entities in an instantiation given the relational structure and the content attributes.


(We provide the definitions directly for the conditional case, as the unconditional case is a


special case where the set of content attributes is empty.) Roughly speaking, it specifies the


cliques and potentials between attributes of related entities at a template level, so a single


model provides a coherent distribution for any collection of instances from the schema.


For example, suppose that pages with the same label tend to link to each other, as


in Fig. 8.1. We can capture this correlation between labels by introducing, for each link, a


clique between the labels of the source and the target page. The potential on the clique will


have higher values for assignments that give a common label to the linked pages.


To specify what cliques should be constructed in an instantiation, we will define a no-


tion of arelational clique template. A relational clique template specifies tuples of variables


in the instantiation by using a relational query language. For our link example, we can write


the template as a kind of SQL query:


SELECT doc1.Category, doc2.Category







114 CHAPTER 8. RELATIONAL MARKOV NETWORKS


FROM Doc doc1, Doc doc2, Link link


WHERE link.From = doc1.Key and link.To = doc2.Key


Note the three clauses that define a query: the FROM clause specifies the cross prod-


uct of entities to be filtered by the WHERE clause and the SELECT clause picks out the


attributes of interest. Our definition of clique templates contains the corresponding three


parts.


A relational clique templateC = (F,W,S) consists of three components:


◦ F = {Fi} — a set of entity variables, where an entity variableFi is of typeE(Fi).


◦ W(F.R) — a boolean formula using conditions of the formFi.Rj = Fk.Rl.


◦ F.S ⊆ F.X ∪ F.Y — a selected subset of content and label attributes inF.


For the clique template corresponding to the SQL query above,F consists ofdoc1, doc2


andlink of typesDoc, Doc andLink, respectively.W(F.R) is link.From = doc1.Key ∧
link.To = doc2.Key andF.S is doc1.Category anddoc2.Category.


A clique template specifies a set of cliques in an instantiationI:


C(I) ≡ {c = f .S : f ∈ I(F) ∧W(f .r)},


wheref is a tuple of entities{fi} in which eachfi is of typeE(Fi); I(F) = I(E(F1)) ×
. . .×I(E(Fn)) denotes the cross-product of entities in the instantiation; the clauseW(f .r)


ensures that the entities are related to each other in specified ways; and finally,f .S selects


the appropriate attributes of the entities. Note that the clique template does not specify the


nature of the interaction between the attributes; that is determined by the clique potentials,


which will be associated with the template.


This definition of a clique template is very flexible, as the WHERE clause of a tem-


plate can be an arbitrary predicate. It allows modeling complex relational patterns on the


instantiation graphs. To continue our webpage example, consider another common pattern


in hypertext: links in a webpage tend to point to pages of the same category. This pattern


can be expressed by the following template:


SELECT doc1.Category, doc2.Category
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FROM Doc doc1, Doc doc2, Link link1, Link link2


WHERE link1.From = link2.From and link1.To = doc1.Key


and link2.To = doc2.Key and not doc1.Key = doc2.Key


Depending on the expressive power of our template definition language, we may be able


to construct very complex templates that select entire subgraph structures of an instantia-


tion. We can easily represent patterns involving three (or more) interconnected documents


without worrying about the acyclicity constraint imposed by directed models. Since the


clique templates do not explicitly depend on the identities of entities, the same template can


select subgraphs whose structure is fairly different. The RMN allows us to associate the


same clique potential parameters with all of the subgraphs satisfying the template, thereby


allowing generalization over a wide range of different structures.


A Relational Markov network (RMN)M = (C, Φ) specifies a set of clique templates


C and corresponding potentialsΦ = {φC}C∈C to define a conditional distribution:


P (I.y | I.x, I.r)


=
1


Z(I.x, I.r)


∏
C∈C


∏


c∈C(I)


φC(I.xc, I.yc)


whereZ(I.x, I.r) is the normalizing partition function:


Z(I.x, I.r) =
∑


I.y′


∏
C∈C


∏


c∈C(I)


φC(I.xc, I.y′c)


.


Using the log-linear representation of potentials,φC(VC) = exp{w>
C fC(VC)}, we can


write


log P (I.y | I.x, I.r) = w>f(I.x, I.y, I.r)− log Z(I.x, I.r)


where


fC(I.x, I.y, I.r) =
∑


c∈C(I)


fC(I.xc, I.yc)


is the sum over all appearances of the templateC(I) in the instantiation, andf is the vector
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of all fC .


Given a particular instantiationI of the schema, the RMNM produces anunrolled


Markov network over the attributes of entities inI. The cliques in the unrolled network


are determined by the clique templatesC. We have one clique for eachc ∈ C(I), and


all of these cliques are associated with the same clique potentialφC . In our webpage


example, an RMN with the link basis function described above would define a Markov net


in which, for every link between two pages, there is an edge between the labels of these


pages. Fig. 8.1 illustrates a simple instance of this unrolled Markov network.


8.3 Approximate inference and learning


Applying both maximum likelihood and maximum margin learning in the relational setting


is requires inference in very large and complicated networks, where exact inference is


typically intractable. We therefore resort to approximate methods.


Maximum likelihood estimation


For maximum likelihood learning, we need to compute basis function expectations, not


just the most likely assignment. There is a wide variety of approximation schemes for this


problem, including MCMC and variational methods. We chose to usebelief propagation


for its simplicity and relative efficiency and accuracy. Belief Propagation (BP) is a local


message passing algorithm introduced by Pearl [1988]. It is guaranteed to converge to the


correct marginal probabilities for each node only for singly connected Markov networks.


However, recent analysis [Yedidiaet al., 2000] provides some theoretical justification. Em-


pirical results [Murphyet al., 1999] show that it often converges in general networks, and


when it does, the marginals are a good approximation to the correct posteriors. As our


results in Sec. 8.4 show, this approach works well in our domain. We refer the reader to


Yedidiaet al. for a detailed description of the BP algorithm.


We provide a brief outline of one variant of BP, referring to [Murphyet al., 1999]


for more details. For simplicity, we assume a pairwise network where all potentials are


associated only with nodes and edges given by:







8.3. APPROXIMATE INFERENCE AND LEARNING 117


P (Y1, . . . , Yn) =
1


Z


∏
ij


ψij(Yi, Yj)
∏


i


ψi(Yi)


whereij ranges over the edges of the network andψij(Yi, Yj) = φ(xij, Yi, Yj), ψi(Yi) =


φ(xi, Yi).


The belief propagation algorithm is very simple. At each iteration, each nodeYi sends


the following messages to all its neighborsN(i):


mij(Yj) ← α
∑
yi


ψij(yi, Yj)ψi(yi)
∏


k∈N(i)−j


mki(Yi)


whereα is a (different) normalizing constant. This process is repeated until the messages


converge. At any point in the algorithm, the marginal distribution of any nodeYi is approx-


imated by


bi(Yi) = αψi(Yi)
∏


k∈N(i)


mki(Yi)


and the marginal distribution of a pair of nodes connected by an edge is approximated by


bij(Yi, Yj) = αψij(Yi, Yj)ψi(Yi)ψj(Yj)
∏


k∈N(i)−j


mki(Yi)
∏


l∈N(j)−i


mlj(Yj)


These approximate marginals are precisely what we need for the computation of the


basis function expectations and performing classification. Computing the expected basis


function expectations involves summing their expected values for each clique using the


approximate marginalsbi(Yi) andbij(Yi, Yj). Similarly, we usemaxyi
bi(Yi) at prediction


time. Note that we can alsomax− product variant of loopy BP, with


mij(Yj) ← α max
yi


ψij(yi, Yj)ψi(yi)
∏


k∈N(i)−j


mki(Yi)


to compute approximate posterior “max”-marginals and use those for prediction. In our


experiments, this results in less accurate classification, so we use posterior marginal pre-


diction.
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Maximum margin estimation


For maximum margin estimation, we used approximate LP inference inside the max-margin


QP, using commercial Ilog CPLEX software to solve it. For networks with general poten-


tials, we used the untriangulated LP we described in Sec. 5.4. The untriangulated LP


produced fractional solutions for inference on the test data in several settings, which we


rounded independently for each label. For networks with attractive potentials (AMNs), we


used the LP in Sec. 7.2, which always produced integral solutions on test data.


8.4 Experiments


We tried out our framework on theWebKBdataset [Cravenet al., 1998], which is an in-


stance of our hypertext example. The data set contains webpages from four different Com-


puter Science departments: Cornell, Texas, Washington and Wisconsin. Each page has a


label attribute, representing the type of webpage which is one ofcourse, faculty, student,


project or other. The data set is problematic in that the categoryother is a grab-bag of


pages of many different types. The number of pages classified asother is quite large,


so that a baseline algorithm that simply always selectedother as the label would get an


average accuracy of 75%. We could restrict attention to just the pages with the four other


labels, but in a relational classification setting, the deleted webpages might be useful in


terms of their interactions with other webpages. Hence, we compromised by eliminating


all other pages with fewer than three outlinks, making the number ofother pages com-


mensurate with the other categories. The resulting category distribution is: course (237),


faculty (148), other (332), research-project (82) and student (542). The number of remain-


ing pages for each school are: Cornell (280), Texas (292), Washington (315) and Wisconsin


(454). The number of links for each school are: Cornell (574), Texas (574), Washington


(728) and Wisconsin (1614).


For each page, we have access to the entire html of the page and the links to other


pages. Our goal is to collectively classify webpages into one of these five categories. In all


of our experiments, we learn a model from three schools and test the performance of the


learned model on the remaining school, thus evaluating the generalization performance of
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the different models. We usedC ∈ [0.1, 10] and took the best setting for all models.


Unfortunately, we cannot directly compare our accuracy results with previous work


because different papers use different subsets of the data and different training/test splits.


However, we compare to standard text classifiers such as Naive Bayes, Logistic Regression,


and Support Vector Machines, which have been demonstrated to be successful on this data


set [Joachims, 1999].


8.4.1 Flat models


The simplest approach we tried predicts the categories based on just the text content on


the webpage. The text of the webpage is represented using a set of binary attributes that


indicate the presence of different words on the page. We found that stemming and feature


selection did not provide much benefit and simply pruned words that appeared in fewer


than three documents in each of the three schools in the training data. We also experi-


mented with incorporating meta-data: words appearing in the title of the page, in anchors


of links to the page and in the last header before a link to the page [Yanget al., 2002].


Note that meta-data, although mostly originating from pages linking into the considered


page, are easily incorporated as features, i.e. the resulting classification task is still flat


feature-based classification. Our first experimental setup compares three well-known text


classifiers —Naive Bayes, linear support vector machines (Svm), and logistic regression


(Logistic) — using words and meta-words. The results, shown in Fig. 8.2, show that the


two discriminative approaches outperformNaive Bayes. Logistic andSvm give very sim-


ilar results. The average error over the 4 schools was reduced by around 4% by introducing


the meta-data attributes.


Incorporating meta-data gives a significant improvement, but we can take additional


advantage of the correlation in labels of related pages by classifying them collectively. We


want to capture these correlations in our model and use them for transmitting informa-


tion between linked pages to provide more accurate classification. We experimented with


several relational models.
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Figure 8.2: Comparison ofNaive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)


8.4.2 Link model


Our first model captures direct correlations between labels of linked pages. These corre-


lations are very common in our data: courses and research projects almost never link to


each other; faculty rarely link to each other; students have links to all categories but mostly


courses. TheLink model, shown in Fig. 8.1, captures this correlation through links: in


addition to the local bag of words and meta-data attributes, we introduce a relational clique


template over the labels of two pages that are linked.We train this model using maximum


conditional likelihood (labels given the words and the links) and maximum margin.


We also compare to a directed graphical model to contrast discriminative and genera-


tive models of relational structure. TheExists-ML model is a (partially) generative model


proposed by Getooret al. [2001]. For each page, a logistic regression model predicts


the page label given the words and meta-features. Then a simple generative model speci-


fies a probability distribution over the existence of links between pages conditioned on both


pages’ labels. Concretely, we learn the probability of existence of a link between two pages


given their labels. Note that this model does not require inference during learning. Max-


imum likelihood estimation (with regularization) of the generative component is closed
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Figure 8.3: Comparison of flat versus collective classification on WebKB: SVM, Exists
model with logistic regression and theLink model estimated using the maximum likelihood
(ML) and the maximum margin (MM) criteria.


form given appropriate co-occurrence counts of linked pages’ labels. However, the predic-


tion phase is much more expensive, since the resulting graphical model includes edges not


only for the existing hyperlinks, but also those that do not exist. Intuitively, observing the


link structure directly correlates all page labels in a website, linked or not. By contrast,


theLink model avoids this problem by only modeling the conditional distribution given the


existing links.


Fig. 8.3 shows a gain in accuracy from SVMs to theLink model by using the corre-


lations between labels of linked web pages. There is also very significant additional gain


by using maximum margin training: the error rate ofLink-MM is 40% lower than that of


Link-ML, and51% lower than multi-class SVMs. TheExists model doesn’t perform very


well in comparison. This can be attributed to the simplicity of the generative model and the


difficulty of the resulting inference problem.


8.4.3 Cocite model


The second relational model uses the insight that a webpage often has internal structure


that allows it to be broken up intosections. For example, a faculty webpage might have
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Figure 8.4: Comparison ofNaive Bayes, Svm, andLogistic on WebKB, with and without
meta-data features. (Only averages over the 4 schools are shown here.)


one section that discusses research, with a list of links to all of the projects of the faculty


member, a second section might contain links to the courses taught by the faculty member,


and a third to his advisees. We can view a section of a webpage as a fine-grained version of


Kleinberg’s hub [Kleinberg, 1999] (a page that contains a lot of links to pages of particular


category). Intuitively, if two pages arecocited, or linked to from the same section, they are


likely to be on similar topics. Note that we expect the correlation between the labels in this


case to be positive, so we can use AMN-type potentials in the max-margin estimation. The


Cocite model captures this type of correlation.


To take advantage of this trend, we need to enrich our schema by adding the attribute


Sectionto Link to refer to the section number it appears in. We defined a section as a


sequence of three or more links that have the same path to the root in the html parse tree.


In the RMN, we have a relational clique template defined by:


SELECT doc1.Category, doc2.Category


FROM Doc doc1, Doc doc2, Link link1, Link link2


WHERE link1.From = link2.From and link1.Section = link2.Section and


link1.To = doc1.Key and link2.To = doc2.Key and not doc1.Key = doc2.Key


We compared the performance ofSVM, Cocite-ML and Cocite-MM. The results,
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shown in Fig. 8.4, also demonstrate significant improvements of the relational models over


theSVM. The improvement is present when testing on each of the schools. Again, maxi-


mum likelihood trained modelCocite-ML achieves a worse test error than maximum mar-


gin Cocite-MM model, which shows a 30% relative reduction in test error overSVM.


We note that, in our experiments, the learnedCocite-MM weights never produced frac-


tional solutions when used for inference, which suggests that the optimization successfully


avoided problematic parameterizations of the network, even in the case of the non-optimal


multi-class relaxation.


8.5 Related work


Our RMN representation is most closely related to the work on PRMs [Koller & Pfeffer,


1998]. Later work showed how to efficiently learn model parameters and structure (equiv-


alent of clique selection in Markov networks) from data [Friedmanet al., 1999]. Getoor


et al. [2002] propose several generative models of relational structure. Their approach


easily captures the dependence of link existence on attributes of entities. However there


are many patterns that we are difficult to model in PRMs, in particular those that involve


several links at a time. We give some examples here.


One useful type of pattern type is asimilarity template, where objects that share a cer-


tain graph-based property are more likely to have the same label. Consider, for example,


a professor X and two other entities Y and Z. If X’s webpage mentions Y and Z in the


same context, it is likely that the X-Y relation and the Y-Z relation are of the same type; for


example, if Y is Professor X’s advisee, then probably so is Z. Our framework accommo-


dates these patterns easily, by introducing pairwise cliques between the appropriate relation


variables.


Another useful type of subgraph template involvestransitivitypatterns, where the pres-


ence of an A-B link and of a B-C link increases (or decreases) the likelihood of an A-C link.


For example, students often assist in courses taught by their advisor. Note that this type


of interaction cannot be accounted for just using pairwise cliques. By introducing cliques


over triples of relations, we can capture such patterns as well. We can incorporate even


more complicated patterns, but of course we are limited by the ability of belief propagation
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to scale up as we introduce larger cliques and tighter loops in the Markov network.


We describe and exploit these patterns in our work on RMNs using maximum likelihood


estimation [Taskaret al., 2003b]. Attempts to model such pattern in PRMs run into the


constraint that the probabilistic dependency graph (Bayesian network) must be a directed


acyclic graph. For example, for the transitivity pattern, we might consider simply directing


the correlation edges between link existence variables arbitrarily. However, it is not clear


how to parameterize a link existence variable for a link that is involved in multiple triangles.


The structure of the relational graph has been used extensively to infer importance in


scientific publications [Egghe & Rousseau, 1990] and hypertext [Kleinberg, 1999]. Sev-


eral recent papers have proposed algorithms that use the link graph to aid classification.


Chakrabartiet al. [1998] use system-predicted labels of linked documents to iteratively


re-label each document in the test set, achieving a significant improvement compared to a


baseline of using the text in each document alone. A similar approach was used by Neville


and Jensen [2000] in a different domain. Slattery and Mitchell [2000] tried to identify di-


rectory (or hub) pages that commonly list pages of the same topic, and used these pages to


improve classification of university webpages. However, none of these approaches provide


a coherent model for the correlations between linked webpages, applying combinations of


classifiers in a procedural way, with no formal justification.


8.6 Conclusion


In this chapter, we propose a new approach for classification in relational domains. Our ap-


proach provides a coherent foundation for the process of collective classification, where we


want to classify multiple entities, exploiting the interactions between their labels. We have


shown that we can exploit a very rich set of relational patterns in classification, significantly


improving the classification accuracy over standard flat classification.


In some cases, we can incorporate relational features into standard flat classification.


For example, when classifying papers into topics, it is possible to simply view the presence


of particular citations as atomic features. However, this approach is limited in cases where


some or even all of the relational features that occur in the test data are not observed in


the training data. In our WebKB example, there is no overlap between the webpages in the
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different schools, so we cannot learn anything from the training data about the significance


of a hyperlink to/from a particular webpage in the test data. Incorporating basic features


(e.g., words) from the related entities can aid in classification, but cannot exploit the strong


correlation between thelabelsof related entities that RMNs capture.


Hypertext is the most easily available source of structured data, however, RMNs are


generally applicable to any relational domain. The results in this chapter represent only


a subset of the domains we have worked on (see [Taskaret al., 2003b]). In particular,


social networks provide extensive information about interactions among people and orga-


nizations. RMNs offer a principled method for learning to predict communities of and


hierarchical structure between people and organizations based on both the local attributes


and the patterns of static and dynamic interaction. Given the wealth of possible patterns, it


is particularly interesting to explore the problem of inducing them automatically.
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Part III


Broader applications: parsing,


matching, clustering


127







Chapter 9


Context free grammars


We present a novel discriminative approach to parsing using structured max-margin crite-


rion based on the decomposition properties of context free grammars. We show that this


framework allows high-accuracy parsing in cubic time by exploiting novel kinds of lexical


information. Our models can condition on arbitrary features of input sentences, thus incor-


porating an important kind of lexical information not usually used by conventional parsers.


We show experimental evidence of the model’s improved performance over a natural base-


line model and a lexicalized probabilistic context-free grammar.


9.1 Context free grammar model


CFGs are one of the primary formalisms for capturing the recursive structure of syntactic


constructions, although many others have also been proposed [Manning & Schütze, 1999].


For clarity of presentation, we restrict our grammars to be in Chomsky normal form as


in Sec. 3.4. The non-terminal symbols correspond to syntactic categories such as noun


phrase (NP) or verbal phrase (VP). The terminal symbols are usually words of the sen-


tence. However, in the discriminative framework that we adopt, we are not concerned with


defining a distribution over sequences of words (language model). Instead, wecondition


on the words in a sentence to produce a model of the syntactic structure. Terminal sym-


bols for our purposes are part-of-speech tags like nouns (NN), verbs (VBD), determiners


(DT). For example, Fig. 9.1(a) shows a parse tree for the sentenceThe screen was a sea of
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red. The set of symbols we use is based on the Penn Treebank [Marcuset al., 1993]. The


non-terminal symbols with bars (for example,DT, NN, VBD) are added to conform to the


CNF restrictions. For convenience, we repeat our definition of a CFG from Sec. 3.4 here:


Definition 9.1.1 (CFG) A CFGG consists of:


◦ A set of non-terminal symbols,N
◦ A designated set of start symbols,NS ⊆ N
◦ A set of terminal symbols,T
◦ A set of productions,P = {PB,PU}, divided into


. Binary productions,PB = {A → B C : A,B,C ∈ N} and


. Unary productions,PU = {A → D : A ∈ N , D ∈ T }.


A CFG defines a set of valid parse trees in a natural manner:


Definition 9.1.2 (CFG tree) A CFG treeis a labeled directed tree, where the set of valid


labels of the internal nodes other than the root isN and the set of valid labels for the leaves


is T . The root’s label set isNS. Additionally, each pre-leaf node has a single child and


this pair of nodes can be labeled asA andD, respectively, if and only if there is a unary


productionA → D ∈ PU . All other internal nodes have two children, left and right, and


this triple of nodes can be labeled asA, B and C, respectively, if and only if there is a


binary productionA → B C ∈ PB.


In general, there are exponentially many parse trees that produce a sentence of lengthn.


This tree representation seems quite different from the graphical models we have been


considering thus far. However, we can use an equivalent representation that essentially


encodes a tree as an assignment to a set of appropriate variables. For each span starting


with s and an ending withe, we introduce a variableYs,e taking values inN∪⊥ to represent


the label of the subtree that exactly covers, ordominates, the words of the sentence from


s to e. The value⊥ is assigned if no subtree dominates the span. Indicess ande refer to


positions between words, rather than to words themselves, hence0 ≤ s < e ≤ n for a


sentence of lengthn. The “top” symbolY0,n is constrained to be inNS, since it represents
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(a) (b)


Figure 9.1: Two representations of a binary parse tree: (a) nested tree structure, and (b)
grid of labeled spans. The row and column number are the beginning and end of the span,
respectively. Empty squares correspond to non-constituent spans. The gray squares on the
diagonal represent part-of-speech tags.


the starting symbol of the sentence. We also introduce variablesYs,s taking values inT to


represent the terminal symbol (part-of-speech) betweens ands + 1. If Ys,e 6= ⊥, it is often


called aconstituent. Fig. 9.1(b) shows the representation of the tree in Fig. 9.1(a) as a grid


where each square corresponds toYs,e. The row and column number in the grid correspond


to the beginning and end of the span, respectively. Empty squares correspond to⊥ values.


The gray squares on the diagonal represent the terminal variables. For example, the figure


showsY0,0 = DT, Y6,6 = NN, Y3,5 = NP andY1,4 = ⊥.


While any parse tree corresponds to an assignment to this set of variables in a straight-


forward manner, the converse is not true: there are assignments that do not correspond


to valid parse trees. In order to characterize the set of valid assignmentsY, consider the
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constraints that hold for a valid assignmenty:


1I(ys,e = A) =
∑


A→B C∈PB
s<m<e


1I(ys,m,e = (A,B, C)), 0 ≤ s < e ≤ n, ∀A ∈ N ; (9.1)


1I(ys,e = A) =
∑


B→A C∈PB
0≤s′<s


1I(ys′,s,e = (B, A, C))


+
∑


B→C A∈PB
e<e′≤n


1I(ys,e,e′ = (B, C, A)), 0 ≤ s < e ≤ n, ∀A ∈ N ; (9.2)


1I(ys,s+1 = A) =
∑


A→D∈PU


1I(ys,s,s+1 = (A,D)), 0 ≤ s < n, ∀A ∈ N ; (9.3)


1I(ys,s = D) =
∑


A→D∈PU


1I(ys,s,s+1 = (A,D)), 0 ≤ s < n, ∀D ∈ T . (9.4)


The notationys,m,e = (A,B,C) abbreviatesys,e = A ∧ ys,m = B ∧ ym,e = C and


ys,s,s+1 = (A,D) abbreviatesys,s+1 = A ∧ ys,s = D. The first set of constraints (9.1)


holds because if the span froms to e is dominated by a subtree starting withA (that is,


ys,e = A), then there must be a unique production starting withA and some split pointm,


s < m < e, that produces that subtree. Conversely, ifys,e 6= A, no productions start with


A and covers to e. The second set of constraints (9.2) holds because that if the span from


s to e is dominated by a subtree starting withA (ys,e = A), then there must be a (unique)


production that generated it: either starting befores or aftere. Similarly, the third and


fourth set of constraints (9.3 and 9.4) hold since the terminals are generated using valid


unary productions. We denote the set of assignmentsy satisfying (9.1-9.4) asY. In fact


the converse is true as well:


Theorem 9.1.3 If y ∈ Y, theny represents a valid CFG tree.


Proof sketch: It is straightforward to construct a parse tree fromy ∈ Y in a top-down


manner. Starting from the root symbol,y0,n, the first set of constraints (9.1) ensures that a


unique production spans0 to n, say splitting atm and specifying the values fory0,m and


ym,n. The second set of constraints (9.2) ensures that all other spansy0,m′ andym′,n, for


m′ 6= m are labeled by⊥. Recursing on the two subtrees,y0,m andym,n, will produce the


rest of the tree down to the pre-terminals. The last two sets of constraints (9.3 and 9.4)
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ensure that the terminals are generated by an appropriate unary productions from the pre-


terminals.


9.2 Context free parsing


A standard approach to parsing is to use a CFG to define a probability distribution over


parse trees. This can be done simply by assigning a probability to each production and


making sure that the sum of probabilities of all productions starting with each symbol is1:


∑
B,C:A→B C∈PB


P (A → B C) = 1,
∑


D:A→D∈PU


P (A → D) = 1, ∀A ∈ N .


The probability of a tree is simply the product of probabilities of the productions used in


the tree. More generally, a weighted CFG assigns a score to each production (this score


may depend on the position of the productions,m, e) such that the total score of a tree is


the sum of the score of all the productions used:


S(y) =
∑


0≤s<m<e≤n


Ss,m,e(ys,m,e) +
∑


0≤s<n


Ss,s+1(ys,s+1),


whereSs,m,e(ys,m,e) = 0 if (ys,e = ⊥ ∨ ys,m = ⊥ ∨ ym,e = ⊥). If the production scores


are production log probabilities, then the tree score is the tree log probability. However,


weighted CFGs do not have the local normalization constraints Eq. (9.5).


We can use a Viterbi-style dynamic programming algorithm called CKY to compute


the highest score parse tree inO(|P|n3) time [Younger, 1967; Manning & Schütze, 1999].


The algorithm computes the highest score of any subtree starting with a symbol over each


span0 ≤ s < e ≤ n recursively:


S∗s,s+1(A) = max
A→D∈PU


Ss,s+1(A,D), 0 ≤ s < n, ∀A ∈ N ; (9.5)


S∗s,e(A) = max
A→B C∈PB


s<m<e


Ss,m,e(A,B,C) + S∗s,m(B) + S∗m,e(C), 0 ≤ s < e ≤ n, ∀A ∈ N .


The highest scoring tree has scoremaxA∈NS
S∗0,n(A). Using thearg max’s of themax’s in
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the computation ofS∗, we can back-trace the highest scoring tree itself. We assume that


score ties are broken in a predetermined way, say according to some lexicographic order of


the symbols.


9.3 Discriminative parsing models


We cast parsing as a structured classification task, where we want to learn a functionh :


X 7→ Y , whereX is a set of sentences, andY is a set of valid parse trees according to a


fixed CFG grammar.


The functions we consider take the following linear discriminant form:


hw(x) = arg max
y


w>f(x,y),


wherew ∈ IRd andf is a basis function representation of a sentence and parse tree pair


f : X ×Y → IRd. We assume that the basis functions decompose with the CFG structure:


f(x,y) =
∑


0≤s≤e≤n


f(xs,e, ys,e) +
∑


0≤s≤m<e≤n


f(xs,m,e,ys,m,e),


wheren is the length of the sentencex and xs,e and xs,m,e are the relevant subsets of


the sentence the basis functions depend on. To simplify notation, we introduce the set of


indices,C, which includes both spans and span triplets:


C = {(s,m) : 0 ≤ s ≤ e ≤ n} ∪ {(s,m, e) : 0 ≤ s ≤ m < e ≤ n}.


Hence,f(x,y) =
∑


c∈C f(xc, yc).


Note that this class of discriminants includes PCFG models, where the basis func-


tions consist of the counts of the productions used in the parse, and the parametersw are


the log-probabilities of those productions. For example,f could include functions which


identify the production used together with features of the words at positionss,m, e, and


neighboring positions in the sentencex (e.g.f(xs,m,e,ys,m,e) = 1I(ys,m,e = S, NP, VP) ∧
mthword(x) = was)). We could also include functions that identify the label of the span
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from s to e together with features of the word (e.g.f(xs,m, ys,m) = 1I(ys,m = NP) ∧
sthword(x) = the)).


9.3.1 Maximum likelihood estimation


The traditional method of estimating the parameters of PCFGs assumes a generative model


that definesP (x,y) by assigning normalized probabilities to CFG productions. We then


maximize the joint log-likelihood
∑


i log P (x(i),y(i)) (with some regularization). We com-


pare to such a generative grammar of Collins [1999] in our experiments.


A alternative probabilistic approach is to estimate the parameters discriminatively by


maximizingconditionallog-likelihood. For example, the maximum entropy approach [John-


son, 2001] defines a conditional log-linear model:


Pw(y | x) =
1


Zw(x)
exp{w>f(x,y)},


whereZw(x) =
∑


y exp{w>f(x,y)}, and maximizes the conditional log-likelihood of


the sample,
∑


i log P (y(i) | y(i)), (with some regularization). The same assumption that


the basis functions decompose as sums of local functions over spans and productions is


typically made in such models. Hence, as in Markov networks, the gradient depends


on the expectations of the basis functions, which can be computed inO(|P|n3) time by


dynamic programming algorithm called inside-outside, which is similar to the CKY al-


gorithm. However, computing the expectations over trees is actually more expensive in


practice than finding the best tree for several reasons. CKY works entirely in the log-space,


while inside-outside needs to compute actual probabilities. Branch-and-prune techniques,


which save a lot of useless computation, are only applicable in CKY.


A typical method for finding the parameters is to use Conjugate Gradients or L-BFGS


methods [Nocedal & Wright, 1999; Boyd & Vandenberghe, 2004], which repeatedly com-


pute these expectations to calculate the gradient. Clark and Curran [2004] report experi-


ments involving 479 iterations of training for one model, and 1550 iterations for another


using similar methods.
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9.3.2 Maximum margin estimation


We assume that loss function also decomposes with the CFG structure:


`(x,y, ŷ) =
∑


0≤s≤e≤n


`(xs,e, ys,e, ŷs,e) +
∑


0≤s≤m<e≤n


`(xs,m,e,ys,m,e, ŷs,m,e) =
∑
c∈C


`(xc,yc, ŷc).


One approach would be to define`(xs,e, ys,e, ŷs,e) = 1I(ys,e 6= ŷs,e). This would lead to


`(x,y, ŷ) tracking the number of “constituent errors” in̂y. Another, more strict definition


would be to definè(xs,m,e,ys,m,e, ŷs,m,e) = 1I(ys,m,e 6= ŷs,m,e). This definition would lead


to `(x,y, ŷ) being the number of productions in̂y which are not seen iny. The constituent


loss function does not exactly correspond to the standard scoring metrics, such as F1 or


crossing brackets, but shares the sensitivity to the number of differences between trees. We


have not thoroughly investigated the exact interplay between the various loss choices and


the various parsing metrics. We used the constituent loss in our experiments.


As in the max-margin estimation for Markov networks, we can formulate an exponen-


tial size QP:


min
1


2
||w||2 + C


∑
i


ξi (9.6)


s.t. w>∆fi(y) ≥ `i(y)− ξi ∀i,y,


where∆fi(y) = f(x(i),y(i))− f(x(i),y), and`i(y) = `(x(i),y(i),y).


The dual of Eq. (9.6) (after normalizing byC) is given by:


max
∑
i,y


αi(y)`i(y)− 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑
i,y


αi(y)∆fi(y)


∣∣∣∣∣


∣∣∣∣∣


2


(9.7)


s.t.
∑
y


αi(y) = 1, ∀i; αi(y) ≥ 0, ∀i,y.


Both of the above formulations are exponential (in the number of variables or con-


straints) in the lengths (ni’s) of the sentences. But we can exploit the context-free structure


of the basis functions and the loss to define a polynomial-size dual formulation in terms of
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marginal variablesµi(y):


µi,s,e(A) ≡
∑


y:ys,e=A


αi(y), 0 ≤ s ≤ e ≤ n, ∀A ∈ N ;


µi,s,s(D) ≡
∑


y:ys,s=D


αi(y), 0 ≤ s ≤ e ≤ n, ∀D ∈ T ;


µi,s,m,e(A,B, C) ≡
∑


y:ys,m,e=(A,B,C)


αi(y), 0 ≤ s < m < e ≤ n, ∀A → B C ∈ PB,


µi,s,s,s+1(A,D) ≡
∑


y:ys,s,s+1=(A,D)


αi(y), 0 ≤ s < n, ∀A → D ∈ PU .


There areO(|PB|n3
i + |PU |ni) such variables for each sentence of lengthni, instead of


exponentially manyαi variables. We can now express the objective function in terms of


the marginals. Using these variables, the first set of terms in the objective becomes:


∑
i,y


αi(y)`i(y) =
∑
i,y


αi(y)
∑


c∈C(i)


`i,c(yc) =
∑


i,c∈C(i),yc


µi,c(yc)`i,c(yc).


Similarly, the second set of terms (inside the 2-norm) becomes:


∑
i,y


αi(y)∆fi(y) =
∑
i,y


αi(y)
∑


c∈C(i)


∆fi,c(yc) =
∑


i,c∈C(i),yc


µi,c(yc)∆fi,c(yc).


As in M3Ns, we must characterize the set of marginalsµ that corresponds to valid


α. The constraints onµ are essentially based on the those that defineY in (9.1-9.4). In


addition, we require that the marginals over the root nodes,µi,0,ni
(y0,ni


), sums to 1 over the


possible start symbolsNS.
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Putting the pieces together, the factored dual is:


max
∑


i,c∈C(i)


µi,c(yc)`i,c(yc) + C


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i,c∈C(i)


µi,c(yc)∆fi,c(yc)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


(9.8)


s.t.
∑


A∈NS


µi,0,ni
(A) = 1, ∀i; µi,c(yc) ≥ 0; ∀i, ∀c ∈ C(i);


µi,s,e(A) =
∑


A→B C∈PB
s<m<e


µi,s,m,e(A,B, C), ∀i, 0 ≤ s < e ≤ ni, ∀A ∈ N ;


µi,s,e(A) =
∑


B→A C∈PB
0≤s′<s


µi,s′,s,e(B,A, C)


+
∑


B→C A∈PB
e<e′≤ni


µi,s,e,e′(B, C, A), ∀i, 0 ≤ s < e ≤ ni,∀A ∈ N ;


µi,s,s+1(A) =
∑


A→D∈PU


µi,s,s,s+1(A,D), ∀i, 0 ≤ s < ni, ∀A ∈ N ;


µi,s,s(D) =
∑


A→D∈PU


µi,s,s,s+1(A, D), ∀i, 0 ≤ s < ni, ∀D ∈ T .


The constraints onµ is necessary, since they must correspond to marginals of a distri-


bution over trees. They are also sufficient:


Theorem 9.3.1 A set of marginalsµi(y) satisfying the constraints in Eq. (9.8) corresponds


to a valid distribution over the legal parse treesy ∈ Y (i). A consistent distributionαi(y)


is given by


αi(y) = µi,0,ni
(y0,ni


)
∏


0≤s≤m<e≤ni


µi,s,m,e(ys,m,e)


µi,s,e(ys,e)
,


where0/0 = 0 by convention.


Proof sketch: The proof follows from inside-outside probability relations [Manning &


Scḧutze, 1999]. The first term is a valid distribution of starting symbols. Eachµi,s,m,e(ys,m,e)


µi,s,e(ys,e)


term form > s corresponds to a conditional distribution over binary productions(ys,e →
ys,m ym,e) that are guaranteed to sum to 1 over split pointsm and possible productions.


Similarly, eachµi,s,s,s+1(ys,s,s+1)


µi,s,s+1(ys,s+1)
term for corresponds to a conditional distribution over
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unary productions(ys,s+1 → ys,s) that are guaranteed to sum to 1 over possible produc-


tions. Hence, we have defined a kind of PCFG (where production probabilities depend on


the location of the symbol), which induces a valid distributionαi over trees. It straightfor-


ward to verify that this distribution has marginalsµi.


9.4 Structured SMO for CFGs


We trained our max-margin models using the Structured SMO algorithm with block-coordinate


descent adopted from graphical models (see Sec. 6.1). The CKY algorithm computes sim-


ilar max-marginals in the course of computing the best tree as does Viterbi in Markov


networks.


v̂i,c(yc) = max
y∼yc


[w>fi(y) + `i(y)], α̂i,c(yc) = max
y∼yc


αi(y).


We also definêvi,c(yc) = maxy′c 6=yc v̂i,c(y
′
c) = maxy 6∼yc [w>fi(y) + `i(y)]. Note that we


do not explicitly representαi(y), but we can reconstruct the maximum-entropy one from


the marginalsµi as in Theorem 9.3.1.


We again express the KKT conditions in terms of the max-marginals for each span and


span triplec ∈ C(i) and its valuesyc:


α̂i,c(yc) = 0 ⇒ v̂i,c(yc) ≤ v̂i,c(yc); α̂i,c(yc) > 0 ⇒ v̂i,c(yc) ≥ v̂i,c(yc). (9.9)


The algorithm cycles through the training sentences, runs CKY to compute the max-


marginals and performs an SMO update on the violated constraints. We typically find that


20-40 iterations through the data are sufficient for convergence in terms of the objective


function improvements.


9.5 Experiments


We used the Penn English Treebank for all of our experiments. We report results here for


each model and setting trained and tested on only the sentences of length≤ 15 words. Aside
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from the length restriction, we used the standard splits: sections 2-21 for training (9753


sentences), 22 for development (603 sentences), and 23 for final testing (421 sentences).


As a baseline, we trained a CNF transformation of the unlexicalized model of Klein and


Manning [2003] on this data. The resulting grammar had 3975 non-terminal symbols and


contained two kinds of productions: binary non-terminal rewrites and tag-word rewrites.


Unary rewrites were compiled into a single compound symbol, so for example a subject-


gapped sentence would have label likeS+VP. These symbols were expanded back into


their source unary chain before parses were evaluated. The scores for the binary rewrites


were estimated using unsmoothed relative frequency estimators. The tagging rewrites were


estimated with a smoothed model ofP (w|t), also using the model from Klein and Manning


[2003]. In particular, Table 9.2 shows the performance of this model (GENERATIVE): 87.99


F1 on the test set.


For theBASIC max-margin model, we used exactly the same set of allowed rewrites


(and therefore the same set of candidate parses) as in the generative case, but estimated


their weights using the max-margin formulation with a loss that counts the number of


wrong spans. Tag-word production weights were fixed to be the log of the generative


P (w|t) model. That is, the only change betweenGENERATIVE andBASIC is the use of the


discriminative maximum-margin criterion in place of the generative maximum likelihood


one for learning production weights. This change alone results in a small improvement


(88.20 vs. 87.99 F1).


On top of the basic model, we first added lexical features of each span; this gave a


LEXICAL model. For a span〈s, e〉 of a sentencex, the base lexical features were:


◦ xs, the first word in the span


◦ xs−1, the preceding adjacent word


◦ xe−1, the last word in the span


◦ xe, the following adjacent word


◦ 〈xs−1, xs〉
◦ 〈xe−1, xe〉
◦ xs+1 for spans of length 3
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Model P R F1


GENERATIVE 87.70 88.06 87.88
BASIC 87.51 88.44 87.98
LEXICAL 88.15 88.62 88.39
LEXICAL+AUX 89.74 90.22 89.98


Table 9.1: Development set results of the various models when trained and tested on Penn
treebank sentences of length≤ 15.


Model P R F1


GENERATIVE 88.25 87.73 87.99
BASIC 88.08 88.31 88.20
LEXICAL 88.55 88.34 88.44
LEXICAL+AUX 89.14 89.10 89.12
COLLINS 99 89.18 88.20 88.69


Table 9.2: Test set results of the various models when trained and tested on Penn treebank
sentences of length≤ 15.


These base features were conjoined with the span length for spans of length 3 and below,


since short spans have highly distinct behaviors (see the examples below). The features are


lexical in the sense than they allow specific words and word pairs to influence the parse


scores, but are distinct from traditional lexical features in several ways. First, there is no


notion of headword here, nor is there any modeling of word-to-word attachment. Rather,


these features pick up on lexical trends in constituent boundaries, for example the trend


that in the sentenceThe screen was a sea of red., the (length 2) span between the wordwas


and the wordof is unlikely to be a constituent. These non-head lexical features capture a


potentially very different source of constraint on tree structures than head-argument pairs,


one having to do more with linear syntactic preferences than lexical selection. Regardless


of the relative merit of the two kinds of information, one clear advantage of the present


approach is that inference in the resulting model remains cubic (as opposed toO(n5)),


since the dynamic program need not track items with distinguished headwords. With the


addition of these features, the accuracy moved past the generative baseline, to 88.44.
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As a concrete (and particularly clean) example of how these features can sway a de-


cision, consider the sentenceThe Egyptian president said he would visit Libya today to


resume the talks. The generative model incorrectly considersLibya todayto be a baseNP.


However, this analysis is counter to the trend oftodayto be a one-word constituent. Two


features relevant to this trend are: (CONSTITUENT∧ first-word = today∧ length = 1) and


(CONSTITUENT∧ last-word =today∧ length = 1). These features represent the preference


of the wordtodayfor being the first and last word in constituent spans of length 1.1 In the


LEXICAL model, these features have quite large positive weights: 0.62 each. As a result,


this model makes this parse decision correctly.


Another kind of feature that can usefully be incorporated into the classification process


is the output of other, auxiliary classifiers. For this kind of feature, one must take care


that its reliability on the training not be vastly greater than its reliability on the test set.


Otherwise, its weight will be artificially (and detrimentally) high. To ensure that such


features are as noisy on the training data as the test data, we split the training into two


folds. We then trained the auxiliary classifiers on each fold, and using their predictions as


features on the other fold. The auxiliary classifiers were then retrained on the entire training


set, and their predictions used as features on the development and test sets.


We used two such auxiliary classifiers, giving a prediction feature for each span (these


classifiers predicted only the presence or absence of a bracket over that span, not bracket


labels). The first feature was the prediction of the generative baseline; this feature added


little information, but made the learning phase faster. The second feature was the output


of a flat classifier which was trained to predict whether single spans, in isolation, were


constituents or not, based on a bundle of features including the list above, but also the


following: the preceding, first, last, and following tag in the span, pairs of tags such as


preceding-first, last-following, preceding-following, first-last, and the entire tag sequence.


Tag features on the test sets were taken from a pretagging of the sentence by the tagger


described in [Toutanovaet al., 2003].While the flat classifier alone was quite poor (P 78.77


/ R 63.94 / F1 70.58), the resulting max-margin model (LEXICAL +AUX ) scored 89.12 F1.


To situate these numbers with respect to other models, the parser in [Collins, 1999],which


1In this length 1 case, these are the same feature. Note also that the features are conjoined with only one
generic label class “constituent” rather than specific constituent types.
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is generative, lexicalized, and intricately smoothed scores 88.69 over the same train/test


configuration.


9.6 Related work


A number of recent papers have considered discriminative approaches for natural language


parsing [Johnsonet al., 1999; Collins, 2000; Johnson, 2001; Geman & Johnson, 2002;


Miyao & Tsujii, 2002; Clark & Curran, 2004; Kaplanet al., 2004; Collins, 2004]. Broadly


speaking, these approaches fall into two categories,rerankinganddynamic programming


approaches. In reranking methods [Johnsonet al., 1999; Collins, 2000; Shenet al., 2003],


an initial parser is used to generate a number of candidate parses. A discriminative model


is then used to choose between these candidates. In dynamic programming methods, a


large number of candidate parse trees are represented compactly in a parse tree forest or


chart. Given sufficiently “local” features, the decoding and parameter estimation problems


can be solved using dynamic programming algorithms. For example, several approaches


[Johnson, 2001; Geman & Johnson, 2002; Miyao & Tsujii, 2002; Clark & Curran, 2004;


Kaplanet al., 2004] are based on conditional log-linear (maximum entropy) models, where


variants of the inside-outside algorithm can be used to efficiently calculate gradients of the


log-likelihood function, despite the exponential number of trees represented by the parse


forest.


The method we presented has several compelling advantages. Unlike reranking meth-


ods, which consider only a pre-pruned selection of “good” parses, our method is an end-


to-end discriminative model over the full space of parses. This distinction can be very


significant, as the set ofn-best parses often does not contain the true parse. For example,


in the work of Collins [2000], 41% of the correct parses were not in the candidate pool of


∼30-best parses. Unlike previous dynamic programming approaches, which were based on


maximum entropy estimation, our method incorporates an articulated loss function which


penalizes larger tree discrepancies more severely than smaller ones.


Moreover, the structured SMO we use requires only the calculation of Viterbi trees,


rather than expectations over all trees (for example using the inside-outside algorithm).







9.7. CONCLUSION 143


This allows a range of optimizations that prune the space of parses (without making ap-


proximations) not possible for maximum likelihood approaches which must extract basis


function expectations from the entire set of parses. In our experiments,20-40 iterations


were generally required for convergence (except theBASIC model, which took about 100


iterations.)


9.7 Conclusion


We have presented a maximum-margin approach to parsing, which allows a discriminative


SVM-like objective to be applied to the parsing problem. Our framework permits the use


of a rich variety of input features, while still decomposing in a way that exploits the shared


substructure of parse trees in the standard way.


It is worth considering the cost of this kind of method. At training time, discriminative


methods are inherently expensive, since they all involve iteratively checking current model


performance on the training set, which means parsing the training set (usually many times).


Generative approaches are vastly cheaper to train, since they must only collect counts from


the training set.


On the other hand, the max-margin approach does have the potential to incorporate


many new kinds of features over the input, and the current feature set allows limited lexi-


calization in cubic time, unlike other lexicalized models (including the Collins model which


it outperforms in the present limited experiments). This trade-off between the complexity,


accuracy and efficiency of a parsing model is an important area of future research.







Chapter 10


Matchings


We address the problem of learning to match: given a set of input graphs and corresponding


matchings, find a parameterized edge scoring function such that the correct matchings have


the highest score. Bipartite matchings are used in many fields, for example, to find marker


correspondences in vision problems, to map words of a sentence in one language to another,


to identify functional genetic analogues in different organisms. We have shown a compact


max-margin formulation for bipartite matchings in Ch. 4. In this chapter, we focus on a


more complex problem of non-bipartite matchings. We motivate this problem using an


application in computational biology, disulfide connectivity prediction, but non-bipartite


matchings can be used for many other tasks.


Identifying disulfide bridges formed by cysteine residues is critical in determining the


structure of proteins. Recently proposed models have formulated this prediction task as a


maximum weight perfect matching problem in a graph containing cysteines as nodes with


edge weights measuring the attraction strength of the potential bridges. We exploit combi-


natorial properties of the perfect matching problem to define a compact, convex, quadratic


program. We use kernels to efficiently learn very rich (in-fact, infinite-dimensional) mod-


els and present experiments on standard protein databases, showing that our framework


achieves state-of-the-art performance on the task.


Throughout this chapter, we use the problem of disulfide connectivity prediction as an


example. We provide some background on this problem.


144
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10.1 Disulfide connectivity prediction


Proteins containing cysteine residues form intra-chain covalent bonds known asdisulfide


bridges. Such bonds are a very important feature of protein structure since they enhance


conformational stability by reducing the number of configurational states and decreasing


the entropic cost of folding a protein into its native state [Matsumuraet al., 1989]. They do


so mostly by imposing strict structural constraints due to the resulting links between distant


regions of the protein sequence [Harrison & Sternberg, 1994].


Knowledge of the exact disulfide bonding pattern in a protein provides information


about protein structure and possibly its function and evolution. Furthermore, since the


disulfide connectivity pattern imposes structure constraints, it can be used to reduce the


search space in both protein folding prediction as well as protein 3D structure prediction.


Thus, the development of efficient, scalable and accurate methods for the prediction of


disulfide bonds has numerous practical applications.


Recently, there has been increased interest in applying computational techniques to


the task of predicting the intra-chain disulfide connectivity [Fariselli & Casadio, 2001;


Fariselliet al., 2002; Vullo & Frasconi, 2004; Klepeis & Floudas, 2003; Baldiet al., 2004].


Since a sequence may contain any number of cysteine residues, which may or may not


participate in disulfide bonds, the task of predicting the connectivity pattern is typically


decomposed into two subproblems: predicting the bonding state of each cysteine in the


sequence, and predicting the exact connectivity among bonded cysteines. Alternatively,


there are methods [Baldiet al., 2004] that predict the connectivity pattern without knowing


the bonding state of each cysteine1.


We predict the connectivity pattern by finding the maximum weighted matching in a


graph in which each vertex represents a cysteine residue, and each edge represents the


“attraction strength” between the cysteines it connects [Fariselli & Casadio, 2001]. We


parameterize the this attraction strength via a linear combination of features, which can


include the protein sequence around the two residues, evolutionary information in the form


of multiple alignment profiles, secondary structure or solvent accessibility information, etc.


1We thank Pierre Baldi and Jianlin Cheng for introducing us to the problem of disulfide connectivity
prediction and providing us with preliminary draft of their paper and results of their model, as well as the
protein datasets.
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10.2 Learning to match


Formally, we seek a functionh : X 7→ Y that maps inputsx ∈ X to output matchings


y ∈ Y, for example,X is the space of protein sequences andY is the space of matchings


of their cysteines. The space of matchingsY is very large, in fact, superexponential in


the number of nodes in a graph. However,Y has interesting and complex combinatorial


structure which we exploit to learnh efficiently.


The training data consists ofm examplesS = {(x(i),y(i))}m
i=1 of input graphs and


output matchings. We assume that the inputx defines the space of possible matchings


using some deterministic procedure. For example, given a protein sequence, we construct


a complete graph where each node corresponds to a cysteine. We represent each possible


edge between nodesj andk (j < k) in examplei using a binary variabley(i)
jk . For simplicity,


we assume complete graphs, but very little needs to be changed to handle sparse graphs.


If examplei hasLi nodes, then there areLi(Li − 1)/2 edge variables, soy(i) is a


binary vector of dimensionLi(Li − 1)/2. In a perfect matching, each node is connected


exactlyone other node. In non-perfect matchings, each node is connected toat mostone


other node. Letni = Li/2, then for complete graphs with even number of verticesLi, the


number of possible perfect matchings is(2ni)!
2nini!


(which is Ω((ni


2
)ni), super-exponential in


ni). For example, 1ANS protein in Fig. 10.1 has6 cysteines (nodes),15 potential bonds


(edges) and15 possible perfect matchings.


Our hypothesis class is maximum weight matchings:


hs(x) = arg max
y∈Y


∑


jk


sjk(x)yjk, (10.1)


For disulfide connectivity prediction, this model was used by Fariselli and Casadio [2001].


Their model assigns an attraction strengthsjk(x) to each pair of cysteines, calculated by


assuming that all residues in the local neighborhoods of the two cysteines make contact,


and summing contact potentials for pairs of residues. We consider a simple but very general


class of attraction scoring functions defined by a weighted combination of features orbasis


functions:


sjk(x) =
∑


d


wdfd(xjk) = w>f(xjk), (10.2)
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Figure 10.1: PDB protein 1ANS: amino acid sequence, 3D structure, and graph of potential
disulfide bonds. Actual disulfide connectivity is shown in yellow in the 3D model and the
graph of potential bonds.


wherexjk is the portion of the inputx that directly relates to nodesj andk, fd(xjk) is


a real-valued basis function andwd ∈ IR. For example, the basis functions can represent


arbitrary information about the two cysteine neighborhoods: the identity of the residues


at specific positions around the two cysteines, or the predicted secondary structure in the


neighborhood of each cysteine. We assume that the user provides the basis functions, and


that our goal is to learn the weightsw, for the model:


hw(x) = arg max
y∈Y


∑


jk


w>f(xjk)yjk. (10.3)


Below, we will abbreviatew>f(x,y) ≡ ∑
jk w>f(xjk)yjk, andw>fi(y) ≡ w>f(x(i),y),


The naive formulation of the max-margin estimation, which enumerates all perfect


matchings for each examplei, is:


min
1


2
||w||2 s.t. w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i). (10.4)


The number of constraints in this formulation is super-exponential in the number of nodes


in each example. In the following sections we present two max-margin formulations,


first with an exponential set of constraints (Sec. 10.3), and then with a polynomial one


(Sec. 10.4).
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10.3 Min-max formulation


Using the min-max formulation from Ch. 4, we have a singlemax constraint for eachi:


min
1


2
||w||2 s.t. w>fi(y(i)) ≥ max


y∈Y(i)
[w>fi(y) + `i(y)], ∀i. (10.5)


The key to solving this problem efficiently is theloss-augmentedinference


maxy∈Y(i) [w>fi(y) + `i(y)]. Under the assumption of Hamming distance loss (or any loss


function that can be written as a sum of terms corresponding to edges), this maximization


is equivalent (up to a constant term) to a maximum weighted matching problem. Note that


since they variables are binary, the Hamming distance betweeny(i) andy can be written


as(1 − y)>y(i) + (1 − y(i))>y = 1>y(i) + (1 − 2y(i))>y. Hence, the maximum weight


matching where edgejk has weightw>f(x(i)
jk )+(1−2y


(i)
jk ) (plus the constant1>y(i)) gives


the value ofmaxy∈Y(i) [w>fi(y) + `i(y)].


This problem can be solved inO(L3) time [Gabow, 1973; Lawler, 1976]. It can also be


solved as a linear program, where we introduce continuous variablesµi,jk instead of binary


variablesy(i)
jk .


max
∑


jk


µi,jk[w
>f(x(i)


jk ) + (1− 2y
(i)
jk )] (10.6)


s.t. µi,jk ≥ 0, 1 ≤ j < k ≤ Li;
∑


k


µi,jk ≤ 1, 1 ≤ j ≤ Li;


∑


j,k∈V


µi,jk ≤ 1


2
(|V | − 1), V ⊆ {1, . . . , Li}, |V | ≥ 3 and odd.


The constraints
∑


k µi,jk ≤ 1 require that the number of bonds incident on a node is less


or equal to one. For perfect matchings, these constraints are changed to
∑


k µi,jk = 1 to


ensure exactly one bond. The subset constraints (in the last line of Eq. (10.6)) ensure that


solutions to the LP are integral [Edmonds, 1965]. Note that we have an exponential number


of constraints (O(2(Li−1))), but this number is asymptotically smaller than the number of


possible matchings . It is an open problem to derive a polynomial sized LP formulation for


perfect matchings [Schrijver, 2003].
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We can write the loss-augmented inference problem in terms of the LP in Eq. (10.6):


max
y∈Y(i)


[w>fi(y) + `i(y)] = di + max
Aiµi≤bi


µi≥0


µ>i [Fiw + ci],


where:di = 1>y(i); µi is a vector of lengthLi(Li − 1)/2 indexed by bondjk; Ai andbi


are the appropriate constraint coefficient matrix and right hand side vector, respectively.Fi


is a matrix of basis function coefficients such that the componentjk of the vectorFiw is


w>f(x
(i)
jk ) andci = (1 − 2y(i)). Note that the dependence onw is linear and occurs only


in the objective of the LP.


The dual of the LP in Eq. (10.6) is


min λ>i bi s.t. A>
i λi ≥ Fiw + ci; λi ≥ 0. (10.7)


We plug it into Eq. (10.5) and combine the minimization overλ with minimization overw.


min
1


2
||w||2 (10.8)


s.t. w>fi(y
(i)) ≥ di + λ>i bi, ∀i;


A>
i λi ≥ Fiw + ci, ∀i;


λi ≥ 0, ∀i.


In case that our basis functions are not rich enough to predict the training data perfectly,


we can introduce a slack variableξi for each examplei to allow violations of the constraints


and minimize the sum of the violations:


min
1


2
||w||2 + C


∑
i


ξi (10.9)


s.t. w>fi(y(i)) + ξi ≥ di + λ>i bi, ∀i;
A>


i λi ≥ Fiw + ci, ∀i;
λi ≥ 0, ∀i; ξi ≥ 0, ∀i.


The parameterC allows the user to trade off violations of the constraints with fit to the
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Figure 10.2: Log of the number of QP constraints (y-axis) vs. number of bonds (x-axis) in
the three formulations (perfect matching enumeration, min-max and certificate).


data.


Our formulation is a linearly-constrained quadratic program, albeit with an exponen-


tial number of constraints. In the next section, we develop an equivalent polynomial size


formulation.


10.4 Certificate formulation


Rather than solving the loss-augmented inference problem explicitly, we can focus on find-


ing a compactcertificate of optimalitythat guarantees thaty(i) = arg maxy[w>fi(y) +


`i(y)]. We consider perfect matchings and then provide a reduction for the non-perfect


case. LetM be a perfect matching for a complete undirected graphG = (V, E). In an


alternating cycle/pathin G with respect toM , the edges alternate between those that be-


long toM and those that do not. An alternating cycle isaugmentingwith respect toM if


the score of the edges in the matchingM is smaller that the score of the edges not in the


matchingM .


Theorem 10.4.1 [Edmonds, 1965]A perfect matchingM is a maximum weight perfect


matching if and only if there are no augmenting alternating cycles.
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The number of alternating cycles is exponential in the number of vertices, so simply enu-


merating all of them will not do. Instead, we can rule out such cycles by considering


shortest paths.


We begin by negating the score of those edges not inM . In the discussion below we


assume that each edge scoresjk has been modified this way. We also refer to the scoresjk


as the length of the edgejk. An alternating cycle is augmenting if and only if its length is


negative. A condition ruling out negative length alternating cycles can be stated succinctly


using a kind of distance function. Pick an arbitrary root noder. Let de
j, with j ∈ V ,


e ∈ {0, 1}, denote the length of the shortest distance alternating path fromr to j, where


e = 1 if the last edge of the path is inM , 0 otherwise. These shortest distances are well-


defined if and only if there are no negative alternating cycles. The following constraints


capture this distance function.


sjk ≥ d0
k − d1


j , sjk ≥ d0
j − d1


k, ∀ jk /∈ M ; (10.10)


sjk ≥ d1
k − d0


j , sjk ≥ d1
j − d0


k, ∀ jk ∈ M.


Theorem 10.4.2There exists a distance function{de
j} satisfying the constraints in


Eq. (10.10) if and only if no augmenting alternating cycles exist.


Proof.


(If) Suppose there are no augmenting alternating cycles. Since any alternating paths


from r to j can be shortened (or left the same length) by removing the cycles they contain,


the two shortest paths toj (one ending withM -edge and one not) contain no cycles. Then


let d0
j andd1


j be the length of those paths, for allj (for j = r, setd0
r = d1


r = 0). Then for


anyjk (or kj) in M , the shortest path toj ending with an edge not inM plus the edgejk


(or kj) is an alternating path tok ending with an edge inM . This path is longer or same


length as the shortest path tok ending with an edge inM : sjk +d0
j ≥ d1


k (or skj +d0
j ≥ d1


k),


so the constraint is satisfied. Similarly forjk, kj /∈ M .


(Only if) Suppose a distance function{de
j} satisfies the constraints in Eq. (10.10). Con-


sider an alternating cycleC. We renumber the nodes such that the cycle passes through


nodes1, 2, . . . , l and the first edge,(1, 2), is in M . The length of the path iss(C) =


s1,l +
∑l−1


j=1 sj,j+1. For each oddj, the edge(j, j + 1) is in M , sosj,j+1 ≥ d1
j+1 − d0


j . For
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evenj, the edge(j, j + 1) is not inM , sosj,j+1 ≥ d0
j+1 − d1


j . Finally, the last edge,(1, l),


is not inM , sos1,l ≥ d0
1 − d1


l . Summing the edges, we have:


s(C) ≥ d0
1 − d1


l +
l−1∑


j=1,odd


[d1
j+1 − d0


j ] +
l−1∑


j=2,even


[d0
j+1 − d1


j ] = 0.


Hence all alternating cycles have nonnegative length.


In our learning formulation we have the loss-augmented edge weightss
(i)
jk = (2y


(i)
jk −


1)(w>f(xjk)+1−2y
(i)
jk ). Letdi be a vector of distance variablesde


j, Hi andGi be matrices


of coefficients andqi be a vector such thatHiw + Gidi ≥ qi represents the constraints


in Eq. (10.10) for examplei. Then the following joint convex program inw andd computes


the max-margin parameters:


min
1


2
||w||2 (10.11)


s.t. Hiw + Gidi ≥ qi, ∀i.


Once again, in case that our basis functions are not rich enough to predict the training data


perfectly, we can introduce a slack variable vectorξi to allow violations of the constraints.


The case of non-perfect matchings can be handled by a reduction to perfect matchings


as follows [Schrijver, 2003]. We create a new graph by making a copy of the nodes and


the edges and adding edges between each node and the corresponding node in the copy.


We extend the matching by replicating its edges in the copy and for each unmatched node,


introduce an edge to its copy. We definef(xjk) ≡ 0 for edges between the original and


the copy. Perfect matchings in this graph projected onto the original graph correspond to


non-perfect matchings in the original graph.


The comparison between the log-number of constraints for our three equivalent QP


formulations (enumeration of all perfect matchings, min-max and certificate) is shown


in Fig. 10.2. The x-axis is the number of edges in the matching (number of nodes divided


by two).
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10.5 Kernels


Instead of directly optimizing the primal problem in Eq. (10.8), we can work with its dual.


Each training examplei hasLi(Li − 1)/2 dual variables, andα(i)
jk is the dual variable


associated with the features corresponding to the edgejk. Let α(i) be the vector of dual


variables for examplei. The dual quadratic optimization problem has the form:


max
∑


i


c>i α(i) − 1


2


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i


∑


jk∈E(i)


[(
Cy


(i)
jk − α


(i)
jk


)
f(x


(i)
jk )


]
∣∣∣∣∣∣


∣∣∣∣∣∣


2


(10.12)


s.t. Aiα
(i) ≤ Cbi, ∀i.


α(i) ≥ 0, ∀i.


The only occurrence of feature vectors is in the expansion of the squared-norm term in the


objective:


∑
i,j


∑


kl∈E(i)


∑


mn∈E(j)


(
Cy


(i)
jk − α


(i)
jk


)
f(x


(i)
kl )


>
f(x(j)


mn)
(
Cy


(j)
jk − α


(j)
jk


)
(10.13)


Therefore, we can apply the kernel trick and letf(x
(i)
kl )


>
f(x


(j)
mn) = K(x


(i)
kl ,x


(j)
mn). Thus, we


can efficiently map the original featuresf(xjk) to a high-dimensional space. The primal


and dual solutions are related by:


w =
∑


i


∑


jk


(Cy
(i)
jk − α


(i)
jk )f(x


(i)
jk ) (10.14)


Eq. (10.14) can be used to compute the attraction strengthsjk(x) in a kernelized manner at


prediction time. The polynomial-sized representation in Eq. (10.11) is similarly kerneliz-


able.
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10.6 Experiments


We assess the performance of our method on two datasets containing sequences with ex-


perimentally verified bonding patterns: DIPRO2 and SP39. The DIPRO2 dataset2 was


compiled and made publicly available by Baldiet al. [2004]. It consists of all proteins


from PDB [Bermanet al., 2000], as of May 2004, which contain intra-chain disulfide


bonds. After redundance reduction there are a total of 1018 sequences. In addition, the


sequences are annotated with secondary structure and solvent accessibility information de-


rived from the DSSP database [Kabsch & Sander, 1983]. The SP39 dataset is extracted


from the Swiss-Prot database of proteins [Bairoch & Apweiler, 2000], release 39. It con-


tains only sequences with experimentally verified disulfide bridges, and has a total of 726


proteins. The same dataset was used in earlier work [Baldiet al., 2004; Vullo & Frasconi,


2004; Fariselli & Casadio, 2001], and we have followed the same procedure for extracting


sequences from the database.


Even though our method is applicable to both sequences with a high number of bonds


or sequences in which the bonding state of cysteine residues is unknown, we report results


for the case where the bonding state is known, and the number of bonds is between 2 and


5 (since the case of 1 bond is trivial). The DIPRO2 contains 567 such sequences, and only


53 sequences with a higher number of bonds, so we are able to perform learning on over


90% of all proteins. There are 430 proteins with 2 and 3 bonds and 137 with 4 and 5 bonds.


SP39 contains 446 sequences containing between 2 and 5 bonds.


In order to avoid biases during testing, we adopt the same dataset splitting procedure


as the one used in previous work [Fariselli & Casadio, 2001; Vullo & Frasconi, 2004;


Baldi et al., 2004]. We split SP39 into 4 different subsets, with the constraint that pro-


teins no proteins with sequence similarity of more than 30% belong to different subsets.


Sequence similarity was derived using an all-against-all rigorous Smith-Waterman local


pairwise alignment [Smith & Waterman, 1981] (with the BLOSUM65 scoring matrix, gap


penalty 12 and gap extension 4). Pairs of chains whose alignment is less than 30 residues


were considered unrelated. The DIPRO2 dataset was split similarly into 5 folds, although


the procedure had less effect due to the redundance reduction applied by the authors of the


2http://contact.ics.uci.edu/bridge.html
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dataset.


Models


The experimental results we report use the dual formulation of Sec. 10.5 and an RBF kernel


K(xjk,xlm) = exp(
‖xjk−xlm‖2


γ
), with γ ∈ [0.1, 10]. We use the exponential sized represen-


tation of Sec. 10.3 since for the case of proteins containing between two and five bonds, it


is more efficient due to the low constants in the exponential problem size. We used com-


mercial QP software (CPLEX) to train our models. Training time took around 70 minutes


for 450 examples, using a sequential optimization procedure which solves QP subproblems


associated with blocks of training examples. We are currently working on an implemen-


tation of the certificate formulation Sec. 10.4 to handle longer sequences and non-perfect


matchings (when bonding state is unknown). Below, we describe several models we used.


The features we experimented with were all based on the local regions around candidate


cysteine pairs. For each pair of candidate cysteines{j, k}, wherej < k, we extract the


amino-acid sequence in windows of sizen centered atj andk. As in Baldi et al. [2004],


we augment the features of each model with the number of residues betweenj andk. The


models below use windows of sizen = 9.


The first model,SEQUENCE, uses the features described above: for each window, the


actual sequence is expanded to a20× n binary vector, in which the entries denote whether


or not a particular amino acid occurs at the particular position. For example, the21st entry


in the vector represents whether or not the amino-acid Alanine occurs at position2 of the


local window, counting from the left end of the window. The final set of features for each


{j, k} pair of cysteines is simply the two local windows concatenated together, augmented


with the linear distance between the cysteine residues.


The second model,PROFILE, is the same asSEQUENCE, except that instead of us-


ing the actual protein sequence, we use multiple sequence alignment profile information.


Multiple alignments were computed by running PSI-BLAST using default settings to align


the sequence with all sequences in the NR database [Altschulet al., 1997]. Thus, the in-


put at each position of a local window is the frequency of occurrence of each of the20


amino-acids in the alignments.
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K PROFILE DAG-RNN


2 0.75/ 0.75 0.74 / 0.74
3 0.60 / 0.48 0.61/ 0.51
4 0.46/ 0.24 0.44 /0.27
5 0.43/ 0.16 0.41 / 0.11


K SEQUENCE PROFILE PROFILE-SS


2 0.70 / 0.70 0.73 / 0.73 0.79 / 0.79
3 0.62 / 0.52 0.67 / 0.59 0.74 / 0.69
4 0.44 / 0.21 0.59 / 0.44 0.70 / 0.56
5 0.29 / 0.06 0.43 / 0.17 0.62 / 0.27


(a) (b)


Table 10.1: Numbers indicatePrecision / Accuracy. (a) Performance ofPROFILEmodel
on SP39 vs. preliminary results of the DAG-RNN model [Baldiet al., 2004] which repre-
sent the best currently published results. In each row, the best performance is inbold. (b)
Performance ofSEQUENCE, PROFILE, PROFILE-SSmodels on the DIPRO2 dataset.


The third model,PROFILE-SS, augments thePROFILEmodel with secondary structure


and solvent-accessibility information. The DSSP program produces 8 types of secondary


structure, so we augment each local window of sizen with an additional length8 × n


binary vector, as well as a lengthn binary vector representing the solvent accessibility at


each position.


Results and discussion


We evaluate our algorithm using two metrics: accuracy and precision. The accuracy mea-


sure counts how many full connectivity patterns were predicted correctly, whereas preci-


sion measures the number of correctly predicted bonds as a fraction of the total number of


possible bonds.


The first set of experiments compares our model to preliminary results reported in Baldi


et al. [2004], which represent the current top-performing system. We perform 4-fold cross-


validation on SP39 in order to replicate their setup. As Table 10.1 shows, thePROFILE


model achieves comparable results, with similar or better levels of precision for all bond


numbers, and slightly lower accuracies for the case of 2 and 3 bonds.


In another experiment, we show the performance gained by using multiple alignment


information by comparing the results of theSEQUENCEmodel with thePROFILE. As we


can see from Table 10.1(b), the evolutionary information captured by the amino-acid align-


ment frequencies plays an important role in increasing the performance of the algorithm.
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Figure 10.3: Performance ofPROFILEmodel as training set size changes for proteins with
(a) 2 and 3 bonds (b) 4 and 5 bonds.


The same phenomenon is observed by Vullo and Frasconi [2004] in their comparison of


sequence and profile-based models.


As a final experiment, we examine the role that secondary structure and solvent-accessibility


information plays in the modelPROFILE-SS. Table 10.1(b) shows that the gains are sig-


nificant, especially for sequences with3 and4 bonds. This highlights the importance of


developing even richer features, perhaps through more complex kernels.


Fig. 10.3 shows the performance of thePROFILEmodel as training set size grows. We


can see that for sequences of all bond numbers, both accuracy and precision increase as the


amount of data grows. The trend is more pronounced for sequences with4 and5 bonds


because they are sparsely distributed in the dataset. Such behavior is very promising, since


it validates the applicability of our algorithm as the availability of high-quality disulfide


bridge annotations increases with time.


10.7 Related work


The problem of inverse perfect matching has been studied by Liu and Zhang [2003] in


the inverse combinatorial optimization framework we describe in Sec. 4.3: Given a set of


nominal weightsw0 and a perfect matchingM , which is not a maximum one with respect


to w0, find a new weight vectorw that makesM optimal and minimizes||w0 − w||p
for p = 1,∞. They do not provide a compact optimization problem for this related but
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different task, relying instead on the ellipsoid method with constraint generation.


The problem of disulfide bond prediction first received comprehensive computational


treatment in Fariselli and Casadio [2001]. They modeled the prediction problem as finding


a perfect matching in a weighted graph where vertices represent bonded cysteine residues,


and edge weights correspond to attraction strength. The problem of learning the edge


weights was addressed using a simulated annealing procedure. Their method is only ap-


plicable to the case when bonding state is known. In Fariselliet al. [2002], the authors


switch to using a neural network for learning edge weights and achieve better performance,


especially for the case of 2 and 3 disulfide bonds.


The method in Vullo and Frasconi [2004] takes a different approach to the problem. It


scores candidate connectivity patterns according to their similarity with respect to the cor-


rect pattern, and uses a recursive neural network architecture [Frasconiet al., 1998] to score


candidate patterns. At prediction time the pattern scores are used to perform an exhaustive


search on the space of all matchings. The method is computationally limited to sequences


of 2 to 5 bonds. It also uses multiple alignment profile information and demonstrates its


benefits over sequence information.


In Baldi et al. [2004], the authors achieve the current state-of-the-art performance on


the task. Their method uses Directed Acyclic Graph Recursive Neural Networks [Baldi


& Pollastri, 2003] to predict bonding probabilities between cysteine pairs. The prediction


problem is solved using a weighted graph matching based on these probabilities. Their


method performs better than the one in Vullo and Frasconi [2004] and is also the only


one which can cope with sequences with more than 5 bonds. It also improves on previous


methods by not assuming knowledge of bonding state.


A different approach to predicting disulfide bridges is reported in Klepeis and Floudas


[2003], where bond prediction occurs as part of predictingβ-sheet topology in proteins.


Residue-to-residue contacts (which include disulphide bridges) are predicted by solving a


series of constrained integer programming problems. Interestingly, the approach can be


used to predict disulfide bonds with no knowledge of bonding state, but the results are not


comparable with those in other publications.


The task of predicting whether or not a cysteine is bonded has also been addressed using


a variety of machine learning techniques including neural networks, SVMs, and HMMs
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[Fariselli et al., 1999; Fiser & Simon, 2000; Martelliet al., 2002; Frasconiet al., 2002;


Ceroniet al., 2003] Currently the top performing systems have accuracies around 85%.


10.8 Conclusion


In this chapter, we derive a compact convex quadratic program for the problem of learning


to match. Our approach learns a parameterized scoring function that reproduces the ob-


served matchings in a training set. We present two formulations: one which is based on a


linear programming approach to matching, requiring an exponential number of constraints,


and one which develops a certificate of matching optimality for a compact polynomial-sized


representation. We apply our framework to the task of disulfide connectivity prediction, for-


mulated as a weighted matching problem. Our experimental results show that the method


can achieve performance comparable to current top-performing systems. Furthermore, the


use of kernels makes it easy to incorporate rich sets of features such as secondary structure


information, or extended local neighborhoods of the protein sequence. In the future, it will


be worthwhile to examine how other kernels, such as convolution kernels for protein se-


quences, will affect performance. We also hope to explore the more challenging problem


of disulfide connectivity prediction when the bonding state of cysteines is unknown. While


we have developed the framework to handle that task, it remains to experimentally deter-


mine how well the method performs, especially in comparison to existing methods [Baldi


et al., 2004], which have already addressed the more challenging setting.







Chapter 11


Correlation clustering


Data can often be grouped in many different reasonable clusterings. For example, one user


may organize her email messages by project and time, another by sender and topic. Images


can be segmented by hue or object boundaries. For a given application, there might be


only one of these clusterings that is desirable. Learning to cluster considers the problem of


finding desirable clusterings on new data, given example desirable clusterings on training


data.


We focus on correlation clustering, a novel clustering method that has recently en-


joyed significant attention from the theoretical computer science community [Bansalet al.,


2002; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003]. It is formulated as a vertex


partitioning problem: Given a graph with real-valued edge scores (both positive and neg-


ative), partition the vertices into clusters to maximize the score of intra-cluster edges, and


minimize the weight of inter-cluster edges. Positive edge weights represent correlations be-


tween vertices, encouraging those vertices to belong to a common cluster; negative weights


encourage the vertices to belong to different clusters. Unlike most clustering formulations,


correlation clustering does not require the user to specify the number of clusters nor a dis-


tance threshold for clustering; both of these parameters are effectively chosen to be the best


possible by the problem definition. These properties make correlation clustering a promis-


ing approach to many clustering problems; in machine learning, it has been successfully


applied to coreference resolution for proper nouns [McCallum & Wellner, 2003].


Recently, several algorithms based on linear programming and positive-semidefinite


160
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programming relaxations have been proposed to approximately solve this problem. In this


chapter, we employ these relaxations to derive a max-margin formulation for learning the


edge scores for correlation clustering from clustered training data. We formulate the ap-


proximate learning problem as a compact convex program with quadratic objective and


linear or positive-semidefinite constraints. Experiments on synthetic and real-world data


show the ability of the algorithm to learn an appropriate clustering metric for a variety of


desired clusterings.


11.1 Clustering formulation


An instance of correlation clustering is specified by an undirected graphG = (V , E) with


N nodes and edge scoresjk for eachjk in E , (j < k). We assume that the graph is fully


connected (if it is not, we can make it fully connected by adding appropriate edgesjk with


sjk = 0). We define binary variablesyjk, one for each edgejk, that represent whether node


j andk belong to the same cluster. LetY be the space of assignmentsy that define legal


partitions. For notational convenience, we introduce bothyjk andykj variables, which will


be constrained to have the same value. We also introduceyjj variables, and fix them to


have value1 and setsjj = 0.


Bansalet al. [2002] consider two related problems:


max
y∈Y


∑


jk:sjk>0


sjkyjk −
∑


jk:sjk<0


sjk(1− yjk); (MAX AGREE)


min
y∈Y


∑


jk:sjk>0


sjk(1− yjk)−
∑


jk:sjk<0


sjkyjk; (M INDISAGREE)


The motivation for the names of the two problems comes from separating the set of edges


into positive weight edges and negative weight edges. The best score is obviously achieved


by including all the positive and excluding all the negative edges, but this will not generally


produce a valid partition. InMAX AGREE, we maximize the “agreement” of the partition


with the positive/negative designations: the weight of thepositive includededges minus


the weight ofnegative excludededges. InM INDISAGREE, we minimize the disagreement:


the weight ofpositive excludededges minus the weight ofnegative includededges. In
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particular, let


s∗ = max
y∈Y


∑
sjkyjk; s− =


∑


jk:sjk<0


sjk; s+ =
∑


jk:sjk>0


sjk.


Then the value ofMAX AGREE is s∗ − s− and the value ofM INDISAGREEs+ − s∗. The


optimal partition for the two problems is of course the same (if it is unique). Bansal


et al. [2002] show that both of these problems are NP-hard (but have different approxi-


mation hardness). We will concentrate on the maximization version,MAX AGREE. Several


approximation algorithms have been developed based on Linear and Semidefinite Program-


ming [Charikaret al., 2003; Demaine & Immorlica, 2003; Emanuel & Fiat, 2003], which


we consider in the next sections.


11.1.1 Linear programming relaxation


In order to insure thaty defines a partition, it is sufficient to enforce a kind of triangle


inequality for each triple of nodesj < k < l:


yjk + ykl ≤ yjl + 1; yjk + yjl ≤ ykl + 1; yjl + ykl ≤ yjk + 1. (11.1)


The triangle inequality enforces transitivity: ifj andk are in the same cluster (yjk = 1)


andk and l are in the same cluster (ykl = 1), thenj and l will be forced to be in this


cluster (yjl = 1). The other two cases are similar. Any symmetric, transitive binary relation


induces a partition of the objects.


With these definitions, we can express theMAX AGREE problem as an integer linear


program (ignoring the constant−s−):


max
∑


jk


sjkyjk (11.2)


s.t. yjk + ykl ≤ ylj + 1, ∀j, k, l; yjj = 1, ∀j; yjk ∈ {0, 1}, ∀j, k.


Note that the constraints imply thatyab = yba for any two nodesa and b. To see this,


consider the inequalities involving nodea andb with j = a, k = b, l = b andj = b, k =
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a, l = a:


yab + ybb ≤ yba + 1; yba + yaa ≤ yab + 1;


Sinceyaa = ybb = 1, we haveyab = yba.


The LP relaxation is obtained by replacing the binary variablesyjk ∈ {0, 1} in Eq. (11.2)


with continuous variables0 ≤ µjk ≤ 1.


µjk + µkl ≤ µlj + 1, ∀j, k, l; µjj = 1, ∀j; µjk ≥ 0, ∀j, k. (11.3)


Note thatµjk ≤ 1 is implied since the triangle inequality withj = l givesµjk + µkj ≤
µjj + 1, and sinceµjj = 1 andµjk = µkj, we haveµjk ≤ 1.


We are not guaranteed that this relaxation will produce integral solutions. The LP


solution,sLP , is an upper bound on thes∗. Charikaret al. [2003] show that the integrality


gap of this upper bound is at least2/3:


s∗ − s−


sLP − s−
<


2


3
.


11.1.2 Semidefinite programming relaxation


An alternative formulation [Charikaret al., 2003] is the SDP relaxation. Letmat(µ) denote


the variablesµjk arranged into a matrix.


max
∑


jk


sjkµjk (11.4)


s.t. mat(µ) º 0; µjj = 1, ∀j; µjk ≥ 0, ∀j, k.


In effect, we substituted the triangle inequalities by the semidefinite constraint. To motivate


this relaxation, consider any clustering solution. Choose a collection of orthogonal unit


vectors{v1, . . . ,vK}, one for each cluster in the solution. Every vertexj in the cluster


is assigned the unit vectorvj corresponding to the cluster it is in. If verticesj and k


are in the same cluster, thenv>j vk = 1, if not, v>j vk = 0. The score of the clustering
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solution can now be expressed in terms of the dot productsv>j vk. In the SDP relaxation


in Eq. (11.4), we havemat(µ) º 0, which can be decomposed into a sum of outer products


mat(µ) =
∑


j vjv
>
j .


The entriesµjk correspond to inner productsv>j vk. The vectors generating the inner


products are unit vectors by the requirementµjj = 1. However, they do not necessarily


form a set of orthogonal vectors.


The SDP solution,sSDP , is also an upper bound on thes∗ and Charikaret al. [2003]


show that the integrality gap of this upper bound is at least0.82843:


s∗ − s−


sSDP − s−
≤ 0.82843.


11.2 Learning formulation


The score for an edge is commonly derived from the characteristics of the pair of nodes.


Specifically, we parameterize the score as a weighted combination of basis functions


sjk = w>f(xjk),


w, f(xjk) ∈ IRn, wherexjk is a set of features associated with nodesj andk. In document


clustering, the entries offxjk
might be the words shared by the documentsj andk, while if


one is clustering points in IRn, features might be distances along different dimensions. We


assumef(xjj) = 0 so thatsjj = 0. Hence we write


w>f(x,y) =
∑


jk


yjkw
>f(xjk).


Furthermore, we assume that the loss function decomposes over the edges, into a sum


of edge losses̀i,jk(yjk):


`i(y) =
∑


jk


`i,jk(yjk) =
∑


jk


yjk`i,jk(1) + (1− yjk)`i,jk(0) = `i(0) +
∑


jk


yjk`i,jk,


where`i,jk = `i,jk(1) − `i,jk(0). For example, the Hamming loss counts the number of
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edges incorrectly cut or uncut by a partition.


`H
i (y) =


∑


jk


1I(yjk 6= y
(i)
jk ) =


∑


jk


y
(i)
jk +


∑


jk


yjk(1− 2y
(i)
jk ) = `H


i (0) +
∑


jk


yjk`i,jk,


where`i,jk = 1− 2y
(i)
jk .


With this assumption, the loss augmented maximization is


`i(0) + max
y∈Y


∑


jk


yjk[w
>f(x(i)


jk ) + `i,jk]. (11.5)


We can now use the LP relaxation in Eq. (11.3) and the SDP relaxation in Eq. (11.4) as


upper bounds on Eq. (11.5). We use these upper-bounds in the min-max formulation to


achieve approximate max-margin estimation.


The dual of the LP based upper bound for examplei is `i(0)+


min
∑


jkl


λi,jkl +
∑


j


zi,j (11.6)


s.t.
∑


l


[λi,jkl + λi,ljk − λi,klj] ≥ w>f(x(i)
jk ) + `i,jk, ∀j 6= k;


zi,j +
∑


l


[λi,jjl + λi,ljj − λi,jlj] ≥ `i,jj, ∀j;


λi,jkl ≥ 0, ∀j, k, l.


Above, we introduced a dual variableλi,jkl for each triangle inequality andzi,j for the


identity on the diagonal. Note the righthand-side of the second set of inequalities follows


from the assumptionf(xjj) = 0.
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Plugging this dual into the min-max formulation, we have:


min
1


2
||w||2 + C


∑
ξi (11.7)


s.t. w>f(x(i),y(i)) + ξi ≥ `i(0) +
∑


jkl


λi,jkl +
∑


j


zi,j, ∀i;
∑


l


[λi,jkl + λi,ljk − λi,klj] ≥ w>f(x(i)
jk ) + `i,jk, ∀i,∀j 6= k;


zi,j +
∑


l


[λi,jjl + λi,ljj − λi,jlj] ≥ `i,jj, ∀i, ∀j;


λi,jkl ≥ 0, ∀i,∀j, k, l.


Similarly, the dual of the SDP based upper bound is`i(0)+


min
∑


j


zi,j (11.8)


s.t. −λi,jk ≥ w>f(x
(i)
jk ) + `i,jk, ∀j 6= k;


zi,j − λi,jj ≥ `i,jj ∀j;
mat(λi) º 0.


Plugging the SDP dual into the min-max formulation, we have:


min
1


2
||w||2 + C


∑
ξi (11.9)


s.t. w>f(x(i),y(i)) + ξi ≥ `i(0) +
∑


j


zi,j, ∀i;


−λi,jk ≥ w>f(x(i)
jk ) + `i,jk, ∀i,∀j 6= k;


zi,j − λi,jj ≥ `i,jj, ∀i,∀j;
mat(λi) º 0, ∀i,∀j, k, l.
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11.3 Dual formulation and kernels


The dual of Eq. (11.7) and Eq. (11.9) provide some insight into the structure of the problem


and enable efficient use of kernels. Here we give the dual of Eq. (11.7):


max
∑


i,jk


µi,jk`i,jk − 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑


i,jk


(y
(i)
jk − µi,jk)f(x


(i)
jk )


∣∣∣∣∣


∣∣∣∣∣


2


s.t. µjk + µkl ≤ µlj + 1, ∀i,∀j, k, l; µi,jj = 1, ∀i,∀j; µi,jk ≥ 0, ∀i, ∀j, k.


The dual of Eq. (11.9) is very similar, except that the linear transitivity constraints


µjk + µkl ≤ µlj + 1, ∀i,∀j, k, l are replaced by the correspondingmat(µi) º 0:


max
∑


i,jk


µi,jk`i,jk − 1


2
C


∣∣∣∣∣


∣∣∣∣∣
∑


i,jk


(y
(i)
jk − µi,jk)f(x


(i)
jk )


∣∣∣∣∣


∣∣∣∣∣


2


s.t. mat(µi) º 0, ∀i; µi,jj = 1, ∀i,∀j; µi,jk ≥ 0, ∀i, ∀j, k.


The relation between the primal and dual solution is


w = C
∑


i,jk


(y
(i)
jk − µjk)f(x


(i)
jk ). (11.10)


One important consequence of this relationship is that the edge parameters are all sup-


port vector expansions. The dual objective can be expressed in terms of dot-products


f(xjk)
>f(xlm). Therefore, we can use kernelsK(xjk,xlm) to define the space of basis


functions. This kernel looks at two pairs of nodes,(j, k) and (l,m), and measures the


similarity between the relation between the nodes of each pair. If we are clustering points


in Euclidian space, the kernel could be a function of the two segments corresponding to


the pairs of points, for example, a polynomial kernel over their lengths and angle between


them.
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11.4 Experiments


We present experiments on a synthetic problem exploring the effect of irrelevant basis


functions (features), and two real data sets, email clustering and image segmentation.


11.4.1 Irrelevant features


In this section, we explore on a synthetic example how our algorithm deals with irrele-


vant features. In particular, we generate data (100 points) from a mixture of two one-


dimensional Gaussians, where each mixture component corresponds to a cluster. This first


dimension is thus the relevant feature. Then we add noise components inD additional


(irrelevant) dimensions. The noise is independently generated for each dimension, from a


mixture of Gaussians with same difference in means and variance as for the relevant dimen-


sion. Figure 11.1(a) shows the projection of a data sample onto the first two dimensions


and on two irrelevant dimensions.


Let xj denote each point andxj[d] denote thed-th dimension of the point. We used


a basis function for each dimensionfd(xjk) = e−(xj [d]−xk[d])2, plus an additional constant


basis function. The training and test data consists of a 100 samples from the model. The


results in Fig. 11.1(b) illustrate the capability of our algorithm to learn to ignore irrelevant


dimensions. The accuracy is the fraction of edges correctly predicted to be between/within


cluster. Random clustering will give an accuracy of 50%. The comparison with k-means is


simply a baseline to illustrate the effect of the noise on the data.


11.4.2 Email clustering


We also test our approach on the task of clustering email into folders. We gathered the


data from the SRI CALO project.1 Our dataset consisted of email from seven users (ap-


proximately 100 consecutive messages per user), which the users had manually filed into


different folders. The number of folders for each users varied from two to six, with an


average of 3-4 folders. We are interested in the problem of learning to cluster emails.


1http://www.ai.sri.com/project/CALO
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Figure 11.1: (a) Projection onto first two dimensions (top) and two noise dimensions (bot-
tom); (c) Performance on 2 cluster problem as function of the number of irrelevant noise
dimensions. Learning to cluster is the solid line, k-means the dashed line. Error-bars de-
note one standard deviation, averages are over 20 runs. Accuracy is the fraction of edges
correctly predicted to be between/within cluster.


Specifically, what score functionsjk causes correlation clustering to give clusters similar


to those that human users had chosen?


To test our learning algorithm, we use each user as a training set in turn, learning the


parameters from the partition of a single user’s mailbox into folders. We then use the


learned parameters to cluster the other users’ mail. The basis functionsf(xjk) measured the


similarity between the text of the messages, the similarity between the “From:” field, “To:”


field, and “Cc:” field. One feature was used for each common word in the pair of emails


(except words that appeared in more than half the messages, which were deemed “stop


words” and omitted). Also, additional features captured the proportion of shared tokens


for each email field, including the from, to, Cc, subject and body fields. The algorithm


is therefore able to automatically learn the relative importance of certain email fields to


filing two messages together, as well as importance of meaningful words versus common,


irrelevant ones.


We compare our method to thek-means clustering algorithm using with the same word







170 CHAPTER 11. CORRELATION CLUSTERING


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


1 2 3 4 5 6 7


User


P
ai


r 
F


1


lcc


k-means


Figure 11.2: Average Pair F1 measure for clustering user mailboxes.


features, and took the best clustering out of five tries. We made this comparison somewhat


easy fork-means by giving it the correct number of clustersk. We also informed our algo-


rithm of the number of clusters by uniformly adding a positive weight to the edge weights


to cause it to give the correct number of clusters. We performed a simple binary search on


this additional bias weight parameter to find the number of clusters comparable tok. The


results in Fig. 11.2 show the averageF1 measure (harmonic mean of precision and recall;


a standard metric in information retrieval [Baeza-Yates & Ribeiro-Neto, 1999]) computed


on the pairs of messages that belonged to the same cluster. Our algorithm significantly


outperformsk-means on several users and does worse only for one of the users.


11.4.3 Image segmentation


We also test our approach on the task of image segmentation. We selected images from


the Berkeley Image Segmentation Dataset [Martinet al., 2001] for which two users had


significantly different segmentations. For example, Fig. 11.3(a) and (b) show two distinct


segmentations: one very coarse, mostly based of overall hue, and one much finer, based


on the hue and intensity. Depending on the task at hand, we may prefer the first over the


second or vice-versa. It is precisely this kind of variability in the similarity judgements that
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(a) (b)


Figure 11.3: Two segmentations by different users: training image with (a) coarse segmen-
tation and (b) fine segmentation.


we want our algorithm to capture.


In order to segment the image, we first divided it contiguous regions of approximately


the same color by running connected components on the pixels. We connected two adjacent


pixels by an edge if their RGB value was the same at a coarse resolution (4 bits per each


of the R,G,B channel). We then selected about a hundred largest regions, which covered


80-90% of the pixels. These regions are the objects that our algorithm learns to cluster.


(We then use the learned metric to greedily assign the remaining small regions to the large


adjoining regions.)


There is a rich space of possible features we can use in our models: for each pair


of regions, we can consider their shape, color distribution, distance, presence of edges


between them, etc. In our experiments, we used a fairly simple set of features that are very


easy to compute. For each region, we calculated the bounding box, area and average color


(averaging the pixels in the RGB space). We then computed three distances (one for each


HSV channel), as well as the distance in pixels between the bounding boxes and the area


of the smaller of the two regions. All features were normalized to have zero mean and


variance 1.


We trained two models, one using Fig. 11.3(a) and the other using Fig. 11.3(b) and
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(a) (b) (c)


Figure 11.4: Test image: (a) input; (b) segmentation based on coarse training data (c)
segmentation based on fine training data.


tested on the image in Fig. 11.4(a). The results are shown in Fig. 11.4(b) and (c), respec-


tively. Note that mountains, rocks and grass are segmented very coarsely based on hue in


(b) while the segmentation in (c) is more detailed and sensitive to saturation and value of


the colors.


11.5 Related work


The performance of most clustering algorithms depends critically on the distance metric


that they are given for measuring the similarity or dissimilarity between different data-


points. Recently, a number of algorithms have been proposed for automatically learning


distance metrics as a preprocessing step for clustering [Xinget al., 2002; Bar-Hillelet al.,


2003]. In contrast to algorithms that learn a metric independently of the algorithm that will


be used to cluster the data, we describe a formulation that tightly integrates metric learning


with the clustering algorithm, tuning one to the other in a joint optimization. Thus, instead


of using an externally-defined criterion for choosing the metric, we will instead seek to


learn a good metricfor the clustering algorithm. An example of work in a similar vein is


the algorithm for learning a distance metric for spectral clustering [Bach & Jordan, 2003].


The clustering algorithm essentially uses an eigenvector decomposition of an appropriate


matrix derived from the pairwise affinity matrix, which is more efficient than correlation


clustering, for which we use LP or SDP formulations. However the objective in the learning
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formulation proposed in Bach and Jordan [2003] is not convex and difficult to optimize.


11.6 Conclusion


We looked at correlation clustering, and how to learn the edge weights from example clus-


terings. Our approach ties together the inference and learning algorithm, and attempts


to learn a good metric specifically for the clustering algorithm.. We showed results on a


synthetic dataset, showcasing robustness to noise dimensions. Experiments on the CALO


e-mail and image segmentation experiments show the potential of the algorithm on real-


world data. The main limitation of the correlation clustering is scalability: the number of


constraints (|V|3) in the LP relaxation and the size of the positive-semidefinite constraint


in the SDP relaxation. It would be very interesting to explore constraint generation or sim-


ilar approaches to speed up learning and inference. On the theoretical side, it would be


interesting to work out a PAC-like bound for generalization of the learned score metric.
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Chapter 12


Conclusions and future directions


This thesis presents a novel statistical estimation framework for structured models based


on the large margin principle underlying support vector machines. The framework results


in several efficient learning formulations for complex prediction tasks. Fundamentally,


we rely on the expressive power of convex optimization problems to compactly capture


inference or solution optimality in structured models. Directly embedding this structure


within the learning formulation produces compact convex problems for efficient estimation


of very complex models. For some of these models, alternative estimation methods are


intractable. We develop theoretical foundations for our approach and show a wide range


of experimental applications, including handwriting recognition, 3D terrain classification,


disulfide connectivity in protein structure prediction, hypertext categorization, natural lan-


guage parsing, email organization and image segmentation.


12.1 Summary of contributions


We view a structured prediction model as a mapping from the space of inputsx ∈ X to


a discrete vector outputy ∈ Y. Essentially, a model defines a compact, parameterized


scoring functionw>f(x,y) and prediction using the model reduces to finding the highest


scoring outputy given the inputx. Our class of models has the following linear form:


hw(x) = arg max
y :g(x,y)≤0


w>f(x,y),
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wherew ∈ IRn is the vector of parameters of the model, constraintsg(x,y) ∈ IRk define


the space of feasible outputsy given the inputx and basis functionsf(x,y) ∈ IRn represent


salient features of the input/output pair. Although the space of outputs{y : g(x,y) ≤ 0} is


usually immense, we assume that the inference problemarg maxy :g(x,y)≤0 w>f(x,y) can


be solved (or closely approximated) by an efficient algorithm that exploits the structure of


the constraintsg and basis functionsf . This definition covers a broad range of models,


from probabilistic models such as Markov networks and context free grammars to more


unconventional models like weighted graph-cuts and matchings.


12.1.1 Structured maximum margin estimation


Given a sampleS = {(x(i),y(i))}m
i=1, we develop methods for finding parametersw such


that:


arg max
y∈Y(i)


w>f(x(i),y) ≈ y(i), ∀i,


whereY(i) = {y : g(x(i),y) ≤ 0}.
The naive formulation1 uses


∑
i |Y(i)| linear constraints, which is generally exponential


in the number of variables in eachy(i).


min
1


2
||w||2


s.t. w>fi(y(i)) ≥ w>fi(y) + `i(y), ∀i, ∀y ∈ Y (i).


We propose two general approaches that transform the above exponential size QP to an


exactly equivalent polynomial size QP in many important classes of models. These formu-


lations allow us to find globally optimal parameters (with fixed precision) in polynomial


time using standard optimization software. In many models where maximum likelihood


estimation is intractable, we provide exact maximum margin solutions (Ch. 7 and Ch. 10).


1For simplicity, we omit the slack variables in this summary.
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Min-max formulation


We can turn the above problem into an equivalent min-max formulation withi non-linear


max-constraints:


min
1


2
||w||2


s.t. w>fi(y(i)) ≥ max
y∈Y(i)


[w>fi(y) + `i(y)], ∀i.


The key to solving the estimation problem above efficiently is the loss-augmented infer-


ence problemmaxy∈Y(i) [w>fi(y) + `i(y)]. Even if maxy∈Y(i) w>fi(y) can be solved in


polynomial time using convex optimization, the form of the loss term`i(y) is crucial for


the loss-augmented inference to remain tractable. We typically use a natural loss func-


tion which is essentially the Hamming distance betweeny(i) andh(x(i)): the number of


variables predicted incorrectly.


We show that if we can express the (loss-augmented) inference as a compact convex


optimization problem (e.g., LP, QP, SDP, etc.), we can embed the maximization inside the


min-max formulation to get a compact convex program equivalent to the naive exponential


formulation. We show that this approach leads to exact polynomial-size formulations for


estimation of low-treewidth Markov networks, associative Markov networks over binary


variables, context-free grammars, bipartite matchings, and many other models.


Certificate formulation


There are several important combinatorial problems which allow polynomial time solu-


tion yet do not have a compact convex optimization formulation. For example, maximum


weight perfect (non-bipartite) matching and spanning tree problems can be expressed as


linear programs withexponentiallymany constraints, but no polynomial formulation is


known [Bertsimas & Tsitsiklis, 1997; Schrijver, 2003]. Both of these problems, however,


can be solved in polynomial time using combinatorial algorithms. In some cases, though,


we can find a compactcertificate of optimalitythat guarantees that


y(i) = arg max
y


[w>fi(y) + `i(y)].







12.1. SUMMARY OF CONTRIBUTIONS 179


For perfect (non-bipartite) matchings, this certificate is a condition that ensures there are


no augmenting alternating cycles (see Ch. 10). We can express this condition by defining


an auxiliary distance function on the nodes an a set of linear constraints that are satisfied if


and only if there are no negative cycles. This simple set of linear constraints scales linearly


with the number of edges in the graph. Similarly, we can derive a compact certificate for


the spanning tree problem.


The certificate formulation relies on the fact that verifying optimality of a solution is


often easier than actually finding one. This observation allows us to apply our framework


to an even broader range of models with combinatorial structure than the min-max formu-


lation.


Maximum margin vs. maximum likelihood


There are several theoretical advantages to our approach in addition to the empirical accu-


racy improvements we have shown experimentally. Because our approach only relies on


using the maximum in the model for prediction, and does not require a normalized dis-


tribution P (y | x) over all outputs, maximum margin estimation can be tractable when


maximum likelihood is not. For example, to learn a probabilistic modelP (y | x) over


bipartite matchings using maximum likelihood requires computing the normalizing parti-


tion function, which is#P-complete [Valiant, 1979; Garey & Johnson, 1979]. By contrast,


maximum margin estimation can be formulated as a compact QP with linear constraints.


Similar results hold for an important subclass of Markov networks and non-bipartite match-


ings.


In models that are tractable for both maximum likelihood and maximum margin (such


as low-treewidth Markov networks, context free grammars, many other problems in which


inference is solvable by dynamic programming), our approach has an additional advantage.


Because of the hinge-loss, the solutions to the estimation are relatively sparse in the dual


space (as in SVMs), which makes the use of kernels much more efficient. Maximum like-


lihood models with kernels are generally non-sparse and require pruning or greedy support


vector selection methods [Wahbaet al., 1993; Zhu & Hastie, 2001; Laffertyet al., 2004;


Altun et al., 2004].
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There are, of course, several advantages to maximum likelihood estimation. In appli-


cations where probabilistic confidence information is a must, maximum likelihood is much


more appropriate. Also, in training settings with missing data and hidden variables, proba-


bilistic interpretation permits the use of well-understood algorithms such as EM [Dempster


et al., 1977].


Approximations


In many problems, the maximization problem we are interested in may be NP-hard, for


example, we consider MAP inference in large treewidth Markov networks in Ch. 8, multi-


way cuts in Ch. 7, graph-partitioning in Ch. 11. Many such problems can be written as


integerprograms. Relaxations of such integer programs into LPs, QPs or SDPs often pro-


vide excellent approximation algorithms and fit well within our framework, particularly the


min-max formulation. We show empirically that these approximations are very effective in


many applications.


12.1.2 Markov networks: max-margin, associative, relational


The largest portion of the thesis is devoted to novel estimation algorithms, representational


extensions, generalization analysis and experimental validation for Markov networks.


◦ Low-treewidth Markov networks


We use a compact LP for MAP inference in Markov networks with sequence and


other low-treewidth structure to derive an exact, compact, convex learning formu-


lation. The dual formulation allows efficient integration of kernels with graphical


models that leverages rich high-dimensional representations for accurate prediction


in real-world tasks.


◦ Scalable online algorithm


Although our convex formulation is a QP with linear number of variables and con-


straints in the size of the data, for large datasets (millions of examples), it is very


difficult to solve using standard software. We present an efficient algorithm for solv-


ing the estimation problem called Structured SMO. Our online-style algorithm uses
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inference in the model and analytic updates to solve extremely large estimation prob-


lems.


◦ Generalization analysis


We analyze the theoretical generalization properties of max-margin estimation in


Markov networks and derive a novel margin-based bound for structured prediction.


This is the first bound to address structured error (e.g., proportion of mislabeled


pixels in an image).


◦ Learning associative Markov networks (AMNs)


We define an important subclass of Markov networks that captures positive correla-


tions present in many domains. This class of networks extends the Potts model [Potts,


1952] often used in computer vision and allows exact MAP inference in the case of


binary variables. We show how to express the inference problem using an LP which


is exact for binary networks. As a result, for associative Markov networks over bi-


nary variables, our framework allows exact estimation of networks of arbitrary con-


nectivity and topology, for which likelihood methods are believed to be intractable.


For the non-binary case, we provide an approximation that works well in practice.


We present an AMN-based method for object segmentation from 3D range data. By


constraining the class of Markov networks to AMNs, our models are learned effi-


ciently and, at run-time, can scale up to tens of millions of nodes and edges by using


graph-cut based inference [Kolmogorov & Zabih, 2002].


◦ Representation and learning of relational Markov networks


We introduce relational Markov networks (RMNs), which compactly define tem-


plates for Markov networks for domains with relational structure: objects, attributes,


relations. The graphical structure of an RMN is based on the relational structure of


the domain, and can easily model complex interaction patterns over related entities.


We apply this class of models to classification of hypertext using hyperlink structure


to define relations between webpages. We use a compact approximate MAP LP in


these complex Markov networks, in which exact inference is intractable, to derive an


approximate max-margin formulation.
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12.1.3 Broader applications: parsing, matching, clustering


The other large portion of the thesis addresses a range of prediction tasks with very diverse


models: context free grammars for natural language parsing, perfect matchings for disulfide


connectivity in protein structure prediction, graph partitions for clustering documents and


segmenting images.


◦ Learning to parse


We exploit dynamic programming decomposition of context free grammars to derive


a compact max-margin formulation. We build on a recently proposed “unlexicalized”


grammar that allows cubic time parsing and we show how to achieve high-accuracy


parsing (still in cubic time) by exploiting novel kinds of lexical information. We show


experimental evidence of the model’s improved performance over several baseline


models.


◦ Learning to match


We use a combinatorial optimality condition, namely the absence of augmenting al-


ternating cycles, to derive an exact, efficient certificate formulation for learning to


match. We apply our framework to prediction of disulfide connectivity in proteins


using perfect matchings. The algorithm we propose uses kernels, which makes it pos-


sible to efficiently embed input features in very high-dimensional spaces and achieve


state-of-the-art accuracy.


◦ Learning to cluster


By expressing the correlation clustering problem as a compact LP and SDP, we use


the min-max formulation to learn a parameterized scoring function for clustering. In


contrast to algorithms that learn a metric independently of the algorithm that will


be used to cluster the data, we describe a formulation that tightly integrates metric


learning with the clustering algorithm, tuning one to the other in a joint optimization.


We formulate the approximate learning problem as a compact convex program. Ex-


periments on synthetic and real-world data show the ability of the algorithm to learn


an appropriate clustering metric for a variety of desired clusterings, including email


folder organization and image segmentation.
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12.2 Extensions and open problems


There are several immediate applications, less immediate extensions and open problems for


our estimation framework. We organize these ideas into several sections below, including


further theoretical analysis and new optimization algorithms, novel prediction tasks, and


more general learning settings.


12.2.1 Theoretical analysis and optimization algorithms


◦ Approximation bounds


In several of the intractable models, like multi-class AMNs in Ch. 7 and correlation


clustering in Ch. 11, we used approximate convex programs within the min-max for-


mulation. These approximate inference programs have strong relative error bounds.


An open question is to translate these error bounds on inference into error bounds on


the resulting max-margin formulations.


◦ Generalization bounds with distributional assumptions


In Ch. 5, we presented a bound on the structured error in Markov networks, with-


out any assumption about the distribution ofP (y | x), relying only on the samples


(x(i),y(i)) being i.i.d. This distribution-free assumption leads to a worst case analy-


sis, while some assumptions about the approximate decompositionP (y | x) may be


warranted. For example, for sequential prediction problems, the Markov assumption


of some finite order is reasonable (i.e., given the input and previousk labels, the next


label is independent of the labels more thank in the past). In spatial prediction tasks,


a label variable is independent of the rest given a large enough ball of labels around


it. Similar assumptions may be made for some “degree of separation” in relational


domains. More generally, it would be interesting to exploit such conditional indepen-


dence assumptions or asymptotic bounds on entropy ofP (y | x) to get generalization


guarantees even from a single structured example(x,y).


◦ Problem-specific optimization methods


Although our convex formulations are polynomial in the size of the data, scaling
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up to larger datasets will require problem-specific optimization methods. For low-


treewidth Markov networks and context free grammars, we have presented the Struc-


tured SMO algorithm. Another algorithm useful for such models is Exponentiated


Gradient [Bartlettet al., 2004]. Both algorithms rely on dynamic programming de-


compositions. However, models which do not permit such decompositions, such as


graph-cuts, matchings, and many others, create a need for new algorithms that can ef-


fectively use combinatorial optimization as a subroutine to eliminate the dependence


on general-purpose convex solvers.


12.2.2 Novel prediction tasks


◦ Bipartite matchings


Maximum weight bipartite matchings are used in a variety of problems to predict


mappings between sets of items. In machine translation, matchings are used to


map words of the two languages in aligned sentences [Matusovet al., 2004]. In 2D


shape matching, points on two shapes are matched based on their local contour fea-


tures [Belongieet al., 2002]. Our framework provides an exact, efficient alternative


to the maximum likelihood estimation for learning the matching scoring function.


◦ Sequence alignment


In standard pairwise alignment of biological sequences, a string edit distance is used


to determine which portions of the sequences align to each other [Needleman &


Wunsch, 1970; Durbinet al., 1998]. Finding the best alignment involves a dynamic


program that generalizes the longest common subsequence algorithm. Our frame-


work can be applied (just as in context free grammar estimation) to efficiently learn


a more complex edit function that depends on the contextual string features, perhaps


using novel string kernels [Haussler, 1999; Leslieet al., 2002; Lodhiet al., 2000].


◦ Continuous prediction problems


We have addressed estimation of models with discrete output spaces, generalizing


classification models to multivariate, structured classification. Similarly, we can


consider a whole range of problems where the prediction variables are continuous.
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Such problems are a natural generalizations of regression, involving correlated, inter-


constrained real-valued outputs. For example, several recent models of metabolic


flux in yeast use linear programming formulations involving quantities of various


enzymes, with stoichiometric constraints [Varma & Palsson, 1994]. It would be


interesting to use observed equilibria data under different conditions to learn what


“objective” the cell is maximizing. In financial modeling, convex programs are often


used to model portfolio management; for example, Markowitz portfolio optimization


is formulated as a quadratic program which minimizes risk and maximizes expected


return under budget constraints [Markowitz, 1991; Luenberger, 1997]. In this setting,


one could learn a user’s return projection and risk assessment function from observed


portfolio allocations by the user.


These problems are similar to the discrete structured prediction models we have con-


sidered: inference in the model can formulated as a convex optimization problem.


However, there are obstacles to directly applying the min-max or certificate formu-


lations. Details of this are beyond the scope of this thesis, but it suffices to say that


loss-augmented inference using, Hamming distance equivalent,L1 loss (orL2 loss),


no longer produces a maximization of a concave objective with convex constraints


sinceL1, L2 are convex, not concave (it turns out that it is actually possible to use


L∞ loss). Developing effective loss functions and max-margin formulations for the


continuous setting could provide a novel set of effective models for structured multi-


variate real-valued prediction problems.


12.2.3 More general learning settings


◦ Structure learning


We have focused on the problem of learning parameters of the model (even though


our kernelized models can be considered non-parametric). In the case of Markov


networks, especially in spatial and relational domains, there is a wealth of possible


structures (cliques in the network) one can use to model a problem. It is particularly


interesting to explore the problem of inducing these cliques automatically from data.


The standard method of greedy stepwise selection followed by re-estimation is very
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expensive in general networks [Della Pietraet al., 1997; Bach & Jordan, 2001].


Recent work on selecting input features in Markov networks (or CRFs) uses several


approximations to learn efficiently with millions of candidate features [McCallum,


2003]. However, clique selection is still relatively unexplored. It is possible that


AMNs, by restricting the network to be tractable under any structure, may permit


more efficient clique selection methods.


◦ Semi-supervised learning


Throughout the thesis we have assumed completely labeled data. This assumption


often limits us to relatively small training sets where data has been carefully anno-


tated, while much of the easily accessible data is not at all or suitably labeled. There


are several more general settings we would like to extend our framework.


The simplest setting is a mix of labeled and unlabeled examples, where a small su-


pervised dataset is augmented by a large unsupervised one. There has been much


research in this setting for classification [Blum & Mitchell, 1998; Nigamet al., 2000;


Chapelleet al., 2002; Szummer & Jaakkola, 2001; Zhuet al., 2003; Corduneanu &


Jaakkola, 2003]. Although most of this work has been done in a probabilistic set-


ting, the principle of regularizing (discouraging) decision boundaries near densely


clustered inputs could be applicable to our structured setting.


A more complex and rich setting involves presence of hidden variables in each ex-


ample. For example, in machine translation, word correspondences between pairs of


sentences are usually not manually annotated (at least not on a large scale). These


correspondence variables can be treated as hidden variables. Similarly, in handwrit-


ing recognition, we may not have each letter segmented out but instead just get a


word or sentence as a label for the entire image. This setting has been studied mainly


in the probabilistic, generative models often using the EM algorithm [Dempsteret al.,


1977; Cowellet al., 1999]. Discriminative methods have been explored far less. Es-


pecially in the case of combinatorial structures, extensions of our framework allow


opportunities for problem-specific convex approximations to be exploited.
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12.3 Future


We have presented a supervised learning framework for a large class of prediction mod-


els with rich and interesting structure. Our approach has several theoretical and practical


advantages over standard probabilistic models and estimation methods for structured pre-


diction. We hope that continued research in this framework will help tackle evermore


sophisticated prediction problems in the future.







Appendix A


Proofs and derivations


A.1 Proof of Theorem 5.5.1


The proof of Theorem 5.5.1 uses the covering number bounds of Zhang [2002] (in the


Data-Dependent Structural Risk Minimization framework [Shawe-Tayloret al., 1998].)


Zhang provides generalization guarantees for linear binary classifiers of the formhw(x) =


sgn(w>x). His analysis is based on the upper bounds on the covering number for the class


of linear functionsFL(w, z) = w>z where the norms of the vectorsw andz are bounded.


We reproduce the relevant definitions and theorems from Zhang [2002] here to highlight


the necessary extensions for structured classification.


The covering number is a key quantity in measuring function complexity. Intuitively,


the covering number of an infinite class of functions (e.g. parameterized by a set of weights


w) is the number of vectors necessary to approximate the values of any function in the class


on a sample. Margin-based analysis of generalization error uses the margin achieved by a


classifier on the training set to approximate the original function class of the classifier by


a finite covering with precision that depends on the margin. Here, we will only define the


∞-norm covering number.
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A.1.1 Binary classification


In binary classification, we are given a sampleS = {x(i), y(i)}m
i=1, from distributionD over


X × Y, whereX = IRn andY is mapped to±1, so we can foldx andy into z = yx.


Definition A.1.1 (Covering Number) Let V = {v(1), . . . ,v(r)}, wherev(j) ∈ IRm, be a


coveringof a function classF(w, S) with ε-precision under the metricρ, if for all w there


exists av(j) such that for each data samplez(i) ∈ S:


ρ(v
(j)
i ,F(w, z(i))) ≤ ε.


Thecovering number of a sampleS is the size of the smallest covering:N∞(F , ρ, ε, S) =


inf |V| s.t. V is a covering ofF(w, S). We also define thecovering number for any sample


of sizem: N∞(F , ρ, ε, m) = supS: |S|=mN∞(F , ρ, ε, S).


When the norms ofw andz are bounded, we have the following upper bound on the


covering number of linear functions under the linear metricρL(v, v′) = |v − v′|.


Theorem A.1.2 (Theorem 4 from Zhang [2002])If ‖w‖2 ≤ a and ‖z‖2 ≤ b, then∀
ε > 0,


log2N∞(FL, ρL, ε, m) ≤ 36
a2b2


ε2
log2 (2 d4ab/ε + 2em + 1) .


In order to use the classifier’s margin to bound its expected loss, the bounds below use


a stricter, margin-based loss on the training sample that measures the worst loss achieved


by the approximate covering based on this margin. Letf : IR 7→ [0, 1] be a loss function.


In binary classification, we letf(v) = 1I(v ≤ 0) be the step function, so that 0-1 loss of


sgn(w>x) is f(FL(w, z)). The next theorem bounds the expectedf loss in terms of the


γ-margin loss,fγ(v) = supρ(v,v′)<2γ f(v′), on the training sample. For 0-1 loss and linear


metricρL, the correspondingγ-margin loss isfγ(v) = 1I(v ≤ 2γ).


Theorem A.1.3 (Corollary 1 from Zhang [2002]) Let f : IR 7→ [0, 1] be a loss function


andfγ(v) = supρ(v,v′)<2γ f(v′) be theγ-margin loss for a metricρ. Letγ1 > γ2 > . . . be
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a decreasing sequence of parameters, andpi be a sequence of positive numbers such that∑∞
i=1 pi = 1, then for allδ > 0, with probability of at least1− δ over data:


ED[f(F(w, z))] ≤ ES[fγ(F(w, z))] +


√
32


m


[
ln 4N∞(F , ρ, γi, S) + ln


1


piδ


]


for all w andγ, where for each fixedγ, we usei to denote the smallest index s.t.γi ≤ γ.


A.1.2 Structured classification


We will extend this framework to bound the average per-label loss`H(y)/L for structured


classification by defining an appropriate lossf and a function classF (as well as a metric


ρ) such thatf(F) computes average per-label loss andfγ(F) provides a suitableγ-margin


loss. We will bound the corresponding covering number by building on the bound in The-


orem A.1.2.


We can no longer simply foldx andy, sincey is a vector, so we letz = (x,y). In


order for our loss function to compute average per-label loss, it is convenient to make our


function classvector-valued(instead of scalar-valued as above). We define a new function


classFM(w, z), which is a vector of minimum values ofw>∆fi(y) for each error level


`H(y) from 1 to L as described below.


Definition A.1.4 (dth-error-level function) Thedth-error-level functionMd(w, z) for d ∈
{1, . . . , L} is given by:


Md(w, z) = min
y:`H(y)=d


w>∆fi(y).


Definition A.1.5 (Multi-error-level function class) Themulti-error-level function classFM(w, z)


is given by:


FM(w, z) = (M1(w, z), . . . ,Md(w, z), . . . , ML(w, z)) .


We can now compute the average per-label loss fromFM(w, z) by defining an appropriate


loss functionfM .
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Definition A.1.6 (Average per-label loss)Theaverage per-label lossfM : IR L 7→ [0, 1] is


given by:


fM(v) =
1


L
arg min


d:vd≤0
vd,


where in case∀d, vd > 0, we definearg mind:vd≤0 vd ≡ 0.


With the above definitions, we have an upper bound on the average per-label loss


fM(FM(w, z)) =
1


L
arg min


d:Md(w,z)≤0
Md(w, z) ≥ 1


L
`H


(
arg max


y
w>fi(y)


)
.


Note that the case∀d, Md(w, z) > 0 corresponds to the classifier making no mistakes:


arg maxy w>fi(y) = y. This upper bound is tight ify = arg maxy′ w
>f(x,y′), Other-


wise, it is adversarial: it picks from ally′ which are better (w>f(y) ≤ w>f(y′)), one that


maximizes the Hamming distance fromy.


We now need to define an appropriate metricρ that in turn definesγ-margin loss for


structured classification. Since the margin of the hypothesis grows with the number of


mistakes, our metric can become “looser” with the number of mistakes, as there is more


room for error.


Definition A.1.7 (Multi-error-level metric) Let themulti-error-level metricρM : IRL ×
IRL 7→ IR for a vector in IRL be given by:


ρM(v,v′) = max
d


|vd − v′d|
d


.


We now define the correspondingγ-margin loss using the new metric:


Definition A.1.8 (γ-margin average per-label loss)Theγ-margin average per-label loss


fγ
M : IR L 7→ [0, 1] is given by:


fγ
M(v) = sup


ρM (v,v′)≤2γ


fM(v′).


Combining the two definitions, we get:


fγ
M(FM(w, z)) = sup


v:|vd−Md(w,z)|≤2dγ


1


L
arg min


d:vd≤0
vd.
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We also define the corresponding covering number for our vector-valued function class:


Definition A.1.9 (Multi-error-level covering number) LetV = {V(1), . . . ,V(r)}, where


V(j) = (V
(j)
1 , . . . ,V


(j)
i , . . . ,V


(j)
m ) and V


(j)
i ∈ IRL, be acoveringof FM(w, S), with ε-


precision under the metricρM , if for all w there exists aV(j) such that for each data


samplez(i) ∈ S:


ρM(V
(j)
i ,FM(w, z(i))) ≤ ε.


Thecovering number of a sampleS is the size of the smallest covering:N∞(FM , ρM , ε, S) =


inf |V| s.t.V is a covering ofFM(w, S). We also define


N∞(FM , ρM , ε, m) = sup
S: |S|=m


N∞(FM , ρM , ε, S).


We provide a bound on the covering number of our new function class in terms of a


covering number for the linear function class. Recall thatNc is the maximum number of


cliques inG(x), Vc is the maximum number of values in a clique|Yc|, q is the maximum


number of cliques that have a variable in common, andRc is an upper-bound on the 2-norm


of clique basis functions. Consider a first-order sequence model as an example, withL as


the maximum length, andV the number of values a variable takes. ThenNc = 2L−1 since


we haveL node cliques andL− 1 edge cliques;Vc = V 2 because of the edge cliques; and


q = 3 since nodes in the middle of the sequence participate in 3 cliques: previous-current


edge clique, node clique, and current-next edge clique.


Lemma A.1.10 (Bound on multi-error-level covering number)


N∞(FM , ρM , εq, m) ≤ N∞(FL, ρL, ε, mNc(Vc − 1)).


Proof: We will show thatN∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε, S ′) for any sampleS


of sizem, where we construct the sampleS ′ of sizemNc(Vc − 1) in order to cover the


clique potentials as described below. Note that this is sufficient sinceN∞(FL, ρL, ε, S ′) ≤
N∞(FL, ρL, ε, mNc(Vc − 1)), by definition, so


N∞(FM , ρM , εq,m) = sup
S:|S|=m


N∞(FM , ρM , εq, S) ≤ N∞(FL, ρL, ε, mNc(Vc − 1)).
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The construction ofS ′ below is inspired by the proof technique in Collins [2001],


but the key difference is that our construction is linear in the number of cliquesNc and


exponential in the number of label variables per clique, while his is exponential in the total


number of label variables per example. This reduction in size comes about because our


covering approximates the values of clique potentialsw>∆fi,c(yc) for each cliquec and


clique assignmentyc as opposed to the values of entire assignmentsw>∆fi(y).


For each samplez ∈ S, we createNc(Vc − 1) samples∆fi,c(yc), one for each clique


c and each assignmentyc 6= y
(i)
c . We construct a set of vectorsV = {v(1), . . . ,v(r)},


wherev(j) ∈ IRmNc(Vc−1). The component ofv(j) corresponding to the samplez(i) and the


assignmentyc to the labels of the cliquec will be denoted byv(j)
i,c (yc). For convenience,


we definev(j)
i,c (y


(i)
c ) = 0 for correct label assignments, as∆fi,c(y


(i)
c ) = 0. To makeV an


∞-norm covering ofFL(w, S ′) underρL, we require that for anyw there exists av(j) ∈ V


such that for each samplez(i):


|v(j)
i,c (yc)−w>∆fi,c(yc)| ≤ ε; ∀c ∈ C(i), ∀yc. (A.1)


By Definition A.1.1, the number of vectors inV is given byr = N∞(FL, ρL, ε, mNc(Vc−1)).


We can now useV to construct a coveringV = {V(1), . . . ,V(r)}, where


V(j) = (V
(j)
1 , . . . ,V


(j)
i , . . . ,V(j)


m )


andV
(j)
i ∈ IRL, for our multi-error-level functionFM . Let v(j)


i (y) =
∑


c v
(j)
i,c (yc), and


Md(v
(j)
i , z(i)) = miny:`H


i (y)=d v
(j)
i (y), then


V
(j)
i = (M1(v


(j), z(i)), . . . , Md(v
(j), z(i)), . . . , ML(v(j), z(i))) . (A.2)


Note thatv(j)
i,c (yc) is zero for all cliquesc for which the assignment is correct:yc = y


(i)
c .


Thus for an assignmenty with d mistakes, at mostdq v
(j)
i,c (yc) will be non-zero, as each


label can appear in at mostq cliques. By combining this fact with Eq. (A.1), we obtain:


∣∣∣v(j)
i (y)−w>∆fi(y)


∣∣∣ ≤ dqε, ∀i, ∀y : `H
i (y) = d. (A.3)
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We conclude the proof by showing thatV is a covering ofFM underρM : For eachw,


pickV(j) ∈ V such that the correspondingv(j) ∈ V satisfies the condition in Eq. (A.1). We


must now bound:


ρM(V
(j)
i ,FM(w, z(i))) = max


d


|miny:`H
i (y)=d v


(j)
i (y)−miny:`H


i (y)=d w>∆fi(y)|
d


.


Fix any i. Letyv
d = arg miny:`H


i (y)=d v
(j)
i (y) andyw


d = arg miny:`H
i (y)=d w>∆fi(y). Con-


sider the case wherev(j)
i (yv


d ) ≥ w>∆fi(y
w
d ) (the reverse case is analogous), we must


prove that:


v
(j)
i (yv


d )−w>∆fi(y
w
d ) ≤ v


(j)
i (yw


d )−w>∆fi(y
w
d ) ≤ dqε ; (A.4)


where the first step follows from definition ofyv
d , sincev(j)


i (yv
d ) ≤ v


(j)
i (yw


d ). The last step


is a direct consequence of Eq. (A.3). HenceρM(V
(j)
i ,FM(w, z(i))) ≤ qε.


Lemma A.1.11 (Numeric bound on multi-error-level covering number)


log2N∞(FM , ρM , ε,m) ≤ 36
R2


c ‖w‖2
2 q2


ε2
log2


(
1 + 2


⌈
4
Rc ‖w‖2 q


ε
+ 2


⌉
mNc(Vc − 1)


)
.


Proof: Substitute Theorem A.1.2 into Lemma A.1.10.


Theorem A.1.12 (Multi-label analog of Theorem A.1.3)LetfM andfγ
M(v) be as defined


above. Letγ1 > γ2 > . . . be a decreasing sequence of parameters, andpi be a sequence


of positive numbers such that
∑∞


i=1 pi = 1, then for allδ > 0, with probability of at least


1− δ over data:


EzfM(FM(w, z)) ≤ ESfγ
M(FM(w, z)) +


√
32


m


[
ln 4N∞(FM , ρM , γi, S) + ln


1


piδ


]


for all w andγ, where for each fixedγ, we usei to denote the smallest index s.t.γi ≤ γ.


Proof: Similar to the proof of Zhang’s Theorem 2 and Corollary 1 [Zhang, 2002] where


in Step 3 (derandomization) we substitute the vector-valuedFM and the metricρM .


Theorem 5.5.1 follows from above theorem withγi = Rc ‖w‖2 /2i andpi = 1/2i using an
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argument identical to the proof of Theorem 6 in Zhang [2002].


A.2 AMN proofs and derivations


In this appendix, we present proofs of the LP inference properties and derivations of the


factored primal and dual max-margin formulation from Ch. 7. Recall that the LP relaxation


for finding the optimalmaxy g(y) is:


max
∑
v∈V


K∑


k=1


µv(k)gv(k) +
∑


c∈C\V


K∑


k=1


µc(k)gc(k) (A.5)


s.t. µc(k) ≥ 0, ∀c ∈ C, k;
K∑


k=1


µv(k) = 1, ∀v ∈ V ;


µc(k) ≤ µv(k), ∀c ∈ C \ V , v ∈ c, k.


A.2.1 Binary AMNs


Proof (For Theorem 7.2.1) Consider any fractional, feasibleµ. We show that we can con-


struct a new feasible assignmentµ′ which increases the objective (or leaves it unchanged)


and furthermore has fewer fractional entries.


Sincegc(k) ≥ 0, we can assume thatµc(k) = minv∈c µv(k); otherwise we could in-


crease the objective by increasingµc(k). We construct an assignmentµ′ from µ by leaving


integral values unchanged and uniformly shifting fractional values byλ:


µ′v(1) = µv(1)− λ1I(0 < µv(1) < 1), µ′v(2) = µv(2) + λ1I(0 < µv(2) < 1),


µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1), µ′c(2) = µc(2) + λ1I(0 < µc(2) < 1).


Now consider the smallest fractionalµv(k), λ(k) = minv : µv(k)>0 yv(k) for k = 1, 2.


Note that ifλ = λ(1) or λ = −λ(2), µ′ will have at least one more integralµ′v(k) thanµ.


Thus if we can show that the update results in a feasible and better scoring assignment, we


can apply it repeatedly to get an optimal integer solution. To show thatµ′ is feasible, we


needµ′v(1) + µ′v(2) = 1, µ′v(k) ≥ 0 andµ′c(k) = mini∈c µ′v(k).
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First, we show thatµ′v(1) + µ′v(2) = 1.


µ′v(1) + µ′v(2) = µv(1)− λ1I(0 < µv(1) < 1) + µv(2) + λ1I(0 < µv(2) < 1)


= µv(1) + µv(2) = 1.


Above we used the fact that ifµv(1) is fractional, so isµv(2), sinceµv(1) + µv(2) = 1.


To show thatµ′v(k) ≥ 0, we proveminv µ′v(k) = 0.


min
v


µ′v(k) = min
v


[
µv(k)− ( min


i:µv(k)>0
µv(k))1I(0 < µv(k) < 1)


]


= min


(
min


i
µv(k), min


i:µv(k)>0


[
µv(k)− min


i:µv(k)>0
µv(k)


])
= 0.


Lastly, we showµ′c(k) = mini∈c µ′v(k).


µ′c(1) = µc(1)− λ1I(0 < µc(1) < 1)


= (min
i∈c


µv(1))− λ1I(0 < min
i∈c


µv(1) < 1) = min
i∈c


µ′v(1);


µ′c(2) = µc(2) + λ1I(0 < µc(1) < 1)


= (min
i∈c


µv(2)) + λ1I(0 < min
i∈c


µv(2) < 1) = min
i∈c


µ′v(2).


We have established that the newµ′ are feasible, and it remains to show that we can


improve the objective. We can show that the change in the objective is alwaysλD for some


constantD that depends only onµ andg. This implies that one of the two cases,λ = λ(1)


or λ = −λ(2), will necessarily increase the objective (or leave it unchanged). The change


in the objective is:


∑
v∈V


∑


k=1,2


[µ′v(k)− µv(k)]gv(k) +
∑


c∈C\V


∑


k=1,2


[µ′c(k)− µc(k)]gc(k)


= λ



∑


v∈V
[Dv(1)−Dv(2)] +


∑


c∈C\V
[Dc(1)−Dc(2)]



 = λD


Dv(k) = gv(k)1I(0 < µv(k) < 1), Dc(k) = gc(k)1I(0 < µc(k) < 1).


Hence the new assignmentµ′ is feasible, does not decrease the objective function, and
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has strictly fewer fractional entries.


A.2.2 Multi-class AMNs


For K > 2, we use the randomized rounding procedure of Kleinberg and Tardos [1999]


to produce an integer solution for the linear relaxation, losing at most a factor ofm =


maxc∈C |c| in the objective function. The basic idea of the rounding procedure is to treat


µv(k) as probabilities and assign labels according to these probabilities in phases. In each


phase, we pick a labelk, uniformly at random, and a thresholdα ∈ [0, 1] uniformly at


random. For each nodei which has not yet been assigned a label, we assign the labelk


if µv(k) ≥ α. The procedure terminates when all nodes have been assigned a label. Our


analysis closely follows that of Kleinberg and Tardos [1999].


Lemma A.2.1 The probability that a nodei is assigned labelk by the randomized proce-


dure isµv(k).


Proof The probability that an unassigned node is assigned labelk during one phase is
1
K


µv(k), which is proportional toµv(k). By symmetry, the probability that a node is as-


signed labelk over all phases is exactlyµv(k).


Lemma A.2.2 The probability that all nodes in a cliquec are assigned labelk by the


procedure is at least1|c|µc(k).


Proof For a single phase, the probability that all nodes in a cliquec are assigned labelk if


none of the nodes were previously assigned is1
K


mini∈c µv(k) = 1
K


µc(k). The probability


thatat least oneof the nodes will be assigned labelk in a phase is1
K


(maxi∈c µv(k)). The


probability thatnoneof the nodes in the clique will be assignedany label in one phase is


1− 1
K


∑K
k=1 maxi∈c µv(k).


Nodes in the cliquec will be assigned labelk by the procedure if they are assigned label


k in one phase. (They can also be assigned labelk as a result of several phases, but we can


ignore this possibility for the purposes of the lower bound.) The probability that all the
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nodes inc will be assigned labelk by the procedure in a single phase is:


∞∑
j=1


1


K
µc(k)


(
1− 1


K


K∑


k=1


max
i∈c


µv(k)


)j−1


=
µc(k)∑K


k=1 maxi∈c µv(k)


≥ µc(k)∑K
k=1


∑
i∈c µv(k)


=
µc(k)∑


i∈c


∑K
k=1 µv(k)


=
µc(k)


|c| .


Above, we first used the fact that ford < 1,
∑∞


i=0 di = 1
1−d


, and then upper-bounded


themax of the set of positiveµv(k)’s by their sum.


Theorem A.2.3 The expected cost of the assignment found by the randomized procedure


given a solutionµ to the linear program in Eq. (A.5) is at least
∑


v∈V
∑K


k=1 gv(k)µv(k) +∑
c∈C\V


1
|c|


∑K
k=1 gc(k)µk


c .


Proof This is immediate from the previous two lemmas.


The only difference between the expected cost of the rounded solution and the (non-


integer) optimal solution is the1|c| factor in the second term. By pickingm = maxc∈C |c|, we


have that the rounded solution is at mostm times worse than the optimal solution produced


by the LP of Eq. (A.5).


We can also derandomize this procedure to get a deterministic algorithm with the same


guarantees, using the method of conditional probabilities, similar in spirit to the approach


of Kleinberg and Tardos [1999].


Note that the approximation factor ofm applies, in fact, only to the clique poten-


tials. Thus, if we compare the log-probability of the optimal MAP solution and the log-


probability of the assignment produced by this randomized rounding procedure, the terms


corresponding to the log-partition-function and the node potentials are identical. We obtain


an additive error (in log-probability space) only for the clique potentials. As node poten-


tials are often larger in magnitude than clique potentials, the fact that we incur no loss


proportional to node potentials is likely to lead to smaller errors in practice. Along similar


lines, we note that the constant factor approximation is smaller for smaller cliques; again,


we observe, the potentials associated with large cliques are typically smaller in magnitude,


reducing further the actual error in practice.
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A.2.3 Derivation of the factored primal and dual max-margin QP


Using Assumptions 7.4.1 and 7.4.4, we have the dual of the LP used to represent the


interior max subproblemmaxy w>fi(y) + `i(y) in Eq. (3.2):


min
∑
v∈V


ξi,v (A.6)


s.t. −w>fi,v(k)−
∑
c⊃v


mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;


−ẅ>f̈i,c(k) +
∑
v∈c


mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;


mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;


wherefi,c(k) = fi,c(k, . . . , k) and`i,c(k) = `i,c(k, . . . , k). In the dual, we have a variable


ξi,v for each normalization constraint in Eq. (7.1) and variablesmi,c,v(k) for each of the


inequality constraints.


Substituting this dual into Eq. (5.1), we obtain:


min
1


2
||w||2 + C


∑
i


ξi (A.7)


s.t. w>fi(y(i)) + ξi ≥
∑


v∈V(i)


ξi,v, ∀i;


−w>fi,v(k)−
∑
c⊃v


mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V(i), k;


−ẅ>f̈i,c(k) +
∑
v∈c


mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;


mi,c,v(k) ≥ 0, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;


ẅ ≥ 0.


Now let ξi,v = ξ′i,v + w>fi,v(y
(i)
v ) +


∑
c⊃v ẅ>f̈i,c(y


(i)
c )/|c| andmi,c,v(k) = m′


i,c,v(k) +


ẅ>f̈i,c(y
(i)
c )/|c|. Re-expressing the above QP in terms of these new variables, we get:
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min
1


2
||w||2 + C


∑
i


ξi (A.8)


s.t. ξi ≥
∑


v∈V(i)


ξ′i,v, ∀i;


w>∆fi,v(k)−
∑
c⊃v


m′
i,c,v(k) ≥ `i,v(k)− ξ′i,v, ∀i, v ∈ V (i), k;


ẅ>∆f̈i,c(k) +
∑
v∈c


m′
i,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;


m′
i,c,v(k) ≥ −ẅ>f̈i,c(y(i)


c )/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;


ẅ ≥ 0.


Sinceξi =
∑


i,v∈V(i) ξ′i,v at the optimum, we can eliminateξi and the corresponding set


of constraints to get the formulation in Eq. (7.4), repeated here for reference:


min
1


2
||w||2 + C


∑


i,v∈V(i)


ξi,v (A.9)


s.t. w>∆fi,v(k)−
∑
c⊃v


mi,c,v(k) ≥ `i,v(k)− ξi,v, ∀i, v ∈ V (i), k;


ẅ>∆f̈i,c(k) +
∑
v∈c


mi,c,v(k) ≥ `i,c(k), ∀i, c ∈ C(i) \ V (i), k;


mi,c,v(k) ≥ −ẅ>f̈i,c(y(i)
c )/|c|, ∀i, c ∈ C(i) \ V (i), v ∈ c, k;


ẅ ≥ 0.
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Now the dual of Eq. (A.9) is given by:


max
∑


i,c∈C(i), k


µi,c(k)`i,c(k)− 1


2


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i,v∈V(i), k


µi,v(k)∆ḟi,v


∣∣∣∣∣∣


∣∣∣∣∣∣


2


(A.10)


−1


2


∣∣∣∣∣∣


∣∣∣∣∣∣
τ̈ +


∑


i,c∈C(i)\V(i),v∈c, k


λi,c,v(k)f̈i,c(y
(i)
c )/|c|+


∑


i,c∈C(i), k


µi,c(k)∆f̈i,c(k)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑


k=1


µi,v(k) = C, ∀i, ∀v ∈ V(i);


µi,c(k)− µi,v(k) = λi,c,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k;


λi,c,v(k) ≥ 0 ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k,


τ̈ ≥ 0.


In this dual,µ correspond to the first two sets of constraints, whileλ andτ̈ correspond


to third and fourth set of constraints. Using the substitution


ν̈ = τ̈ +
∑


i,c∈C(i)\V(i),v∈c, k


λi,c,v(k)f̈i,c(y
(i)
c )/|c|


and the fact thatλi,c,v(k) ≥ 0 andf̈i,c(y
(i)
c ) ≥ 0, we can eliminateλ andτ̈ , as well as divide


µ’s by C, and re-express the above QP as:


max
∑


i,c∈C(i), k


µi,c(k)`i,c(k)− 1


2
C


∣∣∣∣∣∣


∣∣∣∣∣∣
∑


i,v∈V(i), k


µi,v(k)∆ḟi,v


∣∣∣∣∣∣


∣∣∣∣∣∣


2


− 1


2
C


∣∣∣∣∣∣


∣∣∣∣∣∣
ν̈ +


∑


i,c∈C(i), k


µi,c(k)∆f̈i,c(k)


∣∣∣∣∣∣


∣∣∣∣∣∣


2


s.t. µi,c(k) ≥ 0, ∀i, ∀c ∈ C(i), k;
K∑


k=1


µi,v(k) = 1, ∀i, ∀v ∈ V(i);


µi,c(k) ≤ µi,v(k), ∀i, ∀c ∈ C(i) \ V (i), v ∈ c, k; ν̈ ≥ 0.
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