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We present a technique to compress functions defined on high dimensional manifolds.  Our approach combines discrete wavelet transforms with zerotree compression, building on ideas from three previous developments: the lifting scheme, spherical wavelets, and embedded zerotree coding methods. In this paper we restrict our attention to the compression of scalar functions that map a 2-manifold into the real line. Traditionally, data compression methods have been applied to functions defined on simple manifolds such as  the real line (e.g., audio), a rectangle (e.g., images), or a three-dimensional open-ended box (e.g., video).  However, many conventional data compression technologies, unmodified, are not suitable for compression of data defined on  more complex geometries such as spheres, general polytopes, etc.  Accordingly, this paper seeks to provide a transform compression technique for addressing 2-manifold domains using second generation wavelet transforms and zerotree coding.





The lifting scheme and the spherical wavelets are techniques introduced recently for enabling  wavelet construction for more general cases than the typical 1D or 2D planar spaces. In that, the wavelet coefficients are generated through a simple linear prediction and update scheme. This is a multi-resolution scheme where in the coarsest level the object is represented by a simple base complex (e.g. an icosahedron). All the cells of this complex are subdivided to generate the next level of approximation and the corresponding wavelet coefficients are computed for the newly generated vertices. This process is continued until appropriate coverage of the data set is achieved. The result is a refined triangular mesh with subdivision connectivity. We have introduced a tree structure, called a G-tree, in which each node represents a cell of the triangular mesh. Second generation wavelets for the specified function are calculated and scaled, the wavelet coefficients being  defined at the vertices in the triangular mesh and at the vertex correspondent nodes of the G-tree.  





The zerotree algorithm was introduced  for effective and fast embedded (progressive) compression of images. In our context that algorithm processes the wavelet coefficients generated from the transform analysis part based on significance with respect to given threshold. The coefficients are arranged in a tree structure whereby the main premise of the method is that if a certain coefficient is insignificant with respect to the threshold, all coefficients below that one in the tree are also insignificant. That allows for the tree to be pruned whenever the premise is true and hence a smaller set of coefficients are written out representing the data. Using a modified zerotree encoding scheme, the G-tree is processed threshold by descending threshold, outputting bits indicative of significant G-tree nodes and the corresponding coefficient bits.  This results in a bit plane by bit plane embedded encoding.  





The decoding algorithm inputs bits according to the modified zerotree scheme into the G-tree structure, refining the wavelet coefficients.  De-scaling and an inverse second generation wavelet transform completes the synthesis of the original function. The canonical ordering of the bits is similarly generated by both the encoder and the decoder.





The system that we implemented based on the description above achieves significant results for a function defined by the elevation data on a grid for the surface of the Earth (37.68 dB for  0.17 bpp). This is the first result of this kind. For comparison with the existing 2D compression algorithms, we applied our method to a flat manifold (an image). The results compare favorably with the state of the art in image compression.  





Applications of our method lie in the interactive multiresolution viewing, processing and editing; efficient storage and rapid transmission of complex data sets.  Typical data sets include earth topography, satellite images, and complex surface parametrizations.  


