The programming project of CS 326A consists of designing and implementing a Probabilistic-Roadmap planner, and experimenting with it. You may pick your favorite programming language and platform for this project. 

A. Robot and obstacles

The robot and the workspace will be modeled as follows:
1. The environment is planar and the obstacles static. Each obstacle is either a line segment or a disc. (Note that by joining multiple line segments together you can describe arbitrary polygonal obstacles.)
2. The robot is made of several bodies that can move independently and/or are hinged to one another to form tree structures. Assume no closed-loop chains, since loops raise delicate kinematic issues beyond this project. This structure is described into more detail below.
3. Each robot body is a disc or a line segment. 


[image: image1]
4. A chain of robot bodies is an alternation of discs and line segments (see Fig. 1). If a line segment is connected at one end with a disc, it is connected to the disc’s center. Order the chain from the first body (e.g., the shaded disc in Fig. 1) to the last. The base of the chain is defined as follows: if the first body is a disc, then it is the center of the disc, otherwise it is the origin of the segment. In Fig. 1, it is the center of the shaded disc. 

5. In a chain like the one of Fig. 1, the degrees of freedom (dofs) can be the following ones: 

· The base can be free to move (2 dofs) or fixed.

· Each line segment may have a fixed length or a variable length (1 dof). If it is variable, the length is comprised between two given limits. 

· Each disc may contain a revolute joint (1 dof) allowig the next line segment to rotate about the disc’s center.
6. Several chains can be associated in a tree structure. In this case, the entire tree contains at most one base (the root of the tree). Each node of the tree corresponds to a disc body. This disc may then include one revolute joint for each succeeding segment body in the tree.

7. A robot is an arbitrary collection of such trees.

Your software must be designed so that you can easily experiment with various such robots among different distribution of obstacles. Finding “good” examples is part of the project.

B. Collision checker
The first step of your project will be to write a collision checker to tests whether a robot at a given configuration collides with the obstacles, or not. Since this checker will be called often, it has to be as fast as possible. However, the goal of the project is not to deal with very complex geometry and the collision checker should remain quite simple.

Every collision check will lead to performing a number of tests, each applied to a robot body and an obstacle. Hence, each test will involve either two discs, or two line segments, or a disc and a line segment. 

To ensure that the overall checker works fast enough, you must design each of these three tests properly. You must also write your software so that the position of each body is efficiently computed from the given configuration. For example, in a kinematic chain, avoid re-computing the position of the same body several times!

Your planner will need to test both sampled configurations and line segment between pairs of samples for collision. The test of a segment S connecting two configurations will be done at some resolution  by the following algorithm:

Test-Connection(S):
1. If the midpoint of S tests in collision, then return collision
2. If the length of S is less than  then return no collision
3. Break S into two halves S1 and S2

4. If Test-Collision(S1) = collision, then return collision
5. Return Test-Collision(S2)

Carefully test you collision checker before advancing further into your project. Use graphic visualization to perform and validate simulation tests.

C. Basic Planner

Your basic planner will be a single-query bi-directional Probabilistic-Roadmap planner. This means that it will compute a new roadmap for each input pair of query configurations in any given environment. The roadmap will consist of two trees, each rooted at one of the query configurations.
The roadmap trees will be constructed iteratively by adding a new node (milestone) at each iteration. Connections between the two trees will be tested periodically to determine whether a path exists between the two input query configurations. You will design your own algorithms for selecting the new milestone and testing connections between the two trees. Possible techniques will be discussed in the Project Sections.
Test your basic planner onvarious robots in various environments. 
Perform the following experiments:

1. Let M be the maximal number of milestones that your planner is allowed to generate (if it has not found a path after generating M milestones, it returns failure). On one example (that admits a solution), run your planner with M = 10, 20, 30, … For each value of M, run the planner 50 times with different seeds of the random-number generator and count the number F of failures. Stop increasing M when F = 0 for 3 successive values of M. Draw the curve F(M). 

2. For three given problems, select M large enough so that your planner succeeds consistently. Run the planner 50 times with different seeds of the random number generator. Collect statistics: maximum/minimum numbers of milestones required, average number of milestones, maximum/minimum running times, average running time, maximum/minimum number of milestones on the final path, average number of milestones on the final path.
D. Sampling/Connection Strategies

Once your basic planner runs satisfactorily, you will implement several sampling/-connection strategies and evaluate their effect on the planner’s efficiency.

These are some of the strategies (to be discussed in the Project Sections) you may experiment with:
- Delayed collision checking,
- Adaptive step.
Evaluate these strategies by repeating the same two series of experiments as in Section C with each strategy separately added and will all strategies simultaneously added. Comment on the results.

E. Schedule

 
There will be 3 checkpoints for your project:

· April 22: Your collision checking algorithms should be running and validated.

· May 8: Your basic planner should be running and the two series of experiments defined in Section C should have been performed. 

· June 3-11: Your final planner should be running. The required experiments should have been made.

During the June 3-11 period, Itay and I will meet with you to discuss your planner. Prior to this meeting, you will give us a brief report (no more than 5 pages) describing the algorithms that you have implemented and the experimental results you have obtained. At the meeting, you will demonstrate your planner and we will ask questions about your work. 

Figure 1: Kinematic chain








