CS326A – Motion Planning – Spring 2002

HOMEWORK #2 – Due date: May 15
Staple your solution with the text of the homework.

Write your name here: _______________________

	Problem #
	Max grade
	Grade

	1
	20
	

	2
	20
	

	3
	20
	

	4
	20
	

	5
	20
	

	TOTAL
	100
	


Problem 1 (Expansiveness of free space): 
(20 points)

Planning a collision-free path of a robot is known to take exponential time in the number of dimensions of the C-space. PRM planners try to trade a limited amount of completeness (by being only probabilistically complete) against a big gain in computational time. This first problem is aimed at investigating, on a simple example, how the running time of a PRM planner may relate to the dimensionality of the C-space.

Let C denote the n-dimensional C-space of a given robot and F its open collision-free subset (the free space).  The notion of expansiveness attempts to characterize the difficulty that a PRM planner may have to find paths in F. Recall that the expansiveness of F is defined as follows:

1. Two configurations q and q’ in F see each other if the line segment joining them is completely contained in F.

2. For any q in F, let V(q) denote the set of all points that q sees (the visibility set of q).

3. For any given subset X ( F, let (X) be the volume of X ( is an area if n = 2). 

4. The -lookout of any X ( F is the subset of all points q of X such that: 
(V(q)\X) > ((F\X), where  is a positive real number (smaller than or equal to 1) and Y\X denotes the subset of all points in Y that are not in X.

5. F is (,)-expansive if the volume of the -lookout of any X ( F is greater than ((X), where  is a positive real number (smaller than or equal to 1)
Under some conditions (not made explicit here), the probability that a single-query PRM planner fails to find a path when one exists goes to zero roughly as K(,)(exp(-N), where N is the number of milestones and K(,) is proportional to (1/(ln(1/). 

1. What is the artifact that may hide the role of the dimensionality n of the C-space in this result?

Answer: Both  and  are defined as ratios of volumes. The volume of, say, a hyper-cube of side a in an n-dimensional space is an.
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2. Consider the case where n = 2, and assume that the free space is the one shown in Figure 1 (two squares connected by a long narrow channel). Let L be the length of each side of each of the two squares and also the length of the narrow channel. Let  be the width of the narrow channel.
Compute an approximation of the values of  and  for which this free space is expansive. [Hint: Consider one of the two squares as a worst-case choice of X.] What happens when  tends toward 0, with L being fixed?

Answer: Take one of the two squares (say, the left one, S). Its “volume” (area) is L2. All points in S see the entire square, but most of them see almost no points outside S (except for a tiny portion of the narrow channel). Only the points in the rectangle shown in red in Figure 1 see a relatively large fraction of the space outside S (rectangle shown blue in Figure 1). They form the -lookout of S, for L/L(L+) ( 2L/L2 = 2/L. Since the volume of the -lookout of S is L, we have  ( L/L2 = /L. Note that in this example the pair () has quasi-unique value. In most cases, many pairs of values are possible, with  getting smaller as  increases.

3. Assume the same example in n > 2 dimensions. Let the edges of the (hyper-)cubes still be L. Let the width of the channel be  along k (k = 1, 2, …, or n-1) dimensions and L along the n-k other dimensions. For which values of  and  is the free space expansive? How does the dimension n intervene? How does your result relate to your answer of Question 1?
Answer:  We have:  ( (/L)k and ( 2(/L)k. The worst case happens when k = n – 1. Hence, if we fix the narrowness of the channel () and let the channel be narrow in the maximal number of dimensions, we retrieve the exponential dependence on the dimensionality of the C-space. This conclusion is murky, however, since for any n-dimensional C-space with a narrow channel, we can create a less expansive 2-dimensional C-space by simply setting the width of the narrow passage small enough. In other words, the dimensionality of the C-space is not an indication of the narrowness of the narrow channels.
Problem 2 (Nonholonomy of a mobile robot): 
(20 points)

In this problem, we consider a cylindrical mobile robot with three wheels, two driving wheels and a free wheel. We model the robot by a disc. Figure 2 shows this disc and the positions of the wheels. The driving wheels are shaded. The midpoint between them is exactly the center of the disc. Their angular velocities can be controlled independent of each other, with each wheel rotating at any velocity in [-, +]. The free wheel is not actuated, but can passively adjust its orientation. Its purpose is to prevent the robot from toppling over (if needed, we could have added a second free wheel). The two controls of the robot are the angular velocities of the two driving wheels. 
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1. Is this robot nonholonomic? Why? What is its turning radius? 

Answer: Yes, the robot is non-holonomic. The non-holonomic constraint is basically the same as for a regular car-like robot; it expresses the fact that the robot’s linear velocity is parallel to the two driving wheels. However, the turning radius of this robot is 0. If the two driving wheels rotate at the same velocity, but in opposite directions, the robot rotates around its center.

2. Define the configuration of this robot to be the coordinates (x,y) of the disc’s center. Is a path generated by a classical holonomic planner (e.g., a PRM planner that connects milestones by straight line segments) feasible? Why? Compare the number of dimensions of the C-space with the number of controls.

Answer: A path generated by a classical holonomic planner is always feasible. For instance, if the path is a sequence of straight line segments in C-space, the robot can follow each of these segments. At each vertex of the path, it only needs rotate about its center to adjust the orientation of its wheels to the new segment. The fundamental reason is that both the C-space and the control space have 2 dimensions. (The two controls of the robot are the revolute velocities of the two wheels.)
3. Now, assume this robot is loaded with a large non-circular object (e.g., a rectangular box) that extends beyond the disc’s boundary. What would be the C-space of the loaded robot? Is a path generated by a classical holonomic planner feasible? Why? Again, compare the number of dimensions of the C-space with the number of controls.

Answer: The new C-space needs to encode the robot’s orientation since this orientation affects that of the rectangular box. So, a configuration of the loaded robot is of the form (x,y,), where x and y are the coordinates of the robot’s center and  ( [0,2) is the orientation of the wheels. In general a path generated by a classical holonomic planner will not be feasible. To see this, assume that the rectangular outline of the box totally encloses the circular outline of the robot and that the center of the robot lies on the main axis of the rectangular box. The loaded robot is then equivalent to a rectangular car-like robot. Now, the C-space has 3 dimensions, but the robot still has the same 2 controls.
Problem 3 (On shortest paths): 
(20 points)

1. Consider a two-dimensional C-space with polygonal obstacles. Show that the shortest path between any two points is a polygonal line such that each intermediate vertex (if any) is an obstacle vertex. (Here, we only require a path to be semi-free, that is, not to penetrate inside any obstacle. A semi-free path may lie partially outside the obstacles and partially on their boundaries.)

Answer: Consider a path  between two points. A necessary condition for  to be a shortest path is that the sub-path connecting any two points on  is also the shortest between these two points, otherwise  could be shortened. We use this simple remark as follows:

- Consider a point q in , such that q lies in free space. Since free space is an open set (i.e., it does not contain its boundary), we can open a circular neighborhood N around q that lies entirely in free space. Let q’ and q” be the two points where  intersects the circle bounding N. In order for  to be a shortest path, the sub-path connecting q’ and q” must be a straight line segment.
- Consider a point q in , such that q lies in an obstacle edge e, but not at a vertex. We can open a circular neighborhood N around q such that N contains no obstacle vertex. Let q’ and q” be the two points where  intersects the circle bounding N. In order for  to be a shortest path, the sub-path connecting q’ and q” must be a straight line segment (therefore must lie entirely on the edge e).

These two arguments imply that a shortest path must be straight everywhere except at points that must also be obstacle vertices.

2. Let an obstacle vertex be convex if the angle (inside the obstacle) between the two adjacent edges is less than , and concave otherwise. Can a convex vertex be on a shortest path? What about a concave vertex? Why?
Answer: The following figure shows two candidate shortest paths. 
The blue path (example on the left) goes through a convex vertex. In a small neighborhood of this vertex (the circle in the figure), this path cannot be shortened. Every convex vertex may potentially be on a shortest path.

On the other hand, the red path (example on the right) goes through a concave vertex. In any small neighborhood of this vertex, the path can be shortened, hence is not a shortest path. No path going through a concave vertex can be a shortest path, as it can always be shortened, by taking a “short-cut” between the two segments of the path adjacent to the concave vertex.
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3. Now assume that the obstacles are “generalized” polygons whose boundaries consist of straight and circular edges. Characterize the shape of a shortest path between two points in free space. What points can be intermediate vertices on a shortest path?
Answer: A shortest path between q and q’ consists of straight line segments in free space, straight line segments that are obstacle straight edges, and circular arcs that are obstacle circular edges or portions of circular edges. The vertices of a shortest path are obstacle vertices or points in the set P defined as follows:

- Erect the tangent line from q to every obstacle circular edge. Let t be the tangency point. If the segment qt does not intersect any obstacle, then include t into P.

- Do the same with q’.

- For every pair of obstacle circular edges, erect the line tangent to both. If this line exists, then include the two tangency points into P
4. Let the C-space be three-dimensional and the obstacles polyhedral. Characterize the shape of a shortest path between two points in free space. Where may intermediate vertices of shortest paths lie?

Answer: Again a shortest path is a polygonal line, whose vertices now lie in obstacle edges (possibly at vertices).
5. Finding the shortest path among polyhedral obstacles is NP-hard. So, let us use the following two-phase planning method. First we generate an arbitrary semi-free path between the two given points. Next, we use a variational technique that iteratively shortens this path until it can no longer make it shorter.
a) Is the path obtained at the end of the second phase the shortest one?

b) If not, is it the shortest one in the homotopy class of the path generated in the first phase? If your answer is yes, prove it. If your answer is no, show a counter-example.

Answer: 

a) The variational technique will generate an optimized path in the same class of homotopy as the initial path. So, at best, it will be a local optimum, that is a path that cannot be made shorter by an infinitesimal change.

b) The answer is no. Look at the following figure:
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It shows a space with one polyhedral obstacle (a rectangular parallelepiped). The blue path is the shortest path between the two points it connects (the dashed line is behind the obstacle). The red path is a local minimum. It cannot be shortened into the blue one (going over the top right edge of the obstacle requires making the path longer first, then shorter). However, the read and blue paths are in the same class of homotopy. If the red path was a rubber band, it could be continuously deformed into the blue one.
Problem 4 (Sampling a triangulated surface): 
(20 points)

1. Give a simple method to sample N points uniformly at random in a triangle. (This method should not use rejection techniques.)
Answer: Duplicate the triangle T by flipping it twice, first around one of its edges e, then around the medial axis of this edge to form a quadrilateral (see figure below). Attach a coordinate system with the created quadrilateral. Repeat N times: pick two coordinates x and y uniformly at random within their respective intervals of possible values (the lengths of the other two edges of T); if (x,y) fall in T, then keep it; otherwise flip it back around e into T.
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2. How would you sample N points uniformly at random on a triangulated surface (assuming that N is large relative to the number of triangles)?
Answer: Compute the area Si of every triangle Ti. Sum the areas to get the area S of the triangulated surface. Assign N(Si/S) points to Ti and pick them as in Question 1. 

Problem 5 (Relative incompleteness of decoupled planning methods): 
(20 points)

Let us consider the three following methods to plan the coordinated path of p robots:
· Method 1: First, a complete planner is used to find a path for each robot, ignoring the other robots. Second, a complete planner is used to coordinate the p robots along their respective paths. (This second planner searches a p-dimensional coordination diagram.)
· Method 2: First, a complete planner is used to find a path for each robot, ignoring the other robots. Second, a complete planner is used repeatedly to coordinate the first two robots along their respective paths, then to coordinate the third robot with the first two robots, …, and finally to coordinate the pth robot, with the other p-1 robots. (The planner in the second phase searches a 2-dimensional coordination diagram each of the p-1 times it is invoked.)

· Method 3: First, a complete planner is used to find a path for the first robot, ignoring the other robots. Second, a complete planner is used repeatedly, first to plan a trajectory for the second robot such that it does not collide with both the obstacles and the first robot, next to plan a trajectory of the third robot such that it does not collide with both the obstacles and the first two robot, …, and finally to plan a trajectory of the pth robot such that it does not collide with both the obstacles and the other p-1 robots. (The planner that is called p-1 times searches a configuration(time space at each time. The robots whose trajectories have already been planned are treated as moving obstacles and mapped into this space as forbidden regions.)

1. Is any of these methods complete, thanks to the fact that the inner planners they use at each step are complete?

Answer: None of the three methods is complete. In each method the path planned for one robot may completely obstruct the possible paths of other robots.

2. Which method is likely to be the most incomplete? Which one comes next? Briefly explain your answers.
Answer: There is no easy answer. 
What is sure is that Method 2 is more incomplete than Method 1. Indeed, if Method 2 can coordinate the paths generated in the first phase, Method 1 can also do it since it considers all the paths simultaneously and is complete. The reverse is not true. There might be a way to coordinate the paths generated in the first phase, which Method 1 will find (as it is complete) but Method 2 will not find (because it considers only a pair of paths at each time).
Methods 1 and 3 are not comparable. Method 3 has the advantage over Method 1 that each robot’s path is generated taking into account the paths already generated for other robots; hence, Method 3 may find a solution in some cases where Method 1 fails. On the other hand, once Method 3 has generated a path for one robot, it does not allow this robot to move backward along this path. In contrast, Method 1 allows that to happen, hence may find a solution in some cases where Method 3 fails.
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