Last lecture

- Path planning for a moving
 - Visibility graph
 - Cell decomposition
 - Potential field

- Geometric preliminaries
 Implementing geometric primitives correctly and efficiently is tricky and requires careful thought.
Configuration Space
What is a path?
Rough idea

- Convert rigid robots, articulated robots, etc. into points
- Apply algorithms for moving points
Mapping from the workspace to the configuration space
Configuration space

- Definitions and examples
- Obstacles
- Paths
Configuration space

- The **configuration** of a moving object is a specification of the position of **every** point on the object.
 - Usually a configuration is expressed as a vector of position & orientation parameters: \(q = (q_1, q_2, \ldots, q_n) \).

- The **configuration space** \(C \) is the set of all possible configurations.
 - A configuration is a point in \(C \).
The topology of C is usually **not** that of a Cartesian space \mathbb{R}^n.

$$C = S^1 \times S^1$$
Dimension of configuration space

- The **dimension of a configuration space** is the **minimum** number of parameters needed to specify the configuration of the object completely.

- It is also called the **number of degrees of freedom** (dofs) of a moving object.
Example: rigid robot in 2-D workspace

- 3-parameter specification: \(q = (x, y, \theta) \) with \(\theta \in [0, 2\pi) \).
 - 3-D configuration space
Example: rigid robot in 2-D workspace

- 4-parameter specification: \(q = (x, y, u, v) \) with \(u^2 + v^2 = 1 \). Note \(u = \cos \theta \) and \(v = \sin \theta \).

- \text{dim of configuration space} = 3
 - Does the dimension of the configuration space (number of dofs) depend on the parametrization?

- Topology: a 3-D cylinder \(C = \mathbb{R}^2 \times S^1 \)

- Does the topology depend on the parametrization?
Example: rigid robot in 3-D workspace

- $q = (\text{position, orientation}) = (x, y, z, \ldots)$

- Parametrization of orientations by matrix:
 $q = (r_{11}, r_{12}, \ldots, r_{33}, r_{33})$ where $r_{11}, r_{12}, \ldots, r_{33}$ are the elements of rotation matrix

$$R = \begin{pmatrix}
 r_{11} & r_{12} & r_{13} \\
 r_{21} & r_{22} & r_{23} \\
 r_{31} & r_{32} & r_{33}
\end{pmatrix}$$

with
- $r_{1i}^2 + r_{2i}^2 + r_{3i}^2 = 1$ for all i,
- $r_{1i}r_{1j} + r_{2i}r_{2j} + r_{3i}r_{3j} = 0$ for all $i \neq j$,
- $\det(R) = +1$
Example: rigid robot in 3-D workspace

- Parametrization of orientations by Euler angles: \((\phi, \theta, \psi)\)
Parametrization of orientations by unit quaternion: \(u = (u_1, u_2, u_3, u_4) \) with \(u_1^2 + u_2^2 + u_3^2 + u_4^2 = 1 \).

Note \((u_1, u_2, u_3, u_4) = (\cos \theta/2, n_x \sin \theta/2, n_y \sin \theta/2, n_z \sin \theta/2)\) with \(n_x^2 + n_y^2 + n_z^2 = 1 \).

Compare with representation of orientation in 2-D:
\((u_1, u_2) = (\cos \theta, \sin \theta)\)
Example: rigid robot in 3-D workspace

- Advantage of unit quaternion representation
 - Compact
 - No singularity
 - Naturally reflect the topology of the space of orientations

- Number of dofs = 6
- Topology: $\mathbb{R}^3 \times \text{SO}(3)$
Example: articulated robot

- \(q = (q_1, q_2, \ldots, q_{2n}) \)
- Number of dofs = \(2n \)
- What is the topology?

An articulated object is a set of rigid bodies connected at the joints.
Example: protein backbone

- What are the possible representations?
- What is the number of dofs?
- What is the topology?
Configuration space

- Definitions and examples
- Obstacles
- Paths
Obstacles in the configuration space

- A configuration q is collision-free, or free, if a moving object placed at q does not intersect any obstacles in the workspace.
- The free space F is the set of free configurations.
- A configuration space obstacle (C-obstacle) is the set of configurations where the moving object collides with workspace obstacles.
Disc in 2-D workspace
Polygon robot translating in 2-D workspace

\[\theta = \theta_j \]
Polygon robot translating & rotating in 2-D workspace
Polygon robot translating & rotating in 2-D workspace
Articulated robot in 2-D workspace
Configuration space

- Definitions and examples
- Obstacles
- Paths
Paths in the configuration space

- A **path** in C is a continuous curve connecting two configurations q and q':

$$\tau : s \in [0,1] \rightarrow \tau(s) \in C$$

such that $\tau(0) = q$ and $\tau(1) = q'$.
Constraints on paths

- A **trajectory** is a path parameterized by time:
 \[\tau : t \in [0, T] \rightarrow \tau(t) \in C \]

- Constraints
 - Finite length
 - Bounded curvature
 - Smoothness
 - Minimum length
 - Minimum time
 - Minimum energy
 - …
Free space topology

- A free path lies entirely in the free space F.
- The moving object and the obstacles are modeled as closed subsets, meaning that they contain their boundaries.
- One can show that the C-obstacles are closed subsets of the configuration space C as well.
- Consequently, the free space F is an open subset of C. Hence, each free configuration is the center of a ball of non-zero radius entirely contained in F.
Semi-free space

- A configuration \(q \) is **semi-free** if the moving object placed \(q \) touches the boundary, but not the interior of obstacles.
 - Free, or
 - In contact
- The semi-free space is a closed subset of \(C \). Its boundary is a superset of the boundary of \(F \).
Example
Example
Homotopic paths

- Two paths τ and τ' with the same endpoints are **homotopic** if one can be continuously deformed into the other:

 $$h : [0,1] \times [0,1] \to F$$

 with $h(s,0) = \tau(s)$ and $h(s,1) = \tau'(s)$.

- A homotopic class of paths contains all paths that are homotopic to one another.
Example

- τ_1 and τ_2 are homotopic
- τ_1 and τ_3 are not homotopic
- Infinity number of homotopy classes exists.
Connectedness of C-Space

- C is **connected** if every two configurations can be connected by a path.

- C is **simply-connected** if any two paths connecting the same endpoints are homotopic.
 Examples: \mathbb{R}^2 or \mathbb{R}^3

- Otherwise C is multiply-connected.
 Examples: S^1 and $SO(3)$ are multiply-connected:
 - In S^1, infinite number of homotopy classes
 - In $SO(3)$, only two homotopy classes
A **metric** or **distance** function d in a configuration space C is a function

$$d : (q, q') \in C^2 \rightarrow d(q, q') \geq 0$$

such that

- $d(q, q') = 0$ if and only if $q = q'$,
- $d(q, q') = d(q', q)$,
- $d(q, q') \leq d(q, q'') + d(q'', q')$
Example

- Robot A and a point x on A
- $x(q)$: position of x in the workspace when A is at configuration q
- A distance d in C is defined by
 \[
d(q, q') = \max_{x \in A} ||x(q) - x(q')||
 \]

where $||x - y||$ denotes the Euclidean distance between points x and y in the workspace.
Examples in $\mathbb{R}^2 \times S^1$

- Consider $\mathbb{R}^2 \times S^1$
 - $q = (x, y, \theta), \ q' = (x', y', \theta')$ with $\theta, \theta' \in [0,2\pi)$
 - $\alpha = \min \{ |\theta - \theta'|, 2\pi - |\theta - \theta'| \}$

- $d(q, q') = \sqrt{ (x-x')^2 + (y-y')^2 + \alpha^2 }$

- $d(q, q') = \sqrt{ (x-x')^2 + (y-y')^2 + (\alpha r)^2 }$, where r is the maximal distance between a point on the robot and the reference point
Minkowski Sum
Problem

- **Input:**
 - Convex polygonal moving object translating in 2-D workspace
 - Convex polygonal obstacles

- **Output:** configuration space obstacles represented as polygons
The **Minkowski sum** of two sets P and Q, denoted by $P+Q$, is defined as

$$P \oplus Q = \{ p+q : p \in P, q \in Q \}$$

Similarly, the **Minkowski difference** is defined as

$$P \ominus Q = \{ p-q : p \in P, q \in Q \}$$
The Minkowski sum of two convex polygons P and Q of m and n vertices respectively is a convex polygon $P \oplus Q$ of $m + n$ vertices.

- The vertices of $P \oplus Q$ are the “sums” of vertices of P and Q.

Minkowski sum of convex polygons
Observation

If P is an obstacle in the workspace and M is a moving object. Then the C-space obstacle corresponding to P is $P \ominus M$.
Computing C-obstacles
Computational efficiency

- Running time $O(n+m)$
- Space $O(n+m)$
- Non-convex obstacles
 - Decompose into convex polygons (e.g., triangles or trapezoids), compute the Minkowski sums, and take the union
 - Complexity of Minkowski sum $O(n^2m^2)$
- 3-D workspace