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ABSTRACT 
A new motion planning framework is presented that enables 
multiple mobile robots with limited ranges of sensing and 
communication to maneuver and achieve goals safely in 
dynamic environments. The framework is applicable to both 
planetary rover and free-floating space robot applications. To 
combine the respective advantages of centralized and de-
centralized planning, this framework is based on the concept of 
centralized planning within dynamic robot networks. As the 
robots move in their environment, localized robot groups form 
networks, within which world models and robot goals can be 
shared. Whenever a new network gets formed, a fast centralized 
planner computes new coordinated trajectories on the fly, for all 
robots in the network. But planning over several robot networks 
is decentralized and distributed. The trajectory of each robot is 
re-computed whenever this robot contributes to forming a new 
network, as new information then becomes available to all 
robots in this network. Both simulated and real-robot 
experiments have validated the approach. The applicability of 
the framework to planetary rovers was demonstrated in both 
simulations and real robot experiments. Also, the framework’s 
applicability to free-floating robots in a 3D space environment 
was demonstrated in simulation.  
 
 

1. INTRODUCTION 
 
Several space missions are being investigated that rely on 
capabilities provided by multiple mobile robots. Already 
the “Mars Exploration Rover Mission”, which involves 
the deployment of two rovers on Mars, is scheduled to 
launch in 2003. While these rovers will not be tightly 
coordinated, they demonstrate the future direction of 
multi-robot systems in space.  
 
Currently, remote robotic systems require many humans 
to operate a single robot. The goal for future systems is to 
require only a few operators for many robots. For 
example, future space structure construction would 
benefit from the availability of a large group of robots that 
can be operated by a small group of humans [1]. Also, 
recent research has investigated the use of human-robot 
colonies on Mars [24]. 
 
While there has been a significant amount of research 
towards the operation of single remote robots, more work 
is still required towards the operation of groups of robots. 
In particular, an increased degree of autonomy must be 
given to the robots. To realize this autonomy, a variety of 
fundamental capabilities must be enabled. This research 
concentrates on one of these capabilities: multi-robot 
motion planning. 

 

 
Figure 1: Motion Planning for 4 free-floating robots in a 
3D space environment. Yellow lines denote robot 
trajectories that end at goal locations denoted by red 
cube lattices. The large gray cubes denote obstacles. 
 
When many robots operate in the same environment, 
high-level motion planning is required for the robots to 
accomplish tasks autonomously. They must be able to 
reach their goals while avoiding collisions among 
themselves and with static and moving obstacles. In 
unknown or partially known environments, it is unlikely 
that a system of sensors can provide global knowledge. In 
addition, continuous inter-robot communication is usually 
not feasible. Instead, only robots that are sufficiently close 
to each other can exchange information, e.g., share their 
goals and local world models.  
 
This paper introduces a new planning framework that 
exploits the changing communication links between 
robots, as the robots move, to combine the respective 
advantages of centralized and decentralized planning. 
More precisely, our approach is based on dynamic robot 
networks that are capable of: 1) forming dynamically 
whenever communication and sensing capabilities permit; 
2) sharing world models and robot goals within each 
network; and 3) constructing “on the fly” coordinated 
trajectories for all robots in each network using a fast 
centralized motion planner.  
 
A brief overview of this approach is presented in Section 
2. Then, a background review (Section 3) justifies the 
choices made in our approach. We then describe some 
aspects of our framework in more detail, namely the 
representation of partial world models (Section 4) and the 
planning technique used (Sections 5 & 6). Section 7 
presents the Micro-Autonomous RoverS (MARS) test-
platform used for simulations and real-robot experiments. 
Section 8 gives some experimental results.   



2. PLANNING IN DYNAMIC NETWORKS 
 
2.1 Network Formation  
When any two robots are within communication range of 
each other, they establish a communication link. Define G 
to be the graph whose nodes are the robots and edges are 
the communication links. A network of robots is any 
group of k ≥ 1 robots forming a maximal connected 
component of G. So, any two robots in a network can 
communicate through one or several communication 
links, but two robots from different networks can not. 
 

 
        a)    b) 
Figure 2: Example with 5 robots. Dashed lines between robots 
depict communication links. In a) the robots form two distinct 
networks Net0 and Net1. In b), two robots have moved, and the 
two networks in a) have merged into Net2.  
 
Figure 2a shows an environment with 5 robots, where 2 
networks have formed. In Net1, the top and bottom robots 
can exchange information via their communication links 
with the middle robot. Because robots are moving to 
achieve their goal locations, the networks are dynamic. 
Robots may leave networks and/or form new networks 
(see Figure 2b). An application level protocol ensures that 
at any time robots in each network can access the local 
sensing information of all other robots in the same 
network, and hence share a common world model.  
 
2.2 Planning Process 
Motion planning in a network N is triggered by any one of 
the following events: 
 
• N just got formed, i.e., two robots from different 

networks entered one another’s communication range. 
 
• A significant change in the world model occurs, e.g., a 

robot in N senses a new obstacle. 
 
• A new goal location is requested for one or several 

robots in N. 
 
When such a triggering event occurs, data is exchanged 
between the robots in N, so that each one gets an updated 
world model that combines the local world model and 
goal of every robot. Once robots have shared this 
information, each robot runs its own copy of a centralized 
motion planner to construct coordinated trajectories for all 
robots in the network. When the planner terminates, each 
robot broadcasts its plan to all other robots in the network. 
Each robot selects the same best plan and immediately 
starts executing its trajectory in this plan. The planner is a 
single-query probabilistic-roadmap (PRM) planner similar 
to the one presented in [11] (see Section 5). 
 

This process is illustrated in Figure 3 on a simple example 
involving 3 robots, with no obstacles. A triggering event 
automatically occurs at the start of the process, as the first 
networks get formed. 
 
 
 
 
 
 
 
a) All three robots (grey circles) are at their initial locations. 
The two left robots are in communication range and form a 
network. Their centralized planners create coordinated 
collision-free trajectories for them toward the goals (cross-
hairs). The right robot forms a network by itself, and its 
trajectory is planned independently from the other two. The 
robots start moving along these trajectories. 
 
 
 
 
 
 
 
b) As the robots move along their trajectories, the middle robot 
and the right robot enter communication range with each other, 
and all three robots now form a larger network. 
 
 
 
 
 
 
 
c) A new plan is made for all three robots in the network. This 
plan consists of collision-free trajectories for all three robots. 
 
 
 
 
 
 
 
d) As robots move along their new trajectories, they leave 
communication range of each other and some network links are 
broken. They keep following the planned trajectories. 
 
Figure 3: Top-down view of a planning example with three 
robots. In each of the fours snapshots, the illustration on the left 
shows the robots on their trajectories to their respective goals 
(cross-hairs). The diagram on the right depicts the 
communication range of each robot and the existing 
communication links. 
 
Since robots also have limited sensing, the world model 
shared through a network is partial. Planning is done 
using this model. As robots move, their sensors may 
detect previously unknown obstacles or a change in the 
trajectory followed by a known obstacle. Such an event 
triggers a re-planning operation within the network where 
the new obstacle or change of trajectory was detected.  

Net 0 Net 1 Net 2 



3. BACKGROUND REVIEW 
 
Most previous work on multi-robot motion planning can 
be grouped into centralized and decentralized planning 
[3,27].  While centralized planning considers all robots 
together as if they were forming a single multi-body robot 
[5,8,26,17,30,31], a decentralized planner plans for each 
robot separately before coordinating the individual plans 
by tuning the robot velocities along their respective paths 
[2,4,11,16,17,22,25,29]. A variant of decentralized, called 
prioritizing planning, plans for one robot at a time, in 
some sequence, considering the robots whose trajectories 
have already been planned as moving obstacles [6,12].   
 
Centralized planners can be advantageous because they 
allow the possibility of completeness and global 
optimization.  For example, it was shown in [27] that a 
centralized planner based on PRM techniques can reliably 
solve problems requiring the tight coordination of 
multiple articulated arms, while decentralized planners 
based on similar PRM techniques fail often. On the other 
hand, centralized planning may take more time due to the 
high dimensionality of the configuration spaces that are 
searched. But a worse drawback is that they require all 
information (partial world models and robot goals) to be 
centralized in one single place, which is only possible if 
the robots have unlimited communication abilities. This is 
not the case in many practical settings. 
 
A major advantage of decentralized planning is that it 
allows for distributed planning. Each robot can then plan 
its own trajectory using its own partial model of the 
environment. If two robots eventually get close to one 
another and risk colliding, simple velocity-tuning 
techniques or other reactive techniques can be used to 
locally their motions. However, such a fully distributed 
approach fails to exploit the fact that localized groups of 
robots can exchange information to improve planning 
 
By searching several configuration spaces of smaller 
dimensionality, decentralized planning is potentially less 
computationally intensive. But it cannot offer any 
completeness or optimality guarantee. Various attempts 
have been made to improve the outcome of decentralized 
planners (e.g., [4,6,13]). In particular, a negotiation 
scheme between localized groups of robots is used in [4] 
to assign priority orders to robots, which allow the 
decentralized planner to compute trajectories of reduced 
lengths. This negotiation scheme demonstrates the 
benefits of localized inter-robot communication, and is 
the technique most closely related to the robot network 
planning framework presented in this paper. But de-
centralized planning remains intrinsically incomplete.  
 
The planning approach presented in this paper exploits the 
respective advantages of centralized and decentralized 
planning. In each robot network, it uses a centralized 
single-query PRM planner to increase completeness and 
still provide fast on-the-fly planning. But planning is 
distributed over the various networks – hence, planning 

over multiple networks is decentralized – to accommodate 
the fact that robots from different networks cannot share 
information. The triggering event caused by the merging 
of two previously distinct networks into a single network 
leads the robots in this new network to take advantage of 
the information they now share by centrally re-planning 
their coordinated trajectories. 
 
Planning with incomplete world models and on-the-fly re-
planning when a sensor detects the presence of a still 
unknown obstacle or a change in an obstacle’s trajectory 
have previously been described in [11, 18] for a single 
robot. We use similar techniques, but extend them to 
multiple robot networks. 
 
 

4. WORLD MODEL 
 
Describing the world model in a concise but useful form 
is necessary to allow for information sharing between 
robots in the same network. In the experimental system 
that we have built, world models simply consist of a list 
of robots and their descriptions, and a list of obstacles and 
their descriptions. The following table outlines the 
information stored in each list: 
 
World Model Description 

1) List of Robot Descriptions 
- State (position and velocity) 

 - Size (Radius) 
- Most Recent Update Time 
- Information Source 

 - Goal position 
- Current Trajectory 

 
2) List of Obstacle Descriptions 

- State (position and velocity) 
- Size (Radius) 
- Most Recent Update Time 
- Information Source 

 
Robots report their own size and state, while obstacle 
sizes and states are estimated by robot sensors. The most 
recent update time is useful when updating world models 
with information received from other robots. The 
information source is a robot identification number that 
indicates which robot sensed (or communicated with) the 
object. It is used to keep track of which robots are 
currently in the network.  
Several assumptions were made to allow such a concise 
world model: 
 
• Each robot has access to its global state information 

that is with respect to global coordinates (e.g. GPS). 
 
• Each object is approximated as a circular object to 

allow its geometry to be described by a single 
parameter, its radius. 

 
• Each obstacle has constant linear velocity estimated by 

a robot’s sensor. As in [11], if at any later time its 



trajectory is found to diverge by more than some 
threshold from the predicted trajectory (either because 
the obstacle did not move at constant velocity, or 
because the error in the velocity estimate was too high), 
then the robot that detects this divergence calls for the 
construction of a new plan within its network. The 
planner “grows” the obstacles (and the robots) to allow 
for some errors in predicted trajectories of the objects. 

 
• All objects in the environment are easily identifiable by 

robot sensors, which can also precisely estimate their 
positions and velocities. Any discrepancy between two 
local world models can be easily resolved. 

 
The second assumption is rather easy to eliminate, as it 
has been shown before that PRM planners can efficiently 
deal with geometrically complex robots and obstacles 
(e.g., [26]). In [11], the third assumption has been shown 
to be quite reasonable, even when obstacle velocities 
change frequently, provided that (re-)planning is fast 
enough. The last assumption is more crucial. In our 
experimental system, it is enforced by engineering the 
vision system appropriately (see Section 6.2). In the 
future, it will be important to relax this assumption by 
using more general sensing systems and data fusion 
techniques [23]. 
 
 

5. MOTION PLANNING ALGORITHM 
 
As indicated earlier, motion planning within a robot 
network is done using a centralized single-query PRM 
planner (more precisely, several copies of this planner 
running in parallel). This planner searches the joint 
state×time space C of the k robots in this network. The 
state of each robot is defined by the two coordinates of its 
center and two velocity parameters, so C has 4k+1 
dimensions. This representation can easily be extended to 
other robots. For instance, we have implemented a version 
of the planner for robots in three-dimensional space [10]. 
The planner searches C for a collision-free trajectory from 
the initial state of the robots to their goal state. The 
resulting trajectory defines the coordinated motions of the 
robots to their respective goals. 
 
Our planner searches C by incrementally building a tree 
of milestones (the roadmap), as described in [11,15,17]. 
At each iteration, it selects a milestone m in the current 
roadmap, generates a collision-free state m’ at random in 
a neighborhood of m in C and, if the path from m to m’ 
tests collision-free, installs m’ as a new milestone in the 
roadmap. The search terminates when m’ falls into an 
“endgame” region around the goal. See [14] for details.  
 
As in [14,16], our planner satisfies kinodynamic 
constraints as follows: to generate each new milestone m’, 
it picks a control input at random and integrates the 
equations of motion of the robots over a short duration.  
We name our planner KRMP. As shown in [14], under 
reasonable assumptions on the free space, the probability 

of not finding a plan when one exists decreases 
exponentially to 0 as the number of milestones increases. 
This is a major advantage over our previous work in 
[9,11], which used a decentralized prioritized planning 
approach.  Note, however, that the fact that the planner is 
probabilistically complete does not imply that the entire 
system is also probabilistically complete. The robots use 
partial world models and thus need to re-plan their 
trajectories when they encounter discrepancies in their 
model, (e.g. new obstacles). Since there is no guarantee 
that a series of complete plans is itself a complete plan, 
the robots are not guaranteed to find a global plan if one 
exists. While it is unclear to what extent the notion of 
completeness applies when planning for global goals with 
only partial knowledge of the environment, it is clearly 
desirable to achieve completeness in the system’s 
components whenever this is possible. 
 
The work in [14] also demonstrated empirically that the 
above techniques successfully compute trajectories for a 
single robot with kinodynamic motion constraints, in real-
time, that is, fast enough to be run on the fly. To enable 
motion planning within robot networks, KRMP extends 
this previous work to accommodate several robots. 
Modified techniques are needed to 1) select milestones for 
expansion, 2) generate new milestones, and 3) define the 
endgame region. Below we present only the technique we 
use to generate a new milestone m’. Not all modifications 
are presented in this paper. 
 
When planning for multiple robots, one may generate m’ 
using the following “parallel” approach: first, pick the 
control inputs for all the robots at random; next, integrate 
the motions of all the robots concurrently; if no collision 
is detected, then record the endpoint as a new milestone, 
otherwise pick another set of control inputs. We found 
that this technique yields a high rejection rate, especially 
in tight space. This led us to develop the following 
“sequential” approach: consider the robots in some order, 
pick the control input for each robot and integrate its 
motion (while considering the previous robots as moving 
obstacles); if the motion collides, pick another control or 
change the motion of a previous robot. Our experiments 
show that this sequential approach makes it possible to 
get each new milestone much faster, without affecting the 
probabilistic completeness of the overall planner. 
 
Finally, we take advantage of the various processors 
available in a robot network by concurrently running a 
separate copy of KRMP on each robot of the network.  
Each copy uses a different seed of the random number 
generator, hence constructs different roadmaps. We set 
the same timeout constraint (typically, a small fraction of 
a second) on every robot. Each robot then returns a plan 
or its failure to generate one. The same best plan is 
selected by the robots and each robot immediately 
switches to executing its new trajectory.  This is made 
possible because we use a PRM planning approach. 
 

6. PLANNER IMPLEMENTATION 
 



This section details the planners implementation for free-
floating space robots. For details about the 
implementation of the planner on planetary rovers, refer 
to [11]. 
 
6.1 Free-Floating Robot Model 
In modeling a space robot for simulation, a simple cube 
shaped robot equipped with 6 independent on/off 
thrusters. Future work will include additional thrusters to 
allow roll, pitch and yaw variation. 

Figure 4: State space model of the free-floating robot 
 
The state of the robots can be described by X = (x1, x2, x3) 
∈ ℜ3 representing the position with respect to the inertial 
frame. Milestones are specified by both the state of R 
robots and the time robots reach those states (X0, X1, ... , 
XR, t).  
 
6.2 Milestone Generation 
To generate a new milestone for the road map, thruster 
control inputs are randomly selected that will propagate 
robots to new states. First, the time for which the thrusters 
will be actuated, (tact), is randomly selected where: 

[ ]maxmin ,tttact ∈  
 

Next, the control inputs (ON/OFF) are randomly selected 
for each thruster. To prevent the possibility that two 
opposite facing thrusters will both be enabled at the same 
time, only one random variable will be used for both of 
them. That is, for each pair of opposite facing thrusters, a 
control input variable uact is selected where: 

 }0,1,1{ −∈actu  
 

uact 1 -1 0 
Thruster 
1 

ON OFF OFF 

Thruster 
2 

OFF ON OFF 

Table 1: Mapping the random variable uact to thruster 
actuation. 
 
With the random variables selected, a candidate milestone 
m can be generated. Given any parent milestone mp, and 
using s-2 dynamics, robot states in m can be easily 
calculated: 
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6.3 Endgame Region 
The endgame region E in this algorithm is defined as the 
subspace that includes all milestones me, such that all 
robots can be propagated without collisions from states 
defined by me to their respective goal location via a bang-
bang control sequence. 
 
To implement this in practice, one must create a list of 
milestones to get from me to mg, the milestone defining 
the goal states of each robot. Each milestone in this list 
corresponds with a change in actuation necessary for 
obtaining the bang-bang control sequence. 

 

Figure 5 – Example of actuation required to one robot 
from (0, 0, 0) to a goal state. The series of milestones 
required is {mp, m0, m1, m2, m3, m4, mg} 
 
 

7. EXPERIMENTAL TEST-PLATFORM 
 
7.1 Micro-Autonomous RoverS Test-Platform 
Located in the Aerospace Robotics Lab at Stanford 
University, the Micro-Autonomous RoverS (MARS) test -
platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a large 
12’ x 9’ flat, granite table with six autonomous robots that 
move about the table’s surface.  
 
The robots are cylindrical in shape and use two 
independently driven wheels that allow them to rotate on 
the spot, but inhibit lateral movement (nonholonomic 
constraint). Each robot is equipped with its own planner 
(copy of KRMP) and controller that are located off-board.  
 
 
7.2 Sensors 
An overhead vision system is used to track the states of 
all objects on the table. The vision system processor 
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calculates these states and publishes them to all 
applications that subscribe (see Figure 6). This makes 
global state information available to all robots. To 
simulate the limited sensing range that would occur when 
sensors are mounted on robots, the object states are 
filtered such that robots only receive state information 
regarding objects within some predetermined range of the 
robot. 
 
7.3 Network Communication 
Figure 3 shows the computer/network architecture of the 
MARS test-platform. All the processing is done off-
board. Two processors are assigned to each robot, 
respectively for planning and control. These computers 
are connected through a LAN. All communication within 
the LAN is accomplished with Real Time Innovation's 
Network Data Delivery Service (NDDS) software. 
Because a LAN is used for inter-robot communication 
instead of a wireless medium, there are no physical 
barriers to limit the range of communication. Hence the 
communication barrier is simulated. 
 
NDDS is based on a publish/subscribe architecture. To 
broadcast messages by flooding a robot network, the 
sender will publish a message to which all robots 
subscribe.  Before robots can receive their subscriptions, 
the messages are filtered so that only robots within some 
predetermined range of the sender will receive the 
message. This effectively simulates a discrete physical 
communication range. 

Figure 6: Network architecture of MARS test-platform 
 
7.4 Visualization in 3D 
The test platform was augmented to incorporate a 3D 
visualization of free-floating robots maneuvering in a 3D 
space environment. The application was coded in C++ 
and OpenGl. A screen shot from the application can be 
seen in Figures 1 and 9. As depicted in Figure 6, the 
application acts only as a listener to receive state 
information. 
 

8. EXPERIMENTS 
 

To validate our planning approach, we implemented it in 
using the MARS test-platform. This includes physical 
experiments of rovers in a 2D environment, simulations 
of rovers in a 2D environment, and simulations of free-
floating robots in a 3D environment. 
 
8.1 Demonstration on Physical Hardware 
To illustrate the applicability of the planner to a physical 
system, real robot experiments with up to 5 robots have 
been carried out. One example of such an experiment is 
illustrated in Figure 8. The top photo is a screen-shot of 
the GUI taken throughout the experiment. The right photo 
shows the physical hardware, and was taken at the same 
time as the GUI screen-shot. In the GUI, robots are 
depicted as small circles and obstacles are depicted as 
larger circles. Robot goal locations are indicated by cross-
hairs, and lines leading to the goal locations depict the 
trajectories. When robots form a network as described in 
Section 2, it is indicated by a color change. Hence robots 
within a network have a common color, and this color 
will differ between networks. 
      

 
Figure 8: Example experiment on the MARS test-platform 
involving 5 robots and 3 obstacles.  
 
In the experiment presented, all five robots are initially 
located at the close end of the table (i.e. bottom of the 
GUI screen). Communication and sensing ranges were 
limited to 0.75 m. Robot colors indicate that 2 networks 
have formed, one with the 2 robots in the bottom left and 
one with the 2 robots in the bottom right. As the 
experiment progresses, the robots follow their trajectories 
to reach their goal locations at the far end of the table. 
Throughout the experiment, robots planned an average of 
3.4 times, and planning times were an average of 9 ms.  
 
8.2 Simulations of Free-Floating Robots 

GUI Controllers Planners Visualization ( ( (   ) ) ) 

Vision 



To illustrate the applicability of the planner to a 3D space 
environment, simulations with up to 12 robots have been 
carried out. An example of a simulation is illustrated in 
Figure 9. 
 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 9: Visualizing a simulation involving 4 
robots and 4 obstacles.  
 

7. CONCLUSIONS 
 
The motion planning framework presented has 
demonstrated its effectiveness in planning for multiple 

mobile robots within a bounded workspace. It plans with 
a high probability of success in cluttered environments 
involving robots, stationary obstacles and moving 
obstacles. Planning times of less than 100 ms allowed the 
robots to re-plan on the fly and react in real-time to 
changes in the environment.  
 
Future work includes incorporating more sophisticated 
methods of modeling the environment into the 
communication system. Another future direction will be 
to investigate the effects of varying the ratio between 
sensor range and communication range. For the 
application to the three-dimensional workspaces, planning 
for all degrees of freedom should be incorporated. 
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