
Dynamic Networks for Motion Planning in Multi-Robot Space Systems

Christopher M. Clark & Stephen M. Rock
Aerospace Robotics Lab

Department of Aeronautics & Astronautics
Stanford University

{chrisc, rock}@sun-valley.stanford.edu

Jean-Claude Latombe
Department of Computer Science

Stanford Universty
latombe@cs.stanford.edu

ABSTRACT
A new motion planning framework is presented that enables
multiple mobile robots with limited ranges of sensing and
communication to maneuver and achieve goals safely in
dynamic environments. The framework is applicable to both
planetary rover and free-floating space robot applications. To
combine the respective advantages of centralized and de-
centralized planning, this framework is based on the concept of
centralized planning within dynamic robot networks. As the
robots move in their environment, localized robot groups form
networks, within which world models and robot goals can be
shared. Whenever a new network gets formed, a fast centralized
planner computes new coordinated trajectories on the fly, for all
robots in the network. But planning over several robot networks
is decentralized and distributed. The trajectory of each robot is
re-computed whenever this robot contributes to forming a new
network, as new information then becomes available to all
robots in this network. Both simulated and real-robot
experiments have validated the approach. The applicability of
the framework to planetary rovers was demonstrated in both
simulations and real robot experiments. Also, the framework’s
applicability to free-floating robots in a 3D space environment
was demonstrated in simulation.

1. INTRODUCTION

Several space missions are being investigated that rely on
capabilities provided by multiple mobile robots. Already
the “Mars Exploration Rover Mission”, which involves
the deployment of two rovers on Mars, is scheduled to
launch in 2003. While these rovers will not be tightly
coordinated, they demonstrate the future direction of
multi-robot systems in space.

Currently, remote robotic systems require many humans
to operate a single robot. The goal for future systems is to
require only a few operators for many robots. For
example, future space structure construction would
benefit from the availability of a large group of robots that
can be operated by a small group of humans [1]. Also,
recent research has investigated the use of human-robot
colonies on Mars [24].

While there has been a significant amount of research
towards the operation of single remote robots, more work
is still required towards the operation of groups of robots.
In particular, an increased degree of autonomy must be
given to the robots. To realize this autonomy, a variety of
fundamental capabilities must be enabled. This research
concentrates on one of these capabilities: multi-robot
motion planning.

Figure 1: Motion Planning for 4 free-floating robots in a
3D space environment. Yellow lines denote robot
trajectories that end at goal locations denoted by red
cube lattices. The large gray cubes denote obstacles.

When many robots operate in the same environment,
high-level motion planning is required for the robots to
accomplish tasks autonomously. They must be able to
reach their goals while avoiding collisions among
themselves and with static and moving obstacles. In
unknown or partially known environments, it is unlikely
that a system of sensors can provide global knowledge. In
addition, continuous inter-robot communication is usually
not feasible. Instead, only robots that are sufficiently close
to each other can exchange information, e.g., share their
goals and local world models.

This paper introduces a new planning framework that
exploits the changing communication links between
robots, as the robots move, to combine the respective
advantages of centralized and decentralized planning.
More precisely, our approach is based on dynamic robot
networks that are capable of: 1) forming dynamically
whenever communication and sensing capabilities permit;
2) sharing world models and robot goals within each
network; and 3) constructing “on the fly” coordinated
trajectories for all robots in each network using a fast
centralized motion planner.

A brief overview of this approach is presented in Section
2. Then, a background review (Section 3) justifies the
choices made in our approach. We then describe some
aspects of our framework in more detail, namely the
representation of partial world models (Section 4) and the
planning technique used (Sections 5 & 6). Section 7
presents the Micro-Autonomous RoverS (MARS) test-
platform used for simulations and real-robot experiments.
Section 8 gives some experimental results.

2. PLANNING IN DYNAMIC NETWORKS

2.1 Network Formation
When any two robots are within communication range of
each other, they establish a communication link. Define G
to be the graph whose nodes are the robots and edges are
the communication links. A network of robots is any
group of k ≥ 1 robots forming a maximal connected
component of G. So, any two robots in a network can
communicate through one or several communication
links, but two robots from different networks can not.

 a) b)
Figure 2: Example with 5 robots. Dashed lines between robots
depict communication links. In a) the robots form two distinct
networks Net0 and Net1. In b), two robots have moved, and the
two networks in a) have merged into Net2.

Figure 2a shows an environment with 5 robots, where 2
networks have formed. In Net1, the top and bottom robots
can exchange information via their communication links
with the middle robot. Because robots are moving to
achieve their goal locations, the networks are dynamic.
Robots may leave networks and/or form new networks
(see Figure 2b). An application level protocol ensures that
at any time robots in each network can access the local
sensing information of all other robots in the same
network, and hence share a common world model.

2.2 Planning Process
Motion planning in a network N is triggered by any one of
the following events:

• N just got formed, i.e., two robots from different

networks entered one another’s communication range.

• A significant change in the world model occurs, e.g., a

robot in N senses a new obstacle.

• A new goal location is requested for one or several

robots in N.

When such a triggering event occurs, data is exchanged
between the robots in N, so that each one gets an updated
world model that combines the local world model and
goal of every robot. Once robots have shared this
information, each robot runs its own copy of a centralized
motion planner to construct coordinated trajectories for all
robots in the network. When the planner terminates, each
robot broadcasts its plan to all other robots in the network.
Each robot selects the same best plan and immediately
starts executing its trajectory in this plan. The planner is a
single-query probabilistic-roadmap (PRM) planner similar
to the one presented in [11] (see Section 5).

This process is illustrated in Figure 3 on a simple example
involving 3 robots, with no obstacles. A triggering event
automatically occurs at the start of the process, as the first
networks get formed.

a) All three robots (grey circles) are at their initial locations.
The two left robots are in communication range and form a
network. Their centralized planners create coordinated
collision-free trajectories for them toward the goals (cross-
hairs). The right robot forms a network by itself, and its
trajectory is planned independently from the other two. The
robots start moving along these trajectories.

b) As the robots move along their trajectories, the middle robot
and the right robot enter communication range with each other,
and all three robots now form a larger network.

c) A new plan is made for all three robots in the network. This
plan consists of collision-free trajectories for all three robots.

d) As robots move along their new trajectories, they leave
communication range of each other and some network links are
broken. They keep following the planned trajectories.

Figure 3: Top-down view of a planning example with three
robots. In each of the fours snapshots, the illustration on the left
shows the robots on their trajectories to their respective goals
(cross-hairs). The diagram on the right depicts the
communication range of each robot and the existing
communication links.

Since robots also have limited sensing, the world model
shared through a network is partial. Planning is done
using this model. As robots move, their sensors may
detect previously unknown obstacles or a change in the
trajectory followed by a known obstacle. Such an event
triggers a re-planning operation within the network where
the new obstacle or change of trajectory was detected.

Net 0 Net 1 Net 2

3. BACKGROUND REVIEW

Most previous work on multi-robot motion planning can
be grouped into centralized and decentralized planning
[3,27]. While centralized planning considers all robots
together as if they were forming a single multi-body robot
[5,8,26,17,30,31], a decentralized planner plans for each
robot separately before coordinating the individual plans
by tuning the robot velocities along their respective paths
[2,4,11,16,17,22,25,29]. A variant of decentralized, called
prioritizing planning, plans for one robot at a time, in
some sequence, considering the robots whose trajectories
have already been planned as moving obstacles [6,12].

Centralized planners can be advantageous because they
allow the possibility of completeness and global
optimization. For example, it was shown in [27] that a
centralized planner based on PRM techniques can reliably
solve problems requiring the tight coordination of
multiple articulated arms, while decentralized planners
based on similar PRM techniques fail often. On the other
hand, centralized planning may take more time due to the
high dimensionality of the configuration spaces that are
searched. But a worse drawback is that they require all
information (partial world models and robot goals) to be
centralized in one single place, which is only possible if
the robots have unlimited communication abilities. This is
not the case in many practical settings.

A major advantage of decentralized planning is that it
allows for distributed planning. Each robot can then plan
its own trajectory using its own partial model of the
environment. If two robots eventually get close to one
another and risk colliding, simple velocity-tuning
techniques or other reactive techniques can be used to
locally their motions. However, such a fully distributed
approach fails to exploit the fact that localized groups of
robots can exchange information to improve planning

By searching several configuration spaces of smaller
dimensionality, decentralized planning is potentially less
computationally intensive. But it cannot offer any
completeness or optimality guarantee. Various attempts
have been made to improve the outcome of decentralized
planners (e.g., [4,6,13]). In particular, a negotiation
scheme between localized groups of robots is used in [4]
to assign priority orders to robots, which allow the
decentralized planner to compute trajectories of reduced
lengths. This negotiation scheme demonstrates the
benefits of localized inter-robot communication, and is
the technique most closely related to the robot network
planning framework presented in this paper. But de-
centralized planning remains intrinsically incomplete.

The planning approach presented in this paper exploits the
respective advantages of centralized and decentralized
planning. In each robot network, it uses a centralized
single-query PRM planner to increase completeness and
still provide fast on-the-fly planning. But planning is
distributed over the various networks – hence, planning

over multiple networks is decentralized – to accommodate
the fact that robots from different networks cannot share
information. The triggering event caused by the merging
of two previously distinct networks into a single network
leads the robots in this new network to take advantage of
the information they now share by centrally re-planning
their coordinated trajectories.

Planning with incomplete world models and on-the-fly re-
planning when a sensor detects the presence of a still
unknown obstacle or a change in an obstacle’s trajectory
have previously been described in [11, 18] for a single
robot. We use similar techniques, but extend them to
multiple robot networks.

4. WORLD MODEL

Describing the world model in a concise but useful form
is necessary to allow for information sharing between
robots in the same network. In the experimental system
that we have built, world models simply consist of a list
of robots and their descriptions, and a list of obstacles and
their descriptions. The following table outlines the
information stored in each list:

World Model Description

1) List of Robot Descriptions
- State (position and velocity)

 - Size (Radius)
- Most Recent Update Time
- Information Source

 - Goal position
- Current Trajectory

2) List of Obstacle Descriptions

- State (position and velocity)
- Size (Radius)
- Most Recent Update Time
- Information Source

Robots report their own size and state, while obstacle
sizes and states are estimated by robot sensors. The most
recent update time is useful when updating world models
with information received from other robots. The
information source is a robot identification number that
indicates which robot sensed (or communicated with) the
object. It is used to keep track of which robots are
currently in the network.
Several assumptions were made to allow such a concise
world model:

• Each robot has access to its global state information

that is with respect to global coordinates (e.g. GPS).

• Each object is approximated as a circular object to

allow its geometry to be described by a single
parameter, its radius.

• Each obstacle has constant linear velocity estimated by

a robot’s sensor. As in [11], if at any later time its

trajectory is found to diverge by more than some
threshold from the predicted trajectory (either because
the obstacle did not move at constant velocity, or
because the error in the velocity estimate was too high),
then the robot that detects this divergence calls for the
construction of a new plan within its network. The
planner “grows” the obstacles (and the robots) to allow
for some errors in predicted trajectories of the objects.

• All objects in the environment are easily identifiable by

robot sensors, which can also precisely estimate their
positions and velocities. Any discrepancy between two
local world models can be easily resolved.

The second assumption is rather easy to eliminate, as it
has been shown before that PRM planners can efficiently
deal with geometrically complex robots and obstacles
(e.g., [26]). In [11], the third assumption has been shown
to be quite reasonable, even when obstacle velocities
change frequently, provided that (re-)planning is fast
enough. The last assumption is more crucial. In our
experimental system, it is enforced by engineering the
vision system appropriately (see Section 6.2). In the
future, it will be important to relax this assumption by
using more general sensing systems and data fusion
techniques [23].

5. MOTION PLANNING ALGORITHM

As indicated earlier, motion planning within a robot
network is done using a centralized single-query PRM
planner (more precisely, several copies of this planner
running in parallel). This planner searches the joint
state×time space C of the k robots in this network. The
state of each robot is defined by the two coordinates of its
center and two velocity parameters, so C has 4k+1
dimensions. This representation can easily be extended to
other robots. For instance, we have implemented a version
of the planner for robots in three-dimensional space [10].
The planner searches C for a collision-free trajectory from
the initial state of the robots to their goal state. The
resulting trajectory defines the coordinated motions of the
robots to their respective goals.

Our planner searches C by incrementally building a tree
of milestones (the roadmap), as described in [11,15,17].
At each iteration, it selects a milestone m in the current
roadmap, generates a collision-free state m’ at random in
a neighborhood of m in C and, if the path from m to m’
tests collision-free, installs m’ as a new milestone in the
roadmap. The search terminates when m’ falls into an
“endgame” region around the goal. See [14] for details.

As in [14,16], our planner satisfies kinodynamic
constraints as follows: to generate each new milestone m’,
it picks a control input at random and integrates the
equations of motion of the robots over a short duration.
We name our planner KRMP. As shown in [14], under
reasonable assumptions on the free space, the probability

of not finding a plan when one exists decreases
exponentially to 0 as the number of milestones increases.
This is a major advantage over our previous work in
[9,11], which used a decentralized prioritized planning
approach. Note, however, that the fact that the planner is
probabilistically complete does not imply that the entire
system is also probabilistically complete. The robots use
partial world models and thus need to re-plan their
trajectories when they encounter discrepancies in their
model, (e.g. new obstacles). Since there is no guarantee
that a series of complete plans is itself a complete plan,
the robots are not guaranteed to find a global plan if one
exists. While it is unclear to what extent the notion of
completeness applies when planning for global goals with
only partial knowledge of the environment, it is clearly
desirable to achieve completeness in the system’s
components whenever this is possible.

The work in [14] also demonstrated empirically that the
above techniques successfully compute trajectories for a
single robot with kinodynamic motion constraints, in real-
time, that is, fast enough to be run on the fly. To enable
motion planning within robot networks, KRMP extends
this previous work to accommodate several robots.
Modified techniques are needed to 1) select milestones for
expansion, 2) generate new milestones, and 3) define the
endgame region. Below we present only the technique we
use to generate a new milestone m’. Not all modifications
are presented in this paper.

When planning for multiple robots, one may generate m’
using the following “parallel” approach: first, pick the
control inputs for all the robots at random; next, integrate
the motions of all the robots concurrently; if no collision
is detected, then record the endpoint as a new milestone,
otherwise pick another set of control inputs. We found
that this technique yields a high rejection rate, especially
in tight space. This led us to develop the following
“sequential” approach: consider the robots in some order,
pick the control input for each robot and integrate its
motion (while considering the previous robots as moving
obstacles); if the motion collides, pick another control or
change the motion of a previous robot. Our experiments
show that this sequential approach makes it possible to
get each new milestone much faster, without affecting the
probabilistic completeness of the overall planner.

Finally, we take advantage of the various processors
available in a robot network by concurrently running a
separate copy of KRMP on each robot of the network.
Each copy uses a different seed of the random number
generator, hence constructs different roadmaps. We set
the same timeout constraint (typically, a small fraction of
a second) on every robot. Each robot then returns a plan
or its failure to generate one. The same best plan is
selected by the robots and each robot immediately
switches to executing its new trajectory. This is made
possible because we use a PRM planning approach.

6. PLANNER IMPLEMENTATION

This section details the planners implementation for free-
floating space robots. For details about the
implementation of the planner on planetary rovers, refer
to [11].

6.1 Free-Floating Robot Model
In modeling a space robot for simulation, a simple cube
shaped robot equipped with 6 independent on/off
thrusters. Future work will include additional thrusters to
allow roll, pitch and yaw variation.

Figure 4: State space model of the free-floating robot

The state of the robots can be described by X = (x1, x2, x3)
∈ ℜ3 representing the position with respect to the inertial
frame. Milestones are specified by both the state of R
robots and the time robots reach those states (X0, X1, ... ,
XR, t).

6.2 Milestone Generation
To generate a new milestone for the road map, thruster
control inputs are randomly selected that will propagate
robots to new states. First, the time for which the thrusters
will be actuated, (tact), is randomly selected where:

[]maxmin ,tttact ∈

Next, the control inputs (ON/OFF) are randomly selected
for each thruster. To prevent the possibility that two
opposite facing thrusters will both be enabled at the same
time, only one random variable will be used for both of
them. That is, for each pair of opposite facing thrusters, a
control input variable uact is selected where:

 }0,1,1{ −∈actu

uact 1 -1 0
Thruster
1

ON OFF OFF

Thruster
2

OFF ON OFF

Table 1: Mapping the random variable uact to thruster
actuation.

With the random variables selected, a candidate milestone
m can be generated. Given any parent milestone mp, and
using s-2 dynamics, robot states in m can be easily
calculated:

piactpiact
iact

i xtxt
M

u
x ,,

2

2
++=

piact
iact

i xt
M

u
x ,+=

6.3 Endgame Region
The endgame region E in this algorithm is defined as the
subspace that includes all milestones me, such that all
robots can be propagated without collisions from states
defined by me to their respective goal location via a bang-
bang control sequence.

To implement this in practice, one must create a list of
milestones to get from me to mg, the milestone defining
the goal states of each robot. Each milestone in this list
corresponds with a change in actuation necessary for
obtaining the bang-bang control sequence.

Figure 5 – Example of actuation required to one robot
from (0, 0, 0) to a goal state. The series of milestones
required is {mp, m0, m1, m2, m3, m4, mg}

7. EXPERIMENTAL TEST-PLATFORM

7.1 Micro-Autonomous RoverS Test-Platform
Located in the Aerospace Robotics Lab at Stanford
University, the Micro-Autonomous RoverS (MARS) test -
platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a large
12’ x 9’ flat, granite table with six autonomous robots that
move about the table’s surface.

The robots are cylindrical in shape and use two
independently driven wheels that allow them to rotate on
the spot, but inhibit lateral movement (nonholonomic
constraint). Each robot is equipped with its own planner
(copy of KRMP) and controller that are located off-board.

7.2 Sensors
An overhead vision system is used to track the states of
all objects on the table. The vision system processor

t

t

t

u1

u3

u2

t

t

t

x1

x3

x2

me m0 m1 m2 m3 m4 mg

x2

x1

x3

calculates these states and publishes them to all
applications that subscribe (see Figure 6). This makes
global state information available to all robots. To
simulate the limited sensing range that would occur when
sensors are mounted on robots, the object states are
filtered such that robots only receive state information
regarding objects within some predetermined range of the
robot.

7.3 Network Communication
Figure 3 shows the computer/network architecture of the
MARS test-platform. All the processing is done off-
board. Two processors are assigned to each robot,
respectively for planning and control. These computers
are connected through a LAN. All communication within
the LAN is accomplished with Real Time Innovation's
Network Data Delivery Service (NDDS) software.
Because a LAN is used for inter-robot communication
instead of a wireless medium, there are no physical
barriers to limit the range of communication. Hence the
communication barrier is simulated.

NDDS is based on a publish/subscribe architecture. To
broadcast messages by flooding a robot network, the
sender will publish a message to which all robots
subscribe. Before robots can receive their subscriptions,
the messages are filtered so that only robots within some
predetermined range of the sender will receive the
message. This effectively simulates a discrete physical
communication range.

Figure 6: Network architecture of MARS test-platform

7.4 Visualization in 3D
The test platform was augmented to incorporate a 3D
visualization of free-floating robots maneuvering in a 3D
space environment. The application was coded in C++
and OpenGl. A screen shot from the application can be
seen in Figures 1 and 9. As depicted in Figure 6, the
application acts only as a listener to receive state
information.

8. EXPERIMENTS

To validate our planning approach, we implemented it in
using the MARS test-platform. This includes physical
experiments of rovers in a 2D environment, simulations
of rovers in a 2D environment, and simulations of free-
floating robots in a 3D environment.

8.1 Demonstration on Physical Hardware
To illustrate the applicability of the planner to a physical
system, real robot experiments with up to 5 robots have
been carried out. One example of such an experiment is
illustrated in Figure 8. The top photo is a screen-shot of
the GUI taken throughout the experiment. The right photo
shows the physical hardware, and was taken at the same
time as the GUI screen-shot. In the GUI, robots are
depicted as small circles and obstacles are depicted as
larger circles. Robot goal locations are indicated by cross-
hairs, and lines leading to the goal locations depict the
trajectories. When robots form a network as described in
Section 2, it is indicated by a color change. Hence robots
within a network have a common color, and this color
will differ between networks.

Figure 8: Example experiment on the MARS test-platform
involving 5 robots and 3 obstacles.

In the experiment presented, all five robots are initially
located at the close end of the table (i.e. bottom of the
GUI screen). Communication and sensing ranges were
limited to 0.75 m. Robot colors indicate that 2 networks
have formed, one with the 2 robots in the bottom left and
one with the 2 robots in the bottom right. As the
experiment progresses, the robots follow their trajectories
to reach their goal locations at the far end of the table.
Throughout the experiment, robots planned an average of
3.4 times, and planning times were an average of 9 ms.

8.2 Simulations of Free-Floating Robots

GUI Controllers Planners Visualization ((()))

Vision

To illustrate the applicability of the planner to a 3D space
environment, simulations with up to 12 robots have been
carried out. An example of a simulation is illustrated in
Figure 9.

a)

b)

c)

d)

Figure 9: Visualizing a simulation involving 4
robots and 4 obstacles.

7. CONCLUSIONS

The motion planning framework presented has
demonstrated its effectiveness in planning for multiple

mobile robots within a bounded workspace. It plans with
a high probability of success in cluttered environments
involving robots, stationary obstacles and moving
obstacles. Planning times of less than 100 ms allowed the
robots to re-plan on the fly and react in real-time to
changes in the environment.

Future work includes incorporating more sophisticated
methods of modeling the environment into the
communication system. Another future direction will be
to investigate the effects of varying the ratio between
sensor range and communication range. For the
application to the three-dimensional workspaces, planning
for all degrees of freedom should be incorporated.

BIBLIOGRAPHY

[1wAk] D. L. Akin, M. L. Bowden. EVA, Robotic, and Cooperative
Assembly of Large Sapce Structures, Proc. IEEE Aerospace
Conference, 2002.
[2wA]R. Alami, F. Robert, F. Ingrand, & S.Suzuki. Multi-Robot
Cooperation Through Incremental Plan-Merging, Proc. IEEE Int. Conf.
on Robotics and Automation, p. 2573-2678, 1995.
[3w1] T. Arai & J. Ota. Motion Planning of multiple mobile robots.
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Syst., p. 1761-1768,
1992.
[4w2] K. Azarm & G. Schmidt. Conflict-Free Motion of Multiple
Mobile Robots Based on Decentralized Motion Planning and
Negotiation, Proc. IEEE Int. Conf. on Robotics and Automation, p.
3526-3533, 1997.
[5wBa] J. Barraquand, B. Langlois, & J.C. Latombe. Numerical
Potential Field techniques for Robot Path Planning, IEEE Tr. On Syst.,
Man, and Cyb., 22(2):224-241, 1992.
 [6w4] M. Bennewitz, W. Burgard & S. Thrun. Optimizing Schedules
for Prioritized Path Planning of Multi-Robot Systems, Proc. Int. Conf.
on Robotics and Automation, 2001.
[7w5] Z. Bien & Jihong Lee. A Minimum-Time Trajectory Planning
Method for Two Robots, IEEE Tr. on Robotics and Automation, pg
443-450, 1992.
[8wBu] S.J. Buckley. Fast Motion Planning for Multiple Moving
Robots. Proc. IEEE Int. Conf. on Robotics and Autom., p. 1419-1424,
1989.
[9w7] C. Clark & S. Rock. Randomized Motion Planning for Groups of
Nonholonomic Robots, Proc. Int. Symp. of Artificial Intelligence,
Robotics and Automation in Space, 2001.
[10wCl] C. Clark, S. Rock & J. C. Latombe. Dynamic Networks for
Motion Planning in Multi-Robot Space Systems, Proc. Int. Symp. of
Artificial Intelligence, Robotics and Automation in Space, 2003.
[11w8] C. Clark, T. Bretl, & S. Rock. Kinodynamic Randomized
Motion Planning for Multi-Robot Space Systems, Proc. of IEEE
Aerospace Conf., 2002.
[12w9] M. Erdmann & T. Lozano-Perez. On Multiple Moving Objects,
Proc. IEEE Int. Conf. on Robotics and Automation, p. 1419-1424, 1986.
[13w10] Y. Guo & L. E. Parker. A Distributed and Optimal Motion
Planning Approach for Multiple Mobile Robots, Proc. IEEE Int. Conf.
on Robotics and Automation, p. 2612-2619, 2002.
[14w11] D. Hsu, R. Kindel, J.C. Latombe, & S. Rock. Randomized
Kinodynamic Motion Planning with Moving Obstacles, Int. J. of
Robotics Research, 21(3):233-255, March 2002.
[15w12] D. Hsu, J.C. Latombe, & R. Motwani. Path planning in
expansive configuration spaces, Proc. IEEE Int. Conf. on Robotics and
Automation, p. 2719-2726, 1997.
[16w13] K. Kant & S. Zucker. Toward efficient Trajectory Planning:
The path-velocity decomposition, Int. J. of Robotics Research, 5(3):72-
89,1986.
[17w14] S. Kato, S. Nishiyama, & J. Takeno. Coordinating mobile
robots by applying traffic rules, Proc. IEEE/RSH Int. Conf. on
Intelligent Robots and Systems, p. 1535-1541, 1992.
[18wK] J.J. Kuffner. Autonomous Agents for Real-Time Animation. PhD
Thesis, Computer Science Dept., Stanford U., 1999.

[19w17] S.M. LaValle & S.A. Hutchinson. Optimal Motion Planning for
Multiple Robots Having Independent Goals, IEEE Tr. on Robotics and
Automation, 14:912-925, 1998.
[20w18] S.M. LaValle & J.J. Kufner. Randomized Kinodynamic
Planning,” Int. J. of Robotics Research, 20(5):278-300, 2001.
[21w19] Lee, Lee, & Park. Trajectory Generation and Motion Tracking
for the Robot Soccer Game, Proc. IEEE Int. Conf. on Intelligent Robots
and Systems, p. 1149-1154, 1999.
[22w20] V.J. Lumelsky & K.R. Harinarayan. Decentralized Motion
Planning for Multiple Mobile Robots: The Cocktail Party Model,
Autonomous Robots J., 4:121-135, 1997.
[23wM] P. Moutarlier & R. Chatila. Stochastic Multisensory
Data Fusion for Mobile Robot Location and Environment
Modelling. Proc. Int. Symp. on Robotics Research, Tokyo, 1989.
[24wPa] P. S. Schenker, T. L. Huntsberger, P. Pirjanian & E. T.
Baumgartner. Planetary Rover Developments Supporting Mars
Exploration, Sample Return and Future Human-Robotic Colonization,
Proc. 10th Conf. on Advanced Robotics, p. 31-47, 2001.
[25w22] D. Parsons & J. Canny. A Motion Planner for Multiple Mobile
Robots, Proc. IEEE Int. Conf. on Robotics and Autom., p. 8-13, 1992
[26wS1] G. Sánchez & J.C. Latombe. On Delaying Collision Checking
in PRM Planning : Application to Multi-Robot Coordination, Int. J. of
Robotics Research, 21(1):5-26, Jan. 2002.
[27wS2] G. Sánchez-Ante & J.C. Latombe. Using a PRM Planner to
Compare Centralized and Decoupled Planning for Multi-Robot Systems,
Proc. IEEE Int. Conf. on Robotics and Autom.., 2002.
[28wSe] S. Sekhavat, P. Svetska, J.P. Laumond, & M.H. Overmars.
Multilevel Path Planning for Nonholonomic Robots Using
Semiholonomic Subsystems. Int. J. of Robotics Res., 17:840-857, 1998.
[29w23] T. Siméon, S. Leroy, & J.P. Laumond. Path Coordination for
Multiple Mobile Robots: a Geometric Algorithm, Proc. Int. Joint Conf.
on Artificial Intelligence, 1999.
[30w24] P. Svestka, & M.H. Overmars. Coordinated Motion Planning
for Multiple Car-Like Robots Using Probabilistic Roadmaps, Proc.
IEEE Int. Conf. on Robotics and Autom., p. 1631-1636, 1995.
[31w25] C.W. Warren. Multiple Path Coordination using Artificial
Potential Fields, Proc. IEEE In. Conf. on Robotics and Autom., p. 500-
505, 1990.

