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Abstract: We consider the robot path planning problem in the pres-
ence of integrable ki ints, kn as hol 7
constraints. Such constraints are generally caused by one or several
rolling contacts between rigid bodies and express that the relative ve-
locity of two points in contact is zero. They make the dimension of the
space of achievable velocities smaller than the dimension of the robot’s
configuration space. Using standard results in differential geometry
(Frobenius Integrability Th ) and li trol theory, we
first give a formal characterization of hol 1y (and nonhol y)
for robot systems subject to linear differential constraints and we
state some related results about their controllability. Then, we apply

these results to “car-like” robots and “trailer-like” robots. Finally, we
present an impl ted pl , which g tes collision-free paths
with minimal ber of ers for car-like and trailer-like robots
among obstacles. Potential applicati of the pl include navi-

gation of autonomous robots, automated parking of personal cars and
trucks, autonomous navigation of luggage carriers in airport facilities,

t tic planning of the ts of hines in a construction
site, and comp ided design of ports for trucks in industrial
and commercial facilities.
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1 Introduction

We consider the robot path planning problem in the presence of
non-integrable kinematic constraints, known as nonholonomic
constraints [Greenwood, 1965]. Such constraints are generally
caused by one or several rolling contacts between rigid bodies
and express that the relative velocity of two points in contact is
zero. They make the dimension of the space of achievable ve-
locities smaller than the dimension of the robot’s configuration
space.

A car is a typical nonholonomic mechanical system. In the
absence of obstacles, it can attain any position in the plane,
with any orientation. Hence, the configuration space is three-
dimensional. However, assuming no slipping, the velocity of
the midpoint between the two rear wheels of the car is always
tangent to the car orientation. The space of achievable velocities
at any configuration is thus two-dimensional.

Collision-free path planning consists of constructing a path con-
necting two input configurations in the subset of configurations
where the robot has no contact or intersection with the obsta-
cles. Nonholonomic constraints require that the tangent to the
path at any configuration be within the subspace of velocities
selected out by the constraints. A collision-free path for a non-
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holonomic robot typically includes “maneuvers”, i.e. backing-up
points where the robot stops and changes the sign of the veloc-
ity. Finding a feasible path between two configurations is one
difficult problem. Another one is to minimize the number of
maneuvers, or at least to keep it reasonable, whenever possible.

The first part of the paper is a mathematical analysis of non-
holonomic constraints. Using standard results in differential
geometry and nonlinear control theory, we give a formal char-
acterization of holonomy for robots subject to linear differential
constraints and we state related results about their controllabil-
ity. In particular, we establish two effective results applicable
when the robot is subject to a single linear differential con-
straint. The first result allows us to determine through simple
computation if this constraint is holonomic, or not. The second
result states that any robot subject to a single linear nonholo-
nomic equality constraint is fully controllable, that is: any two
configurations lying in an open connected subset of the config-
uration space can be connected by a path lying in this subset
and respecting the nonholonomic constraint.

The second part of the paper applies these results to two types of
robotic systems, which we name “car-like robots” and “trailer-
like robots®. A car-like robot is kinematically similar to an
automobile car. A trailer-like robot is kinematically similar to
a vehicle towing a trailer. )

Finally, in the third part of the paper, we present an imple-
mented planner, which generates collision-free paths for car-like
and trailer-like robots moving among obstacles. A version of the
planner generates paths with minimal number of maneuvers in
reasonable amount of time.

Research on collision-free path planning has been very ac-
tive during the past ten years (e.g., see [Lozano-Pérez, 1983]
[Schwartz, Hopcroft and Yap, 1987]). Today, the mathemat-
ical and computational structures of path planning for holo-
nomic robots is reasonably well-understood. Practical planners
have also been implemented in more or less specific cascs (e.g.,
[Brooks and Lozano-Pérez, 1983} [Gouzénes, 1984) [Faverjon and
Tournassoud, 1987) [Lozano-Pérez, 1987] [Barraquand, Langlois
and Latombe, 1989]). However, path planning with nonholo-
nomic constraints has attracted much less interest so far.

The problem was first introduced by Laumond {Laumond, 1986},
who proved that a car-like robot is fully controllable, even when
the steering angle is limited. (Our result on robot controllabil-
ity with a single nonholonomic constraint is a generalization of
Laumond’s result, since it is established for any nonholonomic
linear equality constraint. But, it considers no such constraint
as limited steering angle, which is a nonholonomic nonlinear in-



equality constraint.) However, the number of maneuvers that
would be gemerated by a planner implementing the construc-
tive proof of this result is unbounded, even when there exists
collision-free paths with no or few maneuvers that satisfy the
nonholonomic constraint.

Building on his previous work, Laumond proposed an algorithm
for planning smooth - i.c., maneuver-free — collision-free paths
of a nonholonomic circular robot whose turning radius is lower-
bounded [Laumond, 1987]. However, this interesting algorithm
fails whenever all free paths require one or more maneuvers.
Tournassoud and Jehl proposed a specific technique for plan-
ning paths with simple maneuvers for a car-like robot turning
in a corridor [Tournassoud and Jehl, 1988]. They also suggested
a generalization of this result by decomposing the empty sub-
set of the workspace into corridor-like regions. Li and Canny
first pointed out that results in nonlinear control theory where
transposable in order to characterize the controllability of non-
holonomic robots [Li and Canny, 1989].

The planner presented in this paper is essentially the planner de-
scribed in detail in [Barraquand and Latombe, 1989). It makes
use of a discretized representation of the workspace and the
configuration space. We ran several experiments with it, us-
ing simulated car-like and trailer-like robots with obstacle ar-
rangements requiring backing-up maneuvers. The experiments
reported in this paper were carried out with a version of the
planner specifically designed to optimize the number of maneu-
vers. In this version, the planner applies a brute force method
that consists of performing a dynamic search in the discretized
configuration space with the number of maneuvers as the cost
function. Despite its conceptual simplicity, the planner is fast
in non-trivial workspaces. To our knowledge, this is the first
implemented planner capable of finding collision-free path with
minimal number of maneuvers (at the resolution of the config-
uration space representation) for nonholonomic robots.

Possible applications of the planner include navigation of au-
tonomous robots, automated parking of personal cars and
trucks, autonomous navigation of luggage carriers in airport fa-
cilities, automatic planning of the movements of machines in a
construction site, and computer-aided design of access ports for
trucks in industrial and commercial facilities.

2 Nonholonomic Constraints
2.1 Terminology

We denote by A the robot and W its workspace. A config-
uration of A is a specification of the position of every point
in A with respect to a Cartesian frame embedded in W. The
configuration space of A4 is the space, denoted by C, of all
the possible configurations of A. The configuration space of a
mechanical system made of rigid bodies is a smooth manifold
[Arnold, 1978]). For instance,the configuration space of a two-
dimensional rigid body translating and rotating in W = R? is
€ = R? x §*, where S! denotes the unit circle. In virtually
any practical situation, the range of positions reachable by the
robot’s bodies can be bounded, making € into a compact man-
ifold.

In the following, we represent a configuration q of. A by a list
of n parameters, (¢1,43, ...,gn), where n is the dimension of C.
This representation corresponds to defining an atlas of C. Each
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configuration q belongs to at least one neighborhood covered by
a chart of the atlas. The parameters qi, ..., g, are the coordinates
of q in this chart. These parameters are also called generalized
coordinates of A [Greenwood, 1965). For instance, we will rep-
resent the configuration of a car-like robot by q = (X, Yy, 6),
where X; and Y are the coordinates of the midpoint between
the two front wheels of the car in the Cartesian frame embed-
ded in W and 6 is the orientation of the main axis of the robot
relatively to the = axis of this Cartesian frame. Obviously, there
is not a unique set of generalized coordinates for a given robot.
However, the various charts put on a smooth manifold are C*®-
related, which allows to extend differential properties established
in a chart ~i.e. with a generalized coordinate system - to all
the other charts.

Now, suppose that a scalar constraint of the form:

F(q,1)=0 (1)
with q € C and ¢ denoting time, applies to the motion of A. Let
us further assume that F is smooth with non-zero derivative. In
theory, one could use the equation to solve for one of the gen-
eralized coordinates in terms of the other coordinates and time.
Thus, equation (1) defines a (n —1)-dimensional submanifold of
C. This submanifold is in fact the actual configuration space’
of A and the n — 1 remaining coordinates its actual generalized
coordinates. Constraint (1) is called a holonomic equality con-
straint. More generally, there may be k constraints of the form
(1). I they are independent - i.e., their Jacobian matrix has
full rank - they determine a (n — k)-dimensional submanifold of
C, which is the actual configuration space of A.

A constraint of the form F(q,t) < 0 or F(q,t) < 0 where F
is smooth with non-zero derivative, is a holonomic inequality
constraint. It typically acts as a mechanical stop or an obsta-
cle. It simply determines a submanifold of C having the same
dimension as C.

Constraint (1) is only a kinematic constraint of one sort. Now,
suppose that a scalar constraint of the form:

G(q,4,t) =0 (2
applies to the motion of A, with ¢ € Tq(C), the tangent space of

C at q. The tangent space represents the space of the velocities
of A. Tq(C) has dimension n for every q € C.

A kinematic constraint of the form (2) is holonomic if it is inte-
grable, i.e. q can be eliminated and the equation (2) rewritten
in the form (1). Otherwise, the constraint is called a.non-
holonomic equality constraint. As we will see below, a non-
holonomic equality constraint restricts the space of velocitics
achievable by A at any configuration q to a (n — 1)-dimensional
linear subspace of Tq(C), without affecting the dimension of the
configuration space. If there are k independent nonholonomic
equality constraints of the form (2), the space of achievable ve-
locities is a subspace of Tq(C) of dimension n — k.

A constraint of the form: G(q,q,?) < 0 or G(q,q,t) <0 where
G is not integrable, is a nonholonomic inequality constraint. It
testricts the set of achievable velocities at any configuration q
to a subset of Tq(C) having the same dimension as Tq(C). A

If constraint (1) depends on t, A's configuration space is time-
dependent, otherwise it is time-independent. Many usual holonomic
constraints — e.g., the prismatic and revolute joints of a manipulator
arm - are time-independent.



constraint bounding the steering angle of a car-like robot is a
typical nonholonomic inequality constraint.

A nonholonomic constraint is generally caused by a rolling con-
tact between two rigid bodies. It expresses that the relative
velocity of the two points of contact is zero. When the motion
in contact combines rolling and sliding, the expression, which
depends on the friction coefficient of the two bodies, is nonlin-
ear. When there is no sliding, the nonholonomic constraint is
linear in q. The second case, although less general than the first,
is much simpler and quite widespread in practice. Therefore, in
the following, we only consider constraints of the form (2) which
are linear in q. In the car-like robot example, this corresponds
to assuming no slipping of the wheels on the ground.

When dealing with constraints of the form (2), two important
questions arise: Are they integrable? If they are not integrable,
do they restrict the range of achievable configurations? We in-
vestigate these questions in the next two subsections.

2.2 Characterization of Nonholonomy

Any kinematic constraint of the form (2), which is linear in q
can we rewritten as follows®:
i=n
G(a,9) =w(@) 4= w'(Q)di =0.
=1
By definition, w is called a 1-(differential) form [Spivak, 1979].
For every q € C, equation (3) determines an hyperplane denoted
by A(q), which is included in the tangent space Tq(C). A(q) is
called the (n — 1)-distribution associated with w.

(3)

Let us now consider the case where there are k constraints of
the form (3). Then, A’s motion is constrained by the following
system of equations:
imn
Gy(@@) =wi(@) =3 wj(@é =0, j=1..k ()
im1
Let us assume that the equations are independent. In general,
at any given time ¢, for every q € C, this system of equations
determines a (n —k)-dimensional linear subspace A(q) of Tq(C).
The subspace A(q) is called the (n — k)-distribution associated
with the k 1-forms (w,, ..., wx).

In the p e of k independent constraints as in (4) and un-
der some regularity conditions which we assume to be satis-
fied (see [Isodori, 1985]), it is always possible to find a set of
n — k independent C™ vector fields X;(q),..., Xa—s(q) span-
ning A(q). Hence, for a robot subject to the constraints in (4),
‘the velocity can always be expressed as a linear combination of
X1,.00y Xn—k.

Let (X,Y) be any pair of vector fields, such that for any q € €
both X(q) and Y(q) belong to A(qg). Given any configuration
q, consider a path of A starting at q obtained by concatenating
four consecutive paths:

- the first path follows the flow of X during §t;

- the second path follows the flow of Y during §¢;

- the third path follows the flow of —X during §¢;

- the fourth path follows the flow of —Y during &i.

2For simplicity, in the rest of the paper, we assume that the kine-
matic constraints do not depend on time. However, all the results
remain valid when constraints are time-dependent.
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We denote by q’ the configuration reached at the end of these
four paths. A straightforward Taylor expansion shows that:

. 4 ~-q

Frasv s

The expression dY - X — dX - Y determines a new vector field,
which is commonly denoted by [X, Y] and called Lie bracket of
X and Y. Hence, the above motion of A along vectors of the
distribution A is biased with §#°[X,Y]. A necessary condition
for integrability of the distribution A is therefore that all the
Lie brackets of all vector fields in A be in A. This condition
turns out to be also sufficient, which is precisely the Frobenius
Integrability Theorem in its general form [Spivak, 1979):

THEOREM 1 (Frobenius Integrability Theorem — Gen-
eral Case): Let A be a (n — k)-distribution on a n-dimensional

ifold C iated with the k 1-forms (w1(q),...,wx(q)). In
a neighborhood of any point qo € C, the following two conditions
are equivalent:

=dY - X —-dX.Y.

1. The distribution A is closed under the Lie bracket operation
- i.e., for any pair of vector fields (X,Y) in A, [X,Y] is
also in A.

2. There is a foliation of C tangent to A - i.c., the constraints
wi(q)-q=0, 3 =1,...,k are integrable.

Unfortunately, this result is stated in terms of vector fields on
A, not in terms of the wy, ..., wx. It does not provide an effective
way to test the holonomy of the constraints in (4).

When k = 1, however, the above characterization can be re-
written with w. Let us consider the case where the motion of A
is constrained by a single constraint of the form (3). Saying that
this constraint is integrable is equivalent to saying that there is
a fanction V over C, such that dV(q) = X(q)w(q) for some non-
zero integrating factor A(q). Taking the exterior differential
of the above equation, we get: 0 = d(dV) = dA A w + Adw.
Multiplying exteriorly this result by w, we obtain:

wAdw=0

which is a necessary condition for integrability of equation (3).
It turns out that this condition is also sufficient:

THEOREM 2 (Frobenius Integrability Theorem - Case
of a Scalar Constraint): Let w(q) be a I-form on a manifold
C and A the associated distribution. In a neighborhood of any
point qo € C, the following three conditions are equivalent:

1. wAdw =0 - i.e., the exterior product of w and its exterior
differential is null.

2. The distribution A is closed under the Lie bracket operation-
i.e., for any couple of vector fields (X,Y) in A, [X, Y] is also
in A,

3. There is a foliation of C tangent to A - i.e. the constraint
w(q) - ¢ = 0 is integrable.

A pedestrian proof of this theorem based on elementary calcu-
lus (Fixed point theorem) can be found in [Barraquand, 1988}.
As shown in [Spivak, 1979] (pp. 264-268) the local results of
Theorems 1 and 2 can be globalized to the whole manifold C
(integral manifold).

By explicitly calculating w A dw, we obtain an effective local
characterization of holonomy for a single scalar linear kinematic
constraint of the form (3):



COROLLARY 1 (Characterization of linear holonomy
for a scalar constraint): A single scalar linear kinematic con-
straint defined by: )

=n

G(a,q) =w(@) -4 =) wi(q)qi =0

i=1
is holonomic iff for any i, j, k € [1,n] such that 1 <i<j <k <
n, we have Aijx = 0, with:

Bwy  Owj Ow; OBuwi Sw;  Buw;
Ao (G S ) yy, (2 G, (B G
k= (341' 30::) T \og, ~ agi *\ % " 3,

2.3 Controllability of Nonholonomic Robots

Frobenius Integrability Theorem is the theoretical basis for some
major results in controllability theory for nonlinear control sys-
tems (e.g., see [Isidori, 1985]). The applicability of these results
to the analysis of the controllability of nonholonomic robots was
first noticed by Li and Canny (Li and Caany, 1989).

A key concept in comtrollability theory is the so-called Control
Lie Algebra. It can be defined as follows. Let A be a (n — k)-
distribution on a n-dimensional integral manifold generated by
a set of independent smooth vector fields Xi,..., Xn—x. The
Control Lie Algebra associated with A, denoted by CLA(Q), is
the smallest distribution which contains A and is closed under
the Lie bracket operation. Stated otherwise, CLA(A) is the dis-
tribution generated by Xi,..., Xp_s and all their Lie brackets
recursively computed. By construction, CLA(A) verifies the
conditions of Frobenius Theorem, and is therefore integrable.
Obviously, the dimension m of CLA(A) verifies: m 2n—k

The following theorem derives from the original work of Chow
[Chow, 1939], which was subsequently elucidated by several au-
thors (e.g., [Lobry, 1979)):

THEOREM 3 (Controllability of Nonlinear Systems):
Let A be a (n — k)-distribution on a ted open subset S
of a n-di ional p ifold C. Let CLA(A) be the
Control Lie Algebra associated with A. Any two points qi and
Q2 in S can be connected by a path in S following the distribution
A if and only if the dimension of CLA(A) is equal to n.

t m

In other words, this theorem says that the nonlinear system
generated by the distribution A is fully controllable if and only
if its Control Lie Algebra has maximal dimension.

There is an immediate corollary of this theorem which is partic-
ularly useful for characterizing the controllability of a robot that
is constrained by a single scalar nonholonomic equality relation.
The constraint can be represented by a (n — 1)-distribution A
generated by {X,..., Xn_;}. According to the Frobenius The-
orem, for each q € C, there must exist at least one pair of
integers 1,5 € [1,n — 1] such that the Lie bracket [X;, X] does
not belong to A. Therefore, the Control Lie Algebra has a di-
mension m strictly greater than n—1. Since it cannot be greater
than n, it is equal to n. Hence:

COROLLARY 2 (Controllability with a Single Scalar
Linear Nonholonomic Equality Constraint): Any robot,
which is subject to a single scalar linear nonholonomic equal-
ity constraint is fully controllable - i.e., any two points lying in
an open connected susbset of the configuration space can be con-

nected by a path lying in this subset and respecting the kinematic
constraint.

343

xy

Figure 1: Car-Like Robot

3 Application to Two Examples
3.1 Car-Like Robot

Consider a front-wheel-drive four-wheel car’. We model the
car by a two-dimensional object translating and rotating in the
plane, as illustrated in Figure 1. The configuration space of
the car is D x S, where D is a compact domain of R2. We
parameterize the car configuration by the coordinates X s and
Yy of the midpoint F between the two front wheels and the
angle @ between the z axis of the Cartesian frame embedded in
the plane and the main axis of the car. The velocity parameters
are Xj, Y7 and 6. The control parameters of the car are the
velocity v € R of the front wheels (if v > 0, the car moves
forward) and the steering angle ¢ measuring the orientation of
the front wheels with respect to the main axis of the car.

Let R be the midpoint between the two rear wheels (see Figure
1) and (X, Y,) its coordinates.” Assuming a pure rolling contact
between the wheels and the ground - i.e., no slipping — the
velocity of R is always parallel to the main axis of the car.
Hence, we have:

X, = Acost Y, = Asing. .
Eliminating ), we get:
~ Xrsinf 4 Y, cos = 0. (5)
The coordinates (X, Y;) are related to (X,,Y,) by:

Xy =Xy —Lcost Y, =Y; —~ Lsing
where L denotes the distance between R and F. Thus:
Xe=X;+6Lsing Y. =V, —6Lcosé
Combining these relations with (5), we obtain the following kine-

matic constraint:

—X/sin0+Y,c050—éL=0 (6)

Using the notations of Subsection 2.2, we identify:

wy = ~sind w; =cosf wy3=—1

Applying Corollary 1, we compute the (unique) coefficient A,z
and we get Aj33 = —1 # 0. Therefore, the kinematic constraint
(6) is nonholonomic.

30ur presentation can easily be modified to treat other types of
car-like robots,



x
Figure 2: Trailer-Like Robot

Assuming no bound on the steering angle ¢, this kinematic con-
straint is the only one applying to the motions of the car. There-
fore, according to Corollary 2 (Subsection 2.3), the car is fully
controllable.

The velocity parameters are:

X; = vcos(@+¢)
Y, = vsin(6+4) )
9 = v—“‘,‘_

where the third relation is derived from the first two and con-
straint (6).

At any configuration (X}, Yy,0), the velocity parameters span
a two-dimensional subspace. The velocity is completely deter-
mined by the configuration and, say, X; and Y;. If the steering
angle ¢ is not bounded, all the velocity directions are achievable
in this two-dimensional space. If ¢ is bounded - e.g., [¢] < dimas,
with $mas < § — then only a subset of the velocity orientations
is feasible.

The constraint bounding the values of ¢ translates into a non-
holonomic nonlinear inequality constraint on the motions of the
car. Corollary 2 does not apply any longer. Nevertheless, it
has been shown by Laumond [Laumond, 1986] that the car re-
mains {ully controllable. Although the proof given by Laumond
is specific to car-like robots, this result suggests that it might be
possible to give a more general characterization of the controlla-
bility of nonholonomic robots than Corollary 2, which would be
applicable when there are nonholonomic inequality constraints
in addition to the nonholonomic equation.

3.2 Trailer-Like Robot

The trailer problem is an extension of the car problem, obtained
by adding one or more bodies to be towed by the car. A n-
body trailer system consists of a car towing n — 1 bodies serially
hooked (e.g., a luggage carrier in an airport). Figure 2 dis-
plays a schematic model of a two-body trailer. The midpoint
between the front wheels of the first body (the car) is denoted
by P,. The midpoint between the rear wheels of the k** body
is denoted by Pi. We therefore have (n + 1) points Po,..., Py,
whose coordinates are denoted by (Xo, Yo),...,(Xn,Yn). The
orientation of the k** body with respect to the z axis of the
Cartesian frame embedded in the plane is denoted by 8,. The
configuration space of the n-body trailer is D x (S*)", where D
is a compact domain of R?. We parameterize the trailer con-
figuration by (X, Ys,61,...,0,). The velocity parameters are
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Xo,Yo,éx,...,én. The control parameters are the same as for
the car-like robot, that is, the velocity v and the steering angle
é.

There are n kinematic constraints, one for each body. In order
to establish these constraints, it is convenient to represent the
points Po,..., Ps in the complex plane, i.e.. P = Xi +1Vi.
Denoting by Lk the length of tlie k** body, we can write the
geometric constraint between the bodies k — 1 and k as:
-~ k
Pi=Pi_y— Luexp(ifs) = Po— ) _ Liexp(ifr)  (8)
=1
The kinematic constraint of the ¥** body is Px = Xexp(ify),
which is equivalent to I(exp(—1i8x)F) = 0, where 3(z) denotes
the imaginary part of the complex number z. Combining this
characterization with the derivative of equation (8) and using
the linearity of the & operator, we obtain the k** kinematic

constraint:
k=1

Lko.k = —X.o sinf; + ‘I() cos 8 — Z L(é( Cos(ax - 9&)

=
In particular, for k = 1, we get: '

L6, = —Xosin 8, + Yo cos b, 9)
which is precisely the constraint (6) of the car problem.
For k = 2, we get:
L36; = —Xo8in 0, + Yo cos8; — L,6; cos(8; — 8,) (10)

Equations (9) and (10) are the kinematic constraints of the two-
body trailer system.

Thus, the equations governing the motion of the two-body
trailer system are:

Xo = wvcos(dr +¢)

Yo = vusin(6, +¢

0': = v—*'i; & ) (n
., 1,

02 = v cos d "?:l =02}

where the third and fourth relations are derived from the first
two and constraints (9) and (10).

We now analyze the integrability of the kinematic constraints
applying to the motions of the two-body trailer system. Since
there are two independent kinematic constraints, we cannot usc
the simple charaterization of holonomy given by Corollary 1.
However, the Frobenius Theorem (general case) still applies.
As suggested in [Li and Canny, 1989], we can compute the di-
mension m of the Control Lie Algebra associated with the two
constraints. We show below that m is maximal,i.e. m = n =4.
Applying Theorem 1, this result directly entails that the two-
body trailer system is non-holonomic. Applying Theorem 3, it
entails that the two-body trailer system is fully controllable.

PROPOSITION 1: The Control Lie Algebra associated with
the two kinematic constraints of the two-body trailer system has
mazimal dimension m = 4.

Proof: A straightforward computation shows that the following

two vector fields satisfy both constraints 59) and (10):
X:1 = (=Lisin8, Lycos8y 1 0)
Xa = (Licos8y Lysin8, 0 (Ly/L:)sin(8; —6;))7"
Let X3 =[X;, X2] and X, = [X2, X3). We compute:
Xa = (-Lisind; Lycos0, 0 (Li/L2)cos(0) - 02))"
X, = (o 0 0 (Li/L)T



We have det(X:, Xz, X3,Xe) = & > 0. Hence, X,, X, X

and X, are four independent vecto’r fields and the Control Lie
Algebra has dimension m = 4. ®

4 Planning with Nonholonomic Constraints
4.1 Overview of the Planner '

Let the workspace W of a robot A be populated by some sta-
tionary obstacles B;, i = 1,...,q. These obstacles map in the
configuration space C of A to regions CB; called C-obstacles
and defined by CB; = {q € C / A(q) N B; # 8}, where A(q)
denotes the region of W occupied by A at configuration q. The
subset Cyree = C\ | J, CBi is called free space. If both A and
the Bi’s are modelled as closed regions, the CB;’s are closed;
Cyree is an open subset of C, hence a manifold of dimension n.

Given two configurations q; and q; in C free, the path planning
problem is to construct a path connecting q; to q2 and lying
in Cyree, ie. amap r:4s € [0,1] — 7(s) € Cyree, such that
7(0) = Qi and r(1) = q2. In the presence of nonholonomic
constraints, the tangent to this path, %, must lie in the subset
of the tangent space of C selected out by the constraints.

We have implemented a general-purpose path planner based on
the following main ideas [Barraquand and Latombe, 1989):

- C is discretized and explored in a trial-and-error fashion. The
exploration is guided by potential functions using a classical
best-first search algorithm.

- W is used as a major source of inspiration for building poten-
tial functions with “good™ characteristics, i.e. with few local
minima or local minima having small domains of attraction.

- W is represented as a bitmap (distributed representation),
which allows us to apply very efficient algorithms for comput-
ing the potential functions and checking collisions.

We report the reader to [Barraquand and Latombe, 1989] for a
detailed presentation of the planner.

We have experimented with this planner using a variety of simu-
lated robots, including holonomic mobile robots and manipula-
tor arms with many (8 and 10) degrees of freedom. We have also
run several experiments using simulated car-like and trailer-like
tobots. For these robots, interesting experiments were carried
out with a version of the planner specifically designed to mini-
mize the number of maneuvers.

The planner operates in a best-first fashion over a discretized
representation of the configuration space. The “normal”® version
of the planner makes use of a potential function defined over the
configuration space. Basically, it follows the negated gradient
of this function until it reaches the goal configuration or a local
minimum of the potential. It escapes local minima, either by
filling them up to the lowest saddle points (when there is a
small number of degrees of freedom), or by generating Brownian
motions (when there is a large number of degrees of freedom).
Using these simple techniques, the planner was able to plan the
motions of holonomic mobile robots among complex obstacles
in 1 to 3 seconds® and the motions of manipulator arms with 8
and 10 degrees of freedom in 1 to 5 minutes.

4All the experiments reported in this

paper were conducted on a
MIPS-based DEC 3100 Workstation. .
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The version of the planner aimed at minimizing the number of
maneuvers does not use any potential function. It applies the
same best-first search strategy starting at q, but the cost func-
tion is the number of maneuvers. The algorithm maintains two
lists of configurations, CLOSED and OPEN. CLOSED contains
all the configurations whose successors in the discretized con-
figuration space have already been generated. OPEN contains
all the attained configurations whose successors have not been
generated yet. CLOSED is simply represented by marking the
corresponding c¥lls of a large n-dimensional array (of the or-
der of 128 for a car-like robot and slightly less than 64* for a
trailer-like robot). Hence, the access time to CLOSED is con-
stant. OPEN (which is much smaller) is represented as a heap.
Every modification and access to OPEN is made in logarithmic
time.

In order to generate the successors of a configuration, the plan-
ner discretizes the control parameters and, for each set of values
of these parameters, it integrates the velocity parameters of the
robot along a short distance. For example, for a car-like robot,
the integration of the velocity parameters X, Y; and 6 (see
relations (7)) yields:

8(t) = 6(0) +rueing
Xi(t) = Xs(0)+ 75 (sin(é +6(0) + t2402) _ 5in(s + 6(0)))
Yi(t) = Y;(0) - ykg (cos(d + 0(0) + 12802) _ coq(g 0(0)))

The planner generates six successors of a configuration by suc-
cessively setting the values of the two control parameters v and
¢ to the six values in {—vo, %} X {~@masz,0, +¢max}. The in-
tegration time is 1 and v, is set to approximately twice the
discretization interval of the X; and Y; parameters.

In the case of the trailer-like robot, the generation of the succes-
sors of a configuration is slightly more involved. While the first
three equations in (11) can be integrated analytically when the
values of the control parameters (v and ¢) are constant, this
is not the case for the last equation. The planner solves this
equation using a fourth order Runge-Kutta method. The paths
thus generated do not exactly satisfy the second nonholonomic
constraint.

The array in which CLOSED is represented is in fact an ar-
ray of parallelepipedic neighborhoods in the paramaterized con-
figuration space. Whenever the planner generates a new con-
figuration, it determines the parallelepipedic neighborhood to
which the configuration belongs. If the neighborhood is marked
(hence, is in CLOSED), the configuration is discarded. Otl.
erwise, the configuration (not the neighborhood) is recorded
in OPEN. Hence, the planner never explores from the same
neighborhood twice, but it exactly records the discretized path
traced by the search. Collisions are checked by intersecting the
robot at every attained configuration with the obstacles in the
workspace. As the workspace is represented in bitmap form, the
test of intersection is very quick and independent of the number
of obstacles [Barraquand and Latombe, 1989).

In theory, if a path exists between two input configurations,
the planner ultimately generates a path with minimal number
of maneuvers (at the resolution of the configuration space dis-
cretization). Despite conceptual simplicity of the brute force
algorithm applied, the planner was able to solve all the prob-
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lems submitted to it, with the configuration space discretiza-
tion mentionned above. The problems were solved in reason-
able amount of time, typically a few minutes (see the next two
subsections for more detail). Most of them are non-trivial and
would require significant effort for a human to solve. It is clear,
however, that this version of the planner is only applicable to
robots whose configuration spaces have small dimension. The
two-body trailer-like robot, which has a four-dimensional con-
figuration space, stands very close to the practical limit of the
planner.

-

The normal version planner, which uses potential functions to
guide the search, is more time and space efficient, but it no
longer minimizes the number of maneuvers. In practical appli-
cations, we would probably have to compromise between the
time devoted to planning and the number of maneuvers®. How-
ever, we have no simple systematic solution for making such a
compromise.

4.2 Results with the Car-Like Robot

We experimented with the planner using a simulated car-like
robot with various values of the maximal steering angle ¢max
and several workspaces.

Figure 3 shows an example of the parallel parking problem with
a very limited steering angle ($max = 30 degrees). The running
time for that example was 30 seconds.

Figure 4 shows an example with backing-up maneuvers in a
cluttered workspace when the maximal steering angle ¢max is 45
degrees. The running time was about 1 minute. Ten maneuvers
(i.e. changes of the sign of v) were necessary in this example.

Figure 5 shows an example of maneuvering in an unstructured
workspace represented as a 5122 bitmap with the same maximal
steering angle ¢mas (45 degrees). The running time was about
2 minutes. Four maneuvers were necessary in this example.

4.3 Results with the Trailer-Like Robot

We also conducted several experiments with a simulated two-
body trailer-like robot.

Figure 6 shows an example where the trailer has to be parked
with a very limited steering angle (¢mar = 30 degrees). The
running time was 2 minutes.

Figure 7 shows an example where the trailer has to mancuver
in a cluttered workspace with a maximal stcering angle ¢,uas
equal to 45 degrees. The running time was about 5 minutes.

5 Conclusion

In this paper, we have presented an implemented path planner,
which is able to generate complex paths of nonholonomic mo-
bile robots among obstacles. The generated paths have minimal
number of backing-up maneuvers. The approach taken in the
planner essentially consists of discretizing both the workspace
and the configuration space of the robot, and performing a
dynamic programming search in the discretized configuration
space. The bitmap representation of the workspace allows

$Furthermore, it is easy to create examples for which minimizing
the number of maneuvers leads to absurdly long paths.



Figure 7: Trailer Maneuvering

the planner to consider any distribution of obstacles in the
workspace, with no limitation on the shape or the number of
obstacles.

Prior to the presentation of the planner, we proved the con-
trollability of the car-like and trailer-like robots, using general
results from differential geometry and nonlinear control theory.
These results can also be applied to other nonholonomic robots.

The implemented planner has solved several non-trivial plan-
ning problems for car-like robots and trailer-like robots, with
limited steering wheel angle. Since it operates in a very system-
atic fashion, the planner can solve any problem with a reason-
able discretization of the configuration space. However, major
improvements of the approach are necessary to deal with signifi-
cantly finer discretizations and higher-dimensional configuration
space. Allowing a non-optimal, but still reasonable, number of
maneuvers and guiding the search for a path by appropriate
potential functions as in [Barraquand and Latombe, 1989} is
certainly a promising direction, although it is still not clear how
it can be done in a systematic way.
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