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Abstract

This paper presents a general framework for planning
the quasi-static motion of a three-limbed climbing robot
in vertical natural terrain. The problem is to generate a
sequence of continuous one-step motions between
consecutive holds that will allow the robot to reach a
particular goal hold. A detailed algorithm is presented to
compute a one-step motion considering the equilibrium
constraint only. The overall framework combines this
local planner with a heuristic search technique to
generate a complete plan. An online implementation of
the algorithm is demonstrated in simulation.

1 Introduction

The work presented in this paper is part of an effort to
develop critical technologies that will enable the design
and implementation of an autonomous robot able to climb
vertical natural terrain. To our knowledge, this capability
has not been demonstrated previously for robotic systems.
Prior approaches have dealt with artificial terrain, either
using special “grasps” (e.g., pegs, magnets) adapted to the
terrain’s surface or exploiting specific properties or
features of the terrain (e.g., ducts and pipes) [1-12].

Developing this capability will further our understand-
ing of how humans perform such complex tasks as
climbing and scrambling in rugged terrain. This may
prove useful in the future development of sophisticated
robotic systems that will either aid or replace humans in
the performance of aggressive tasks in difficult terrain.
Examples include robotic systems for such military and
civilian uses as search-and-rescue, reconnaissance, and
planetary exploration.

Many issues need to be addressed before real robots can
climb real, vertical natural terrain. This paper presents
preliminary work in the area of motion planning. A
general framework for climbing robots is presented and
this framework is instantiated to compute climbing
motions of the three-limbed robot shown in Figure 1.

1.1 Problem Statement

The robot of Figure 1 consists of three limbs. Each limb
has two joints, one located at the center of the robot
(called the pelvis) and one at the midpoint of the limb.
Motion is assumed to be quasi-static (as is usually the
case in human climbing) and to occur in a vertical plane,
with gravity. The low complexity of this robot’s kine-
matics makes it suitable for studying the planning of
climbing motions.

The terrain is modeled as a vertical plane to which is
attached a collection of small, angled, flat surfaces, called
“holds,” that are arbitrarily distributed. The endpoint of
each robot limb can push or pull at a single point on each
hold, exploiting friction to avoid sliding.

A climbing motion of the robot consists of successive
steps. Between any two consecutive steps, all three limb
endpoints achieve contact with distinct holds. During each
step, one limb moves from one hold to another, while the
other two endpoints remain fixed. The robot can use the
degrees of freedom in the linkage formed by the corre-

Fig 1. A three-limbed climbing robot moving vertically on natural
surfaces.
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sponding two limbs to maintain quasi-static equilibrium
and to avoid sliding on either of the two supporting holds.
In addition, during a step, the torque at any joint should
not exceed the actuator limits and the limbs should not
collide with one another. These constraints define the
feasible subset of the configuration space of the robot in
each step. A path in this subset defines a one-step motion.

The overall planning problem is the following: given a
model of the terrain, an initial robot configuration where
it rests on a pair of holds, and a goal hold, generate a
series of one-step motions that will allow the robot to
move in quasi-static equilibrium from the initial configu-
ration to an end configuration where one limb endpoint is
in contact with the goal hold.

This paper presents an algorithm to compute a one-step
motion considering the equilibrium constraint only.
Adding the actuator-limit and self-collision constraints,
though still undone, does not seem to raise major
difficulties. The overall planner combines this “local
planner” with a heuristic search technique to determine a
sequence of holds from the initial configuration to the
goal hold.

1.2 Related Work

The search space, which will be described in Section 3,
is a hybrid space, involving both continuous and discrete
actions. Many different methods are available for motion
planning through continuous spaces, including cell
decomposition, potential field, and roadmap algorithms
[13]. Discrete actions can be included in these methods
directly, such as at the level of node expansion in a
roadmap algorithm, but this approach generally leads to a
slow implementation that is specific to a particular
system.

Previous work on motion planning for legged robots
has developed tools for addressing these hybrid search
spaces for some systems. This work can be categorized by
whether or not the planning is done offline, in order to
generate a reactive gait, or online, in order to allow non-
gaited motion specific to a sensed environment.

Gaited planners generate a predefined walking pattern
offline, assuming a regular environment. This pattern is
used with a set of heuristics or behaviors to control the
robot online based on current sensor input. Gaited
planning was used by [2, 11], for example, to design
patterns for climbing pipes and ducts. Other methods such
as [14] are based on the notion of support triangles for
maintaining equilibrium. Stability criteria such as the
zero-moment-point have been used to design optimal
walking gaits [15]. Dynamic gaiting and bounding also
have been demonstrated [16-18]. Recent work [19, 20]
has attempted to provide unifying mathematical tools for
gait generation. Each of these planning algorithms would
be very effective in portions of a natural climbing
environment with a sustained feature such as a long

vertical crack of nearly uniform width. However,
something more is needed for irregular environments such
as the one studied in this paper, where the surfaces on
which the robot climbs are angled and placed arbitrarily.

Non-gaited planners use sensed information about the
environment to create feasible motion plans online. Most
previous work on non-gaited motion planning for legged
robots has focused on a particular system model, the
spider robot. The limbs of a spider robot are assumed to
be massless, which leads to elegant representations of
their free space for quasi-static motion based on support
triangles [21-23]. These methods have been extended to
planning dynamic motions over rough terrain [24, 25].
The analysis used in these methods breaks down,
however, when considering robots that do not satisfy the
spider-robot assumption. For example, additional
techniques were necessary in [26, 27] to plan non-gaited
walking motions for humanoids, which clearly do not
satisfy this assumption. To address the high number of
degrees of freedom and the high branching factor of the
discrete search through possible footsteps, these tech-
niques were based on heuristic discretization and search
algorithms. This paper considers a robot with fewer
degrees of freedom in a more structured search space
where it is possible to achieve much better performance
than with these heuristic methods. Similar issues were
addressed by [28] in designing a motion-planning
algorithm for character animation, although this algorithm
was meant to create “realistic,” rather than strictly
feasible, motion.

There is also some similarity between non-gaited
motion planning for legged locomotion and for grasping
and robotic manipulation, particularly in the concept of a
manipulation graph [29-32]. Both types of planning
require making discrete and continuous choices.

1.3 Contribution

The major contribution of this paper is a detailed
analysis of one-step motion for the three-limbed climbing
robot.

First, the properties of the continuous configurations at
which the robot is in equilibrium are established. These
properties are used to define the feasible set of robot
configurations at each pair of holds. In particular, it is
shown that the connectivity of the four-dimensional
continuous feasible space of the robot can be preserved
when planning in a two-dimensional subspace. This result
reduces the complexity of the one-step planning problem
and leads to a fast, online implementation.

Then, an overall framework is presented for planning a
sequence of one-step motions from a specific configura-
tion on an initial pair of holds to a goal hold. Heuristic
methods are used to guide this discrete search, based on
observation of the way in which human climbers plan
their motions.
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2 Notation and Terminology

Figure 2 illustrates the notation and terms used in the
rest of this paper to describe the three-limbed robot.

The robot consists of three identical limbs meeting at
the pelvis, whose location is denoted by (xC,yC). Each
limb consists of two segments and has two revolute joints,
one located at the pelvis, the other between the two
segments. For simplicity, the six limb segments are
assumed to have equal mass and length L , but this
assumption can be relaxed easily. In total, the robot’s
configuration space has six dimensions (two for each
limb). It is assumed that the revolute joints are not limited
by any internal mechanical stops.

In Figure 2, the endpoints of the two limbs of the robot
are at holds 1 and 2 located at (x1,y1) and (x2,y2), while the
third limb is moving. The two-limbed linkage between
(x1,y1) and (x2,y2) is called the contact chain and the other
limb is the free limb. The constraint that two limb
endpoints be at (x1,y1) and (x 2,y2) reduces the set of
possible configurations of the robot to a four-dimensional
subspace, which is denoted by C (i,j), since both the
contact chain and the free limb now have two degrees of
freedom. Any motion of the robot maintaining these two
contacts will occur in C(i,j). The configuration of the
robot in C(i,j) can be uniquely specified by the angles
(q1,q2) of the free limb, the position (xC,yC) of the pelvis,
and two additional binary variables identifying the
direction of the knee bends in the contact chain (see
Figure 6(a)).

The location of the robot’s center of mass (CM), which
is not shown, is (xCM,yCM). The location of the CM’s of
the contact chain and the free limb are (xCM,chain,yCM,chain)
and (xCM,free,yCM,free), respectively.

Friction at each hold is modeled using Coulomb’s law.
More precisely, each hold (x1,y1) and (x2,y2) exerts a
reaction force on the corresponding limb endpoint.
According to Coulomb’s law, this force must point into a
friction cone to avoid slipping (see Figure 3). The
orientation f1 and f2 of each cone is normal to each hold,
and the half-angle Df1 and Df2 of each cone is determined
by each hold’s coefficient of friction. For the robot to be
in quasi-static equilibrium, two forces, one in each cone,
must exist that exactly compensate for the gravitational
force (see Section 3.1). This condition will select a subset
of C(i,j), which in this paper is called the feasible space
and is denoted by F (i,j). Any motion of the robot
maintaining both contact at the two holds and quasi-static
equilibrium must occur in F(i,j).

Since the three limbs are identical, there is no need to
identify them. In particular, the same configurations can
be achieved by the robot while maintaining contact at two
holds, independent of which two limbs form the contact
chain. It is also assumed that the robot does not bring two
limb endpoints to the same hold.

Fig. 2. The different components of the three-limbed climbing robot.

Fig. 3. The friction cones for two limb endpoint placements.

3 Equilibrium Analysis

In this section, it is assumed that the robot rests on two
given holds i and j, as in Figures 2 and 3. This section
establishes properties of the configurations in C(i,j) at
which the robot is in equilibrium. These properties define
the feasible subspace F(i,j).

3.1 Equilibrium Constraint

The only external forces acting on the robot are gravity
and the reaction forces at the two holds. The gravitational
force acts at the robot’s center of mass, the position of
which varies as the robot moves. The two reaction forces
act at the endpoints of the contact chain, which have fixed
positions. Therefore, the equilibrium constraint can be
represented completely by a condition on the location of
the center of mass.

The work in [33, 34] provides criteria for static equilib-
rium in a two-dimensional workspace. In particular, it
notes that if a body acted upon by gravity and two
external forces is in equilibrium, it will remain so with
arbitrary vertical translation of its center of mass. This
observation yields the following proposition when the
external forces are subject to friction constraints:

Proposition 1. Consider an articulated body that is acted
upon by a gravitational force 

† 

-gˆ y  at (xCM,yCM) and that is
in contact with two surfaces at points (x1,y1) and (x2,y2)
with associated friction cones F1 and F2. Contact forces
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can be chosen to place the body in static equilibrium
without slipping if and only if there exists 

† 

y Œ R and unit
vectors 

† 

ˆ f 1 Œ F1, 

† 

ˆ f 2 Œ F2  such that the following condi-
tions hold:

(1a)

† 

( ˆ f 1 + ˆ f 2 ) ⋅ ˆ y > 0
(1b)

† 

( ˆ f 1 ⋅ ˆ x )( ˆ f 2 ⋅ ˆ x ) £ 0
(1c) Lines through (x1,y1) and (x2,y2) parallel to 

† 

ˆ f 1 and

† 

ˆ f 2 , respectively, intersect at (xCM,y).

This proposition allows the equilibrium of the robot to
be tested given the location of its center of mass. For
example, Figure 4(a) shows a configuration of the
climbing robot and illustrates graphically that all three
conditions in the proposition are verified, so the robot is
in equilibrium. However, the proposition does not specify
the shape of the equilibrium region—the region in which
the center of mass must lie—although it does indicate that
this region must be a union of vertical columns in the
workspace.

In fact, using Proposition 1 it can be shown that the
equilibrium region is always a single vertical column,
whose boundaries are easy to calculate. This result, stated
as Proposition 2, can be explained intuitively. In two
dimensions, the center of mass of a body resting at two
points on horizontal supporting surfaces can only vary
between these two points. Rotating the support surfaces
can only lead to widening or narrowing the vertical
column. However, the formal proof given below is more
technical.

Proposition 2. Consider the articulated body of Proposi-
tion 1. The region over which (xCM,yCM) can vary while
this body remains in static equilibrium is a single vertical
column in the workspace.

Proof. From Proposition 1, it is clear that the equilibrium
region is defined by the projection on the x-axis of the set
of all points (x,y) for which unit vectors 

† 

ˆ f 1 Œ F1, 

† 

ˆ f 2 Œ F2

can be found satisfying Conditions 1a-1c. The problem is
that this set of points is not convex, and in fact is not
necessarily connected. However, it can be broken down
into the union of convex sets, each of which projects to a
connected segment on the x-axis. Further, it can be shown
that each projected segment overlaps in such a way that
the entire x-projection is a single connected segment,
proving the result.

Assume without loss of generality that x2>x1, that x1≠x2

(x1=x2 is a degenerate case that can be handled sepa-
rately), and that each friction cone has a half-angle
Df<90° (true for flat contact surfaces).

First, notice that a point (x,y) satisfies Condition 1c
only if it lies in the intersection (F1»-F1)«(F2»-F2). Call
the set of points that additionally satisfy Conditions 1a-1b
the set of feasible intersection points for cones F1 and F2.
The equilibrium region is the x-projection of this set.

Next, divide each friction cone F1 and F2 into two parts.
Let F1+ be that part of F1 containing points such that x>x1,
and F1- be that part of F1 containing points such that x<x1.
Likewise, divide F2 into F2+ and F2- using x2. Since each
friction cone has a half-angle Df<90°, each of F1+, F1-,
F2+, and F2- must be either a single cone or empty.

Since Condition 1b indicates that force vectors must lie
in opposite x-directions, the set of feasible intersection
points for the cones F1 and F2 is equal to the union of the
set of feasible intersection points for F1+ and F2-, facing
inward, and F1- and F 2+, facing outward. For example,
since F2+ is empty for the two friction cones shown in
Figure 4(a), only the intersection of the inward-facing
cones F1+ and F2- needs to be considered, as shown in
Figure 4(b).

For inward-facing cones, condition 1a can be used to
show that the set of feasible intersection points (x,y) must
satisfy (y-y1)(x-x2)>(y-y2)(x-x1). Further divide F1+ into the
cones F1+/+, containing points such that (y-y1)(x2-x1)>(y2-
y1)(x-x1), and F1+/-, containing points such that (y-y1)(x2-
x1)<(y2-y1)(x-x1). Analogously, divide F2-. This procedure,
shown in Figure 4(c), simply divides the friction cones
into the part that points above the line connecting (x1,y1)
and (x2,y2) and the part that points below this line. Again,
since each friction cone has a half-angle Df<90°, each of
the sub-cones must be either a single cone or empty.

Then from condition 1a, the set of feasible intersection
points for the inward-facing cones is exactly the union of
subsets (-F 1+/+«F2-/-)»(F1+/+«F2-/+)»(F1+/-«-F2-/+) ,  as
shown in Figure 4(d).

Each of these three subsets is the intersection of two
convex cones, so is convex with an x-projection that is a

(a) (b)

(c) (d)

Fig. 4. An example calculation of the equilibrium region associated with
a set of limb endpoint placements for the three-limbed robot.
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single connected segment. Further, it is easy to show that
if any two subsets are nonempty, their x-projections must
overlap at either x1 or x2, as is the case in Figure 4(d).
Therefore, the x-projection of the set of feasible intersec-
tion points for inward-facing cones is a single connected
segment.

An identical argument shows the same result for the set
of outward-facing cones. In addition, it is easy to show
that if the x-projections for both the inward- and outward-
facing cones are nonempty, then they must overlap at
either x1 or x2. Thus, the x-projection for the entire set of
feasible intersection points is a single connected segment,
proving Proposition 2. c

3.2 Feasible Space for a Given Pelvis Location

Given knee bend directions as described in Section 2,
the configuration of the three-limbed climbing robot is
uniquely specified by the position (xC,yC) of the pelvis and
the angles (q1,q2) of the free limb. This section first
establishes an analytical expression of the feasible space
QFL of the free limb given (xC,yC). Next, this expression is
used to characterize the connectivity of QFL in Proposition
3.

Since the location of the CM of the contact chain is
fixed by the given (xC,yC), the equilibrium region shown
in Section 3.1 to be a vertical column defined by some
(xmin,xmax) can be transformed from a constraint on the
location of the CM of the entire robot to a constraint on
the CM of the free limb only. Under the geometry and
mass assumptions made in Section 2, the following
relationship holds:

† 

xCM, free = (3xCM - 2xCM,chain ) (1)
So, the center of mass of the free limb must be within

the column (xmin,free,xmax,free) in the workspace where

† 

xmin, free = (3xmin - 2xCM,chain )
xmax, free = (3xmax - 2xCM,chain )

(2)

A pelvis location (xC,yC) is feasible with respect to the
equilibrium constraint only if a configuration of the free
limb exists such that xCM,freeŒ[xmin,free,xmax,free]. The center
of mass of the free limb is located at

† 

xCM, free = xC + L
4 (3cosq1 + cos(q1 +q2 )) (3)

From Equations (1)-(3), a pelvis location is feasible
only if

† 

xmin, free ≥ xC - L
xmax, free £ xC + L
xmin, free £ xmax, free

(4)

For any feasible pelvis location, the equilibrium region
of the center of mass of the free limb can be cropped such
that [xmin,free,xmax,free]Ã[xC-L,xC+L], since values outside
these bounds are unattainable.

The solutions of Equation 3 for a fixed value of xCM,free

define a one-dimensional curve in the configuration space
of the free limb. Curves for several values of xCM,free are

shown in Figure 5(a). Since the mapping from (q1,q2) to
xCM,free is single-valued, no two such curves intersect. The
feasible space QFL of the free limb is the region between
the solution curves for xCM,free=xmin,free and xCM,free=xmax,free,
as shown in Figure 5(b) for (xmin,free,xmax,free)=(xC-0.1L,xC+0.7L).

Since the feasible space QFL depends on both xC and
xCM,chain, which itself is a complicated function of (xC,yC),
it is difficult to compute the four-dimensional feasible
space of the robot. However, the following proposition
characterizes the connectivity of this space:

Proposition 3. Partition QFL as

† 

QFL- = QFL « (q1,q2 )q1 £ 0{ }
QFL+ = QFL « (q1,q2 )q1 ≥ 0{ }

. (5)

Also, for any x'Œ[xC-L,xC+L], define

† 

(q1,q2 ) ¢ x - = (- cos-1 ¢ x -xC
L ,0)

(q1,q2 ) ¢ x + = (cos-1 ¢ x -xC
L ,0)

. (6)

Then the following results hold:
(3a) Let 

† 

˜ x Œ [xmin, free , xmax, free ]. Then 

† 

(q1,q2 ) ˜ x + Œ QFL+

and 

† 

(q1,q2 ) ˜ x - Œ QFL- .
(3b) QFL+ and QFL- are both connected spaces.
(3c) QFL is connected if and only if

† 

xmin, free œ [xC - L
2 , xC + L

2 ] or

† 

xmax, free œ [xC - L
2 , xC + L

2 ].

Proof. Result 3a follows trivially, since 

† 

(q1,q2 ) ¢ x -  and

† 

(q1,q2 ) ¢ x +  are solutions to Equation 3 for 

† 

xCM, free = ˜ x  such
that q1≤0 and q1≥0, respectively. This result implies that
any attainable value of xCM,free is attainable with q2=0, and
that continuous paths between two values of xCM,free for
q2=0 always exist in both Q FL- and Q FL+. Since the
boundary of QFL+ is defined by curves of constant xCM,free,
and since, as mentioned above, these curves do not
intersect, then a curve of constant 

† 

xCM, free = ˜ x  between

† 

(q1,q2 ) Œ QFL+ and 

† 

(q1,q2 ) ˜ x +  that lies completely within
QFL+ always exists. So a path between any two configura-
tions 

† 

(q1,q2 )i Œ QFL+  and 

† 

(q1,q2 ) f Œ QFL+  can always be
generated by moving from (q1,q2)i along a curve of
constant 

† 

xCM, free = ˜ x i  to 

† 

(q1,q2 ) ˜ x i+ , moving along q2=0 to

† 

(q1,q2 ) ˜ x f + , and moving along a curve of constant

(a) (b)
Fig. 5. Calculating the feasible space QFL of the free limb for a given
pelvis location.
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† 

xCM, free = ˜ x f  to (q1,q2)f. Therefore, QFL+ is connected. The
result for QFL- follows identically, so Result 3b holds. To
prove Result 3c, notice that QFL is connected if and only if
some (q1,q2) ŒQFL exists such that q1=0 or q1=±$. From
Equation 3, this is equivalent to saying that

† 

xCM, free œ [xC - L
2 , xC + L

2 ]  at some (q1,q2) Œ QFL, which
from Result 3b can occur if and only if either

† 

xmin, free œ [xC - L
2 , xC + L

2 ] or 

† 

xmax, free œ [xC - L
2 , xC + L

2 ]. c

3.3 Implications

Proposition 3 implies that for any feasible pelvis loca-
tion the feasible space of the free limb can be divided into
two non-empty, connected components, QFL+ and Q FL-.
Therefore, using Result 3a it is possible to extend any
feasible continuous path of the pelvis to a feasible path of
the entire robot, such that the configuration of the free
limb remains in either QFL+ or QFL-. This key result yields
the continuous planning approach described in this
section to compute one-step motions of the robot.

First, decompose the four-dimensional feasible space
F(i,j) into four subsets as illustrated in Figure 6(a). Each
subset corresponds to a pair of knee bends in the limbs
forming the contact chain. In each subset, the position of
the CM of the contact chain is uniquely determined by the
position of the pelvis. Therefore, the feasibility of a pelvis
location in each subset is determined by Equation 4.
Transitions between subsets can occur only within one-
dimensional curves along their boundaries, which
correspond to feasible positions of the pelvis in which one
of the limbs is fully stretched out.

Further partition each subset into two parts according to
the sign of the configuration parameter q1 of the free limb,
as illustrated in Figure 6(b). In one subset (q1≥0), the first
segment of the free limb points upward; in the other
subset, it points downward. Notice that the sign of q1 also
serves to distinguish QFL+ from QFL-, so robot configura-
tions in each of the two parts of each subset correspond to
free limb configurations entirely in either QFL+ or Q FL-.
Transitions between the two parts can occur only within
two-dimensional regions where QFL is connected, i.e.
where the conditions of Result 3c are satisfied.

Suppose for a pair of holds (i,j) that in each of the four
subsets shown in Figure 6(a) an explicit representation
can be built of the two-dimensional region formed by the
feasible positions of the pelvis. From Proposition 3, this
region is identical in the two parts of each subset corre-
sponding to QFL+ and Q FL-. Therefore, the connected
components of each of the eight subsets shown in Figure
6(b) can be determined. Likewise, suppose that an explicit
representation can be built of the one-dimensional
transition curves between the subsets corresponding to
different knee bends and of the two-dimensional transi-
tion regions between the parts of each of these subsets
corresponding to QFL+ and QFL-. Using these transition

curves and regions, the connected components of each of
the eight subsets can be linked to form a discrete graph.

Components of this graph are the connected compo-
nents of the two-dimensional space of feasible pelvis
positions of the robot. This space, which is denoted
FP(i,j), is the projection of F(i,j) onto (xC,yC). To plan a
continuous path between any two points in a connected
component of F(i,j), it suffices to plan a path in the
corresponding component of FP(i,j). This path can then be
lifted to F(i,j) using Proposition 3. Define a distinct state
for each such connected component of FP(i,j), and denote
it (i,j)A, (i,j)B, etc.

Finding analytic representations of FP(i,j) and the
transition regions is impractical. In the current imple-
mentation, these regions are constructed using probabilis-
tic roadmaps similar to those in [35]. For the three-limbed
robot, a deterministic two-dimensional grid approxima-
tion would work as well. However, this approach might
scale poorly to climbing robots with more than three
limbs.

4 Overall Planning Framework

This section describes an overall framework for plan-
ning a sequence of one-step motions from a specific
configuration on an initial pair of holds to a goal hold.

4.1 Search Space

The search space for the three-limbed climbing robot is
a hybrid space, involving both continuous and discrete
actions. Discrete actions correspond to placing a limb
endpoint on a hold or removing it from the hold. They
decompose the overall climbing motion into a sequence of
steps. During each step, two limb endpoints are positioned
at two given holds and the action is a continuous motion
that brings the endpoint of the free limb from one hold to
another. Therefore, motion planning can be divided into
discrete planning and continuous planning operations,
each with its own search space.

Section 3 described the continuous-planning search
space of the robot, when its limbs are in contact with two

(a) (b)
Fig. 6. Decompositions of FP(i,j) into four sub-spaces based on knee
bends and into eight sub-spaces based additionally on whether the free
limb is pointing up or down.
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holds i and j, and presented a method of generating the
components of the feasible part of this space (e.g. (i,j)A,
(i,j)B, etc.).

The discrete-planning search space is the collection of
all of these components, for all pairs of holds (i,j) in the
workspace. So, each state in this search space is a single
component (i,j)M of F P(i,j). Each possible successor of a
state (i,j)M is another state of the form (i,k)N or (j,k)O,
which is a single component of FP(i,k) or FP(j,k) for a
different pair of holds (i,k) or (j,k).

A link to a successor is a robot configuration with limbs
in contact with holds i, j, and k, that satisfies two condi-
tions. First, the position of the pelvis in this configuration
must be common to both (i,j)M and (i,k)N (or (j ,k)O).
Second, the four-dimensional representation of this
configuration in C(i,j) and C(i,k) (or C(j,k)) must be in
F(i,j) and F (i,k ) (or F(j,k)), respectively. The second
condition must be satisfied because the link defines a
specific free-limb configuration, while the components
(i,j)M and (i,k)N (or (j,k)O) specify compliant free-limb
configurations only. Note that this is the only point in the
planning process at which F(i,j), rather than FP(i,j), need
be considered. In the current implementation, these link
configurations are generated using a random sampling
technique.

For example, consider the environment shown in Figure
7(a). The robot is initially located on holds (0,1) with a
goal of reaching hold 4. The discrete-planning search
space is shown in Figure 7(b). In this example, only
FP(2,3) has more than one component, (2,3)A and (2,3)B.

4.2 Algorithm

In practice, it is too costly to compute the entire search
space online for a reasonably sized environment. Instead,
heuristic methods are used to guide the discrete search
and the components of FP(i,j) are only computed as each
pair of holds (i,j) is explored.

For example, a necessary condition for a link between
two pairs of holds (i,j) and (i,k) is that holds i and k be
distant by less than 2L. Likewise, the equilibrium regions
(xmin,xmax) for both pairs of holds (see Section 3.1) must
overlap. These simple conditions make it possible to
quickly filter out many successor holds.

Another useful heuristic is to pre-compute rough dis-
crete plans, without any continuous-planning exploration,
using conservative approximations for the components
(i,j)M of each FP(i,j). In almost all cases, it has been found
that each of the eight subsets illustrated in Figure 6(b)
contains a single connected component. Using this
decomposition, the entire discrete search space can be
computed online. The resulting nominal plan is then used
to guide a discrete search using the exact decomposition
of every FP(i,j).

The appropriateness of this approach is motivated by
observation of the way in which human climbers plan

their motion. The resulting path, often called a sequence,
consists of a series of moves, such as a back-step or high-
step, between an ordered set of hand and foot placements
(see [36, 37]). Each move does not specify a continuous
path, but rather a discrete choice that is exactly analogous
to the selection of knee-bend directions for the three-
limbed robot.

Future observation of human climbers may suggest
other useful heuristics, such as a consideration of the size
of equilibrium regions.

5 Simulation

Figure 8 shows the result of applying the planning
algorithm described in Sections 3 and 4 to move the three-
limbed robot through the simulated vertical terrain
illustrated in Figure 7(a). Notice that the center of mass of
the robot stays within the equilibrium region, as required.

Other results, including animations of 3D-simulations,
are available online at http://arl.stanford.edu/~tbretl/.

(a) (b)
Fig. 7. An example environment for the three-limbed climbing robot and
the corresponding connectivity graph between discrete states.

(a) (b) (c)

(d) (e) (f)
Fig. 8. Results of a simulation, shown as a time-sequence.
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6 Future Work
This paper presented a framework for planning the

motion of a three-limbed climbing robot in vertical terrain
and showed the results of applying this framework in
simulation. Current work concerns the application of the
planning algorithm to experimental hardware. As part of
this effort, the continuous-planning method described in
Section 3 is being extended to handle additional motion
constraints, more complicated robot geometries, imper-
fectly known environments, and three-dimensional
terrain. Future work will address other fundamental issues
such as sensing, control, hardware design, and grasping.
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