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ABSTRACT 
Presented is a new approach to multi-robot motion 
planning that is based on the concept of planning within 
dynamic robot networks. The system enables multiple 
mobile robots that have limited ranges of sensing and 
communication to maneuver safely in dynamic, 
unstructured environments. As the robots move about 
their workspace, localized robot groups form networks 
within which world models can be shared and centralized 
motion plans can be calculated in parallel. The motion 
planning algorithm used within networks is based on 
kinodynamic randomized motion planning techniques that 
construct trajectories in real-time. Both simulations and 
real robot experiments are used to validate the system. 
 

1. INTRODUCTION 
When large groups of robots are working together within 
unknown environments with moving obstacles, high-level 
motion planning is required to avoid collisions.  In real 
systems, continuous inter-robot communication may not 
be feasible, and it is unlikely that a system of sensors can 
provide global knowledge. Also, in dynamic 
environments, the system must be able to react quickly. 
Hence, a motion planning system that uses local sensing 
and communication, distributes global information among 
robots, and can plan in real-time is required. 
 
To meet these requirements, this paper introduces the 
concept of motion planning within dynamic robot 
networks that coordinate centralized planning. The system 
is based on the use of networks of robots that are capable 
of 1) forming dynamically whenever communication and 
sensing capabilities permit, 2) sharing world models 
within the networks, and 3) constructing trajectories for 
all robots in the network using a real-time motion planner. 
The remainder of this section is used to define what robot 
networks are and how they are formed. Outlined is the 
method for controlling planning within networks. 
 
1.1 Network Formation Overview 
When any two robots are within communication range of 
each other, they establish a communication link. A 
network of robots is formed when two or more robots 
establish links between one another. Two robots in a 
network can then exchange information not just through 
direct communication links, but through any series of 
communication links within the network.  
 

Figure 1a) illustrates an example environment involving 5 
robots in which 2 networks have formed. In Net 1, the top 
and bottom robots can exchange information via their 
communication links with the middle robot.  
 

 
        a )    b) 
Figure 1: An example environment involving 5 robots. 
Dashed lines between robots indicate there exists a 
communication link. In b), two robots have moved and 
Nets 0 and 1 have combined to form Net 2.  
 
Because robots are always moving towards their goal 
locations, the networks are dynamic. Robots may leave 
networks, enter different networks, and form new 
networks, (see Figure 1b). To handle this dynamic 
behavior, an application level protocol is used which 
ensures that robots within networks always have access to 
the local sensing information of all other robots in the 
network, and hence can share common world models.  
 
1.2 Network Plan Control 
To control the planning process within each network, a 
protocol has been developed that enables parallel motion 
planning for all robots within a network. This process is 
initiated by any of the triggers listed below. 
 
Triggers to Initiate a New Motion Plan 

1) Two robots from different networks enter one 
another’s range of communication resulting in 
the joining of two networks. 

2) A significant change in the world model occurs. 
3) A new goal location is requested. 

 
When a new motion plan is required for robots in a 
network, (i.e. when any of the above triggers occur), data 
is exchanged between robots so that each robot has an 
updated world model that includes each robot’s local 
world model and goal location. Once robots have shared 
information, each robot uses it’s own centralized motion 
planner to construct trajectories for all robots in the 
network. Each robot then broadcasts it’s plan to all other 
robots in the network. If any single robot cannot find a 
plan, then it broadcasts a “plan failure” message to inform 

Net 0 Net 1 Net 2 



other robots not to wait. After each robot has received a 
plan from all other robots, it will implement the best plan. 
To accomplish these steps, the following protocol is used. 
 
Application level Protocol: Plan Control 

1) Broadcast latest world state information. 
2) Construct a plan consisting of collision-free 

trajectories for all robots in the network.  
3) Broadcast the plan to other robots in the 

network. 
4) Implement the plan received that minimizes a 

predetermined cost function. 
 
This process is illustrated through an example involving 5 
robots, (see Figure 2 below). 
 
 
 
 
 
 
 
a) All three robots are following their initial trajectories. 
The two left robots are in communication range and have 
formed a network to create collision-free trajectories. 
 
 
 
 
 
 
 
b) As the robots move along their trajectories, the middle 
robot enters communication range with the robot on the 
right and forms a larger network. 
 
 
 
 
 
 
 
c) A new plan is made for all three robots in the network. 
The plan consists of collision-free trajectories for all three 
robots. 
 
 
 
 
 
 
 
d) As robots continue along their new trajectories, they 
leave communication range of each other and some 
network connections are broken. 
 
Figure 2: Top-down view of an example of planning 
within a multiple mobile robot system. Illustrations on the 
left depict top-down views of mobile robots as they 
follow their trajectories (dashed lines) to their respective 

goal locations (cross-hairs). Illustrations on the right 
depict the existing communication links (dotted lines) for 
robots that are in communication range (large circles) of 
one another. 
 
1.3 World Model Description 
Describing the world model in a concise but useful form 
is necessary to allow for information sharing between 
robots. For the implementation described in this research, 
world models consist of a list of robots, their descriptions, 
and a list of obstacles and their descriptions. The 
following table outlines the information stored in each 
list.  
 
World Model Description 

1) List of Robot Descriptions 
- State 

 - Size (Radius) 
- Most Recent Update Time 
- Information Source 

 - Goal location 
- Current Trajectory 

 
2) Lis t of Obstacle Descriptions 

- State 
- Size (Radius) 
- Most Recent Update Time 
- Information Source 

 
Each object on the list, whether robot or obstacle, has an 
associated state, size, most recent update time and 
information source. Robots can report their own size and 
state, while obstacle sizes and states must be estimated 
using sensor data.  
 
The most recent update time is used to keep track of the 
age of the object model. This is useful when updating 
world models with information received from other 
robots .  
 
The information source is a robot identification number 
that keeps track of which robot sensed (or communicated 
with) the object. This is used to keep track of which 
robots are currently in the network.  
 
Several assumptions had to be made to allow such a 
concise world model. The first is that all objects can be 
considered circular, or approximated by a set of circular 
objects. This allows the geometry to be described 
completely by one parameter (i.e. a radius).  
 
The second assumption is that obstacles  have constant 
velocity. When trajectories are constructed, they are built 
on the premise that the future position of the obstacle can 
be estimated to some precision. If at any later time this 
estimate diverges considerably from what was predicted 
during trajectory construction, then the robot calls for 
construction of a new plan. 
 



A key assumption is that objects in the environment are 
identifiable (e.g. by sensors) and that any discrepancy 
between two world models can easily be resolved. 
Depending on the environment, this might not be a 
practical assumption and hence a different model will be 
required. 
 
In the future, it is hoped that these assumptions can be 
relaxed to provide implementation in more complicated 
systems. Specifically, future work will involve developing 
more complicated models and handling their fusion. 
 
The rest of the paper is organized as follows. A literature 
review is given in Section 2. A brief description of the 
KRMP algorithm used in trajectory construction is given 
in Section 3. Section 4 describes the Micro-Autonomous 
RoverS (MARS) test platform used for simulations and 
real robot experiments. Results from the simulations and 
experiments are presented in Section 5. In Section 6, 
conclusions are drawn and future work on the MARS test 
platform is discussed. 
 

2. BACKGROUND REVIEW  
 
2.1 Centralized versus Decentralized 
The majority of previous work on multi-robot motion 
planning can be grouped into the categories of centralized 
and decentralized [1]. Centralized planners [9], [21] can 
be advantageous because they allow the possibility of 
completeness and global optimization. Examples of 
centralized planning that search for optimal solutions 
include [4], [5]. In [4] trajectories were constructed for 
each robot in a specific order such that each trajectory is 
collision-free of previously constructed trajectories. A 
search routine was used to find the order that provides 
shorter paths and in some cases was essential to finding a 
solution. In [5], two manipulator trajectories are 
coordinated to produce time-optimal trajectories.  
 
A drawback of most centralized planners is that they are 
computationally intensive due to high dimensional 
configuration spaces. This drawback has lead to the 
development of several randomized methods that can 
search high dimensional configuration spaces quickly at 
the cost of losing optimality. For example, one 
randomized planning technique, Probabilistic Road Maps, 
was applied to multi-robot systems in [24]. Another 
example is [6] where randomization is used to coordinate 
the time stamps on independently constructed trajectories. 
 
To relax the problem of searching through high-
dimensional configuration spaces, several decentralized 
motion planning strategies have been developed. Their 
distributed nature allows for tractable solutions in high 
dimensional configuration spaces and even real-time 
planning [14].  
 
Reactive style planning is one type of decentralized 
planning that has proven suitable for many applications 
because it is fast, enabling real-time planning. A common 

reactive approach is Potential fields [15]. This approach 
has been applied to both single robots and extended to 
multi-robot applications [25] including robot soccer [19]. 
A major drawback of most potential field methods is their 
susceptibility to deadlock. 
 
Other types of decentralized planning coordinate 
trajectories that are independently constructed by each 
robot. One example of such planners is [13], where the 
trajectory for one robot is constructed irrespective of the 
other robot’s trajectories. To avoid collisions, the robots 
maintain the same path they constructed earlier, but alter 
the velocities along their paths. Another example is [23], 
where a geometric based approach was taken to 
coordinate previously built trajectories. This algorithm 
demonstrated effective planning for a large number of 
robots in a confined area. However, as with the reactive 
style planners, these planners lack completeness. 
 
Another drawback of decentralized planners is that they 
usually fail to find globally optimal solutions because 
they only plan to avoid local objects. Hence, many 
decentralized algorithms exist that search for near-optimal 
solutions. One example [10], uses the method of altering 
velocities described in [13] with D* to produce a 
distributed planner that tries to optimize trajectories. Also 
in [2], negotiations between localized groups of robots are 
used to assign priority orders to robots, that when applied 
to the planning algorithm, results in reduced trajectory 
lengths. The negotiation scheme in [2] demonstrates the 
benefits of localized inter-robot communication, and is 
the research most closely related to the robot network 
system presented later in this paper. 
 
Ideally, one would like to use a centralized planner that 
provides optimality and completeness. However, the 
existing centralized planners assume unlimited 
communication abilities and, aside from randomized 
approaches, are computationally expensive and typically 
cannot be implemented in real-time. On the other hand, 
while decentralized planners have successfully 
demonstrated real-time planning, they still lack 
completeness and optimality. 
 
This paper presents a system that exploits the advantages 
of both centralized and decentralized planning, while 
minimizing the disadvantages. It uses centralized 
randomized motion planning to increase completeness 
and still provide real time planning, but only does this 
within localized networks to avoid computational 
expense. 
 
2.2 Global versus Local Knowledge Availability 
While a large amount of attention has been paid to the 
differences between centralized and decentralized motion 
planning, less has been paid to the issue of whether or not 
a planner requires the availability of local or global 
knowledge.  
 



Some planners assume global knowledge, e.g. are given 
maps or have global sensing, and global communication. 
In unknown environments, global knowledge is not 
available due to limited sensing capabilities. Also, in real 
systems global communication is often not possible due to 
range limitations and occlusions. 
 
Other planners use only their local sensing for object 
detection and plan with only local knowledge of the 
environment. This avoids the problem of requiring global 
knowledge, but can lead to infeasible trajectories that 
were constructed using an incomplete world model. 
 
Ideally, one would like robots to have available the world 
information necessary to plan with completeness. To 
increase the likelihood of robots having this information, 
the motion planning system proposed uses robot networks 
that exchange world model information whenever 
possible. For a given robot configuration, this maximizes 
the amount of world information available to each robot 
and allows for more complete plans. 
 

3. MOTION PLANNING ALGORITHM 
 
3.1 Kinodynamic Randomized Motion Planning 
Probabilistic Road Maps (PRMs) are constructed by 
randomly selecting milestones from the robot’s 
configuration space and connecting all milestones whose 
connecting paths are collision-free [12]. As described in 
[17], [11] and [16], this algorithm can be modified to 
accommodate kinodynamic constraints and accommodate 
moving obstacles by building a roadmap that includes 
time in the configuration space. This is known as 
Kinodynamic Randomized Motion Planning, (KRMP). 
Also shown in [11], is that under reasonable assumptions 
on the free space, the probability of not finding a plan 
when one exists decreases exponentially to 0 as the 
number of sampled milestones increases. The work 
demonstrated how randomized motion planners can 
successfully build kinodynamically-consistent trajectories 
for a single robot in real-time.  
 
To enable the motion planning within networks, KRMP 
was used. Specifically, this paper extends the KRMP in 
[16] to accommodate several robots. Our previous work 
in [7], [8] uses a decentralized approach in which each 
robot independently constructs trajectories using KRMP. 
When robots enter each other’s local area, they use a 
priority system to ensure they will remain collision-free. 
In this paper, the KRMP is extended further so that it may 
be used as a centralized planner within each local network 
of robots. By modifying the algorithm methods that 1) 
randomly select milestones in the roadmap for expansion, 
2) generate new milestones for the roadmap, and 3) define 
the endgame region, the algorithm can be extended for 
use with multi-robot applications. 
 
A key advantage that this system has over most 
distributed systems is that planning within the network is 
probabilistically complete. That is, each time a plan is 

created, the construction of that particular plan is 
probabilistically complete. Note that this does not mean 
that the system is probabilistically complete. Because 
robots may need to replan as they encounter new 
obstacles or robots, the overall completeness of the 
system is lost.  
 

4. EXPERIMENTAL TEST-PLATFORM 
 
4.1 Micro-Autonomous RoverS Test-Platform 
Located in the Aerospace Robotics Lab at Stanford 
University, the Micro-Autonomous RoverS (MARS) test 
platform is used to model mobile robots in a two-
dimensional workspace. The platform consists of a large 
12’ x 9’ flat, granite table with six autonomous robots that 
move about the table’s surface.  

Figure 3: A rover from the Micro Autonomous RoverS 
test platform. 
 
The robots are cylindrical in shape and use two 
independently driven wheels that allow them to rotate on 
the spot, but inhibit lateral movement so as to induce the 
nonholonomic constraint. Each robot is equipped with it’s 
own Planner and Controller that are located off-board. To 
provide local sensing information to the robots, an 
overhead vision system with filtering is used.  

Figure 4: Network architecture of the MARS test platform 
 
4.2 Network Communication 
With all of the processing done off-board, the platform 
requires several computers distributed on a Local Area 

GUI Controllers Planners Vision 

( ( (   ) ) ) 



Network (LAN). All communication within the LAN is 
accomplished with Real Time Innovation's Network Data 
Delivery Service (NDDS) software. Because a LAN is 
used for inter-robot communication instead of a wireless 
medium, there are no physical barriers to limit the range 
of communication. Hence the communication barrier is 
simulated. 
 
NDDS is based on a publish/subscribe architecture. To 
broadcast messages by flooding a robot network, the 
sender will publish a message to which all robots 
subscribe.  Before robots can receive their subscriptions, 
the messages are filtered so that only robots within some 
predetermined range of the sender will receive the 
message. This effectively simulates a discrete physical 
communication range. 
 
4.3 Sensors 
Not all robots on the MARS test platform are equipped 
with sensors. Instead, an overhead camera vision system 
is used to track the states of all objects on the table. The 
vision system processor calculates these states and 
publishes them to all applications that subscribe. This 
makes global state information available to all robots. To 
simulate a physical sensing range that occurs when using 
local sensors, the object states are filtered such that robots 
only receive state information regarding objects within 
some predetermined range of the robot. 
 

5. EXPERIMENTS 
To validate the planner’s performance, it was 
implemented in both simulations and real robot 
experiments using the MARS test-platform. Simulation 
results demonstrated the system’s ability to plan for up to 
8 robots in cluttered environments involving 5 stationary 
and 5 moving obstacles. Results are summarized in Table 
1. 
 
 
Number 

of 
Robots 

Average 
Plan 
Time 

Average 
Trajectory 

Time 
Constructed 

Average 
Trajectory 

Time 
Used 

Average 
number 

of 
Robots 
per plan 

1     
2     
3     
4     
5     
6     
7     
8     

 
Table 1: Simulation results 
 
For 20 simulations involving 80 plans, the average time to 
plan was less than 10 ms for all plans recorded above.  
 
      

To illustrate the advantage of using centralized versus 
decentralized planning within the networks, a classical 
example is given in which there is a very low probability 
of successfully coordinating independently constructed 
trajectories.  One solution constructed by the planner is 
shown below. 
 

 
Figure 4: Two robots are within a confined workspace. 
Each robots goal location is coincident with the other 
robots start location. Using centralized KRMP within this 
network of two robots leads to a feasible plan. 
 

      

      

      

      

      

      

      
Figure 5: Example experiment on the MARS test-platform 
involving 5 robots and 3 obstacles.  
 
To illustrate the applicability of the planner to a physical 
system, real robot experiments with up to 5 robots have 
been carried out. One example of such an experiment is 
illustrated in Figure 5. The left photos are screen-shots of 



the GUI taken throughout the experiment. The right 
photos show the physical hardware, and were taken at the 
same time as the corresponding GUI screen-shots. In the 
GUI, robots are depicted as small circles and obstacles are 
depicted as larger circles. Robot goal locations are 
indicated by cross-hairs, and lines leading to the goal 
locations depict the trajectories. When robots form a 
network as described in Section 2, it is indicated by a 
color change. Hence robots within a network have a 
common color, and this color will differ between 
networks. 
 
In the experiment presented, all five robots are initially 
located at the close end of the table (i.e. bottom of the 
GUI screen). Communication and sensing ranges were 
limited to 0.75 m. Robot colors indicate that 2 networks 
have formed, one with the 2 robots in the bottom left and 
one with the 2 robots in the bottom right. As the 
experiment progresses, the robots follow their trajectories 
to eventually reach their goal locations at the far end of 
the table. Along the way, networks are continually 
changing as illustrated by the robots changing colors 
between frames. A result of this is real-time re-planning. 
This is illustrated by the fact that trajectories change 
between frames. Throughout the experiment, robots 
planned an average of 3.4 times, and planning times were 
an average of 9 ms.  
 

6. CONCLUSIONS 
The motion planner presented has demonstrated its 
effectiveness in planning for multiple mobile robots 
within a bounded workspace. It planned with a high 
probability of success, even in cluttered environments 
involving robots, stationary obstacles and moving 
obstacles. Planning times of less than 100 ms allowed the 
robots to re-plan in real-time and react quickly to changes 
in the environment.  
 
Future work includes incorporating more sophisticated 
methods of modeling the environment into the 
communication system. Another future direction will be 
to investigate the effects of varying the ratio between 
sensor range and communication range. Also, while the 
application of the motion planner to surface rovers has 
been discussed, it should be noted that the planner is 
extendible to three-dimensional workspaces. 
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