Navigation Strategies for Exploring Indoor Environments
Héctor H. Gonzélez-Bafiost™) Jean-Claude Latombe(®

(1) Honda R&D, Americas; 800 California St. Suite 300; Mountain View, CA 94041
(2) Department of Computer Science; Stanford University; Stanford, CA 94305

e-mail:{hhg,latombe}@robotics.stanford.edu

Abstract

This article presents a system in which a mobile robot equipped with a range sensor efficiently builds
polygonal layouts of indoor environments as it navigates. It is assumed that no prior information about the
environment is available. The model (layout) is constructed concurrently as the environment is explored.
At each step, the robot decides where to move next (sensor placement problem) based on the current
partially-built model. This decision is made by an algorithm that guides the robot through a sequence
of “good” views, with “good” referring to the expected amount and quality of the information that will
be revealed at each new view. This is the so-called nezt-best view (NBV) problem, which also appears in
domains such as Computer Vision and Computer Graphics. In mobile robotics, however, this problem is
complicated by a number of implementation issues, two of which are particularly crucial. One is the safe
navigation of the robot, despite the fact that its knowledge about the environment is incomplete. The other
is the need to precisely align successive views, despite positioning uncertainty inherent to mobile robots.
To address these issues, this article introduces the concept of a safe region — the largest region guaranteed
to be free of obstacles given the sensor readings made so far. It proposes a NBV algorithm based on this
concept, which takes sensor limitations (range and incidence) into account.

1 Introduction

Automatic model building is a fundamental task in mobile robotics [2, 24]. The basic problem is easy
to formulate: After being deployed into an unknown environment, a robot, or a team of robots, must
perform sensing operations at multiple locations and integrate the acquired data into a representation of the
environment. Despite this simple formulation, the problem is difficult to solve in practice. First, there is the
problem of choosing an adequate representation of the environment — e.g., topological maps [3], polygonal
layouts [2], occupancy grids [7], 3-D models [23], or feature-based maps [11]. Second, the representation must
be extracted from imperfect sensor readings — e.g., depth readings from range-sensors may fluctuate due
to changes in surface textures [5], different sets of 3-D scans must be zippered (stitched) [25], and captured
images must be aligned and registered [21, 15]. Finally, if the system is truly automatic, the robot must
decide on its own the necessary motions to construct the model [9, 10].

Past research in model construction has mainly focused on developing techniques for extracting relevant
features (e.g., edges, corners) from raw sensor data, and on integrating these into a single and consistent
model. There is also prior research on the computation of the next-best view, a problem that has attracted
considerable attention (e.g., see [1, 4, 15, 21, 26]). Unfortunately, most of the proposed NBV techniques
are unsuitable for mobile robotics for two reasons. First, the robot must navigate without colliding with
uncharted obstacles (safe navigation). Second, it must be able to re-localize itself with respect to a partially-
built map (image registration).

Typical NBV techniques do not address safe navigation constraints because they are designed for systems
that build a model of a relatively small object using a range sensor moving around the specimen. Collisions,
however, are not a major issue for sensors that operate outside the convex hull of the scene of interest. In
mobile robotics, by contrast, the sensor navigates within the scene’s convex hull. Therefore, safe navigation
considerations must be taken into account when computing the next-best view for a map-building robot.

() (d) (¢)

Figure 1: Image registration problem: A robot equipped with a laser range-finder scans a scene from locations
(a) and (b); each raw image consists of a set of points in space (c); if the views are superimposed relying
exclusively upon the data provided by the robot’s encoders then a mismatch occurs (d); an algorithm that
aligns surfaces constructed from the data sets is able to correct the mismatch and merge both images (e).

Moreover, a useful NBV technique must also consider image-alignment restrictions [20], a problem that is
particularly fastidious in a mobile robot because of wheel slippage (see Figure 1). Although image alignment
is a key step in the construction of visual models, it is also the classic robot localization problem seen from
a different angle. In fact, for a map-building robot these two problems are equivalent and are referred as the
simultaneous localization and map building (SLAM) problem [18, 13, 6]. Many image-alignment techniques
can be found in the literature, but all of them require a minimum overlap between each new image and
portions of the environment seen by the robot at previous sensing locations [18]. Therefore, a good NBV
technique must guarantee that such overlap between images occurs.

In this article, we describe how the safe navigation and alignment/localization problems can be simul-
taneously addressed by using safe regions. These are the largest regions guaranteed to be safe given the
sensor readings obtained so far. By using safe regions, it is possible to iteratively build a map by executing
union operations over successive views (map building), and use this same map for motion planning (safe
navigation). Additionally, safe regions can be used to anticipate the overlap between future views and the
current partially-built map (image alignment), and to compute locations that could potentially see large
unexplored areas (next-best view). The concept of safe regions offers a single framework to address these
seemingly unrelated issues raised by the computation of the next-best view.

This article is divided in two parts. Part I introduces the formal definition of a safe region (Section 2),
and the complexity of computing this region from sensor data (Section 3). The general form of our NBV
algorithm is described in Section 4.

In Part IT, we describe the implementation of an actual map-building robotic system. In order to actually
build a layout of a building, in addition to the computation of the next-best view other operations must
also take place. These operations include polyline generation from range data, and model alignment and
merging (Section 6). The specific NBV algorithm embedded in our prototype (Section 7) is also described
in the second half of this article. The system architecture and experiments are described in Section 8.

Finally, in Section 9 we describe the current major limitations of our work, as well as some important
extensions to be investigated in future research.

~observable portion of wal

Sensor_

Figure 2: Incidence constraint: Wall sections are seen only if | § |< 7.

Part 1

In this first part of our article we will introduce the concept of safe region. A key result is Theorem 3.1,
which states that a local safe region is no more complex than the visibility region computed under classic
unrestricted visibility. The proof of this theorem also provides a constructive way of computing safe regions.

Safe regions are then used to iteratively construct a map. This approach leads very naturally to a general
and flexible NBV algorithm. This algorithm is the central component of the system described in Part II.

2 Definition of Safe Regions

Suppose that the robot is equipped with a polar range sensor measuring the distance from the sensor’s
center to objects lying in a horizontal plane located at height h above the floor. Because all visual sensors
are limited in range, we assume that objects can only be detected within a distance rp,q,. In addition,
most range-finders cannot reliably detect surfaces oriented at grazing angles with respect to the sensor (see
Figure 2). Hence, we also assume that surface points that do not satisfy the sensor’s incidence constraint
cannot be reliably detected by the sensor. Formally, our visibility model is the following:

Definition 2.1 (Visibility under Incidence and Range Constraints) Let the open subset W C %2
describe the workspace layout. Let OV be the boundary of YWW. A point w € 9V is visible from a point
q € W if the following conditions are true:

1. Line of sight constraint: The open line segment S(w, q) joining q and w does not intersect OW .

2. Range constraint: d(q,w) < Tmaez, where d(q,w) is the Euclidean distance between q and w, and
Tmaz > 0 18 an input constant.

3. Incidence constraint: Z(n,v) < 7, where n is a vector perpendicular to OV at w, v a vector oriented
from w to q, and T € [0,7/2] is an input constant (see Figure 2).

Without any loss of generality, we assume that the sensor is located at the origin of the coordinate system
(the workspace can always be re-mapped to a reference frame centered on the sensor). Let W C R? describe
the workspace, and let OW be the boundary of WW. The sensor’s output is assumed to be as follows:

Definition 2.2 (Range Sensor Output) The output of a range sensor is an ordered list II, representing
the sections of OW wisible from the origin under Definition 2.1. Every r(8;a,b) € II is a polar function
describing o section of OW, and such function is continuous ¥ 0 € (a,b) and undefined elsewhere. TI
contains at most one function defined for any 0 € (—m, 7] (i.e., no two functions overlap), and the list is
ordered counter-clockwise.

(b)

Figure 3: Effect of incidence on safe regions.

Given an observation II made by the robot at a location g, we define the local safe region s,(q) as the
largest region guaranteed to be free of obstacles. While range restrictions have an obvious impact on s;(q),
the effect of incidence is more subtle. In Figure 3(a), a sensor detects the surface contour shown in black.
A naive approach may join the detected surfaces to the perimeter limit of the sensor, and consider this
region free from obstacles (the region is shown in light color). Because the sensor is unable to detect surfaces
oriented at grazing angles, this region may be not be safe, as shown in (b). A true safe region is shown in (c),
for an incidence constraint of 7 = 70 deg.

3 Computational Complexity of Safe Regions

Let 0s; be the boundary of the region s;. ds; is composed by solid and free curves. A solid curve represents
an observed section of 8V, and is contained in the list TI.

Given two solid curves {r1(0; a1,b1),72(6; a2,b2)} CII, r is said to succeed ry if no other element in I is
defined in the interval [by, as]. A curve f(0;b1,az) joining a pair (rq,r2) of successive sections is called a free
curve if: (1) no undetected obstacle is contained in the polar region b; < 6 < as bounded by f; and (2) this
region is the largest possible.

In order to compute the local safe region at ¢ we need to compute the free curves that join each successive
pair in II in order to bound the region s;(q). It turns out that the complexity of f is O(1). In fact, a free
curve f can be described using no more than 3 function primitives:

Theorem 3.1 (Free Curves) Suppose r2(8;az,b2) succeeds 11(6;a1,b1) in the output list II of a sensor
operating under Definition 2.2 and located at the origin. If OV is continuously differentiable, then the free
curve f(6;b1,a2) connecting r1 to ro consists of at most three pieces. Each piece is either a line segment, a
circular arc, or a section of a logarithmic spiral of the form r = r, exp(£A\0) (where A = tan7 and r, is a
constant).

Note that the theorem also applies when the sensor is located at an arbitrary position ¢: Given the
observation II(g), re-map the data to a reference frame centered at g and call this II'. Once the free curves
are computed, apply the inverse transformation to express the results in global coordinates.

The proof of Theorem 3.1 is long and tedious, and is therefore included in the appendix. But the main
consequence of the theorem is that a free curve f joining r1 with r5 is a function of only the sensor constraints
and the endpoints of r; and ro. That is, f is independent of the complexity of the workspace W and can
be computed in constant time. Indeed, if II(g) contains m solid curves, then 9s;(q) contains no more than
3m additional function primitives. Because the complexity of II(g) cannot be less than m, the complexity
of s;(q) is within a constant proportionality factor from the complexity of II(g).

The proof is based on a continuity argument. Although the shape of the workspace may be arbitrary,
W represents a physical space containing physical objects. Its boundary 9V consists of a set of Jordan

Figure 4: An example of a free curve construction.

curves (i.e., closed loops in the plane which do not intersect themselves), and each Jordan curve is in itself
a continuous curve. If additionally we enforce that the curve is differentiable, then we can show that the
unobserved section of W lying between a successive pair of solid curves cannot be arbitrarily close to the
sensor. To illustrate this point, we sketch here one case of the proof.

Let r1(6;a1,b1) and r2(8;a2,b2) be a successive pair of solid curves, and suppose that the incidence
constraint was exceeded immediately after 8 = by (Figure 4). Therefore, the normal to YV immediately
after ry is oriented at a grazing angle with respect to the sensor. What can we say about the unobserved
section of W lying between r; and ry?

Define the points p1 = (p1,b1) and p2 = (p2,az2), where p1 = r1(b1) and ps = ra(az) (see Figure 4).
Suppose that the boundary of W continues after p; with its surface normal constantly oriented at ezactly
an angle 7 with respect to the sensor’s line-of-sight. This curve in polar coordinates has the form r =
Ty exp [£A(0 — 6,)], where r, = p; and 6, = b;. This last equation defines two spirals: a spiral s] growing
counter-clockwise from p; = (p1,b1) (or shrinking clockwise), and a second spiral s shrinking counter-
clockwise from p; (or growing clockwise). So far, we may conclude that OV must continue from p; in the
counter-clockwise direction either “above” s} or “below” s ; otherwise, the incidence constraint would not

have been violated.

But 0W cannot continue below s; for the example shown in Figure 4. To show this, suppose W
continues below s; , which implies that OW bends toward the sensor immediately after r1. We know that
0W does not cross the origin, else nothing will be visible under Definition 2.1 and II would be empty. Thus,
OW has to bend outwards; and it has to do so before cutting the ray [joining the origin with ps, otherwise
ro will be occluded. Since W is differentiable, there must be a point p where the normal to 9V points
towards the origin. Therefore, the vicinity of p is a visible portion of 9)V. But this violates our assumption

that r succeeds 71, so YV must continue above sf.

Following a similar reasoning, it is possible to account for every possible combination of events, depend-
ing on whether the sensor line-of-sight was occluded, the range constraint was exceeded, or the incidence
constraint was exceeded. In the appendix, all cases are described in detail.

3.1 Safe Region Properties

The region s;(q) is topologically equivalent to the classic visibility region. Indeed, when the sensor restrictions
in Definition 2.1 are relaxed, the safe region becomes the visibility region. Therefore, several properties and
algorithms that apply to visibility regions also apply to safe regions. For example, the segment connecting ¢
with p is entirely contained in s;(¢) for any p € s;(¢q). That is, s;(¢) is a member of the class of star regions
— regions that are entirely observable from at least a single interior point called the region’s kernel.

Likewise, a local safe region is a simply connected region — all paths joining a pair of points p; and p»
inside s,(q) are homotopic. Two paths v and v’ with endpoints fixed are homotopic if v can be continuously

et visible

8+
corner, W2 » | =
visible 72 iw

=

(b)

Figure 5: Dealing with corners: (a) the normal to W at a corner is generalized as the average of n* and
n~; (b) if we assume that a corner has “thickness”, and is therefore detectable by the sensor, then any
wedge-shaped object is visible if 7 > 45 deg.

deformed into 4" by applying a continuous mapping (or vice-versa). This an important property, because in
order to find an optimal path v* between p; and ps given some optimization criterion, it is possible to apply
simple descent methods over the parameterization of v in order to compute or approximate v*. In other
words, a solution to a given path planning problem for fixed endpoints can be deformed into the solution of
a harder problem for the same endpoints.!

For polygonal environments composed of n edges, 9s;(p) contains no more than O(n) sections, which is
the same upper bound as for visibility polygons. In fact, we can compute a tighter bound. Let V(q) be
the visibility polygon computed at ¢q. Let m be the number of visible (solid) edges in V(g). In the worst
case, each visible edge in V(q) is only partially visible under Definition 2.1. Thus, the boundary of s,(q) is
composed of m (possibly shorter) solid edges, plus at most m free curves joining each successive pair of solid
edges. Since each free curve is consists of at most 3 sections, then 9s;(q) is composed of no more than 4m
sections, each of which can be either a segment, a circular arc or a section of a logarithmic spiral.

Finally, one must not forget that s;(¢) is guaranteed to be free of obstacles. Because the workspace is not
known in advance, it is very important to ensure that the robot will not collide with unseen obstacles before
these are detected. Region s;(g) characterizes this obstacle-free region. The robot will not be in collision as
long as its motions are restricted to s;(q) between successive sensing operations.

3.2 Corners

Corners pose a problem even under idealized conditions. Suppose a robot is surrounded by one or several
wedge-shaped walls oriented toward the sensor. The sensor is then unable to see any of these wedges, and
the safe region is empty. This is not a failure of our mathematical analysis, but a physical limitation of
the sensor. This limitation is ignored by Definition 2.1, along with several others (e.g., that some surfaces
could be perfectly transparent or completely reflective). We can only assume that the angle between any
pair of incident walls is large enough such that at least one section at either side of the corner is visible to
the sensor. Or that the corner itself is not sharp enough to remain undetected by the sensor (i.e., the corner
has “thickness”).

Under the above assumptions, we generalize the concept of a surface normal to include corners. The
normal m to OW at a corner is the average of n™ and n~, where nt and n~ are the normals to OW
immediately after and before the corner (Figure 5(a)). The corner is visible if the conditions of Definition 2.1
are satisfied for this generalized n. That is, a corner behaves like any other point in W, as long as our
hypotheses for 0V hold true.

The system described in Part IT expects all corners to have thickness, and therefore to be detectable by
the sensor. Under this supposition, it is easy to verify that any wedge-shaped object within range is visible
if 7 > 45 deg (Figure 5(b)).

L1f we add the restriction that the sensor range is also lower-bounded (objects cannot be detected below a range 7,,;,), then
the region s; contains a hole and is not simply connected.

Free Edges

()

Figure 6: Steps in a next-best view computation: (a) safe region after 5 sensing operations; (b) only the
regions within the visibility range of a free curve are sampled: (c) the potential visibility gain of a candidate
g is the area A(g) outside the explored region that can be visible through the free curves bounding Sg(g);
(d) the best candidate is selected as the maximizer of the quantity A(q) exp(—AL(q, qx))-

3.3 Extracting Safe Regions from Real Sensor Data

The main practical difficulty with the results of this section is that the sensor output is usually a list of
points, not a list of curves. A pre-processing stage must be added to the methods of this section to convert
the raw data into the output list II. The system described in Part IT uses a geometric/numerical technique
to convert a list of points into a list of polylines. Examples of this procedure are presented in Section 6.

4 A Next-Best View Algorithm

In a static environment, a safe region remains safe under the union operation. Hence, the layout model can
be expanded iteratively. A first partial layout — a local safe region — is constructed from the data acquired
by the range sensor at the robot’s initial position qy. At each iteration, the algorithm updates the layout
model by computing the union of the safe region built so far with the local safe region generated at the new
position ¢. The new safe region is then used to select the next sensing position ¢x11. To compute this
next-best-view position, the procedure first generates a set of potential candidates. Next, it evaluates each
candidate according to both the expected gain of information that will be sensed at this position, and the
motion cost required to move there. These steps are illustrated in Figure 6, and described below.

4.1 Model Alignment and Merging

Let My(qr—1) = (IL4(gr—1), Sg(gr—1)) be the partial global model built at gz—1. The term Sy(gr—1) is the
union of all local safe regions up to stage k—1. The boundary of Sy(gr—1) is composed of free and solid curves,
the latter representing physical sections of OW. Let I (gi—1) be the list of solid curves in the boundary of
Sg(Qkfl)-

The robot performs a sensing operation once it moves into a new location g. From the local measurement,
denoted as II;(gx), we can compute a local safe region s;(gx) following the proof of Theorem 3.1. Let
my(qr) = (i(gx), s1(qr)) be the local model at gy.

Suppose there exists an algorithm ALIGN that computes the transformation 7' aligning m;(qx) with
My(gr—1) by matching the line segments of IIj(gx) and I (gr—1). We will not assume that this technique is
perfect: ALIGN computes a correct T only when there is enough overlap between m;(gx) and My(gk—1).

Once T is calculated, the new global safe region Sy(gx) is computed as the union of T'(Sy(gr—1)) and
s51(gr)- The new model My(qr) = (I4(gr), Sg(gr)) is represented in a coordinate frame centered over the
robot at its current position gy.

4.2 Candidate Generation

The future position g1 should potentially see large unexplored areas through the free curves bounding
Sg(gr) (unexplored areas cannot be observed through solid curves because these represent sections of OW).
However, we are constrained in our choices for gxy1. The robot has to be entirely contained inside Sq(gy)
at the next location g¢xt1, which must also be reachable from g by a collision-free path. Furthermore,
the function ALIGN must successfully find a transform 7' at the next position gx1. To achieve all these
conditions, we proceed as follows:

Step 1. Randomly generate a set of possible next-best-view candidates Nyum C Sy(gr) within the
visibility range of the free curves bounding Sy(gx) (Figure 6(b)). This step prevents candidates from being
unnecessarily created in areas that are far away from the free boundary of Sy(gy).

Step 2. For each ¢ € Ny, we compute the total length ((Sy(gx),q) of the non-free curves bounding
Sg(qr) that are visible from g under Definition 2.1 (see [19] for a survey of methods). (is a measure of
the expected overlap between a new image II;(g) and the updated history I (gx). If ((Sy(gr), q) is greater
than some given threshold, then ¢ remains a next-best-view candidate. This filtering stage ensures that the
function ALIGN will successfully find a transform 7'.

Step 3. Suppose that there is a function L4, = PATH-PLANNER(S,(gx), g, ¢) that computes a collision-
free path (as a list of points) between g and g, or returns the empty list £pq¢ = @ if there is no such path.
There are many implementation choices for PATH-PLANNER [12], and we make no assumptions about a
particular one. To decide whether a position ¢ € Ny, remains a next-best-view candidate, we run the
function PATH-PLANNER to verify if ¢ is reachable from ¢y,. If g is not reachable, then such point is discarded.

After executing these three steps, we are left with a feasible set Nqr,, of NBV candidates.

4.3 Evaluation of Candidates

The score of every next-best-view candidate ¢ € Nsom is defined by the following function:

g(q) = A(g)exp(=AL(g,qr)), (1)

where A is a positive constant, L(q,qx) is the length of the path Ly, computed by the function PATH-
PLANNER, and A(g) is a measure of the unexplored area of the environment that is potentially visible from
q (see below). gg41 is selected as the sample g € Nqp, that maximizes g(q).

The constant A\ weights the relative cost of motion with respect to the potential visibility gain. A =0
implies that motion is “cheap”, and the NBV algorithm is allowed to select the next-best view based solely
in terms of the potential visibility gain. If A — 0o, then motion becomes so expensive that only locations
near gy are selected, as long as they produce a marginal gain in visibility.

Computation of A(q) We measure the potential visibility gain of each candidate ¢ as a function of
the area A(g) outside the current safe region that may be visible through the free curves bounding Sg(gy)
(Figure 6(c)). For polygonal models, A(g) can be computed by the same ray-sweep algorithm used to
compute classic visibility regions [19], with the following modifications:

1. The sweeping ray may cross an arbitrary number of free edges before hitting a solid one. Therefore, the
computation-time of the ray-sweep algorithm becomes O(nlog(n) + n k¢), where kg is the number of free
edges bounding Sy(gx).

2. The resultant visible region is cropped to satisfy the range restrictions of the sensor. This operation can
be done in O(n k).

4.4 Termination Condition

If the boundary of Sy(gi) contains no free curves, the 2-D layout is assumed to be complete; otherwise,
Sq(qr) is passed to the next iteration of the mapping process (Figure 6(d)). A weaker test is used in practice:
stop when the length of any remaining free curve is smaller than a specified threshold. This termination
predicate is better suited to handle complex environments.

4.5 Iterative Next-Best View Algorithm

The general NBV algorithm is summarized below. Example runs (both in simulations and in physical
experiments) are described in Part II.

Algorithm Iterative Next-Best View

Input: 1.- The current partial model M,(gr—1) and a new sensing position g,
2.- The local sensor measurement II;(gy)
3.- An image alignment function 7" = ALIGN(m(gx), My(gr—1))
4.- A path planning function £pe:, = PATH-PLANNER(S4(qk), gk, q)
5.- The visibility constraints {rpqz, 7}
6.- The number of samples m, and a weighting constant A > 0

Output: A next-best view position ggt1

1. Compute the local safe region s;(qk). Set Nyom = 0.
2. Compute T = ALIGN(m(gk), Mg4(gr—1)), and the union Sy(qx) =
siar) U T(Sg(qr-1))- Set My(qr) = (Iy(qr),Sy(qr)), where TIy(gy) is the list
of solid curves bounding Sy(g).
3. Repeat until the size of N, is greater or equal than m:
(a) Randomly generate a sample point ¢ € Sy(gx) in the visible range
of the free curves bounding Sy(gx).
(b) Compute the length ((Sq(gx),q) of the non-free curves in Sy(gy)
that are visible from ¢. If this number is less than the threshold
required by ALIGN, discard g and repeat Step 3.
(c) Compute the path Ly = PATH-PLANNER(S¢(gk),qk,q). If the
path does not exist, discard ¢ and repeat Step 3.
(d) Compute the visibility gain A(g) and the length of the path
Lpath (gk,q). Add g to the list of samples N4 and repeat Step 3.

4. Select the sample in Ny, that maximizes the function g(q) =
A(q) exp(—AL(q, gr)) as the next-best view qgy1.

The order of the steps in the above algorithm was selected for clarity purposes. In an actual implemen-
tation it will be more efficient to reorder some of these steps.

Part 11

In the first part of this article we introduced the concept of safe region, and described how it can be used
to produce collision-free motions and next-best view locations under image-alignment considerations. These
techniques, however, will not produce a map-builder robot on their own. In order to build the layout of a
building, several other operations must also take place besides the computation of the next-best view. These
operations include polyline generation, and model alignment and merging, functions which are presented
here.

In this second part we describe the implementation of our map-building robotic system, including the
specific form of the NBV algorithm embedded in our prototype. The system architecture and some sample
experiments using our system are also described.

5 Polygonal Maps

Let us assume that the robot is equipped with a polar range sensor measuring the distance between the
sensor’s center-point and the objects in the environment along several rays regularly spaced in a horizontal
plane at height h above the floor. The sensor driver converts these measurements into a list of points
representing the cross-section of the environment at a height A in a coordinate system attached to the
sensor. Figure 7(b) shows such points for a 180-deg field of view, with 0.5-deg spacing between every two
consecutive rays, captured using a range sensor from Sick Optic-Electronic. We model this sensor using
Definition 2.1. It is not difficult to add an angular parameter « representing the field-of-view of the sensor,
if necessary.

Our goal is to construct a polygonal layout of the environment from the sets of points captured by the
range sensor at different locations. Our preference for polygonal models is driven by an algorithmic issue.
Because of their compact representation, geometric properties can be computed very efficiently for polygonal
models. For example, computing visibility regions for a polygonal model with n edges can be easily done in
O(nlogn) time with a classical line-sweep technique. Other representations, such as occupancy grids, do not
allow such efficient computation.

Polygonal map-builders have traditionally been avoided in practical SLAM systems. In the past, sonars
were the sensors of choice for gathering range data with a robot. But sonars are heavily affected by noise
and provide low resolution data, so polygonal maps were out of the question. For this reason, most of the
past research on map building has centered on constructing topological maps (which contain little geometric
information) and occupancy grid representations (including the popular probabilistic occupancy grid, where
probabilities are used to encode the uncertainty of an obstacle’s presence). But range-finding technology has
become cheaper, more precise and reliable. This has motivated us to reconsider polygonal representations.

6 Construction of 2-D Layouts

Ideally, the 2-D layout of an indoor environment is the projection — into a horizontal plane — of the portions
of objects in the workspace that either block the robot’s motion, and/or obstruct the field of view of its
sensors. However, due to sensor limitations, the layout is often approximated as a horizontal cross-section
cutting through the environment at a given height. In the case of a multi-floor environment, the model may
consist of several 2-D layouts connected by passage-ways.

The robot builds a polygonal layout by moving through a sequence of sensing positions, which are chosen
by the NBV planner described in Section 4. These positions could also be chosen by another software module
or by a human operator. Independently on how the sensing locations are selected, the following steps are
executed at each sensing position ¢: Polyline generation, safe region computation, model alignment, model
merging, and detection of small obstacles. These are described in detail below.

()

Figure 7: Range sensing: (a) scene; (b) captured points using a range sensor from Sick Optic-Electronic.

Figure 8: Polyline fit for the data of Figure 7(b).

6.1 Polyline Generation

Let L be the list of points acquired by the sensor at q. L is transformed into a collection II; of polygonal
lines called polylines. The polyline extraction algorithm operates in two steps: (1) group data into clusters,
and (2) fit a polyline to each cluster. The goal of clustering is to group points that can be traced back to
the same surface object. A sensor with infinite resolution would capture a curve r(f) instead of a sequence
of points. This curve would be discontinuous at exactly the points where occlusions occur. For a real sensor,
discontinuities are detected using thresholds selected according to the sensor’s accuracy.

The points in each cluster are fitted with a polyline so that every data point lies within a distance e from
a line segment, while minimizing the number of vertices in the polyline. The computation takes advantage
of the fact that the data delivered by our polar sensor satisfy an ordering constraint along the noise-free
f-coordinate. By applying the mapping v = cos8/sinf,v = 1/(rsin@), the problem is transformed into a
linear fit of the form v = a + bu (which maps to bz + ay = 1 in Cartesian (z, y)-space). Several well-known
recursive algorithms exist to find polylines in (u,v)-space [22]. By converting € to the position-dependent
error bound e = evy/(a? + b?) in the (u,v)-space, each data point in the (z,y)-space is guaranteed to be
within e from the computed polyline. Is important to note that the polyline fitting process also acts as a
noise reduction filter.

Figure 9: A more complicated example of a polyline fit.

Figure 8 shows a set of three polylines generated from the data points of Figure 7(b). A more complicated
example, in a cluttered office environment, is displayed in Figure 9. The area in light grey in (b) is the robot’s
visibility region under the classical line-of-sight model (this region is not a safe region).

6.2 Safe Region Computation

Once the polyline set II; is extracted from the data, a safe region s;(q) is computed. In Section 2, s;(q) was
defined as the largest region guaranteed to be free of obstacles given the local observation II;(g). This region
is a function of the sensor’s visibility model.

The local safe region s;(g) is bounded by both the observed polylines II;(g), and by free curves connecting
the polyline endpoints. Free curves can be computed ezactly for polygonal workspaces, and are composed
of segments, circular arcs and spiral sections. The construction of free curves is fully described in the proof
of Theorem 3.1 included in the appendix. In our implementation, we approximated arcs and spiral sections
with polygonal lines to simplify subsequent computations. Therefore, the region s;(q) is bounded by solid
edges (derived from the observed polylines), and free edges (derived from the approximated free curves).
Once the region s;(q) is computed, the pair m;(q) = (I;(¢), 5:(¢)) becomes the local model constructed at
location q.

Figure 10 shows two local safe regions computed for the scene in Figure 9 for different values of the
maximal range 7,,,, and the incidence angle 7.

6.3 Model Alignment

Let My(gr—1) = (IIg(gr—1),S4(qr—1)) be the partial global model built at location gx_1. Assume for the
time being that such global model exists. Suppose now that the robot executes a new sensing operation at
location g, extracting the local model m(qx) = (I1;(qx), si(gr)). A best match is then computed between
the line segments in II4(gr—1) and those in II;(gy), yielding an Euclidean transform aligning both sets of
polylines. The matching algorithm is similar to a previous technique used to discover and align substructures
shared by 3-D molecular structures [8]. The algorithm selects pairs of line segments from II; at random. For
each pair (u1,us2), it finds a pair of segments (v, v2) in II, with the same relative angle. The correspondence
u1—v1, U2—vy yields a transform T'(x,y,#) obtained by solving least-square equations. The algorithm then
identifies the segments of II; and II, which match under this transform, and creates a new correspondence
UL —U1, U2— V2, ..., Up—v-, Wwhere the u;’s and v;’s are not necessarily distinct. It recalculates the transform
based on this new correspondence and evaluates the quality of fit. The above steps are repeated for each

(a) (b)

Figure 10: Computed safe regions: (a) rmqez = 275 cm and 7 = 50 deg; (b) Tmaz = 550 cm and 7 = 85 deg.

— JR—
—_—

F

e
o %

Figure 11: (a) Unaligned polylines; (b) computed alignment.

pair of line segments sampled from II;, and the transform with the best quality is retained. If all segments
in II; are approximately parallel, the algorithm uses endpoints and odometric sensing to approximate the
missing parameter of the transform.

Figure 11(a) shows two sets of polylines before alignment. The computed alignment of these two sets is
displayed in (b).

6.4 Model Merging

The selected transform T is applied to Sy(gr—1), and the new global safe region Sy(gx) is computed as the
union of T'(Sy(gk—1)) and s;(gx). The solid edges bounding Sy(gx) form the new polyline set IT;(gx). To avoid
edge fragmentation, consecutive solid (respectively free) edges in the boundary of II(g;) that are practically
collinear under the sensor’s resolution are fused into a single edge. The new model My(qx) = (I4(qx), Sq(ar))
is represented in the coordinate system attached to the robot at its current position gx. The 2-D layout is
considered complete if no remaining free edge in the boundary of Sy(gy) is longer than a given threshold;
otherwise, Sy(gx) is passed to the next iteration of the mapping process.

(a) ()
(c) (d)

Figure 12: Merging four partial models at a given position.

Figure 12 displays four partial models. The robot is at some location where it rotates to face four
successive directions spaced by 90 deg. The local model in (a) was built at the first orientation. The model
in (b) was obtained by merging the model of (a) with the local model generated at the second orientation,
and so on. The model in (d) combines the data collected at the four orientations. In addition to being
an illustration of model merging, Figure 12 shows the artifice employed to emulate omnidirectional sensing
using a sensor with a 180-deg field of view. Note that the matching operation compensates for any small
variation in the robot’s position as it rotates to a new orientation.

6.5 Dealing with Small Obstacles and Transient Objects

A horizontal cross-section through an indoor environment often intersects small objects (e.g., chair legs).
Such objects are detected by a good range sensor and hence appear among the polylines IT;(q) extracted at
a sensing position ¢ (see Figure 9). But, due to small errors in aligning polylines, such obstacles tend to be
eliminated when the union of two safe regions is computed. Other model merging techniques could be used,
but modeling small obstacles by closed polygonal contours is known to be difficult and not very reliable. In
many instances, a map is more useful when small obstacles are omitted, since the positions of such obstacles
often tend to change over time. So, we proceed as follows. Small obstacles result into narrow “spikes”
pointing into the safe region s;(¢q) obtained at ¢. These spikes can be automatically detected. The apex of
each detected spike is a small isolated polyline, which is saved in a separate small-object map. Hence, the
final model consists of a main layout (polylines and safe region) and a secondary map (small-object map).
Figure 13 shows the small obstacles (apexes enclosed by square boxes) detected in the scan from Figure 9.
These include an aluminum camera tripod, a narrow wooden bar, and a swivel chair.

Figure 13: Small obstacles extracted from Figure 3(b).

Merging partial models by taking the union of safe regions has the added advantage of eliminating
transient objects. Comparing edges in successive partial models allows detection of such objects, which can
be recorded in a separate structure (in a way similar to small objects). However, this capability is not
implemented in the system described here.

7 NBYV Planner Implementation

The implementation of the on-line NBV planner is based upon the algorithm described in Section 4. The
basic algorithm is applied here essentially unchanged: (1) the robot moves to a position g and takes a new
observation; (2) a local safe region IT;(gx) is computed; (3) the partial layout model My(gx) is updated; (4)
a set of next-best-view candidates is generated; and (5) the best candidate is selected as the next-best view.

The operations involved in steps 1-3 are polyline extraction, safe region computation, and model alignment
and merging. These operations were described in the previous section. The general principles behind steps 4
and 5 were explained in Section 4.2 and 4.3, respectively. The implementation details of these steps are
described in this section.

7.1 Candidate Generation

A position g in Sy(gx) is a good next-best-view candidate if it can potentially see large unexplored areas
of the workspace. Section 4.2 proposed to consider only those points within the visibility range of the free
edges bounding S,(gx) as potential candidates — see Figure 6(b). In our implementation, the set of possible
next-best-view candidates Nqp, is randomly generated using the following procedure:

RANDOM GENERATION OF SAMPLES

1. Select positive constants o and p, representing samples per unit length and samples per unit area,
respectively.

2. For each free edge e in the boundary of Sy(gx), uniformly select oxlengthle] random points along e.
Group these boundary samples under the set B.

3. For each point p € B, compute the visibility region V(p) inside Sy(gx), upper-limited to a range rmaqs
from p, and uniformly select pxarea[V(p)] random points inside V(p). Group all the interior sample
points under the set Nyqm.

The computational cost of this procedure is O((kn + m)logn), where k is the total number of boundary
samples, m the number of generated candidates, and n the number of edges in the partial layout Sg(gx)-

Figure 14: The potential visibility gain of a candidate ¢ is the area A(q) outside the explored region that
can be visible through the free edges bounding Sy(gs), discretized here by casting rays.

Next, we must verify that the samples in Ny, are indeed feasible. As explained in Section 4.2,
a candidate position ¢ should not only be contained inside Sy(gx), but it must also be reachable from
gr by a collision-free path. For circular robots, the implementation of the function Ly, = PATH
PLANNER(S,(qk), gk, q) can be rather straightforward:

PATH PLANNING

1. Shrink Sy(gx) by the radius of the robot [12] (this operation can be done in linear time). Shrinking
is performed only when the robot moves to a new sensing position g, not every time a candidate q is
evaluated.

2. Compute the shortest path from g, to a q inside the shrunk region. This computation can done in Q(n?)
per query using the visibility graph method [12]. The query time, however, can be improved to O(n)
by constructing the shortest-path map from ¢, — SPM(gy). This map is a decomposition of the space
into cells, such that the shortest paths to g from all points within a cell share the same sequence of
obstacle vertices. The map SPM(gy) can be constructed in O(n?) of preprocessing time, although faster
and more complicated schemes exist (see [17] for a survey of methods).

Finally, for each candidate ¢ we compute ((S,(qx),q): the total length of the solid edges in the boundary
of Sy(gr) that are visible from ¢ under the sensor’s range and incidence constraints. (is the measure
of the expected overlap between a future image IIj(¢) and the current history II,(gx). If the computed
overlap is greater than some threshold, then g remains a feasible candidate. Otherwise, ¢ is discarded. This
filtering stage ensures that the line matching algorithm will work reliably at the next position gg4+1, and the
computational cost is only O(nlogn) per query (using a ray-sweep algorithm).

7.2 Evaluation of Candidates
Every next-best-view candidate g is evaluated using the ranking function proposed in Section 4.3:

g(q) = A(g)exp(=AL(g,qr))- (2)

Due to our choice of planner, here L(g, gx) is simply the length of the shortest path connecting g1 with gq.
The parameter A was set to 20 cm ™! in the implementation, a value that prevents the robot from oscillating
back and forth between regions with similar visibility potential.

As for the estimation of the visibility gain A(g), Section 4.3 proposes that it be the area of the unexplored
region visible from ¢ through the free edges in the boundary of S,(gx) (imagine the free edges are windows).
In our implementation, A(q) is computed using a discretized version of the technique outlined in Section 4.3:

(c) (d)
Figure 15: Example 1 of model construction in simulation.

COMPUTATION OF A(q)

1. A fixed number of equally spaced rays is casted from g.

2. Along each ray, consider only the segment within 0 and 7,4, from g. If the segment intersects one or
more solid edges, we eliminate the portion beyond the first of these intersections.

3. For each remaining ray section, compute the length £ of the portion falling outside the region Sy(gx).

4. Finally, estimate A(q) as the sum of all the computed £’s.

The estimation of A(q) is illustrated in Figure 7.1. The sum of all shown radial sections (the £’s) is an
approximation of the area beyond the free boundary of Sy(gx) that is visible from g.

7.3 Example Runs

Figure 15 shows partial models generated at several iterations (0, 2, 6, and 19) during a run of the planner
on simulated data, and the path followed by the robot. The layout model was completed in 19 iterations.
Because path length is taken into account in the goodness function, the robot fully explores the bottom-
right corridor before moving to the left corridor. Figure 16 shows another series of snapshots for the same
environment, the same initial position, but greater r,,,, and 7. The motion strategy is simpler, requiring
only 7 iterations.

8 System Architecture and Experiments

The map-building robot system was implemented on a Nomadic SuperScout wheeled platform. The robot
was equipped with a laser range sensor from Sick Optic-Electronic (Figures 7(a) and 9(a)). The sensor uses a

(c) (d)
Figure 16: Example 2 of model construction in simulation.

time-of-flight technique to measure distances. The robot’s on-board processor (Pentium 233 MMX) acquires
a 360-point 180-deg scan in 32 ms through a SeaLevel 500 Kbs PCI serial card. At each sensing location, a
360-deg view is obtained by taking 4 scans (Figure 12).

The on-board processor is connected to the local-area network via 2 Mbs radio-Ethernet. The NBV
planner and the navigation monitor run off-board in a Pentium II 450 MHz Dell computer. The software
was written in C++ and uses geometric functions from the LEDA-3.8 library [16].

8.1 System Architecture

The software consists of several modules executing specialized functions, communicating with each other
through TCP/IP socket connections under a client/server protocol. These modules are shown in Figure 17.

A Sick sensor server handles communications with the Seal.evel card. It allows clients to assume that
they are connecting to a device resembling an ideal sensor. The server offers the following capabilities:

- choice among 3 speed modes: 1, 5, and 30 scans/sec,

- batch transmission of multiple scans on request,

- scan averaging using the sensor’s on-board electronics,
- operation in continuous mode,

- real-time polyline fitting with 2.5-cm error bound.

Since the polyline fitting technique is fast enough to be performed in real time under any speed mode, it
is embedded into the server’s code. This reduces the amount of data transmitted to the clients.

A navigation monitor allows a user to supervise the exploration process. The user may query the NBV
module for the next position and/or the most recent environment model, or select the next sensing position
manually. The user may also teleoperate the robot in continuous mode, receiving scan updates every 0.1
sec. The navigation module is also responsible for aligning new data with the previous model. The module

ONBOARD

ALIGNMENT NAVIGATION NEXT-BEST-VIEW
MODULE MONITOR MODULE

Figure 17: Interaction among the modules of the next-best-view system.

first pre-aligns new data using the robot’s odometry, and it afterwards invokes the model matching function.
The computed transform is sent to the NBV module with each new scan.

Finally, an NBV module computes the next position given the current model of the world. The model is
updated every time a new scan is received.

8.2 Layout Construction with the Robotic System

Figure 18 shows a sequence of partial layouts built by the map-building robot system in our laboratory.
The robot is initially placed in a messy office with many small obstacles (chair and table legs, and cables).
The sensor parameters are T,.; = 550 cm and 7 = 85 deg. The polylines extracted at this initial location
are shown in (a), and the safe region is displayed in (b) along with the next sensing position computed
by the NBV planner. The safe region is bounded by many free edges forming spikes, but the candidate
evaluation function automatically detects that little additional space can be seen through such free edges.
Consequently, the NBV planner reliably selects the next sensing position near the exit door of the office.
Figures (¢)-(e) show the safe region after the robot has reached the second, fourth and sixth sensing positions,
respectively. At that stage, the layout consists of the initial office, a second office (incompletely mapped),
and two perpendicular corridors.

A longer run is shown in Figure 19, where the robot mapped a section of the Robotics Lab. at Stanford
University. The first 6 iterations are shown in (a). At this point the executed strategy resembles the one
shown in Figure 18 due to similar initial conditions. At the corridor intersection, however, the robot faces
more choices than in the previous example because an office door is open. Nevertheless, the planner opted
to continue moving along a corridor, all the way into the other hall (b). Glass is transparent to the sensor’s
laser, so the robot failed to detect the glass door indicated in (b). At this point, the operator overrode the
decision of the NBV planner, who interpreted the vicinity of the glass door as the threshold of an unexplored
open area. Finally, in (¢), the robot moved down the second hall until it reached the lab’s lounge. The
planner decided then to send the robot to explore this newly detected open area.

Figure 20 shows all the observed polylines after the robot completed a circuit around the lab. The
polylines shown in light color (red) were captured at the last location, and the area inside the circle is the
range of the last scan. Note the final mismatch. This discrepancy appears because matching transforms
are computed locally to align the current view II;(g) with the current history II,(gr—1). Once a transform
is computed, it is never revised. The mismatch occurs due to the lack of a global optimization function.
Although this is not a failure of our NBV method, it is a limitation of our current implementation.

Figure 18: Experiments using the integrated robotic system.

(@)

(b)

Glass door

(©)

]
0 10 mts

Figure 19: A run around the Robotics Lab. at Stanford University (Gates Building, wing 1-A): (a) the map
built after 6 iterations — due to similar initial conditions, the strategy at this point resembles that one from
Figure 18; (b) the robot moved up into a second hall, after the user overrode a plan to move toward a glass
door; (¢) the robot maps the second hall until it reached an open area, which the robot decided to explore
next.

Figure 20: Observed polylines after the robot has completed a tour around the Robotics Lab. The polylines
shown in light color were captured in the last location. The region inside the circle shows the final mismatch
that results from relying exclusively on local matches.

9 Results and Limitations

The experiments with the robot system, both in simulated and real environments, show that the NBV
planner can considerably reduce the number of motions and sensing operations required for map building.
This claim is difficult to quantify, as it requires of more extensive comparisons between our plans and
strategies produced by other means (e.g., trained human operators). Our experiments, however, have so far
shown that the planner produces strategies that cannot be easily be out-done by a human operator. Our
system also demonstrates that polygonal maps are feasible representations for indoor map-building tasks.
As it was argued in Section 5, polygonal models offer significant advantages over other representations.

The most obvious limitation of our map-building system is that it only builds a cross-section of the
environment at a fixed height. Therefore, important obstacles may not be sensed. One way to improve
sensing is to emit laser rays at multiple heights. The techniques described in this article would still remain
applicable without significant changes.

A more fundamental limitation is the lack of error-recovery capabilities. Any serious error in polyline
extraction or during image alignment can result in a completely unacceptable model. For that reason, the
overall prototype design is very conservative. For instance, often many points delivered by the sensor are
discarded to avoid generating incorrect polylines. This may lead the robot to sense the same part of an
environment several times, hence producing a longer motion path. Moreover, the image-alignment function
always runs under user supervision to avert serious registration errors.

Matching transforms are computed locally to align the global model with the local model generated
at the robot’s current location. Once a transform has been computed, it is never revised. This has its
disadvantages. In corridors bounded by parallel featureless walls, line matching only corrects positioning
errors in the direction perpendicular to the walls. Odometry can be used, but imprecision in the direction
parallel to the walls grows bigger with distance. A possible solution to this problem is to track successive local
models and transformations to enable the periodic optimization of a global matching criterion, especially
after the robot has completed a long loop around a building. This could be achieved by adapting some of
the localization techniques recently proposed in the SLAM literature [6, 14]. For large environments such
global optimization will produce more precise layouts, and solve mismatches like the one shown in Figure 20.

Finally, the current system should handle multiple robots with relatively minor changes. If a team
composed of N robots is available, and their relative positions are known, a single model can be generated
from all the captured scans. A central NBV planner then computes the set of N positions that stations the

team for the aggregated next-best view. However, when the relative positions of the robots are not known,
the problem becomes considerably more difficult. In this case, the robots act independently (distributed
planning), and perhaps communicate only sporadically. The techniques presented in this article have to be
revised and extended in order to cover this case.

Acknowledgments: This work was funded by DARPA/Army contract DAAE07-98-L027, ARO MURI
grant DAAH04-96-1-007, NSF grant I1I5-9619625, and a gift from Honda R&D, Americas. We also wish to
thank L. Guibas, T.M. Murali and R. Murrieta, whose contributions enriched the ideas presented in this
article, and S. Yao and E. Mao for their assistance during the implementation of the robot system.

References

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

[11]

[12]
[13]

[14]

J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith, and M.A. Abidi. A “next-best-view” algorithm
for three-dimensional scene reconstruction using range images. In SPIE, volume 2588, pages 418—29,
1995.

R. Chatila and J.P. Laumond. Position referencing and consistent world modeling for mobile robots. In
Proc. IEEFE Int. Conf. on Robotics and Automation, pages 138-143, 1985.

H. Choset and J. Burdick. Sensor based motion planning: The hierarchical generalized voronoi dia-
gram. In J.-P. Laumond and M. Overmars, editors, Proc. 2nd Workshop on Algorithmic Foundations
of Robotics. A.K. Peters, Wellesley, MA, 1996.

C. L. Conolly. The determination of next best views. In IEEE Int. Conf. on Robotics and Automation,
pages 432-435, 1985.

B. Curless and M. Levoy. A volumetric method for building complex models from range images. In
Proc. ACM SIGGRAPH, pages 303-312, August 1996.

H.F. Durrant-Whyte, M.W.M.G. Dissanayake, and P.W. Gibbens. Toward deployment of large scale
simultaneous localisation and map building (slam) systems. In J. Hollerbach and D. Koditschek, editors,
Robotics Research - The Ninth Int. Symp., pages 161-167, New York, NY, 2000. Springer.

A. Elfes. Sonar-based real world mapping and navigation. IEFEE J. Robotics and Automation, RA-
3(3):249-265, 1987.

P.W. Finn, L.E. Kavraki, J.C. Latombe, R. Motwani, C. Shelton, S. Venkatasubramanian, and A. Yao.
Rapid: Randomized pharmacophore identification for drug design. J. of Comp. Geometry: Theory and
Applications, 10:263-272, 1998.

H. Gonzélez-Banos, A. Efrat, J.C. Latombe, E. Mao, and T.M. Murali. Planning robot motion strategies
for efficient model construction. In J. Hollerbach and D. Koditschek, editors, Robotics Research - The
Ninth Int. Symp., pages 345-352, New York, NY, 2000. Springer.

H. Gonzdlez-Banos and J.C. Latombe. Planning robot motions for range-image acquisition and au-
tomatic 3d model construction. In Proc. AAAI Fall Symposium Series, Integrated Planning for Au-
tonomous Agent Architectures, Orlando, Florida, October 23-25 1998. AAAT Press.

B. Kuipers, R. Froom, W.K. Lee, and D. Pierce. The semantic hierarchy in robot learning. In J. Connell
and S. Mahadevan, editors, Robot Learning. Kluwer Academic Publishers, Boston, MA, 1993.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.

J.J. Leonard and H.F. Durrant-Whyte. Mobile robot localization by tracking geometric beacons. IEEE
Transactions on Robotics and Automation, 7(3):376-382, 1991.

J.J. Leonard and H.J.S. Feder. A computationally efficient method for large-scale concurrent maping
and localization. In J. Hollerbach and D. Koditschek, editors, Robotics Research - The Ninth Int. Symp.,
pages 169-176, New York, NY, 2000. Springer.

[15] J. Maver and R. Bajcsy. Occlusions as a guide for planning the next view. IEEE Trans. Pattern Analysis
and Machine Intelligence, 15(5):417-433, May 1993.

[16] K.Mehlhorn and St. Nahér. LEDA: A Platform of Combinatorial and Geometric Computing. Cambridge
University Press, Cambridge, UK, 1999.

[17] J.S.B. Mitchell. Shortest paths and networks. In J.E. Goodman and J. O’Rourke, editors, Handbook of
Discrete and Computational Geometry, pages 445-466. CRC Press, Boca Raton, FL, 1997.

[18] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location and envi-
ronment modeling. In H. Miura and S. Arimoto, editors, Robotics Research - The 5th Int. Symp., pages
85-94. MIT Press, Cambridge, MA, 1989.

[19] J. O’'Rourke. Visibility. In J.E. Goodman and J. O’Rourke, editors, Handbook of Discrete and Compu-
tational Geometry, pages 467-479. CRC Press, Boca Raton, FL, 1997.

[20] R. Pito. A solution to the next best view problem for automated cad model acquisition of free-form
objects using range cameras. Technical Report 95-23, GRASP Lab, University of Pennsylvania, May
1995.

[21] R. Pito. A sensor based solution to the next best view problem. In Proc. IEEE 13th Int. Conf. on
Pattern Recognition, volume 1, pages 941-5, 1996.

[22] W.H. Press, S.A. Teukolsky, W.T. Vettering, and B.P. Flannery. Numerical Recipes in C. Cambridge
University Press, 1994.

[23] S. Teller. Automated urban model acquisition: Project rationale and status. In Proc. 1998 DARPA
Image Understanding Workshop, pages 455-462. DARPA, 1998.

[24] S. Thrun, D. Fox, and W. Burgard. Probabilistic mapping of an environment by a mobile robot. In
Proc. IEEE Int. Conf. on Robotics and Automation, pages 1546-1551, Leuven, Belgium, 1998.

[25] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proc. ACM SIGGRAPH, pages
311-318, 1994.

[26] L. Wixson. Viewpoint selection for visual search. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 800-805, 1994.

A The Complexity of a Free Curve is O(1)

This appendix demonstrates that the complexity of a free curve is constant. Specifically, we provide here
the proof for Theorem 3.1:

Theorem 3.1 (Free Curves) Suppose r2(6;az,b2) succeeds r1(0;a;1,b1) in the output list I of a sensor
operating under of a sensor operating under Definition 2.2 and located ot the origin. If OW is continuously
differentiable, then the free curve f(0;b1,a2) connecting r1 to ro consists of at most three pieces. Each piece
is either a line segment, a circular arc, or a section of a logarithmic spiral of the form r = r,exp(£)\0)
(where A = tanT and r, is a constant).

In order to prove this claim we need the following lemma:

Lemma A.1 (Unobserved Obstacles) Let r3(6;a1,b1) succeed r2(8; az, be) in the list II. Let C be some
obstacle, and suppose that neither r1 nor ro are part of the boundary of C (i.e., C is disjoint from r1 and
ro). If OW is continuously differentiable, then no portion of C lies within o distance 1,44 from the origin in
the polar interval by < 6 < as.

Proof: Suppose the lemma is not true — that is, there is a portion of C' within r,,,, of the origin inside
the polar interval (by,a2). Let p be the closest point to the origin in the boundary of C. Because OW is
differentiable, the normal of OW at p points toward the origin. Therefore, p and its vicinity should have
been observed. The vicinity of p must then be part of an element of II. But this contradicts our assumption
that ro succeeds ry and that C' is disjoint from 71 and ro. O

The consequence of Lemma A.1l is that if there exists an obstacle (or a portion of an obstacle) within
the sensor’s range inside the polar interval (b1, az), then r1 and/or ry represent a portion of this obstacle’s
boundary. In other words, in order to construct the worst-case scenario in the polar sector (by,as), we can
assume that the workspace has no holes, and consider r; and ry as boundary sections of the same obstacle.

From here on, let 8 = as — by, p1 = r1(b1) and ps = r3(az); and let Iy and Iy denote the rays connecting
the origin with point p; = (p1,b1) and point ps = (p2,as), respectively.

Each endpoint of a curve in II represents one of the following events: the sensor line-of-sight was occluded
(denoted as case {o}), the range constraint was exceeded (case {e}), or the incidence constraint was exceeded
(case {v}). To join p; with ps there are a total of 6 distinct cases: {v,v}, {v,0}, {v,e}, {e,e}, {0,0} and {e,0}.
The cases {0,e}, {o,v} and {e,v} are mirror images of other cases.

Case {v,v}: The incidence constraint was exceeded immediately after § = b; and immediately before
0 = as. Therefore, the normal to OW just after r; and just before r; is oriented at a grazing angle with
respect to the sensor. Suppose that the boundary 8 continues after ry with its surface normal constantly
oriented at exactly an angle 7 with respect to the sensor’s line-of-sight. This curve in polar coordinates
satisfies the following relations:

n = -—rdébeé +0rég, (3)
n-(—ré.) = rin|cos(r) = %g—g = =+, with A =tan(7). 4)

Hence, the curve’s equation is r = r, exp [£A(0 — 6,)], with r, = p; and 6, = b;. The equation now defines
two spirals: a spiral s growing counter-clockwise from p; (or shrinking clockwise), and a second spiral
sy shrinking counter-clockwise from p; (or growing clockwise). W must continue from p; in the counter-
clockwise direction either “above” sf or “below” s;; otherwise, the incidence constraint would not have

been violated.

Similarly, for the opposite end po, let r, = p2 and 8, = as. The solution to equation (4) now defines
a spiral s; growing clockwise from py (or shrinking counter-clockwise), and a second spiral s shrinking
clockwise from p, (or growing counter-clockwise). OW must continue from ps in the clockwise direction

either “above” s; or “below” s3.

Remark 1. 9V cannot continue below s; when p; exp(—AB) < p2. In other words, 9W cannot continue
below sy if this spiral curve cuts lo below the point py (Figure 21(a)). To show this, suppose W continues
below s; , which implies that WV bends toward the sensor immediately after 7. We know that W does not
cross the origin, else nothing is visible under Definition 2.1 and II would be empty. Hence, 0V would have
to bend outwards before cutting the ray Iz, otherwise ro will be occluded. Since 0V is differentiable, there
must then be a point p where the normal to OV points towards the origin. Because of Lemma A.1, this point
p is not occluded by any other section of 9V that is disjointed from r1 and ry. Therefore, the vicinity of p
is a visible portion of 9WW. This violates our assumption that r2 succeeds r1. Thus, when p; exp(—A8) < pa,
the first section of the curve f joining rq to ro coincides with sf’.

Remark 2. By symmetry, when psexp(—\3) < p; (i-e., s§ cuts I; below p;), the last section of the
curve f coincides with s; (which grows clockwise from ps).

The point ps may lie below the intersection of s with I3, above the intersection of s} with Iy, or between
both intersections. Likewise, the point p; may lie below the intersection of si with I;, above the intersection
of s; with I, or between both intersections. There are total of 9 combinations of events for case {v,v}, but
only 3 of them are independent:

(a) sy cuts Iy above py. Thus, p1 exp(—A3) > p2, and this is equivalent to p2 exp(AB) < p1. That
is, s5 cuts l; below p;.

Figure 21: Example of a free-curve construction: (a) this situation is impossible; (b) in this case the free
curve is composed of the segment joining p; with p and the spiral s, joining p with ps; (c¢) here the free
curve is composed of the spiral s7 joining p; with p and the spiral s, joining p with ps (unless p is beyond
range, in which case a circular arc of radius 7, is added).

(b) s cuts I below pa. Thus, p; exp(A3) < p2, and this is equivalent to ps exp(—A3) > p1. That
is, sj cuts I; above p;.

(¢) sy cuts I below ps and sj cuts I above pa. Thus, p; exp(—=A3) < p2 < p1exp(A3), and this
is equivalent to psexp(—AB) < p1 < p2exp(AB). That is, s cuts I; below pi, and s; cuts Iy
above p;.

Let us analyze the first situation. p; exp(—AB) > p2 is equivalent to psexp(AS8) < p1, which in turn
implies that ps exp(—AB) < p1. In other words, both the clockwise-growing s, and the clockwise-shrinking
s3 cut I; below p; (see Figure 21(b)). From Remark 2, the last section of the free curve f coincides with
s, . Let p be the intersection between s, and l;. The free curve f joining r; to r is thus composed of the
segment joining p; with p and the spiral s; joining p with ps.

A symmetric argument applies to the second situation, when ps exp(—AB) > p1 (i.e., s3 cuts I; above
p1), except that Remark 1 is used in this case.

The only remaining situation is (¢). Here, p; exp(—A8) < p2 and p2 exp(—AB) < p1. From Remarks 1
and 2, these inequalities imply that the first section of f coincides with si” while the last section of f coincides
with s;. Let p be the intersection of s and s;. If p is within r,,4,, then the free curve f is composed of
the spiral s} joining p; with p and the spiral s; joining p with py (Figure 21(c)). Otherwise p is beyond
range, and f is composed of a section of s, a circular arc of radius 7y,4,, and a section of s .

Case {v,0}: As in the previous case, the curve r; was interrupted at § = by because the incidence
constraint was exceeded. The curve ry, however, was interrupted at 8 = as because a portion of 9V blocked
the sensor’s line-of-sight. In order to produce the occlusion,)V must be tangent to Iy at some point p;
below p2. We know from Lemma A.1 that the portion of W producing the occlusion cannot be disjointed
from ry. Thus, p; is part of the same curve as 7.

OW cannot continue from 71 below s; . To show this, suppose W continues below s; . This implies that
OW bends toward the sensor immediately after r1. But to cause the occlusion, 9V has to bend outwards
before it reaches the tangent point p;. Since W is differentiable, there must be a point where the normal to
OW points towards the origin. But we already know that this violates our assumption that 7o succeeds 7.

Given that W cannot continue from 7; below s;", then 8%V must continue above s7 .

For case {v,0}, it is always true that s cuts the ray l» below ps at some point p. Otherwise, it will be
impossible to produce the occlusion at p;, because W continues from r; above sf. Thus, f is composed of
the spiral s} joining p; with p, and the segment joining p with po.

Case {v,e}: As before, the incidence constraint was exceeded at § = b;. But the curve ry was interrupted
because the range constraint was exceeded at 8 = ay. That is, p3 = rpqs-

p1 < Tmag because the point p; is within range, which implies that p; exp(—AB) < p2 since pa = T'mqz-
This is exactly the situation described in Remark 1 for case {v,v}. Thus, OW cannot continue below s7,
and the first section of f coincides with s .

If s{ cuts the ray Il below p, at some point p, then f is composed of the spiral si joining p; with p,
and the segment joining p with ps. Otherwise p is beyond range, and f is composed of a section of s} and
a circular arc of radius 7,,4q-

Case {e,e}: This case is trivial. The free curve is a circular arc connecting p; with po.

Cases {0,0} and {e,o}: These cases are impossible because of Lemma A.1l. In case {0,0}, both r; and
ro are occluded. We know from Lemma A.1 that the portion of OW occluding ry cannot be disjointed from
r1, and that the portion of W occluding r; cannot be disjointed from r;. But this situation is impossible.

For the case {e,0}, 0YV must be tangent to I at some point p, below p». But OW continues after rq
beyond the maximum range. Therefore, 0)V has to bend toward the sensor to fall back within range, and
then bend outwards before it reaches the tangent point p;. Again, this violates our assumption that 7o
succeeds r1, because W is differentiable and there must be a point where the normal to W points towards
the origin. Hence, this case is impossible.

We have accounted all possible cases. This concludes our proof of Theorem 3.1.

