A Single-Query Bi-Directional
Probabilistic Roadmap Planner with
Lazy Collision Checking

Gildardo Sanchez! and Jean-Claude Latombe?

! ITESM, Campus Cuernavaca, Cuernavaca, México
2 Computer Science Department, Stanford University, Stanford, CA, USA

Abstract. This paper describes a new probabilistic roadmap (PRM) path planner
that is: (1) single-query — instead of pre-computing a roadmap covering the entire
free space, it uses the two input query configurations as seeds to explore as little
space as possible; (2) bi-directional — it explores the robot’s free space by concur-
rently building a roadmap made of two trees rooted at the query configurations;
(3) adaptive — it makes longer steps in opened areas of the free space and shorter
steps in cluttered areas; and (4) lazy in checking collision — it delays collision tests
along the edges of the roadmap until they are absolutely needed. Experimental re-
sults show that this combination of techniques drastically reduces planning times,
making it possible to handle difficult problems. including multi-robot problems in
geometrically complex environments.

1 Introduction

Probabilistic roadmaps (PRM) have proven to be an effective tool to solve
path-planning problems with many degrees of freedom (dofs) [8-10] and/or
complex admissibility constraints (e.g., kinodynamic, stability, and visibility
constraints) [5,8,11,12]. A PRM planner samples the configuration space at
random and retains the collision-free points as milestones. It connects pairs
of milestones by simple paths (straight segments in configuration space) and
retains the collision-free ones as local paths. The milestones and local paths
form the probabilistic roadmap. The motivation is that, while it is often im-
practical to compute an explicit representation of the collision-free subset of
a configuration space (the free space), algorithms exist that efficiently test
if a given configuration or a local path is collision-free [2,6]. Under some as-
sumptions, the probability that a PRM planner finds a collision-free path, if
one exists, goes to 1 exponentially in the number of milestones [7,8]. Hence,
random sampling provides a convenient incremental path-planning scheme.
PRM planners spend most of their time performing collision checks. Sev-
eral approaches are possible to reduce the overall cost of collision checking:
e Design faster collision checkers. However, several efficient algorithms al-
ready exist. Among them, hierarchical algorithms pre-compute a multi-
level bounding approximation of every object in an environment [6,14].
For each collision query, they use this approximation to quickly rule out



2 Gildardo Sanchez and Jean-Claude Latombe

large subsets of the objects that cannot collide. They scale up well to
complex environments [7].

o Design sampling strategies yielding smaller roadmaps. For example, the
strategy in [9] produces a first roadmap by sampling configuration space
uniformly; next, it picks additional milestones in neighborhoods of exist-
ing milestones with no or few connections to the rest of the roadmap.
Other strategies generate a greater density of milestones near the bound-
ary of the free space, as the connectivity of narrow regions is more difficult
to capture than that of wide-open regions [1,4].

e Delay collision checks until they are absolutely needed. The planner in [3]
first generates a network by distributing points at random in configura-
tion space. It initially assumes that all points and connections between
them are collision-free. It then computes the shortest path in this network
between two query configurations and tests it for collision. If a collision
is detected, the node and/or segment where it occurs are erased, and a
new shortest path is computed and tested; and so on.

We think that delaying collision tests is a promising approach, but its
potential has only been partially exploited in [3]. One must decide in advance
how large the network should be. If it is too coarse, it may fail to contain
a solution path. But, if it is too dense, time will be wasted checking similar
paths for collision. The focus on shortest paths may be costly when obstacles
force the robot to take long detours.

In this paper, we present a new PRM planner — called SBL, for Single-
query, Bi-directional, Lazy in collision checking — that tries to better exploit
delayed collision checking, in particular by combining it with single-query,
bi-directional, and adaptive sampling techniques, some of which were intro-
duced in [7.8]. SBL incrementally constructs a network of milestones made
of two trees rooted at the query configurations, hence focusing its attention
to the subset of the free space that is reachable from these configurations.
It also locally adjusts the sampling resolution to take longer steps in opened
regions of the free space and shorter ones in narrow regions. It does not
immediately test connections between milestones for collision. Only when
a sequence of milestones joining the two query configurations is found, the
connections between milestones along this path are tested. This test is per-
formed at successive points ordered according to their likelihood of revealing
a collision. No time is wasted testing connections that are not on a candi-
date path and relatively little time is spent checking connections that are not
collision-free. On a 1-GHz Pentium III processor, the planner reliably solves
problems with 6-dof robots in times ranging from a small fraction of a sec-
ond to a few seconds. Comparison with a similar planner using a traditional
collision-checking strategy shows that lazy collision checking cuts planning
times by factors from 4 to 40 in the environments of Fig. 1. SBL also solves
multi-robot problems reliably and efficiently, like the one in Fig. 5 (36 dofs).



Lazy collision checking 3

Fig. 1. Path planning environments

2 Definitions and Notations

Let C denote the configuration space of a robot and F' C C' its free space.
We normalize the range of values of each dof to be [0,1] and we represent
C as [0,1]", where n is the number of dofs of the robot. We define a metric
d over C. For any ¢ € C, the neighborhood of ¢ of radius r is the subset
B(q.7)={¢ € C|d(q,q") < r}. With d = Lo — the metric used by SBL — it
is an n-D cube.

No explicit geometric representation of F' is computed. Instead, given any
configuration ¢ € C', a collision checker returns whether ¢ € F. A path 7 in
C is considered collision-free if a series of points on 7, such that every two
successive points are closer apart than some ¢, are all collision-free. A rigorous
test (eliminating the need for &) is possible when a distance-computation
algorithm is used instead of a pure collision checker [2].



4 Gildardo Sanchez and Jean-Claude Latombe

A path-planning query is defined by two query configurations. ginix and
goal. If these configurations lie in the same connected component of F, the
planner should return a collision-free path between them: otherwise, it should
indicate that no such path exists. There are two main classes of PRM plan-
ners: multi-query and single-query. A multi-query planner pre-computes a
roadmap, which it later uses to process multiple queries [9,10]. To deal with
any possible query, the roadmap must be distributed over the entire free
space. Instead, a single-query planner computes a new roadmap for each
query [7]. The less space it explores to find a solution path, the better. Single-
query planners are more suitable in environments with frequent changes.

A single-query planner either grows one tree of milestones from either
Ginit OT (goal, until a connection is found with the other query configuration
(single-directional sampling), or grows two trees concurrently, respectively
rooted at ginit and ggoa1, until a connection is found between the two trees
(bi-directional sampling) [8]. In both cases, milestones are iteratively added
to the roadmap. Each new milestone m’ is selected in a neighborhood of
a milestone m already installed in a tree T'. and is connected to m by a
local path (hence, m’ becomes a child of m in T). Bi-directional planners are
usually more efficient than single-directional ones.

SBL is a single-query, bi-directional PRM planner. Unlike previous such
planners, it does not immediately test the connections between milestones
for collision. Therefore, rather than referring to the connection between two
adjacent nodes in a roadmap tree as a local path. we will call it a segment.

3 Experimental Foundations

The design of SBL was suggested by experiments that we performed with the
single-query PRM planner described in [8]. To study the impact of collision
checking on the running time, we modified the planner’s code by remov-
ing collision checks for connections between milestones. As we expected, the
planner was faster by two to three orders of magnitude, but surprisingly a
significant fraction of the generated paths were actually collision-free.

Every segment created by the planner of [8] is relatively short. Thus, the
above observation suggested that if two configurations picked at random are
both collision-free and close to each other, then the straight-line segment be-
tween them has high prior probability of being collision-free. To verify this
analysis, we generated 10,000 segments at random with L. lengths uniformly
distributed between 0 and 1 (recall that the Lo diameter of C is 1). This was
done by picking 100 collision-free configurations in C' uniformly at random
and connecting each such configuration ¢ to 100 additional collision-free con-
figurations obtained by randomly sampling neighborhoods of ¢ of different
radii. We then tested each of the 10,000 segments for collision. The chart of
Fig. 2 (generated for the environment of Fig. 1(a)) displays the ratio of the
number of segments that tested collision-free, as a function of the lengths



Lazy collision checking 5

1.00 7

0.90 /—

% 0.80 7

..EEI?I] /

£ 060

2 Py

o 050

2
E 0.40 f_/

o AV

w 0.20

'S

010
ravd

0.00 T T T T T
o o1 02 03 04 a5

Length of the segment

T
06 07 08

Fig. 2. Collision ratios

of these segments. Here, a segment shorter than 0.25 has probability greater
than 0.6 of being collision-free. Similar charts were obtained with the other
environments of Fig. 1. There is a simple explanation for this result. Since
the robot and the obstacles are “thick” along all or most directions, the ob-
stacle regions in C' are also thick in most directions. Hence, a short colliding
segment with collision-free endpoints is necessarily almost tangential to an
obstacle region in C, an event that has small probability.

The above test and other tests led to making the following observations:

e Most local paths in a probabilistic roadmap are not on the final path.
Using the planner of [8] on the examples of Fig. 1, we measured that the
ratio of milestones on the final path varies between 0.1 and 0.001.

e The test of a connection is most expensive when it is actually collision-
free. Indeed. the test ends as soon as a collision is detected, but is carried
down to the finest resolution when there is no collision.

e A short connection between two milestones has high prior probability of
being collision-free. Thus, testing connections early is likely to be both

useless and expensive.

e If a connection between milestones is colliding, its midpoint has high
probability to be in collision; hence, this point should be tested next (a
choice that can be applied recursively).

SBL’s lazy collision-checking strategy derives from these observations.

4 Description of SBL

SBL is given two parameters: s — the maximum number of milestones that
it is allowed to generate — and p — a distance threshold. Two configurations
are considered “close” to one another if their L. distance is less than p. In
our implementation, p is typically set between 0.1 and 0.3.



6 Gildardo Sanchez and Jean-Claude Latombe

4.1 Overall algorithm

Algorithm PLANNER (¢init .¢goal)
1. Install ginit and ggoal as the roots of Tinit and Tgeal. respectively
2.  Repeat s times
2.1. EXPAND-TREE
2.2. 17+ CONNECT-TREES
2.3. If 7 # nul then return 7
3. Return failure

The planner builds two trees of milestones, Tinit and Tjoa1, respectively
rooted at ginit and ggoal. At each loop of Step 2, EXPAND-TREE adds a
milestone to one of the two trees, while CONNECT-TREES connects the
two trees. The planner returns failure if it has not found a solution path after
s iterations. If the planner returns failure, either no collision-free path exists
between ginit and ggoal. or the planner actually failed to find one.

4.2 Tree expansion

Algorithm EXPAND-TREE
1. Pick T' to be either T, or Tyoal, each with probability 1/2
2.  Repeat until a new milestone ¢ has been generated
2.1. Pick a milestone m from T' at random, with probability m(m)
2.2. Fori=1,2,... until a new milestone ¢ has been generated
2.2.1. Pick a configuration ¢ uniformly at random from B(m, p/1)
2.2.2. If q is collision-free then install it in 7" as a child of m

Each expansion of the roadmap consists of adding a milestone to one
of the two trees. The algorithm first selects the tree T to expand. Next, a
milestone m is picked from T with probability 7(m) inverse to the current
density of milestones of 7" around m. (Implementation details will be given in
Subsection 4.5.) Finally, a collision-free configuration ¢ is picked at distance
less than p from m. This configuration is the new milestone. The use of
the probability distribution m(m) at Step 2.1 was introduced in [7] to avoid
over-sampling regions of F'. It guarantees that the distribution of milestones
eventually diffuses through the subsets of F' reachable from ginit and ggoal.
This condition is needed to prove that the planner finds a path with high
probability, when one exists [7,8]. The alternation between the two trees
prevents any tree from eventually growing much bigger than the other, as
the advantages of bi-directional sampling would then be lost.

Step 2.2 implements an adaptive sampling strategies, by selecting a series
of milestone candidates, at random, from successively smaller neighborhoods
of m, starting with a neighborhood of radius p. When a candidate ¢ tests
collision-free, it is retained as the new milestone. On the average, the jump



Lazy collision checking 7

from m to ¢ is greater in wide-open regions of F' than in narrow regions. Note
that the collision test of the segment from m to ¢ is not done here; it will be
done later if and when this segment belongs to a candidate path.

4.3 Tree connection

Algorithm CONNECT-TREES
1. m ¢ most recently created milestone
2. m' « closest milestone to m in the tree not containing m
3. Ifd(m,m') < p then
3.1. Connect m and m’ by a bridge w
3.2. 7 ¢ path connecting ginit and ggoar
3.3. Return TEST-PATH(7)
4.  Return nd

Let m now denote the milestone that was just added by EXPAND-TREE.
Let m’ be the closest milestone to m in the other tree. The two trees are con-
nected by a segment, called a bridge, joining m and m’ if these two milestones
are less than p apart. The bridge creates a path 7 joining ginit and ggeal in

the roadmap. The segments along 7, including the bridge. are now tested for
collision. TEST-PATH returns nil if it detects a collision.

4.4 Path testing

SBL associates a collision-check index x(u) with each segment u between
milestones (including the bridge). This index takes an integer value indicating
the resolution at which u has already been tested. If x(u) = 0, then only the
two endpoints of u (which are both milestones) have been tested collision-
free. If k(u) = 1, then the two endpoints and the midpoint of u have been
tested collision-free. More generally, for any x(u), 26(u) 4 1 equally distant
points of u have been tested collision-free. Let A(u) denote the length of u.
If 2_"(“)/\(u) < g, then u is marked safe. The index of every new segment is
initialized to 0.

Let o(u,j) designate the set of points in u that must have already been
tested collision-free in order for x(u) to have the value j. The algorithm
TEST-SEGMENT (u) increments «(u) by 1:

Algorithm TEST-SEGMENT (u)

1. j+ &(u)

2. For every q € o(u,j + 1)\o(u, j) if ¢ is in collision then return collision
3. If 2_(j+1)/\(u) < & then mark u safe, else k(u) «—j+1

For every segment u that is not marked safe, the current value of 2_“(“))\(1{)
is cached in the data structure representing u. The smaller this value, the
greater the probability that u is collision-free.



8 Gildardo Sanchez and Jean-Claude Latombe

Let uy, us, ..., up denote all the segments in the path 7 that are not already
marked safe. TEST-PATH(7) maintains a priority queue U of these segments
sorted in decreasing order of 27 \(u;) (i = 1 to p). A similar technique
has been previously used in [13].

Algorithm TEST-PATH(7)
1. While U is not empty do
1.1, u + extract(U)
1.2. Tf TEST-SEGMENT (u) = collision then
1.2.1. Remove u from the roadmap
1.2.2. Return nil
1.3. If u is not marked safe then re-insert u into U
2. Return 7

Each loop of Step 1 results in increasing the index of the segment u that
is in first position in U. This segment is first removed from U. It is later re-
inserted into U if TEST-SEGMENT (u) at Step 1.2 neither detects a collision,
nor marks u safe. If u is re-inserted into U, it may not be in first position,
since the quantity ‘2_“(“))\(11) has been divided by 2. TEST-PATH terminates
when a collision is detected — then the colliding segment is removed from the
roadmap — or when all segments have been marked safe (i.e., U is empty) —
then the path 7 is returned.

The removal of a segment u disconnects again the roadmap into two
trees. If u is the bridge that CONNECT-TREES created to connect the
two trees, then the two trees return to their previous state (except for the
collision-check indices of some segments, whose values may have increased).
Otherwise, the removal of u results in a transfer of milestones from one tree
to the other. Assume that u is in Tyoa1, as illustrated in Fig. 3(a), where
w # u denotes the bridge added by CONNECT-TREES. The milestones
my, ...,m, between u and w (r = 3 in Fig. 3) and their children in Tgoal
are transferred to Tipir as shown in Fig. 3(b). The parent-child connections
between the transferred milestones remain the same, except those between
mi.....m,, which are inverted. So, no milestone is ever removed from the
roadmap and the collision-checking work done along the segments is saved in
their indices. If one of these segments later lies on another candidate path,
then the tests previously done are not repeated.

4.5 Implementation details

SBL’s collision checker is PQP [6]. Each obstacle and robot link is described
by a collection of triangles representing its surface. PQP pre-computes a
bounding hierarchical representation of each object using oriented-bounding
boxes. No other pre-computation is done by the planner.

The planner spatially indexes every milestone of Tini¢ (resp. Tgoal) In an
h-dimensional (h = 2 or 3) array Ainir (resp. Agoal)~ Both arrays partition



Lazy collision checking 9

(b)

Fig. 3. Transfer of milestones from one tree to the other

the subspace defined by h dimensions of C' (in our implementaion, h = 2)
into the same grid of equally sized cells. Whenever a new milestone ¢ is in-
stalled in a tree, the appropriate cell of the corresponding array is updated
to contain q. When a milestone is transferred from one tree into the other,
the two arrays are updated accordingly. Ainit and Agear are used at Step 2.1
of EXPAND-TREE, where we pick a milestone m from one tree T" with a
probability distribution m(m). Rather than maintaining the density of sam-
ples around each milestone, we do the following. Assume that 7' = Ti,;;. We
first pick a non-empty cell of A;jn;¢, then a milestone from this cell. Hence, the
probability to pick a certain milestone is greater if this milestone lies in a cell
of Ajnit containing fewer milestones. This technique is fast and results in a
good diffusion of milestones in F' along the h selected dimensions. To ensure
diffusion along all dimensions of C', we periodically change the h dimensions.
Each change requires re-constructing the arrays Ainit and Aggar, but the total
cost of this operation is negligible relative to collision tests.

Step 2 of CONNECT-TREES also uses Ajnjt and Agga to identify the

milestone m’ that will be connected to the newly added milestone m. Our



10 Gildardo Sanchez and Jean-Claude Latombe

implementation of CONNECT-TREES tries two connections: first, instead
of selecting m’ as the closest milestone to m in the other tree, it picks m’ to
be the closest milestones in the same cell as m, but in the other array (m and
m’ are then only guaranteed to be close to each other along h dimensions);
then, it picks m’ uniformly at random in the other tree. Our experiments
have shown that this technique is faster on average than connecting m to the
closest milestone. (The “closest-milestone” heuristic often delays the finding
of some easy connections.)

Finally, we added a simple path optimizer to SBL to remove blatant jerks
from paths. This optimizer takes a path 7 as input and performs the following
operation several times: pick two points ¢ and ¢’ in 7 at random and, if the
straight-line segment connecting them tests collision-free, replace the portion
of 7 between ¢ and ¢’ by this segment.

5 Experimental Results

SBL is written in C4++. The running times reported below were obtained on
a 1-GHz Pentium III processor with 1 GB of main memory running Linux.
The distance threshold p was set to 0.15 and the resolution € to 0.01. Each
array Ainit and Agea had size 10 x 10. The two dimensions of these arrays
were changed every 50 milestones.

Fig. 1 displays some of the single-robot examples we used to test SBL. In
each example, the robot is a 6-dof arm; the dark curve is traced by the center-
point of its end-effector for one non-optimized path generated by SBL and the
light curve is defined in the same way for the optimized path. The numbers
of triangles in the robot and the obstacles, n., and ngps, are indicated in
Table 1. The geometrically simpler example of Fig. 1(d) was intended to
test SBL when the free space contains narrow passages, a notorious difficulty
for PRM planners. The time used by PQP to pre-compute the bounding
hierarchies goes from 0.19s for the environment with the fewest triangles
(Fig. 1(d)) to 3.9s for the environment with the most triangles (Fig. 1(c)). Tt
is not included in the running times of SBL given below.

Table 1. Number of triangles in robots and obstacles

1(a) 1(b) 1(c) 1(d)

Mrob Tobs Mrob Nobs Mrob Nobs Mrob Nobs

5,000 | 21,000 || 3,000 | 50,000 || 5,000 | 83,000 || 3,000 | 50

5.1 Basic performance evaluation

Table 2 gives statistics — average running time, standard deviation of running
time, average time spent in collision checking, average number of milestones



Lazy collision checking 11

in final roadmaps, average number of milestones on generated paths, average
number of collision checks, average number of checks on generated paths —
over 100 runs of SBL on each of the four examples of Fig. 1. In all 400 runs,
SBL found a path in small amount of time; there was no failure (the maximal
number of milestones s was set to 10,000). A large fraction of the collision
checks were made on the solution paths. The running times of Table 2 do not
include path optimization, which in all cases took an additional 0.1 to 0.2s.

Table 2. Results on the examples of Fig. 1 (times are in seconds)

‘ ex. ‘ time ‘ std ‘ ce-t ‘ mil ‘ mil-p ‘ F#cc ‘ #ce-p ‘

(a) | 0.60 | 0.38 | 0.58 | 159 13 1483 | 342
(b) | 0.17 | 0.07 | 0.17 | 33 10 406 124
1(c) | 4.42 | 1.86 | 4.17 | 1405 | 24 7267 | 277
(d) | 6.99 | 3.55 | 6.30 | 4160 | 44 12228 | 447

The chart of Fig. 4 was generated by running SBL many times on the
example of Fig. 1(c) with increasing values of the maximum number s of
milestones, from very small ones to larger ones (horizontal axis). For each
value of s, we ran SBL 200 times with different seeds, and we counted the
number of failures (vertical axis). When s is very small, SBL fails consistently.
When it is suficiently large, its sucess rate is 100%. The transition between
consistent failure and consistent success is quite fast, which is coherent with
the theoretical result that a PRM planner has fast convergence rate in the
number of milestones [7].

200 preseeesreresssanvnt o res,
180 ‘\

160
140
120 +
100 .
80 S
60
40 I|
20 ;

Numbers of failures

-

0 500 1000 1500 2000

milestones

Fig.4. Experimental convergence rate of SBL on the example of Fig. 1(c)

On several examples, we tried different values of p between 0.1 and 0.3,
as well as indexing arrays of resolutions other than 10 x 10, including 3-D
arrays, but performance results were not significantly different.



12 Gildardo Sanchez and Jean-Claude Latombe

5.2 Comparative performance evaluation

To assess the efficiency of our lazy collision-checking strategy, we implemented
a version of the planner that fully tests every segment between a milestone
and a milestone candidate before inserting the later in the roadmap. This
planner is similar to the one presented in [8]. Note, however, that our two
planners do not exactly generate the same milestones, even when they use the
same seed for the random number generator. Indeed, while SBL considers any
collision-free configuration ¢ picked in the neighborhood of a milestone m as
a new milestone (Step 2.2 of EXPAND-TREE), the second planner requires
in addition that the segment joining m and ¢ be collision-free. Moreover, in
the second planner no milestone is ever transferred from one tree to the other.

Table 3. Results with full-collision-check planner

‘ ex. ‘ time ‘ std ‘ cc-t ‘ mil ‘ mil-p ‘ #cc ‘ #ce-p ‘
1(a) | 2.82 3.01 2.81 22 5 7425 173
1(b) | 1.03 0.70 1.02 29 9 2440 123
1(c) | 18.46 15.34 18.35 771 16 38975 219
1(d) | 293.77 | 122.75 | 292.40 | 6737 | 24 666084 | 300

Table 3 shows the results obtained with the full-collision-check planner,
on the same four examples as above. The maximal number of milestones s
was set to 10,000 and the results are statistics over 100 runs. The average
running times (and numbers of collision checks) for SBL are smaller than for
the full-collision-check planner by factors ranging from slightly over 4 for the
problem of Fig. 1(c) to over 40 for the problem of Fig. 1(d). These results
cannot be compared to those in [3], where the improvement was measured
relative to a multi-query planner, which must pre-compute a large roadmap
to cover the entire free space.

Fig.5. Multi-robot problem



Lazy collision checking 13

5.3 Multi-robot examples

We ran SBL on several problems in the environment of Fig. 5, which repre-
sents a welding station found in automotive body shops. This environment
contains 6 robot arms with 6 dofs each. SBL treats them as a single robot
with 36 dofs (centralized planning) and checks collisions between arms.

Table 4. Average running times (in seconds) on 9 multi-robot examples

PI-2 | PI-4 | PI-6 PII-2. | PII-4 | PII-6 || PIII-2 | PIII-4 | PIII-6
0.26 | 3.97 | 28.91 || 0.25 3.94 | 59.65 || 2.44 30.82 | 442.85

Table 4 gives the average running times on 9 problems, over 100 runs for
each problem. Fig. 5 shows the initial and goal configurations for the problem
named PIII-6. PIII-2 and PIII-4 are the same problem, but reduced to robots
1 and 2, and robots 1 through 4, respectively. The problems PI1-2/4/6 and
PII-2/4/6 are simpler, with one of the query configurations being the rest
configuration of the arms. In all 100 x 3 x 3 = 900 runs, SBL successfully
found a path in a satisfactory amount of time. (The maximum number s of
milestones for each run was set to 10,000.) The increase in running time when
the number of arms goes from 2 to 4 to 6 is caused by both the growth in
the number of pairs of bodies that must be tested at each collision-checking
operation and by the greater difficulty of the problems due to the constraints
imposed by the additional arms upon the motions of the other arms. A more
thorough description and analysis of the application of SBL to multi-robot
problems can be found in [15,16]

6 Conclusion

This paper shows that a PRM planner combining a lazy collision-checking
strategy with single-query, bi-directional, and adaptive sampling techniques
can solve path-planning problems of practical interest (i.e., with realistic
complexity) in times ranging from fractions of a second to a few seconds
for a single or few robots, and from seconds to few minutes for multiple
robots. Improvements are still possible. For example, we could use PQP in its
distance-computation mode to reduce the number of calls to this program [2].

Our main goal is to extend SBL to facilitate the programming of multi-
robot spot-welding stations in automotive body shops. In particular, each
robot must perform several welding operations, but the ordering of these
locations is not fully specified. Hence, the planner will have to compute an
optimized tour of the welding locations. This is a variant of the Traveling
Salesman Problem where multiple “salesmen” visit “cities” concurrently and
where the distance between any two “cities” is not given and, instead, must
be computed by the planner.



14

Gildardo Sanchez and Jean-Claude Latombe

Acknowledgements This research was funded in part by grants from General

Motors Research and ABB. G. Sanchez’s stay at Stanford was partially supported
by ITESM (Campus Cuernavaca) and a fellowship from CONACyT. This work has

greatly benefited from discussions with H. Gonzalez-Banos, C. Guestrin, D. Hsu,

L. Kavraki, and F. Prinz. PQP was developed in the Computer Science Dept. at
the U. of North-Carolina.

References

10.

11.

12.

13.

14.

15.

16.

. Amato N.M., Bayazit O.B., Dale L.K., Jones C., Vallejo D. (1998) OBPRM: An

Obstacle-Based PRM for 3D Workspace. In Agarwal P.K. et al. (eds), Robotics:
The Algorithmic Perspective, A. K. Peters, Natick, MA, 155-168.

. Barraquand J., Kavraki L.E., Latombe J.C., Li T.Y., Motwani R., Raghavan

P. (1997) A Random Sampling Scheme for Path Planning. Int. J. of Robotics
Research, 16(6), 759-774.

. Bohlin R., Kavraki L.E. (2000) Path Planning Using Lazy PRM. Proc. IEEE

Int. Conf. Robotics & Autom., San Francisco, CA.

. Boor V., Overmars M.H., van der Strappen A.F. (1999) The Gaussian Sampling

Strategy for Probabilistic Roadmap Planners. Proc. [EEE Int. Conf. Robotics
& Autom., Detroit, MI, 1018-1023.

. Casal A. (2001) Reconfiguration Planning for Modular Self-Reconfigurable

Robots. PhD Th., Aeronautics & Astronautics Dept., Stanford U., CA.

. Gottschalk S., Lin M., Manocha D. (1996) OBB-Tree: A Hierarchical Structure

for Rapid Interference Detection. Proc. ACM SIGGRAPH’96, 171-180.

. Hsu D., Latombe J.C., Motwani R. (1997) Path Planning in Expansive Con-

figuration Spaces. Proc. IEEE Int. Conf. Robotics & Autom., 2719-2726.

. Hsu D. (2000) Randomized Single-Query Motion Planning in Expansive Spaces.

PhD Th., Computer Science Dept., Stanford University, CA.

. Kavraki L.E. (1994) Random Networks in Configuration Space for Fast Path

Planning. PhD Th., Computer Science Dept., Stanford University, CA.
Kavraki L.E., Svestka P., Latombe J.C., Overmars, M.H. (1996) Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. [EEE
Trans. Robotics & Autom. 12(4), 566-580.

Kindel R. (2001) Motion Planning for Free-Flying Robots in Dynamic and
Uncertain Environments. PhD Th., Aeronaut. & Astr. Dept., Stanford U., CA.
Kuffner J.J. (1999) Autonomous Agents for Real-Time Animation. PhD Th.,
Computer Science Dept., Stanford University, CA.

Nielsen C., Kavraki L.E. (2000) A Two-Level Fuzzy PRM for Manipulation
Planning. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems.
Quinlan S. (1994) Efficient Distance Computation Between Non-Convex Ob-
jects. Proc. Int. IEEE Conf. Robotics & Autom., 3324-3329.

Sanchez G., Latombe I.C. (2002) Using a PRM Planner to Compare Central-
ized and Decoupled Planning for Multi-Robot Systems. Proc. IEEE Int. Conf.
Robotics & Autom.., Washington, D.C.

Sanchez G., Latombe J.C. (2002) On Delaying Collision Checking in PRM
Planning — Application to Multi-Robot Coordination. To appear in Int. J. of
Robotics Research.



