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Introduction

T he development of a pharmaceutical drug is a
long, incremental process, typically requiring
years of research and experimentation. The goal is
to find a relatively small molecule (ligand), typically
comprising a few dozen atoms, that docks with a
receptor cavity in a specific protein. Protein-ligand
docking can stimulate or inhibit some biological
activity, ultimately leading to the desired pharma-
cological effect. The problem of finding suitable
ligands is complicated due to both energy consider-
ations and the flexibility of the ligand. In addition to
satisfying structural considerations, factors such as
synthetic accessibility, drug pharmacology, and tox-
icology greatly complicate and lengthen the search
for the most effective drug molecules.

In the search for a new drug, a pharmacophore
often serves as a template for the desired ligand.
The pharmacophore is expressed as a set of fea-
tures that an effective ligand should possess and a
set of spatial constraints among the features. The
features can be specific atoms, centers of benzene
rings, positive or negative charges, hydrophobic or
hydrophilic centers, hydrogen bond donors or ac-
ceptors, and others. The spatial arrangement of the
features represents the relative 3D placements of
these features in the docked conformation of the lig-
and. The pharmacophore encapsulates a prevailing
assumption in drug design that ligand binding is
due primarily to the interaction of some features of
the ligand to “complementary” features of the re-
ceptor. The interacting features are included in the
pharmacophore, and are key for searching for new
drugs. The rest of the ligand atoms merely provide a
scaffold for holding the pharmacophore features in
their spatial positions.

THE PROBLEM

This article deals with the following problem.
Given a pharmacophore and a database of flexible
ligands, identify those ligands that can achieve a
low-energy spatial conformation that matches some
of their features to the features of the pharma-
cophore. We will say that the selected ligands can
“satisfy” the pharmacophore.

We view the problem primarily as that of obtain-
ing a constrained conformation of a known kine-

matic structure (the ligand). The 3D positions of cer-
tain parts of the structure are predetermined by the
pharmacophore model. We compute the “folding”
of the rest of the structure in a way that it preserves
all the pharmacophore matches while respecting all
structural constraints (i.e., bond lengths), all kine-
matic constraints (i.e., torsional degrees of freedom
and their allowed values), and all energy constraints
(i.e., the energy of the ligand should be below a
threshold).

We model the kinematics of the ligand using tech-
niques common in robotics.? Although powerful
analytical techniques exist for searching the solution
spaces of similar structures in robotics,® such tech-
niques are impractical for handling high degrees
of freedom. Our ligands have many torsional de-
grees of freedom; thus, we focus on randomized
solutions to the conformational search problem. The
need for efficiency has also motivated randomized
search techniques in robotics.* > We use our experi-
ence with these methods to develop a randomized
conformational search technique, which simultane-
ously reduces energy and maintains the pharma-
cophore constraints.

In pharmaceutical chemistry, a variety of phar-
macophore models and representations have been
considered, and most of the current research ad-
dresses the development, evaluation, and selection
of these models and representations. For example,
as opposed to the 3D feature-matching model de-
scribed so far, other possibilities include matching
and agglomerating molecular fragments, and also
defining enrichment factors that assess the similar-
ity of entire known inhibitors. Instead of dealing
with these issues, our work focuses primarily on
the development of computational techniques that
improve our understanding of geometric issues in-
volved in drug design. For this reason, we chose to
develop and demonstrate our methods for a partic-
ular pharmacophore model and representation. We
believe that the techniques from this article can be
adapted to other kinds of pharmacophores; how-
ever, such issues are beyond the scope of this article
because they generally depend on the particular
pharmaceutical application.

SIGNIFICANCE OF OUR WORK

Our work is expected to improve the ability to
screen pharmaceutical databases for ligands that
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can satisfy the pharmacophore model by deliver-
ing computational techniques that reason about the
complicated geometric and kinematic constraints
that arise from the matching problem. The tech-
niques can be applied (in combination with other
filters) to 3D structural databases, such as the Cam-
bridge Structural Database, the Brookhaven Protein
Databank, or proprietary pharmaceutical databases.
As methods improve for screening databases, great
amounts of effort and expense can be spared by
exploiting the results of past experimental efforts.®
In several cases, many properties of the ligands
have been systematically documented in the data-
base. In other cases, the search may reveal ligands
with diverse chemical compositions that can still
satisfy the same pharmacophore. The comparative
analysis and modification of such ligands can lead
to better drug candidates. In the area of combi-
natorial chemistry, our techniques could be em-
ployed to assist the design of databases by screen-
ing enumerated structures (if pharmacophores are
known).

The identification of a pharmacophore is a chal-
lenging and speculative task, and is beyond the
scope of this article. Pharmacophore models are
constructed for cases in which the 3D structure
of the receptor is known and in which it is not.
Several three-dimensional quantitative structure—
activity relationships, or 3D QSAR’ theories have
been developed to capture some of the underly-
ing chemical activity in a pharmacophore. If the 3D
structure of the docking site is known, the phar-
macophore is based on the properties of atoms
on or close to the surface of the receptor and the
ligands that are known to dock in that site. Of-
ten the 3D structure of the receptor can not be
obtained using techniques such as X-ray crystallog-
raphy or NMR. In that case, the only information
available is a set of molecules that interact with
the specific receptor, and hence, exhibit the phar-
macophore in their docked conformations. Each
of these ligands, however, has many torsional de-
grees of freedom, making the identification of the
pharmacophore an extremely difficult task. Com-
putational techniques that automatically construct
a pharmacophore from a set of molecules have
been developed.”~! Both in the case of known
and unknown receptor structure, database screen-
ing techniques, such as the one presented in this
article, are powerful tools in the drug development
process.

RELATED WORK

For over two decades, the drug degign process
has been aided by database-searching techniques
that perform matching based on 3D structure. A re-
cent survey of database-searching techniques that
consider flexible molecules appears in ref. 11. The
earliest systems performed static matching of sin-
gle conformations to queries.”” There has been
much interest in recent years to consider confor-
mational flexibility in performing matches, which
was first considered in ref. 13. There are gener-
ally two types of approaches to database-searching
that consider conformational flexibility: similarity-
based methods and pharamcophore-based meth-
ods. Many similarity-based approaches use super-
position, such as the FlexS system, which computes
a scoring function, and candidates are ranked and
selected on the basis of enrichment factors.!*

Pharmacophore-based methods represent the
most common searching approach, and a contin-
uing source of many computational challenges.!®
In addition to conformational flexibility, pharma-
cophores allow flexibility in the query through the
specification of geometric features that only par-
tially characterize the active site.!® A wide vari-
ety of conformational search techniques have been
developed and used with these methods,'” includ-
ing systematic search,'® distance geometry,'” %" ran-
domized search,?!~% and genetic algorithms.?> %’

Several approaches to pharmacophore-based
search consider conformational flexibility while the
query is processed (as opposed to storing multi-
ple conformations of each molecule).?® ? For exam-
ple, the “Directed Tweak Method”?* %’ minimizes
a pseudoenergy function that combines the energy
of the molecule and the sum of the squares of the
deviations of the distances found in the molecular
structure to the distances expressed in the phar-
macophore query. Unfortunately, the pseudoenergy
function contains a large number of local min-
ima, and conformations having high energy are
frequently returned.'” Our work differs from previ-
ous work in the sense that it rigorously treats the
kinematics of the molecule while guiding the mole-
cule into low energy conformations.

Problem Formulation
THE MOLECULE MODEL

A molecule is characterized by a pair (A, B), in
which A represents a collection of atoms, and B
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Anchor Atom

Rotatable Bonds are

Indicated with Q

FIGURE 1. The molecule is considered as a tree that is rooted at the anchor atom. Some of the bonds are considered
rotatable. For each rotatable bond, the structure below the black dot rotates about the bond’s main axis.

represents a collection of bonds between pairs of
atoms. An underlying graph can be considered for
the molecule, in which vertices represent atoms and
edges represent bonds. Thus, usual graph-theoretic
concepts such as connectedness, paths, trees, and
cycles can be applied to molecules. It will be conve-
nient to choose one atom, a,ncn € A, as the anchor
for the molecule (or the root of the correspond-
ing graph). Figure 1 shows an example. We assume
that the underlying graph structure is a tree (i.e.,
no flexible rings). We represent rigid rings by con-
sidering the entire ring as a special “atom” that is
attached by a “bond” to the rest of the molecule.
Our assumption about rings remains valid for a
large set of molecules that are of interest in drug
design. Our general approach could be extended
to cyclic molecules by exploiting computational al-
gebra techniques that obtain kinematic solutions to
cyclic chains,® by using techniques for large cyclic
chains as in ref. 32, or by breaking bonds and adding
dummy constraints.

Information used for kinematic and energy com-
putations is associated with each of the atoms and
bonds. Each atom carries standard information,
such as its van der Waals radius. Three pieces of
information are associated with each bond, b; € B:
(i) the bond length, I;; (ii) the bond angle, «;, is the
angle between b; and the previous bond, in the di-
rection toward danen; (iii) the set of possible torsion
angles, 0; € [0,2x), which represents the ability of
the bond to rotate about its own axis. The part of
the molecule that is attached to b in the direction
away from the anchor will also undergo rotation

about this axis. If 8; must remain constant, the bond
is fixed; otherwise, it is considered rotatable. In most
molecular studies,'> ! bond lengths and bond an-
gles are considered fixed, while torsions are allowed
to vary. We follow this assumption in our work.
From now on we represent the conformation of the
ligand as m-dimensional vector of torsion angles 0,
in which each component of 6 corresponds to a ro-
tatable bond.

THE PHARMACOPHORE MODEL

A pharmacophore is defined in terms of a finite
set of features. Typically, there are between three
and six features. In our system, a feature corre-
sponds to an atom in A; however, it is straightfor-
ward to extend our implementation to incorporate
other features, such as the center of a rigid ring.
In general, the kinematic models, given in (1)-(4),
can be extended to include “dummy atoms” by
defining artificial bonds and atoms. These exten-
sions are needed for some common pharmacophore
models (e.g., for modeling hydrogen bond donors
and acceptors). The result is an extended molecule,
which can be handled using the same techniques
as for the original molecule. The kinematic equa-
tions can be applied to the extended molecule, and
our search methods will work on the extended fea-
ture set. Conformations for the extended molecule
will lead directly to conformations of the original
molecule. The conformation of the original mole-
cule would be used for energy computations, and
the conformation of the extended molecule would
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be used for kinematics computations. In the remain-
der of this article we forego the consideration of an
extended molecule, and assume that every feature
corresponds to an atom in the original molecule;
however, our general approach can be extended to
consider additional types of features by replacing
the original molecule with an extended molecule.

The pharmacophore model also includes con-
straints on the relative positions between features.
Suppose for convenience that one of the features
is designated as aanch, Which lies at the origin of a
global xyz coordinate system. For each remaining
feature, the corresponding atom is constrained to
lie near a specified position in this new coordinate
system. Any set of torsion angles that is chosen for
the molecule must place each of the feature atoms
within a small neighborhood of its prescribed po-
sition. Another coordinate frame is attached to the
molecule at a,,cn. The molecule coordinate frame
and the feature coordinate frame can become mis-
aligned by rotations; this will be handled shortly.
For the purpose of assigning bond angles for bonds
that are attached to a4,ncn, assume that g, is at-
tached to a fictitious “bond” that connects (0,0, —1)
and (0,0, 0).

THE KINEMATIC MODEL

Molecular kinematics give the positions of all of
the atoms of the ligands in terms of the torsion an-
gles. The bond lengths, bond angles, and torsion
angles can be conveniently used as parameters in
the Denavit-Hartenburg representation for spatial
kinematic chains.! 2 This representation is useful for
determining the appropriate rigid-body transforma-
tion to apply to any link in a series of attached links.

For the molecule, suppose that a local coordinate
frame is attached at the beginning of each link (or
atom center). If a bond b; follows a bond b;_; in the
chain, then the coordinate frame of b; is related to
that of b;_; by the homogeneous (both rotation and
translation are performed) transformation

C@,‘ —S@i 0 0
Ti= S@jCOti_l C91'Coti_1 —Si_1 —liSOlj_l ) (1)
S@iSOlj_1 c@isai_l Coi—1 l,‘COt,‘_l
0 0 0 1

in which 6; represents the torsion angle, c6; is cos 6;
and s; is sin 6;. Figure 2 depicts the quantities that
appear in (1). The fictitious bond is used to define ay.
If b; is not rotatable, then 9; is a constant; otherwise,
0; is a conformation parameter, included in .

The position of any atom in the molecule can be
determined by chaining matrices of the form (1). For
example, suppose b;, bi_1,...,b1 represents the se-
quence of bonds in the path from a particular atom,
a € A, to aanch- The xyz position of a is given by

X 0
vi_ 10
S| =T T |- 2)
1 1

Before the expression of the kinematics is com-
plete, there is one additional transformation that
must be defined because we assume, without loss
of generality, that d,nch is a feature. The definition
of the features requires that the position of aancn is
at the origin, but it does not impose any constraints
on the orientation of aanch. Thus, it is possible that a
coordinate frame attached to the molecule could be
rotated with respect to the global coordinate frame
for the pharmacophore feature positions. It is, there-

FIGURE 2. The assignment of «, /, and 6 parameters along the kinematic chain.
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FIGURE 3. Four features are shown for a hypothetical molecule. The coordinate frame is attached to one of the
features, which is designated as agnch- The anchor atom, anch, must be allowed to rotate to preserve the original

freedom of the molecule.

fore, necessary to allow the frame attached to the
molecule at danen to achieve any orientation with re-
spect to the global frame (see Fig. 3).

The space of the 3D rotations can be parame-
terized using Euler angles, y,¢, ¥, for which 0 <
y <, 0<¢ <2r,and 0 < ¢ < 2x.! The
parameterized rotation matrix can be placed into
homogeneous form by extending one row and col-
umn to obtain

Tr(y, ¢, %)
cpsycyr —copcysyr —spcyr cpsy 0
spcycyr + cpsyyr  —sepcysy +cpcy s¢psy 0
—sycyr sysyr cy 0
0 0 0 1
3)

Taking into account the anchor orientation, the
position of a particular atom, 2 € A, at the end of
a path, b, bi_1, ..., b1, to danen is given by

x 0
yl_r 0
z = R(y/ d)/ I/f)T1T2 ce Ti 0 . (4)
1 1

THE KINEMATIC ERROR FUNCTION

Using the kinematic expressions, an error func-
tion can be specified to express how closely the

pharmacophore constraints are satisfied. The trans-
formation (4) is expressed in terms of several con-
stants and variables. The constants are the bond
angles, «;, bond lengths, [;, and torsion angles for
nonrotatable bonds. The variables are y, ¢, ¥, and
the torsion angles for rotatable bonds which are
givenin 6.

Suppose that there are N features in the pharma-
cophore model. Let GF denote the prescribed posi-
tion for the kth feature, for each k € {0,1,...,N —1}.
Let G° = (0,0,0) represent the feature that corre-
sponds to danch. Let gk(0, v, ¢, ¥) represent the xyz
position of the atom that corresponds to the kth fea-
ture. This position is expressed only in terms of the
variables in the kinematic formulation (4).

Given 0, y, ¢, and ¢, the total amount of error
between the prescribed feature positions and the ac-
tual feature positions can be measured as

N-1
d@,y,¢,9) =Y |G -g®,v.0,v)],

i=1
in which ||-|| denotes the Euclidean norm.

THE ENERGY FUNCTION

In a sense, the energy function measures the like-
lihood that the molecule will achieve a conforma-
tion in nature (lower energy states are more likely
to occur). It is common in molecular modeling®® to
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use an empirical energy function; we use the SYBYL
system (Tripos Inc.?) energy function:

e0) = Y 1K, (R—R)?
bonds
+ Z 1Ka(o — o)
ang
+ Y Kall + cos(nd — 0")]

torsions

12 6
A% _ (% 4
i) (@) 2] o

In the above, the first sum is taken over all bonds,
the second over all bond angles, the third over all
rotatable bonds, and the last sum of is taken over all
pairs of atoms. K, K,, and Ky are force constants,
€ is the dielectric constant, and n is a periodicity
constant. R, «, and 6 are the measured values of
the bond lengths, bond angles, and torsional angles
in conformation @, while R, &', and 6’ are equilib-
rium (or preferred) values for these bond lengths,
bond angles, and torsional angles. r;; measures the
distance of atom centers in §. The parameters oy, €5,
and g; are the Lennard—Jones radii, well depth, and
partial charge for each atom in the system.

The expression for the energy of a molecule may
appear quite complicated, especially due to inter-
actions between each pair of atoms; however, the
energy depends only on the conformation, 6, be-
cause the anchor orientation parameters are only
used for pharmacophore purposes. Notice also that
the first and the second term of the energy function
are constant with our assumptions.

Our algorithms require no assumptions on the
particular form of the energy function. Thus, a va-
riety of other energy models could be successfully
substituted.

THE GENERAL TASK

The general task is to find conformations that
satisfy both pharmacophore and energy considera-
tions. For a given molecule in the database and a
given pharmacophore, two important questions are
asked:

Question 1: Can this molecule achieve a low-
energy conformation that satisfies the given
pharmacophore?

Question 2: What are the distinct low-energy
conformations that satisfy the pharma-
cophore?

Question 1 decides whether the molecule is
worth considering as a candidate in the drug de-
sign process. Using the concepts defined in this
section, this question can be formulated as deter-
mining whether there exist values for 8, y, ¢, and ¢,
such that d(@, y, ¢, v) and e(f) are below some fixed
thresholds.

The answer to Question 2 provides additional
information for pharmaceutical chemists. This is
generally referred to as the conformational coverage
problem. Techniques for analyzing the amount of
coverage obtained from a small set of representative
conformations appear in refs. 23—25. There might
be several low-energy conformations that satisfy the
pharmacophore, but each could place the other non-
feature atoms in very different locations. In general,
having alternative low-energy conformations is use-
ful because in many cases it is not the lowest-energy
conformation that results in docking, but another
low-energy conformation.

These distinct conformations may also be used
to refine a pharmacophore model. A new, hypoth-
esized feature might only be satisfied in some of
these conformations. By looking at multiple confor-
mations for several molecules, it might be possible
to select a single conformation from each molecule
that also satisfies the new feature. One difficulty in
providing a set of distinct conformations is that the
notion of “distinct” is not well defined. The differ-
ence between two conformations can be compared
by defining a metric, such as the RMS distance of
the atomic displacements between the two confor-
mations. In a later section, a clustering technique is
described that ensures that the reported clusters suf-
ficiently differ according to this metric.

Randomized Conformational Search
with Constraints

THE APPROACH

In this section we focus our attention on Ques-
tion 1 above. In the next section we show how to
integrate the approach with a database screening
system that can answer both Questions 1 and 2.
Figure 4 indicates the three main steps involved in
the computation. The first step generates a random
conformation, #, and anchor orientation, given by
v, ¢, and . The second step attempts to reduce
the kinematic error (5) by performing a randomized
gradient descent. If the second step is successful,
the third step is reached; otherwise, the first step
is repeated. The third step attempts to reduce the
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Samplé
Conformation and
Anchor Orientation

Decrease Kinematic
Error

Success

Failure

Decrease Energy
While Keeping
Constraints

Success

Failure

Report Success

FIGURE 4. An overview of constrained conformational
search.

energy while keeping the kinematic error within an
acceptable range. If the energy falls below a pre-
scribed threshold, then the method reports success.
Otherwise, the first step is repeated. In practice,
a limit is set of the maximum number of allow-
able failures before the algorithm terminates. It is
important to note that if the algorithm terminates
after any number of failures, it cannot be concluded
with certainty that the molecule does not admit a
low-energy conformation that satisfies a given phar-
macophore. This is the tradeoff that is typically
made for an efficient, randomized algorithm, as op-
posed to a costly, systematic approach that carefully
considers all possibilities. Randomized techniques
are popular for conformational search problems that
do not involve pharmacophore constraints (see, e.g.,
refs. 21,34 -37).

An alternative way to approach the constrained
search problem would be to obtain an explicit char-
acterization of the set of conformations that satisfy
the pharmacophore. This generally involves char-
acterizing the solutions to the inverse kinematics
problem. The equations of the form (4) that express
the pharmacophore can be converted to a poly-
nomial system. Each trigonometric function can
be replaced by a ratio of polynomials by using
stereographic projection, and the problem confor-
mations that satisfy the equations lie in an alge-
braic variety.3® Efficient elimination techniques from
computational algebraic geometry have been devel-

oped for numerating the solution set for problem
in which there are a finite number of solutions.""%
For the problem discussed in this article, the system
of equations is generally underconstrained, which
leads to a complicated, multidimensional solution
set. Although it is straightforward to obtain a para-
metric representation of some algebraic varieties
(such as a sphere or a torus), it not generally pos-
sible to employ elimination techniques to find a
parameterization of any algebraic variety.*® This
consideration, and the need for efficiency, led to the
choice of a numerical, randomized technique, as op-
posed to performing symbolic computations with
polynomial systems.

DISTANCE MINIMIZATION

The algorithms for reducing the kinematic er-
ror and for decreasing the energy are shown in
Figures 5 and 6, respectively. The first algorithm,
DECREASE_KINEMATIC_ERROR, resembles the
minimization technique used in the UNITY-3D
package (which is included in SYBYL, from Tripos
Inc.%) The algorithm accepts an initial conformation
and anchor orientation parameters, and iteratively
adjusts these until the total kinematic error falls be-
low some acceptable limit, dy,. Our discussion in the
last section shows how to compute the kinematic
error d. In each iteration, the RANDOM_NEIGH
function slightly perturbs each of the conforma-
tion and orientation parameters. The size of this
neighborhood was determined experimentally in
advance. There are two ways in which this algo-
rithm can fail: (1) the counter k reaches its maximum
value, kmax, which means that too many iterations
have been executed, or (2) the counter f reaches its
maximum value fmax, which means that too many
failures to reduce the error have occurred. This sec-
ond failure essentially detects that the minimization
is trapped in a local minimum. Rather than try to
escape this minimum, a new conformation is sam-
pled.

ENERGY MINIMIZATION

If the kinematic error is successfully reduced,
the resulting conformation and base orientation
are passed to DECREASE_ENERGY. This algorithm
proceeds in the same manner as the previous one,
except that two different criteria must be monitored.
It attempts to reduce the energy, while ensuring
that the kinematic error distance, d, does not in-
crease beyond dy. For this algorithm there are three
counters, each of which can halt the algorithm if
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DECREASE_KINEMATIC_ERROR(, v, ¢, ¥))

1 k+0; f0; dpin<+ o0

2  while k < k4 and f < [0 and d,;,, > dig do

3 0,9, ¢',¢') « RANDOM NEIGH(8, v, ¢, v);

4 if d(@',7,¢',¢¥') < dpin, then

5 [ 05 dpin  d(0,7, ¢, 9);

6 (0,7,6,9) « (6,7, ¢'.¢);

7 else

8 f«<f+1L

9 k+—k+1;

10 if dmzn < dtol then

11 Return (8, ~, ¢, v)

12 else

13 Return FAILURE

FIGURE 5. This algorithm iteratively attempts to reduce the kinematic error.

its limit is reached. The counter k records the to- This algorithm exploits that fact that some toler-
tal number of iterations, f records the number of ance is allowed for matching the pharmacophore.
consecutive failures to maintain the pharmacophore Figure 7a illustrates that a perturbation of the con-
without reducing energy, and g records the number formation and anchor orientation parameters only
of consecutive failures to reduce the energy. e, is slightly moves the feature atoms. If each of the
the desired energy threshold. feature atoms remains within acceptable tolerance,

DECREASE_ENERGY (0, v, ¢, ¢)

1 k<« 0, f<0;, g 0; dpim < 00, Emin < 00;
2 while (k < kpor and f < fran
and g < gmar and €5, > €4) do
3 0',7,¢',¢") +~RANDOM NEIGH(8, v, ¢, ¥);
4 if d(@',+',¢',¢') < dy then
i) J 05 emin < 00;
6 ife(0',7,¢',¢') < emin then
7 g 0; emin (0,7, ¢, 0);
8 (07'77 ¢a 1/’) A (0l77/7¢17w1);
9 else
10 g4+—g+1;
11 else
12 fef+1;

13 k+—k+1;
14 if Cmin < Cthy then

15 Return (8,7, ¢, )
16 else
17 Return FAILURE

FIGURE 6. This algorithm iteratively attempts to reduce the energy while keeping the kinematic error within
tolerance limits.
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~
Tolerance Region

()

(b)

FIGURE 7. (a) After perturbing the molecule, it must be determined whether the feature atoms remain within
acceptable tolerance from their prescribed positions; (b) the search technique can be considered as a randomized

traversal inside of a thick surface.

then the new parameters are evaluated based on
energy. The speed of the algorithm is directly re-
lated to the feature tolerance. If the tolerance is
larger, then larger variations can be considered in
RANDOM_NEIGH. This causes the molecule to
move more quickly toward an energy minimum. As
shown in Figure 7b, the “thickness” of the set of
acceptable parameters greatly facilitates a random-
ized traversal. In the current implementation, the
neighborhood size in RANDOM_NEIGH is an em-
pirically chosen constant.

Note that the choice of anchor atom prohibits
the specification of a tolerance for the feature at the
origin. This can be overcome by defining three posi-
tional offset variables for the anchor (in addition to
the rotation parameters); however, this would cause
some loss of computational performance.

An Integrated Database
Screening System

A prototype database screening system has been
implemented and tested on a small molecular data-
base. The principle module in our system is the
constrained conformational search technique de-
scribed in the last section. We have not performed
extensive experimentation and evaluation on large
databases because we are not evaluating pharma-
cophore models and representations, as is usually
done in this area. Instead, our experiments are
designed to illustrate the capabilities of our com-
putational techniques on pharmacophore matching
problems that are sufficiently complicated and di-
verse.

We assume that our techniques will be applied
to a small set of molecules that were initially fil-
tered from a database using 2D information. This
could lead to small set of several hundred or fewer
molecules that contains both successful candidates

and many false positives. Standard indexing tech-
niques are used to isolate these candidates from
the full database. Our system is designed to fur-
ther reduce the set of candidates by performing
kinematics-based conformational search.

ITERATIVE SWEEPING ACROSS THE SET
OF CANDIDATES

Suppose that one would like to use the ap-
proach described in Figure 4 to search a database
for molecules that have a low-energy conformation
that satisfies a given pharmacophore. Initially, 2D
constraints can be used to quickly discard any mole-
cules that do not contain all of the feature atoms.
Our work pertains to the remaining set of mole-
cules. The primary question to answer is how many
iterations of our approach should be applied to each
molecule? For a single molecule, each time a new
sample conformation and anchor orientation is cho-
sen and fails to lead to success, the likelihood that
the molecule will ever succeed is decreased. How-
ever, after any number of iterations, it is impossible
to conclude that the molecule will never succeed
(assuming that other constraints have already fil-
tered out molecules that do not satisfy nongeomet-
ric constraints).

One sensible way to use this method is to sweep
across the database, using only one iteration of the
approach in Figure 4 for each molecule. Once the
last molecule has been processed, a second sweep
can be made across the database. The sweeps across
the database can be repeated until some predeter-
mined criteria are met (e.g., a certain number of
successes have been found or the maximum num-
ber of sweeps has been reached). Each iteration of
this method is completely independent; therefore,
there is no difficulty in switching frequently be-
tween molecules. Furthermore, the whole process
can be easily parallelized. Because the likelihood
that a molecule will succeed decreases with each it-
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eration, it makes sense to avoid focusing multiple
iterations on a single molecule before continuing.

The result is an “any-time” algorithm in the sense
that the solutions gradually improve over time, and
there is no natural termination point. Typically, the
first sweep might turn up a small number of suc-
cessful molecules. These results could be analyzed
while the program continues to identify other suc-
cessful molecules over time. If the goal is only
to identify successful molecules, then a successful
molecule is removed from the search set before the
next sweep. The computation will gradually focus
in this case on the more difficult molecules. One
tradeoff is that saving search information after each
iteration could yield costly storage requirements, if
a very large set of candidates is considered.

CONFORMATION CLUSTERING

The goal might alternatively be to characterize
the set of possible solutions for each of the suc-
cessful molecules. (This is Question 2 from before.)
In this case, clustering can be performed incremen-
tally for each solution that is generated.*> A metric
m(01,02) can be defined that quantifies the differ-
ence between two conformations. In the database
screening system, m(f1,8,) is defined as the RMS
of the displacements of the atoms between the two
conformations. A threshold, my,,, is set as the maxi-
mum distance allow for two different conformations
to be considered as part of the same cluster. An
alternative metric, which measures distance in the
conformation space (by comparing torsion angles),
also yields reasonable performance.

The incremental clustering approach proceeds
are follows. The “Report Success” step in Figure 4
is replaced by an operation that updates the cluster
record using the new conformation (the anchor ro-
tation is also retained). Each cluster is represented
by a single conformation that has the lowest en-
ergy compared with any other known conformation
within distance mmax. If the cluster record is empty,
then the first update generates a single cluster for
the given conformation. Suppose the cluster record
contains several conformations when an update is
requested for a new conformation. If there are any
other conformations that are within a distance 7max
that have lower energy, then the new conformation
is discarded (a better, similar conformation already
exists). Otherwise, the new conformation is added
to the cluster record. Any existing clusters that are
within a distance mm.x and have higher energy are
deleted. This has the effect of making the “represen-

tative” of each cluster the conformation that has the
least energy.

EXPERIMENTS

The database screening system was implemented
in Gnu C on an SGI Indy and on a Pentium Pro
200Mhz PC running Linux. A database of molecules
was provided from Pfizer Limited. This database
includes six different inhibitors of thermolysin*! 42
and six different inhibitors of ACE.*>* Table I re-
ports the number of atoms and the number of
rotatable bonds for each of these molecules. All
molecules are very flexible, as they contain 3 to
13 torsional degrees of freedom. Some of the in-
hibitors of thermolysin are shown in Figures 8§ and 9,
and some of ACE are shown in Figures 10 and 11.
Each molecule appears in a random conformation
in our database. For both sets of molecules, the
docked conformations are known by previous phar-
macophore identification studies. We use subsets of
the true pharmacophore as queries in our database
for testing purposes.

For the thermolysin inhibitors, we tried a query
with four features of the known pharmacophore,
and for the ACE inhibitors we ran a query with
three features of the pharmacophore. In both cases
we let our program complete 20 iterations and set
the cluster distance imax to 1.5 A. The maximum
feature tolerance was set to 0.5 A. It was gener-
ally found that a single iteration of the method
in Figure 4 could be performed in about 5-10 s.
A sufficient clustering record for a single molecule
required about 5-20 min. Our results are shown in
Table II for the thermolysin inhibitors and in Ta-
ble III for the ACE inhibitors. Column 1 of these
tables shows our molecules. We report in columns
2 and 3 the number of clusters found and the min-
imum energy conformation in all of these clusters
as a proof of the fact that the conformations that

TABLE .
The Thermolysin and ACE Inhibitors Used in Our
Experiments.

Thermolysin Inhibitors Ace Inhibitors

JOURNAL OF COMPUTATIONAL CHEMISTRY

Molecule Atoms Rot. Bonds Atoms Rot. Bonds
mol1 69 10 48 8
mol2 66 11 50 8
mol3 22 3 31 7
mol4 42 8 47 8
mol5 64 13 45 6
mol6 63 12 30 3
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FIGURE 9. The 3D models of the inhibitors of theormolysin. Each molecule is at a random conformation.

742



CONFORMATIONAL SEARCH AND DATABASE SCREENING

O —=
-

= m
Jusi jan} h e e e e oo e
wn n @] e e e e e L e e e e e e
gl o= L e s e e e e e oo e
jas} / = jas) R S@ssrssssassErsERSERSES TS E RS RS s TE S SrssssassarsarsERsERSERSESSEE S EE s EE e
T C\ [} s D e D D oo D D
o ] EorsernEr e sTEE RS TR SR s e e
SRR R RO R STdssss SRR ST SN s T s es
o e e S Soesee Lo L s o oo SO OGO
a P 3 Py AP, AT St T
s B o G naseasn e o e e
T FE e Lo S
€ D) S ... o

I
e g

A

mol2
N_
|

mold

mol2

o
F (%]
_ m n_a ]
2 ) <
| - = [ : -
B jas] Y — PosssssssssrdsdsrssssssTT s s TS Ss s e TEsFrsdsrrTSSTr TSR TSR TSR YT SITR O
o g < N Sioenssesass s e s PRI s R TR RS s R e Srooassasass s ETEs T ETE s TR s PR R R
] @ )

B OO O O O

S
T S
SR

g
Gl

i

moll

mol4
i

moll

jasd Z. DT e P R e SThthSsat A SSataS S St T atee

- / / SShNhSSLONS S ST SNSGh ST ON ST Sa SO ORI SNS
[} & ~ SRS NS s Saaaaaae S SRS S
N &) B e e BUUNNN LU S D

e T 4 . L .

tures are circled in white. Notice how well these are

HO,
\
C
[
H
the thermolysin inh
matched in contrast w

743

molH mol6

mol4
FIGURE 11. The 3D models of the inhibitors of ACE. Each molecule is at a random conformation.

JOURNAL OF COMPUTATIONAL CHEMISTRY



LAVALLE ET AL.

TABLE Iil.

TABLE Il

The Results of a Three-Feature ACE Search.

The Results of a Four-Feature Thermolysin Search.
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FIGURE 13. Five clusters were obtained for mol5 of the ACE inhibitors.

possible ligands or modify existing ligands in search
for a better drug.

Our previous work with randomized techniques
has shown* 8 that if we continue iterating our al-
gorithm we increase our chances of covering the
conformational space of the molecule, and hence,
our chances of providing exhaustive information
about the constrained conformations of the mole-
cule. As a proof of concept, in the examples used
in this section we obtained conformations that are
fairly close to the known docked conformations. For
the five thermolysin inhibitors, we obtained confor-
mations whose RMS distances from the correspond-
ing docked conformation were 0.50, 2.96, 0.59, 0.81,
2.40, and 2.56 A correspondingly. In the ACE case,
we obtained conformations whose RMS distances
from the corresponding docked conformation were
1.26, 1.79, 0.94, 2.03, 1.87, and 1.98 A. Notice that
the more features we use, the closer we can get to
the docked conformation (four features for the ther-
molysin inhibitors vs. three features for the ACE
inhibitors). The ACE inhibitors have less flexibility,
which helps to reduce the fitted RMS distance. In
certain cases, we get very close to the docked con-
formation (certain thermolysin inhibitors), which is
an indication of good conformational space cover-
age. Without doubt, more extensive experiments are
needed to fully evaluate the system, but our prelim-
inary results are encouraging.

Discussion

A database screening system has been presented
that can help expedite the drug design process. The
system identifies molecules that are able to satisfy
a given pharmacophore, and are, therefore, reason-
able candidates for further investigation. The key
to this screening system is a randomized confor-
mational search approach that considers both the
kinematic error imposed by the pharmacophore
constraints and the energy. The simplicity of the ap-
proach should enable straightforward extensions to
other classes of molecules, such as those with flexi-
ble rings.

We point out, however, that a variety of can-
didate evaluation models are used by other re-
searchers. Our approach focuses on one particular
model (a rigid pharmacophore), and evaluates the
correctness of our computational approach. More
extensive experimentation would be needed to eval-
uate our approach in comparison to other eval-
uation models proposed in pharmaceutical drug
design and computational biology. One possible
constraint that could be added to our models is ex-
clusion spheres. These would serve as additional
kinematic constraints that could be incorporated di-
rectly into the search.

A difficulty with the current approach is the
selection of the step size for the random neighbor-

JOURNAL OF COMPUTATIONAL CHEMISTRY
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hoods in the kinematic error descent and the energy
descent. Although the same value was used over
a wide variety of molecules, it seems that perfor-
mance can be greatly improved by giving more care-
ful attention to this selection. For example, larger
step sizes might be appropriate if the conformation
is near a kinematic singularity. This could compen-
sate for the fact that large displacements near a
singularity lead to small displacements of the fea-
ture atom. A quaternion parameterization of the
anchor orientation, instead of a Euler angle para-
meterization, might also improve performance for
similar reasons. Performance improvement might
also be obtained by constraining random neighbor-
hood samples to lie in the tangent space to the
constraints.

Another limitation of our approach is the local
minimum problem, which could cause false neg-
atives. By generating multiple conformations for
each molecule, and by appropiately focusing the
database screening in an “any time” manner, we
have avoided focusing matching efforts on a single,
local optimization. This avoids many local mini-
mum problems. Over time, we expect the search to
gradually find a global minimum and sufficiently
cover the conformation space of each molecule, but
it is difficult to guarantee that this will be done effi-
ciently.
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