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Abstract

Monte Carlo simulation (MCS) is a common methodology to compute pathways and thermodynamic properties
of proteins. A simulation run is a series of random steps in conformation space, each perturbing some degrees
of freedom of the molecule. A step is accepted with a probability that depends on the change in value of an
energy function. Typical energy functions sum many terms. The most costly ones to compute are contributed
by atom pairs closer than some cutoff distance. This paper introduces a new method that speeds up MCS by
exploiting the facts that proteins are long kinematic chains and that few degrees of freedom are changed at each
step. A novel data structure, called the ChainTree, captures both the kinematics and the shape of a protein at
successive levels of detail. It is used to efficiently detect self-collision (steric clash between atoms) and/or find all
atom pairs contributing to the energy. It also makes it possible to identify partial energy sums left unchanged by
a perturbation, thus allowing the energy value to be incrementally updated. Computational tests on four proteins
of sizes ranging from 68 to 755 amino acids show that MCS with the ChainTree method is significantly faster
(as much as 10 times faster for the largest protein) than with the widely used grid method, though the latter is
asymptotically optimal in the worst case. They also indicate that speed-up increases with larger proteins.

1 Introduction

1.1 Monte Carlo simulation (MCS)

The study of the conformations adopted by proteins is an important topic in structural biology. MCS [6] is one
common methodology for this study. In this context, it has been used for two purposes: (1) estimating thermodynamic
quantities over a protein’s conformation space [29, 39, 63] and, in some cases, even kinetic properties [50, 51]; and
(2) searching for low-energy conformations of a protein, including its native structure [2, 3, 64]. The approach was
originally proposed in [43], but many variants and improvements have later been suggested [28].

MCS is a series of randomly generated trial steps in the conformation space of the studied molecule. Each such
step consists of perturbing some degrees of freedom (DOFs) of the molecule [40, 50, 51, 63, 64], in general torsion
(dihedral) angles around bonds (see Section 1.2). Classically, a trial step is accepted – i.e., the simulation actually
moves to the new conformation – with probability min{1, e−∆E/kbT } (the so-called Metropolis criterion [43]), where
E is an energy function defined over the conformation space, ∆E is the difference in energy between the new and
previous conformations, kb is the Boltzmann constant, and T is the temperature of the system. So, a downhill step
to a lower-energy conformation is always accepted, while an uphill step is accepted with a probability that goes
to zero as the energy barrier grows large. It has been shown that a long MCS with the Metropolis criterion and
an appropriate step generator produces a distribution of accepted conformations that converges to the Boltzmann
distribution.

Molecular Dynamics simulation (MDS) is another common approach for studying protein conformations. The
forces on the atoms are then computed at each step, and used to calculate the atom positions at the next step. To
be physically accurate, MDS proceeds by small time steps (usually on the order of a few femto-seconds), resulting
in slow progress through conformation space. Most MDS techniques update the Cartesian coordinates of the atoms
at each step, but recently there has been growing interest in directly updating torsion angles [24, 55], as this allows
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Figure 1: (a) An illustration of a protein fragment with its backbone DOFs. R represents any side-chain (b) A
torsional DOF: it is the angle made by the two planes containing the centers of atoms 1, 2, and 3, and 2, 3, and 4,
respectively.

for both a more compact representation of the conformation space and for larger time steps. In general, MCS makes
larger conformational changes than MDS and thus tends to explore subsets of the conformation space faster. But
unlike MDS, pathways produced by MCS may not be physically valid, hence may not always provide useful kinetic
information.

The need for general algorithms to speed-up MCS has often been mentioned in the biology literature, most
recently in [63]. In this paper, we propose a new algorithm that achieves this goal, independent of the specific energy
function, step generator, and acceptance criterion. More precisely, our algorithm reduces the average time needed
to decide whether a trial step is accepted, or not, without affecting which steps are attempted, nor the outcome of
the test. It achieves this result by incorporating efficient techniques to incrementally update the value of the energy
function during simulation. Although we will describe this algorithm for its application to classic MCS, it could also
be used to speed up other kinds of MCS methods, as well as other optimization and sampling techniques. Several
such applications will be discussed in Section 9.2.

1.2 Kinematic structure of a protein

A protein is the concatenation of small molecules (the amino acids) forming a long backbone chain with small side
chains. Since bond lengths and angles between any two successive bonds are almost constant across all conformations
at room temperature [22], it is common practice to assume that the only DOFs of a protein are its torsion angles,
also called the internal coordinates. Each amino-acid contributes two torsion DOFs to the backbone – the so-called
φ and ψ angles. See Figure 1 for an illustration. Thus, the backbone is commonly modelled as a long chain of links
separated by torsion joints (the backbone’s DOFs). A link, which designates a rigid part of a kinematic chain, is
a group of atoms with no DOFs between them. For example, in the model of Figure 1a, the C and O atoms of
amino-acid i− 1 together with the N and H atoms of amino-acid i form a link of the protein’s backbone, since none
of the bonds between them is rotatable. While a backbone may have many DOFs (between 136 and 1510 in the
proteins used for the tests reported in this paper), each side-chain has between 0 and 4 torsion DOFs (known as the
χ angles). In Figure 1a, these DOFs are hidden inside the ball marked R in each amino-acid.

The model of Figure 1a is the most common torsion-DOF representation used in the literature, and is therefore
the one we use in this paper. However, it is also possible to apply our algorithm to models that include additional
DOFs, such as: ω angles (rotations about the peptide bonds C–N between adjacent amino acids), bond lengths, and
bond angles. At the limit, one can make each link a single atom and each joint a rigid body-transform. However,
while it is theoretically possible to perform MCS in the Cartesian coordinate space, where each atom has 3 DOFs,
it is more efficient to run it in the torsion-DOF space [45]. Hence, the vast majority of MCS are run in this
space [40, 50, 51, 63, 64].
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Figure 2: Effect of the number k of simultaneous DOF changes in a step: (a) rejection rate as a function of k; (b)
total number of DOF changes in the accepted steps of a simulation run of 100,000 steps on an unfolded conformation
of 1HTB (378 residues)
.

Due to the chain kinematics of the protein, a small change in one DOF of the backbone may cause large displace-
ments of some atoms. Thus, in an MCS, a high percentage of steps are rejected because they lead to high-energy
conformations, in particular conformations with steric clashes (self-collisions). In fact, the rejection rate tends to
grow quickly with the number k of DOFs randomly changed in a single step. This is a well-known fact reported in
the biology literature [1, 40]. Figure 2 illustrates this point with data gathered during an actual MCS. The plot in (a)
shows the rejection rate as a function of k, while the plot in (b) gives the total number of DOF changes in accepted
steps during a run of 100,000 trial steps, also as a function of k. In (b), the largest value is obtained for k = 1. Hence,
it is common practice in MCS to change few DOFs (picked at random) at each trial step [33, 35, 40, 50, 51, 63, 64].

1.3 Computing the energy

Various energy functions have been proposed for proteins [20, 33, 37, 38, 57]. For all of them, the dominant com-
putation is the evaluation of non-bonded terms, namely energy terms that depend on distances between pairs of
non-bonded atoms. These may be physical terms (e.g., van der Waals and electrostatic potentials [38]), heuristic
terms (e.g., potentials between atoms that should end up in proximity to each other [20]) and/or statistical potentials
derived from a structural database (e.g. [33]).

To avoid the quadratic cost of computing and summing up the contributions from all pairs, cutoff distances are
usually introduced, exploiting the fact that physical and heuristic potentials drop off quickly toward 0 as the distance
between atoms increases. We refer to the pairs of atoms that are close enough to contribute to the energy function
as the interacting pairs. Because van der Waals forces prevent atom centers from getting very close, the number of
interacting pairs in a protein is often less than quadratic in practice [26].

Hence, one may try to reduce computation by finding interacting pairs without enumerating all atom pairs. A
classical method to do this is the grid algorithm (see Section 2), which indexes the position of each atom in a regular
three-dimensional grid. This method takes time linear in the number of atoms, which is asymptotically optimal in
the worst case. However, it does not exploit an important property of proteins, namely that they form long kinematic
chains. It also does not take advantage of the common practice in MCS to change only a few DOFs at each time-step.
Moreover, it does not address the remaining problem of efficiently summing up the contributions of the interacting
pairs. These issues are addressed in this paper.
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1.4 Contributions

A key consequence of setting k small is that at every step large fragments of the protein remain rigid. Hence, at
each step, many partial energy sums are unaffected. The grid method re-computes all interacting pairs at each step
and cannot directly identify partial sums that have remained constant. Instead, the method proposed in this paper
finds the new interacting pairs and retrieves unaffected partial sums without enumerating all interacting pairs. It
uses a novel hierarchical data structure – the ChainTree – that captures both the chain kinematics and shape of a
protein at successive levels of detail. At each step, the ChainTree can be maintained and queried efficiently to detect
self-collision and/or find new interacting pairs. It also enables the identification of unchanged partial energy sums
(stored in a companion data structure, called the EnergyTree), thus allowing for efficient energy updates throughout
the simulation.

We tested both the ChainTree and the grid methods on four proteins (identified by 1CTF, 1LE2, 1HTB, and
1JBO in the Protein Data Bank [5]) of sizes ranging from 68 to 755 amino acids (204 to 2265 backbone atoms). These
tests demonstrate that our algorithm is very effective at exploiting the fact that large protein fragments remain rigid
at each step. More specifically, our results show that MCS with the ChainTree method is significantly faster than
with the grid method when the number k of DOF changes at each step is small. We observed speed-ups by factors
up to 12 for the largest of the four proteins. Therefore, not only does a small k sharply increases the step acceptance
ratio, it also makes it possible to expedite the evaluation of the acceptance criterion. Simulation methodologies other
than classical MCS could also benefit from our algorithm (see Section 9.2).

1.5 Outline of paper

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3 presents the ChainTree data
structure. Section 4 describes our algorithm to detect self-collision (steric clash). The complexity of this algorithm
is analyzed in Section 5 and its performance is empirically assessed in Section 6. Section 7 extends the algorithm to
find new interacting atom pairs and efficiently update energy at each simulation step. Section 8 gives experimental
results comparing our algorithm with the grid algorithm in MCS. Section 9 discusses applications of our algorithm
to more complex MCS methods as well as to other types of molecular simulation methods and points to possible
extensions and future directions of research. The application of the ChainTree to test a long kinematic chain for
self-collision was previously presented in [42].

Throughout this paper, we always use n to denote the number of links of a kinematic chain (e.g., a protein’s
backbone) and k to denote the number of DOF changes per simulation step. Since the number of atoms in any amino
acid is bounded by a constant, the number of atoms in a protein is always O(n). Although k can be as big as O(n),
it is much smaller in practice [1, 40, 50, 51, 63, 64].

2 Related Work

2.1 Collision detection

The problem considered in this paper is closely related to detecting collision among moving objects and checking a
deforming object for self-collision. Collision detection has been extensively studied in robotics [9, 16, 17, 18, 41, 48, 49],
computer graphics [8, 11, 19, 21, 30, 31, 34, 36, 60] and computational geometry [4, 14, 23, 42], to only cite a few
works. Most research, however, has been conducted in environments made of rigid objects, few of them moving.

The collision-detection methods in [4, 41] rely on tracking object features (e.g., closest features) to compute
minimal separation distance. They require the identity of the tracked features to change rarely, the so-called tem-
poral/spatial coherence assumption. In particular, this assumption implies that during any small time step the
placements of the objects undergo small changes. A long kinematic chain does not satisfy this assumption, since a
small DOF change may cause relatively large displacements of parts of the chain.

Other collision-detection methods partition the space in which an object moves, for example, into an octree [16, 19],
a regular 3-D grid [26], or a set of projections onto subspaces [11]. Usually, these approaches do not lend themselves to
incremental updating to handle a deformable object or many objects moving simultaneously. Exceptions include [11,
19], but then the temporal/spatial coherence assumption must be satisfied.

The most popular approach to collision detection pre-computes a bounding-volume hierarchy (BVH) for each
object. This hierarchy captures spatial proximity between small components of the object at successive resolutions.
The hierarchies are then used to expedite collision tests by quickly discarding pairs of components contained in
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non-overlapping bounding volumes (BVs) [8, 17, 21, 30, 34, 36, 48, 60]). Various types of BVs have been used,
e.g., spheres and bounding boxes. These techniques have been extended in [8, 60] to handle deformable objects by
exploiting the facts that neighboring elements in the meshed surface of an object always remain in proximity to each
other when the object deforms. For each deformable object, a balanced BV tree is pre-computed by successively
grouping topologically close features of the meshed surface and enclosing them in a BV. When the object deforms,
the topology of the tree stays unchanged; only the sizes and locations of the BVs are updated in a bottom-up fashion.
However, BV techniques lose efficiency when applied to detecting self-collision in a deformable object, because they
cannot avoid detecting the trivial self-collision of each object component with itself. They also lose efficiency when
many objects (rigid or not) move independently.

The ChainTree borrows from previous work on BVHs. It uses a BVH based on the invariance of the chain
topology. But it combines it with a transform hierarchy that makes it possible to efficiently prune the search for a
self-collision, when few DOFs change simultaneously.

Only a limited amount of previous research has been dedicated to kinematic chains. A general scheme is proposed
in [25] to efficiently update a representation of a kinematic chain designed to efficiently detect collision with fixed
obstacles. But this scheme does not support self-collision detection. The work in [23] addresses a problem similar
to ours – testing self-collision in a deformable necklace made of spherical beads. Like our method, it builds a BVH
based on the chain topology. However, it assumes that all DOFs change simultaneously at each step and does not
attempt to take advantage of rigid sub-chains, nor does it consider the problem of maintaining the value of an energy
function. When all DOFs change simultaneously our algorithm does about the same amount of work as the algorithm
in [23] to detect self-collision.

The problem of deciding whether a torsion angle change causes a self-collision in a 3D polygonal chain has been
studied in [53, 54]. It was shown in [54] that determining whether a rotation around a bond causes a self-collision
anywhere along its path takes Ω(n log n) time, when n is the number of links in a chain. It is further conjectured
in [53] that no amount of preprocessing enables performing n such rotations in worst case sub-linear time per rotation.
However, in this paper, we only care whether the conformation at the end of the rotation is collision-free and not
whether there is a collision during the motion.

2.2 Finding interacting pairs

Because biologists are more interested in simulation results than in the computational methods they use to achieve
these results, the literature does not extensively describe algorithms for MCS.

A prevailing algorithm – referred to as the grid algorithm in this paper – reduces the complexity of finding all
interacting pairs in a molecule to asymptotically linear time by indexing the atoms in a regular grid. This approach
exploits the fact that van der Waals potentials prevent atom centers from coming very close to one another. In [26]
it is formally shown that in a collection B of n possibly overlapping balls of similar radii, such that no two sphere
centers are closer than a small fixed distance, the number of balls that intersect any given ball of B is bounded by
a constant. This result yields the grid algorithm, which subdivides the 3D space into cubes whose sides are set to
the maximum diameter of the balls in B, computes the cubes intersected by each ball, and stores the results in a
hash-table. This data structure is re-computed after each step in Θ(n) time. Determining which balls intersect any
given ball of B then takes O(1) time. Hence, finding all pairs of intersecting balls takes Θ(n) time. The grid method
can be used to find all pairs of atoms within some cutoff distance, by growing each atom by half this distance. The
method is asymptotically optimal in the worst case, but updating the data structure always takes linear time. This
is too costly for very large proteins, making it impractical to perform MCS in this case.

A variant of this method mostly used for Molecular Dynamics simulation maintains, for each atom, a list of atoms
within a distance d somewhat larger than the cutoff distance dc by updating it every s steps [58]. The idea is that
atoms further apart than d will not come closer than dc in less than s steps. There is a tradeoff between s and
d − dc since the larger this difference, the larger the value of s that can be used. However, choosing d big causes
the neighbor lists to become too large to be efficient. A method for updating neighbor lists based on monitoring the
displacement of each atom is described in [44].

Linear complexity seems to be the best one can achieve in practice when all DOFs change at each step, as is the
case in Molecular Dynamics simulation. We are not aware of any principled attempt to exploit the chain kinematics
of proteins and the small number of changing DOFs at each step to speed up MCS.

Molecule-dependent and simulation-dependent heuristics have also been used to simplify energy computation.
However, such heuristics, which often rely on the prior insight of the biologist, require adjustments and tuning to
deal with each new molecule or family of molecules, or a different step generator.
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Figure 3: Transform hierarchy: grey ovals depict links; Tαβ denotes the rigid-body transform between the reference
frames of links α and β.

3 The ChainTree

In this section we describe the ChainTree, the data structure we use to represent a protein. We begin by stating the
key properties of proteins and MCS that motivated this data structure (Subsection 3.1). Then follows a description
of the two hierarchies that make up the ChainTree. The transform hierarchy that approximates the kinematics of
the backbone is introduced in Subsections 3.2 and the bounding-volume hierarchy that approximates the geometry
of the protein is presented in Subsection 3.3. Next, we discuss the representation of the side-chains (Subsection 3.4).
Finally, we describe how the two aforementioned hierarchies are combined to form a single balanced binary tree
(Subsection 3.5) and the way it is updated (Subsection 3.6).

In the following we refer to the algorithm that updates the ChainTree as the updating algorithm and to the
algorithm that tests self-collision or finds interacting pairs as the testing algorithm.

3.1 Properties of proteins and MCS

A protein backbone is commonly modelled as a kinematic chain made up of a sequence of n links (atoms or rigid
groups of atoms) connected by torsional DOFs. The ChainTree is motivated by three key properties deriving from
this model:

Local changes have global effects: Changing a single DOF causes all links beyond this DOF, all the way to the
end of the chain, to move. Any testing algorithm that requires knowing the absolute position of every link at
each step must perform O(n) work at each step even when the number k of DOF changes is O(1).

Small angular changes may cause large motions: The displacement of a link caused by a DOF change depends
not only on the angular variation, but also on the distance between the DOF axis and the link (radius of
rotation). So, at each step, any link with a large radius of rotation undergoes a large displacement, implying
that the temporal/spatial coherence assumption is not valid.

Large sub-chains remain rigid at each step: If we only perturb few DOFs at each step, as is the case during
MCS, then large contiguous fragments of the chain remain rigid between steps. So, there cannot be any new
self-collisions or new interacting pairs inside each of these fragments.

3.2 Transform hierarchy

We attach a reference frame to each link of the protein’s backbone and map each DOF to the rigid-body transform
between the frames of the two links it connects. The transform hierarchy is a balanced binary tree of transforms.
See Figure 3, where ovals and labelled arrows depict links and transforms, respectively.

At the lowest level of the tree, each transform represents a DOF of the chain. Products of pairs of consecutive
transforms give the transform at the next level. For instance, in Figure 3, TAC is the product of TAB and TBC .
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Similarly, each transform at every level is the product of two consecutive transforms at the level just below. The
root of the tree is the transform between the frames of the first and last links in the chain (TAI in the figure).

Each of the log n levels of the tree can be seen as a chain that has half the links and DOFs of the chain at the
level just below it. In total, O(n) transforms are cached in the hierarchy. We say that each intermediate transform
Tαβ shortcuts all the transforms that are in the subtree rooted at Tαβ .

The transform hierarchy is used from the top down by the testing algorithm to propagate transforms defining
the relative positions of bounding boxes (from the other hierarchy) that need to be tested for overlap. It also allows
computing the relative position of any two links or boxes in O(log n) time, but this property is not used by our
algorithm.

A structure similar to our transform hierarchy was introduced in [53]. However, it was only used for theoretical
analysis and was not implemented.

3.3 Bounding-volume hierarchy

The bounding-volume (BV) hierarchy is similar to those used by prior collision checkers (see Section 2.1). As spatial
proximity in a deformable chain is not invariant, our BVH is based on the proximity of links along the chain. See
Figure 4. Here, for simplicity, we introduce the BVH used for self-collision detection. In Section 7.2 we will describe
the extensions allowing us to both detect self-collision and find new interacting pairs using a single hierarchy.

Like the transform hierarchy, the BVH is a balanced binary tree. It is constructed bottom up in a “chain-aligned”
fashion. At the lowest level, one BV bounds each link. Then, pairs of neighboring BVs at each level are bounded by
new BVs to form the next level. The root BV encloses the entire chain. So, at each level, we have a chain with half
the number of BVs in the chain at the level below it. This chain of BVs encloses the geometry of the chains of BVs
at all lower levels.

The type of BV we use is the oriented bounding box (OBB) [21], a rectangular bounding box at an arbitrary
rotation. We chose OBBs because they bound well both globular objects (single atoms, small groups of atoms) and
elongated objects (chain fragments). In addition, unlike simpler axis-aligned bounding boxes [8, 60], but like spheres,
OBBs are invariant to a rigid-body transform of the geometry they bound. In the ChainTree, this property allows us
not to re-compute the BV of a rigid sub-chain, even when this sub-chain has moved. Finally, OBBs can be efficiently
computed and tested for intersection. Spheres are another frequently used BVs [23, 48] that would meet our needs.
However, in a chain-aligned hierarchy, we expect them to bound poorly elongated sub-chains, e.g., α-helices and
β-strands.

We construct each intermediate OBB to enclose its two children, thus creating what we term a not-so-tight
hierarchy (in contrast to a tight hierarchy where each BV tightly bounds the links of the sub-chain it encloses). In
the Appendix (Lemma 2), we show that the size of these OBBs does not deteriorate too much as one climbs up the
hierarchy. The major advantage of using this not-so-tight BVH is the efficiency with which each box can be updated.
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Figure 5: A binary tree that combines the transform and BV hierarchies.

Indeed, the shape of the OBB stored at each intermediate node depends only on the 16 vertices of the two OBBs
held by this node’s children.

3.4 Side-chain representation

Side-chains, one per amino acid, are short chains with up to 20 atoms, that protrude from the backbone [12]. A side-
chain may have some internal torsional DOFs (between 0 and 4). The biology literature proposes different ways to
model side-chains ranging from a single sphere approximating the entire side-chain, to a full atomistic model [12, 38].
The choice depends on both the physical accuracy one wishes to achieve and the amount of computation one is willing
to pay per simulation step. One may choose to make the side-chains completely rigid, or allow their DOFs to change
during the simulation. In both cases we expect the overhead of using a sub-hierarchy for the side-chain atoms to
exceed any benefit it may provide. Therefore, we allow each link of the protein backbone to be an aggregate of atoms
represented in a single coordinate frame and contained in an OBB that is a leaf of the BVH. Each such aggregate
includes one or several backbone atoms forming a rigid piece of the backbone and the atoms of the side-chain
stemming from it (contained in the circle marked R in Figure 1a.

3.5 Combined data structure

The ChainTree combines both the transform and the BV hierarchies into a single binary tree as the one depicted
in Figure 5. The leaves of the tree (labelled A through H in the figure) correspond to the links of the protein’s
backbone with their attached side-chains (using any of the representations presented above). Each leaf holds both
the bounding box of the corresponding link and side-chain and the transform (symbolized by a horizontal arrow in
the figure) to the reference frame of the next link.

Each internal node (nodes J through P ) has the frame of the leftmost link in its sub-tree associated with it. It
holds both the bounding box of the boxes of its two children and the transform to the frame of the next node at the
same level if any. So, computing the relative position of a box and its left child box requires no coordinate transform,
while computing the position of a box relative to its right child box requires one transform, which is stored at the
left child node. This remark is used by the testing algorithm to propagate down the relative positions of pairs of
boxes that are to be tested for overlap.

The ChainTree contains both pointers from children to parents, which are used by the updating algorithm to
propagate updates from the bottom up, as described below, and pointers from parents to children, which are used
by the testing algorithm (Section 4).
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Figure 6: The ChainTree after applying a 1-DOF perturbation. The transforms of the nodes with bold contours (F
and L) were updated. The boxes of the nodes in grey (O and P ) were re-computed.

3.6 Updating the ChainTree

When a change is applied to a single arbitrary DOF in the backbone, the updating algorithm re-computes all
transforms that shortcut this DOF and all boxes that enclose the two links connected by this DOF. It does this in
bottom-up fashion, by tracing the path from the leaf node immediately to the left of the changed DOF up to the
root. A single node is affected at each level. If this node holds a transform, this transform is updated. If it holds
a box that contains the changed DOF, then the box is re-computed. For example, in Figure 5, if the DOF between
the links associated with nodes F and G is changed, then the transforms stored at F and L and the boxes at O and
P are re-computed. Since the shape of an OBB is invariant to a rigid-body transform of the objects they bound, all
other boxes remain unchanged.

If a DOF is changed in a side-chain, the box stored at the corresponding leaf node of the ChainTree and the
boxes of all the ancestors of this node are re-computed, but all transforms in the hierarchy remain unchanged.

When multiple DOFs are changed simultaneously (in the backbone and the side-chains), the ChainTree is updated
one level at a time, starting with the lowest level. Hence, all affected transforms and boxes at each level are updated
at most once before proceeding to the next level above it.

The updating algorithm marks every node whose box and/or transform is re-computed. This mark will be used
later by the testing algorithm. Figure 6 shows the marked nodes in the ChainTree of Figure 5, after a change in
the DOF between the links associated with nodes F and G. The nodes with bold contours (F and L) are those
whose transforms were updated. The nodes in grey (O and P ) are those whose boxes were re-computed. In general,
however, marked nodes may have had both their transforms and boxes updated.

4 Self-Collision Detection

4.1 Using a BVH

BVHs have been widely used to detect collision between pairs of rigid objects, each described by its own hierarchy [21,
30, 34, 48, 60]. Given the hierarchies of two objects, the algorithm first checks whether the root boxes overlap. If
they do not, it can safely return that the two objects do not collide. If they do overlap, then the algorithm descends
one level in both hierarchies and tests all four pairs of children. It continues this process iteratively. When the lowest
level of one hierarchy is reached, the algorithm continues its descent through the other hierarchy, testing the leaf
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boxes of one hierarchy against boxes at the newly reached level in the other hierarchy. When it reaches leaves in both
hierarchies, it tests the actual components of the objects for overlap and returns a collision when they overlap. The
algorithm may stop as soon it has found a collision, or it may run until it has found all collisions. In the former case,
it is best for the algorithm to search for a collision in a depth-first manner to reach overlapping leaves as quickly as
possible.

The algorithm terminates quickly when the two objects are well separated, because the search then ends near
the tops of the hierarchies and avoids dealing with the possibly complicated geometry of the actual objects. If one
is only interested in detecting whether a collision occurs, the algorithm also terminates quickly when the overlap is
large, because the depth-first search is then expeditious in finding a pair of overlapping leaf nodes. The algorithm
takes longer when the objects are close but do not collide, or when there are many distinct collisions and one wants
to find them all.

A simple variant of this algorithm detects self-collision by testing the BVH of the object against itself. This
variant skips the test of a box against itself and proceeds directly to testing the box’s children. However, it takes
Ω(n) time, since all leaves will inevitably be visited (since each is trivially in collision with itself). The ChainTree
allows us to avoid this lower bound by exploiting the third property stated in Section 3.1 — large sub-chains remain
rigid between steps.

4.2 Using the ChainTree

When only a small number k of DOFs are changed simultaneously, long sub-chains remain rigid at each step. These
sub-chains cannot contain new self-collisions. So, when we test the BVH contained in the ChainTree against itself,
we prune the branches of the search that would look for self-collision within rigid sub-chains.

There are two distinct situations where pruning occurs:

1. If the algorithm is about to test a box against itself and this box was not updated after the last DOF changes,
then the test is pruned.

2. If the algorithm is about to test two different boxes, and neither box was updated after the last DOF changes,
and no backbone DOF between those two boxes was changed, then the test is pruned.

The last condition in this second situation – that no backbone DOF between the two boxes was changed – is
slightly more delicate to recognize efficiently. We say that two nodes at the same level in the ChainTree are separated
if there exists another node between them at the same level that holds a transform that was modified after the last
DOF changes. This node will be dubbed separator. Hence, if two nodes are separated, a DOF between them has
changed. We remark that:

• If two nodes at any level are separated, then any pair consisting of a child of one and a child of the other is
also separated.

• If two nodes at any level are not separated, then a child of one and a child of the other are separated if and
only if they are separated by another child of either parent.

Hence, by pushing separation information downward, the testing algorithm can know in constant time whether
a DOF has changed between any two boxes it is about to test. The algorithm also propagates transforms from
the transform tree downward to compute the relative position of any two separated boxes in constant time before
performing the overlap test.

To illustrate how the testing algorithm works, consider the ChainTree of Figure 6 obtained after a change of the
DOF between F and G. F and L are the only separators. The algorithm first tests the box stored in the root P
against itself. Since this box has changed, the algorithm examines all pairs of its children, (N, N), (N,O) and (O, O).
The box held in N was not changed, so (N,N) is discarded (i.e., the search along this path is pruned). (N,O) is not
discarded since the box of O has changed, leading the algorithm to consider the four pairs of children (J, L), (J,M),
(K, L), and (K,M). Both (J, L) and (K,L) satisfy the conditions in the second situation described above; thus, they
are discarded. (J,M) is not discarded because J and M are separated by L. The same is true for (K, M), and so
on.
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5 Complexity Analysis

Two fundamental tradeoffs must be made when using a BVH for self-collision detection:

1. Between the number of box overlap tests needed to detect or rule out self-collision and the cost of one such test:
In general, the more complex the BVs, the tighter they bound a given geometry and the fewer tests required;
but the more expensive each test becomes.

2. Between the time needed to update the BVH and the time to detect or rule out self-collision: In general, reducing
updating time (e.g., by using not-so-tight boxes or keeping the topology of the hierarchy fixed) impairs the
performance of self-collision detection.

The analysis below is aimed at clarifying the choices made in the ChainTree and comparing our updating and
testing algorithms to current state-of-the-art algorithms. It is based on the worst-case asymptotic behavior of the
algorithms when n grows arbitrarily large. But this behavior is not always meaningful in practice, since for many
proteins n is too small and/or the worst case is unlikely. For this reason, Section 6 will complement this analysis by
experimental tests.

Throughout this section we ignore the side-chains. Since the size of each one is small and bounded by a constant,
the side chains only affect the asymptotic complexity bounds by a constant factor.

5.1 Updating the ChainTree

Updating the ChainTree after a 1-DOF change requires re-computing transforms and boxes held in nodes along the
path from the leaf node immediately to the left of the changed DOF up to the root of the tree. By doing the updates
from the bottom up, each affected transform is re-computed in O(1) time. By using not-so-tight OBBs — thus,
trading tightness for update-speed — re-computing each box is also done in O(1) time. Since the ChainTree has
O(log n) levels, and at each level at most one transform and one box are updated, the total cost of the update process
is O(log n).

When a k-DOF change is made, affected transforms and boxes are updated one level at a time. This ensures that
no transform or box is re-computed more than once when the converging update paths merge. The total updating
time is then O(k log (n/k)). When k grows this bound never exceeds O(n).

The efficient updating time for small values of k derives from the fact that the tree topology of the ChainTree is
never modified. However, this topology is not always optimal to detect self-collision, as it only imperfectly represents
spatial proximity among links.

5.2 Detecting self-collision

All known algorithms to detect self-collision in an n-link chain take Θ(n2) time in the worst case, if no further
assumption is made about the chain. Hence, they do not behave better than a brute-force algorithm.

In this subsection, we will assume that the protein chains are well-behaved. Let us associate with each link of a
chain its minimal enclosing sphere. Given two positive constants γ and δ, a chain is well-behaved if it verifies the
following two properties:

1. The ratio of the radii of the largest and smallest enclosing spheres is smaller than γ.

2. The distance between the centers of any two enclosing spheres is greater than δ.

It is not hard to convince oneself that proteins form well-behaved chains for some γ and δ. The first property
follows from the fact that there are only 20 different types of amino acids. The second property is verified if we
exclude conformations where atoms overlap almost completely, since such conformations are physically impossible.
It is shown in [26] that in well-behaved chains of arbitrary length n the number of links overlapped by any link is
bounded by a constant. So, there are at most O(n) overlaps between the links of a well-behaved chain.

MCS cannot cause a well-behaved chain to degenerate. Each simulation step by itself affects only a small constant
k DOFs and thus the number of overlaps per atom can only increase by a constant factor. Moreover, a step that
increases the number of overlaps will always be rejected because it causes a steric clash. Thus, no cumulative effect
during successive steps will degenerate the chain.
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Update Detection
Brute force Θ(n) Θ(n2)

Grid Θ(n) Θ(n)

Spatially-adapted hierarchy O(n log n) Θ(n)

Chain-aligned hierarchy O(n) Θ(n
4
3 )

ChainTree O(k log n
k
) Θ(n

4
3 )

Table 1: Comparison of complexity measures for updating and detecting self-collision in well-behaved chains.

Our algorithm performs two sets of operations for every pair of nodes it examines. First, it must decide whether
to prune this search path. This requires testing if the nodes have been updated after the last DOF change and, if
not, whether they are separated. Second, if this search path is not pruned, the two boxes are tested for overlap. All
these operations take constant time. Thus, the complexity of the algorithm is governed by the number of pairs of
nodes that are examined, which is proportional to the number of overlapping boxes at all levels of the ChainTree in
the worst case.

In the Appendix we prove the following theorem:

Theorem 1 The maximum total number of overlapping boxes at all levels of the ChainTree of a well-behaved chain
of n links is Θ(n

4
3 ).

Therefore, the testing algorithm runs in worst-case Θ(n
4
3 ) time. This bound, which is similar to the one established

in [23], holds whether the algorithm stops after detecting the first collision or keeps running to detect all self-collisions.
Indeed, the fact that two boxes overlap does not imply that they contain colliding links. So, to detect a single self-
collision or the absence of it, the algorithm may have to eventually consider all pairs of overlapping boxes.

Note also that the bound is not affected by the pruning of search paths. So, when all DOFs change at each
simulation step, and as long as the chain remains well-behaved, self-collision detection still takes Θ(n

4
3 ) time in the

worst case, after O(n) updating.
The experimental results of Section 6 show however that when few DOFs change at each step, the algorithm

behaves much better in practice than the above bound suggests.

5.3 Comparison with other methods

There exist several methods applicable to the problem of detecting self-collision in a chain. The asymptotic worst-case
complexity of the most important ones is given in Table 1.

At each step, the brute-force algorithm first re-computes the position of every link that has moved, which is done
in worst-case linear time. It then detects self-collision by testing all pairs of links for overlap, resulting in Θ(n2) tests
in the worst case (i.e. when there are no collisions).

Under the assumption that the chain is well-behaved, the grid algorithm (see Subsection 2.2) reduces the worst-
case complexity of both updating and testing to linear time [26].

Although the grid algorithm is optimal in the worst case, BV-hierarchy methods are intended to do better on
average. For a chain, two types of BVHs may be used:

Spatially-adapted hierarchy: A BVH as described in [21, 34] which is based on a spatial partitioning of each
chain conformation to optimally encode spatial proximity between links.

Chain-Aligned BVH: A BVH as the one in the ChainTree (see [23] for another example) that encodes the chain-
wise proximity of links along the chain. Links are said to be in chain-wise proximity if they are not separated
by more than a few links along the chain.

Ideally, a BVH should be such that the depth of any box in the tree is a good indicator of the spatial proximity of
the links bounded by this box. This is precisely what a spatially-adapted hierarchy is intended to achieve. Instead,
a chain-aligned hierarchy only encodes chain-wise proximity. If two links are chain-wise close, they are also spatially
close. But the reverse is not true: in a given chain conformation, some pairs of links that are chain-wise far apart
may be spatially very close (e.g., this happens in folded protein conformations). Consequently, testing self-collision
with a spatially-adapted hierarchy is more efficient than with a chain-aligned one. But, because spatial proximity
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(a) (b)

Figure 7: A 1-DOF change corrupting a spatially-adapted hierarchy. Only the level that contains n
2 boxes (second

level from bottom) is shown. In (a) the hierarchy is spatially-adapted with no overlap between boxes. A change in
the middle DOF creates the conformation in (b). The boxes were updated to bound the new conformation without
changing the topology of the hierarchy. All pairs of boxes now overlap.

varies as the chain deforms, while chain-wise proximity does not, updating a spatially-adapted hierarchy is more
expensive.

A spatially-adapted hierarchy of a chain can be tested for self-collision in Θ(n) time in the worst case. This
bound is a special case of a theorem proven in [66]. However, it is expected to do better in practice. Building a
new hierarchy at each step takes O(n log n) time [21]. One could attempt to reduce updating time to Θ(n) by not
changing the topology of the hierarchy and only updating the size and location of the BVs. But a single DOF change
may then corrupt the hierarchy, so as to raise the number of BV overlap tests required to detect self-collision to
Θ(n2). Figure 7 illustrates such a scenario.

In contrast, despite its fixed topology, a chain-aligned BVH guarantees an O(n
4
3 ) self-collision test, with a O(n)

update when not-so-tight OBBs are used and an O(n log n) update when tight spheres are used [23]. Thanks to its
transform hierarchy, the ChainTree reduces further the updating cost after a k-DOF change to O(k log (n/k)).

The worst-case bound on self-collision detection with the ChainTree hides the practical speed-up allowed by
search pruning. To evaluate this speed-up, we need to perform empirical tests.

6 Test Results for Self-Collision Detection

We conducted various tests with our implementation of our method – called here ChainTree – and the following
three methods:

Grid - This is the grid method presented in Subsection 2.2. The length of a side of each grid cell is the diameter of
the largest atom. Both updating and testing take Θ(n) time.

1-OBBTree - Here, a tight spatially-adapted OBB hierarchy is re-computed at each step, and then tested against
itself for self-collision. Updating and testing take O(n log n) and O(n) worst-case time, respectively.

K-OBBTree - At each step, this algorithm computes a tight spatially-adapted OBB hierarchy for each rigid sub-
chain. It then tests each pair of hierarchies for collision. Updating and testing take O(n log n) and O(n)
worst-case time, respectively.

Both 1-OBBTree and K-OBBTree are based on the PQP library [21, 36] from UNC. The function of Chain-
Tree testing pairs of OBBs for overlap is also from this library. Our experiments were run on a single 400 MHz
UltraSPARC-II CPU of a Sun Ultra Enterprise 5500 machine with 4.0 GB of RAM.

In a first series of tests, we created pseudo-protein chains of n spheres of radius 1 unit, spaced 4 units apart
by a torsion joint, with n = 1000, 2500, 5000 and 10000 spheres in initial compact cube-like conformations. Each
simulation consisted of 100,000 steps, each changing a single DOF picked uniformly at random. The magnitude of
the change was chosen uniformly at random between 0◦ and 30◦. If a collision was detected, the step was rejected,
i.e., the change was undone before proceeding to the next step. This requires keeping two copies of the ChainTree.
For each chain, the four runs (one with each method) started at the same initial conformation and used the same
seed of the random number generator. Hence, they generated the same sequence of conformations.

The average times per step are shown in Figure 8a, when the algorithms stop after finding the first collision.
The plots show both updating times (black) and testing times (grey). Some times are too small to be discernable.
ChainTree is 5 times faster than Grid for 1000 spheres and about 60 times faster for 10000 spheres. When finding
all self-collisions, ChainTree is 4 times faster than Grid for 1000 spheres and 53 times faster for 10000 spheres.
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Figure 8: Average time per step for detecting self-collision in (a) a compact pseudo-protein chain and (b) backbones
of different proteins. The search stops when the first collision is found.

In all cases, 1-OBBTree and K-OBBTree are the slowest methods because of their high updating time, although
K-OBBTree has the fastest testing time of all four methods.

Protein #Amino Acids #Atoms # Backbone atoms #Links
1CTF 68 487 204 137
1LE2 144 1167 432 289
1HTB 374 2776 1112 749
1JB0 755 5878 2265 1511

Table 2: Proteins used in experiments.

In a second series of tests we used four proteins from the Protein Data Bank1 (PDB) [5]. We selected these
proteins – named 1CTF, 1LE2, 1HTB, and 1JB0 in the PDB – to span different sizes. See Table 2. For each protein,
we ran the same simulation as in the first series of tests, starting at the folded (native) state of the protein. However,
only the protein’s backbone was considered and the side-chains were ignored. At each step the four algorithms
stopped after finding the first collision. The results are summarized in Figure 8b. ChainTree is twice as fast as Grid
for the smallest protein (1CTF) and 5 times faster for the largest one (1JB0). Note that the chains in this benchmark
are significantly shorter than those in the first benchmark.

We also examined the effect of the number k of simultaneous DOF changes at each step on the performance of
the algorithms. We let k vary from 1 to 121 and, for each value, measured the average time per step to update
and find all collisions. In order to eliminate the effect of compactness on the results, we chose 11 conformations
of 1HTB each having a different radius of gyration distributed uniformly between 20Å (the radius of the native
conformation) and 85Å. For each such conformation and each value of k we ran a simulation of 10,000 steps starting
at that conformation. We constrained each simulation to stay at its starting conformation so its compactness would
not change. Since more simultaneous changes cause more collisions, on average it takes less time to find one collision
when k is large. Therefore we measured the time to find all collisions which is less affected by k. Figure 9a shows
the results. The time results are averaged over all 11 conformations. In this case, ChainTree is the fastest algorithm
until k = 50, thanks to both its logarithmic updating time and its fast self-collision detection due to search pruning.
When k increases, the updating time of ChainTree deteriorates and search pruning becomes less effective as rigid
sub-chains are shorter. For k > 50, Grid, whose performance is independent of k, becomes faster.

1http://www.rcsb.org/pdb
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Figure 9: (a) The effect of increasing the number of simultaneous DOF changes on the running time of the four algo-
rithms. (b) The average numbers of box overlap tests by ChainTree with and without search pruning. (Established
for 1HTB.)

Figure 9b reveals more explicitly the effectiveness of search pruning in ChainTree. It shows the average number
of box overlap tests performed by ChainTree with and without search pruning in the previous experiment (averaged
over 11 conformations of 1HTB, as explained above), for increasing values of k. The numbers are significantly smaller
with pruning than without when k is small. As expected, they converge toward one another when k increases.

7 Energy Maintenance

We now extend our testing algorithm to incrementally update the energy of a protein during MCS. A typical
energy function is of the form E = E1 + E2, where E1 sums terms depending on a single parameter commonly
referred to as bonded terms (e.g., torsion-angle and bond-stretching potentials) and E2 sums terms commonly known
as non-bonded terms, which account for interactions between pairs of atoms or atom groups closer than a cutoff
distance [33, 35, 37, 40, 50, 51]. Updating E1 after a conformational change is straightforward. This is done by
computing the sum of the differences in energy in the terms affected by the change and adding it to the previous
value of E1. After a k-DOF change, there are only O(k) affected single-parameter terms. So, in what follows we
focus on the maintenance of E2.

7.1 Overview

At each simulation step we must find the interacting pairs of atoms and change E2 accordingly. Finding these pairs
is similar to finding all self-collisions. One may use the same algorithm, after having grown every atom by half the
cutoff distance.

However, when k is small, many interacting pairs are unaffected by a k-DOF change. The number of affected
interacting pairs, though still O(n) in the worst case, is usually much smaller than the total number of interacting
pairs at the new conformation. Therefore, an algorithm like the grid algorithm that computes all interacting pairs
at each step is not optimal in practice. Moreover, after having computed the new set of interacting pairs, we still
have to update E2, either by re-computing it from scratch, or by scanning the old and new sets of interacting pairs
to determine which terms should be subtracted from the old value of E2 and which terms should be added to get the
new value. In either case, we perform again a computation at least proportional to the total number of interacting
pairs.

Instead, our method directly finds all new interacting pairs, including the previous pairs whose distances have
changed. It also detects partial energy sums unaffected by the DOF change (these sums correspond to interacting
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pairs where both atoms belong to the same rigid sub-chains). The energy terms contributed by the new pairs are then
added to the unaffected partial sums to obtain the new value of E2. In practice, the total cost of this computation is
roughly proportional to the number of changing interacting pairs. The algorithm makes use of a new data structure,
which we call the EnergyTree, in which partial sums computed at previous steps have been cached.

7.2 Finding the new interacting pairs

We wish to find the new interacting pairs of atoms at each step. These include all interacting pairs that were not
interacting at the previous conformation, as well as pairs that were previously interacting but whose distances have
changed. They do not include, however, previous interacting pairs that are no longer interacting.

To do this, we can use the ChainTree described in Section 3, after having grown all atom radii by half the cutoff
distance. The testing algorithm of Section 4 finds exactly the new interacting pairs. However, changing the cutoff
distance for the same molecule requires re-computing all OBBs in the ChainTree. Changing this distance can be
useful, e.g., to detect all very close pairs of atoms in a first pass and thus quickly discard conformations that are very
unfavorable energetically, without even updating the energy value. See Subsection 8.3.

This drawback led us to replace OBBs by RSSs (for rectangle swept sphere) and overlap tests of BVs by distance
computation. An RSS is a type of BV introduced in [36] that is defined as the Minkowski sum of a sphere and a
rectangle. The RSS bounding a set of points in 3D is created very much like an OBB. The two principal directions
spanned by the points are computed and a rectangle is constructed along these directions to enclose the projection
of all points onto the plane defined by these directions. The RSS is the Minkowski sum of this rectangle and the
sphere whose radius is half the length of the interval spanned by the point set along the dimension perpendicular to
the rectangle. In comparison, the OBB of this set of points is the cross-product of the rectangle by this interval.

We create the RSS hierarchy in the way described in Subsection 3.3. But we slightly modify the algorithm of
Section 4 to test whether pairs of RSSs are closer apart than the cutoff distance, instead of testing pairs of OBBs
for overlap. The search pruning rules for rigid sub-chains are unchanged, so that we do not re-compute interacting
pairs inside rigid sub-chains. These have already been identified at previous steps of the MCS. The partial energy
sums corresponding to these pairs are unchanged and can be retrieved from the EnergyTree as described in the
next subsection. To compute the distance between two RSSs, one simply computes the distance between the two
underlying rectangles minus the radii of the swept spheres. This is faster than computing the distance between two
OBBs, and the BVH is independent of the cutoff distance.

The asymptotic bounds for updating and testing stated in Section 5 hold unchanged. For the bound on testing,
this derives from the observation that an RSS may be larger than an OBB only by a constant factor. More precisely,
the RSS of a set of points is larger than the OBB along its two principal directions by no more than the length
of the smallest side of the OBB (the diameter of the swept sphere). Thus, the RSS could easily fit inside an OBB
twice as large as the optimal OBB along each dimension. Moreover, computing the distance between two RSSs takes
constant time, just like testing two OBBs for overlap.

However, the fact that the asymptotic bound for testing — Θ(n
4
3 ) — is unchanged can be misleading. This

bound relies on the fact that protein backbones are well-behaved chains, and as such, the number of atoms that
may interact with any given atom is bounded by a constant as the protein grows arbitrary large. This constant is
likely to be much larger than the constant bounding the number of atoms that may overlap any given atom. The
situation might even be worse for small proteins, in which almost all pairs of atoms could be interacting. Hence, we
may expect the testing algorithm to take significantly more time when it is used to find all new interacting pairs
than when it is used to find all self-collisions. We will exploit this remark in Subsection 8.3 to propose a two-pass
testing algorithm.

7.3 Updating the energy value

Recall that when the testing algorithm examines a pair of sub-chains (including the case of two copies of the same
sub-chain), it first tests whether these sub-chains have not been affected by the DOF change and are contained in
the same rigid sub-chain. If this is the case, the two sub-chains cannot contribute new interacting pairs, and the
algorithm prunes this search path. But, for this same reason, the partial sum of energy terms contributed by the
interacting pairs from these sub-chains is also unchanged. So, we would like to be able to retrieve it. To this end,
we introduce another data structure, the EnergyTree, in which we cache the partial sums corresponding to all pairs
of sub-chains that the testing algorithm may possibly examine. Figure 10 shows the EnergyTree for the ChainTree
of Figure 5.
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Figure 10: EnergyTree for the ChainTree of Figure 5. For simplification, leaves of the form (α, α) are not shown.

Let α and β be any two nodes (not necessarily distinct) from the same level of the ChainTree. If they are not
leaf nodes, let αl and αr (resp., βl and βr) be the left and right children of α (β). Let E(α, β) denote the partial
energy sum contributed by all interacting pairs in which one atom belongs to the sub-chain corresponding to α and
the other atom belongs to the sub-chain corresponding to β. If α 6= β, we have:

E(α, β) = E(αl, βl) + E(αr, βr) + E(αl, βr) + E(αr, βl). (1)

Similarly, the partial energy sum E(α, α) contributed by the interacting pairs inside the sub-chain corresponding to
α can be decomposed as follows:

E(α, α) = E(αl, αl) + E(αr, αr) + E(αl, αr). (2)

These two recursive equations yield the EnergyTree.
The EnergyTree has as many levels as the ChainTree. Its nodes at any level are all the pairs (α, β), where α

and β are nodes from the same level of the ChainTree. If α 6= β and they are not leaves of the ChainTree, then
the node (α, β) of the EnergyTree has four children (αl, βl), (αr, βr), (αl, βr), and (αr, βl). A node (α, α) has three
children (αl, αl), (αr, αr), and (αl, αr). The leaves of the EnergyTree are all pairs of leaves of the ChainTree (hence,
correspond to pairs of links of the protein chain). For simplification, Figure 10 does not show the leaves of the form
(α, α). Each node (α, β) of the EnergyTree holds the partial energy sum E(α, β) after the last accepted simulation
step. The root holds the total sum. In the EnergyTree of Figure 10, we have E(P, P ) = E(N, N)+E(N, O)+E(O, O),
E(N, O) = E(J, L) + E(J,M) + E(K, L) + E(K, M), and so on.

At each step, the testing algorithm is called to find new interacting pairs. During this process, whenever the
algorithm prunes a search path, it marks the corresponding node of the EnergyTree to indicate that the energy sum
stored at this node is unaffected. The energy sums stored in the EnergyTree are updated next. This is done by
performing a recursive traversal of the tree. The recursion along each path ends when it reaches a marked node or
when it reaches an un-marked leaf. In the second case, the sum held by the leaf is re-computed by adding all the
energy terms corresponding to the interacting pairs previously found by the testing algorithm. When the recursion
unwinds, the intermediate sums are updated using Equations (1) and (2). In practice, the testing algorithm and the
updating of the EnergyTree are run concurrently, rather than sequentially.

To illustrate, assume that a 1-DOF change has been applied to the chain of Figure 5 between F and G. In that
case, the testing algorithm marks nodes (N, N), (J, L), (K, L), (L,L) and (M,M) in the EnergyTree. The above
recursion re-computes from scratch the partial sums at all the unmarked leaves it encounters and updates the partial
sums of all other un-marked nodes it visits as the recursion unwinds using Equations (1) and (2).

The size of the EnergyTree grows quadratically with the number n of links. For most proteins this is not a critical
issue. For example, in our experiments, the memory used by the EnergyTree ranges from 0.4 MB for 1CTF (n = 137)
to 50 MB for 1JB0 (n = 1511). If needed, however, memory could be saved by representing only those nodes of the
EnergyTree which correspond to pairs of RSSs closer than the cutoff distance.

17



8 Experimental Results for MCS

8.1 Experimental setup

We extended ChainTree as described in the previous section. Since each step of an MCS may be rejected, we keep
two copies of the ChainTree and the EnergyTree. RSS and distance computation routines were borrowed from the
PQP library [21, 36].

We similarly extended Grid to find interacting pairs by setting the side length of the grid cubes to the cutoff
distance. As we mentioned in Subsection 7.1, Grid finds all interacting pairs at each step, not just the new ones, and
does not cache partial energy sums. So, it computes the new energy value by summing the terms contributed by all
the interacting pairs.

Tests were run on a 400 MHz UltraSPARC-II CPU of a Sun Ultra Enterprise 5500 machine with 4.0 GB of RAM.
We performed MCS with the new ChainTree and Grid on the four proteins of Table 2. Unlike in the self-collision

tests presented earlier, the side-chains were included in the models, as rigid groups of atoms (no internal DOF).
In the ChainTree, no sub-hierarchy was used to represent each link with its side-chain (see Subsection 3.4). So,
if two leaf RSSs are within the cutoff distance, ChainTree finds the interacting pairs from the two corresponding
links by examining all pairs of atoms. The energy function we for these tests used includes a van der Waals (vdW)
potential with a cutoff distance of 6Å, an electrostatic potential with a cutoff of 10Å, and a native-contact attractive
quadratic-well potential with a cutoff of 12Å. Hence, the cutoff distance for both ChainTree and Grid was set to 12Å.

Each simulation run consisted of 300,000 trial steps. The number k of DOFs changed at each step was constant
throughout a run. We performed runs with k = 1, 5 and 10. Each change was generated by picking k backbone
DOFs at random and changing each DOF independently with a magnitude picked uniformly at random between 0◦

and 12◦. Each run started with a random, partially extended conformation of the protein. Since the vdW term for a
pair of atoms grows as O(d−12) where d is the distance between the atom centers, it quickly approaches infinity as d
becomes small (steric clash). When a vdW term was detected to cross a very large threshold, the energy computation
was halted (in both ChainTree and Grid), and the step was rejected.

ChainTree and Grid compute the same energy values for the same protein conformations. Hence, to better
compare their performance, we ran the same MCS with both of them on each protein, by starting at the same initial
conformation and using the same seed of the random-number generator.

8.2 Results
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(a) (b)

Figure 11: Comparing the average time per MCS step of ChainTree and Grid when (a) k = 1 and (b) k = 5.

The results for all the experiments are found in Table 3. Illustrations of the average time results for k = 1 and
k = 5 are presented in Figures 11a and 11b respectively. As expected, ChainTree gave its best results for k = 1,
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k = 1 k = 5 k = 10
CT Grid CT Grid CT Grid

1CTF 7.82 27.7 8.34 18.22 12.57 15.07

1LE2 11.16 65.05 14.31 48.84 14.29 27.12

1HTB 16.72 130.9 18.2 81.86 21.75 60.33

1JB0 21.71 271.4 22.18 130.5 29.88 133.8

k = 1 k = 5 k = 10
CT Grid CT Grid CT Grid

1CTF 5,100 25,100 7,400 16,900 8,000 13,500

1LE2 5,100 48,500 6,000 36,600 7,700 23,400

1HTB 5,400 100,000 7,000 56,800 8,200 43,100

1JB0 5,900 200,000 7,000 95,600 10,300 102,000

(a) (b)

Table 3: MCS results: (a) average time per simulation step (in milliseconds) and (b) number of interacting pairs for
which energy terms were evaluated, per step when k = 1, 5 and 10. (CT stands for ChainTree.)

k = 1 k = 5
CT Grid CT Grid

1CTF 12.8 37.2 29.6 37.7
1LE2 20.9 86.5 24.6 65.4
1HTB 26.6 185 51.8 173
1JB0 40.0 401 89.1 348

k = 1 k = 5
ChainTree Grid ChainTree Grid

1CTF 8,600 33,300 21,000 34,700
1LE2 9,900 61,900 11,400 47,500
1HTB 9,900 134,000 21,500 129,000
1JB0 12,000 280,000 30,300 248,000

(a) (b)

Table 4: MCS results without a threshold on the vdW terms: (a) average time (in milliseconds) per step and (b)
average number of interacting pairs for which energy terms were evaluated per step. (CT stands for ChainTree.)

requiring on average one quarter of the time of Grid per step for the smallest protein (1CTF) and one twelfth of the
time for the largest protein (1JB0). The average number of interacting pairs for which energy terms were evaluated
at each step was almost 5 times smaller with ChainTree than with Grid for 1CTF and 30 times smaller for 1JB0.

We see similar results when k = 5. In this case, ChainTree was only twice as fast as Grid for 1CTF and 6 times
faster for 1JB0. The average number of interacting pairs for which energy terms were evaluated was twice smaller
with ChainTree for 1CTF and 14 times smaller for 1JB0.

When k = 10, the relative effectiveness of ChainTree declined further, being only 1.2 times faster than Grid for
1CTF and 4 times faster for 1JB0. The average number of interacting pairs for which energy terms were evaluated
using ChainTree was 60% of the number evaluated using Grid for 1CTF and 10 times smaller for 1JB0.

These results are consistent with those obtained for self-collision detection (Section 6). The larger k, the less
effective our algorithm compared with Grid. When k is small, there are few new interacting pairs at each step, and
ChainTree is very effective in exploiting this fact. For both ChainTree and Grid the average time per step decreases
when k increases. This stems from the fact that a larger k is more likely to yield over-threshold vdW terms and so
to terminate energy computation sooner.

In order to examine the full effect of reusing partial energy sums, we re-ran the simulations for the four proteins
without the vdW threshold for k = 1 and 5. The results are presented in Table 4. Removing the vdW threshold
does not significantly alter the behavior of the algorithms. The average time per step is of course larger, since no
energy computation is cut short by a threshold crossing. The relative speed-up of ChainTree over Grid is only slightly
smaller without the threshold.

8.3 Two-pass ChainTree

In the previous MCS the percentage of steps that were rejected before energy computation completed, due to an
above-threshold vdW term for 1CTF, for example, rose from 60% when k = 1 to 98% when k = 10. This observation
not only motivates choosing a small k. It also suggests the following two-pass approach. In the first pass, ChainTree
uses a very small cutoff distance chosen such that atom pairs closer than this cutoff yield above-threshold vdW terms.
In this pass, the algorithm stops as soon as it finds an interacting pair, and then the step is rejected. In the second
pass the cutoff distance is set to the largest cutoff over all energy terms and ChainTree computes the new energy
value. We refer to the implementation of this two-pass approach as ChainTree+. Since ChainTree is much faster
with a small cutoff and the first pass will often result in step rejection, we can expect ChainTree+ to be significantly
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unfolded folded
CT CT+ CT CT+

1CTF 8.34 2.6 15.74 6.2
1LE2 14.31 6.4 32.37 9.06
1HTB 18.2 9.23 68.92 11.35
1JB0 22.18 6.33 81.15 15.51

Table 5: Average running times (in mSec.) of ChainTree and ChainTree+ per step when the simulations start at
unfolded conformations and when they start at the folded states of the proteins. (CT stands for ChainTree.)

faster than ChainTree. Thanks to the modifications described in Subsection 7.2, both passes use the same ChainTree
data structure.

We compared ChainTree and ChainTree+ by running an MCS of 300,000 trial steps with k = 5 and measuring
the average time per step. The results for the four proteins are given in Table 5. We ran two different simulations
for each protein. One that started at a partially extended conformation and another that started at the folded
state of the protein. Hence, the conformations reached in the first case were less compact than in the second case.
Consequently, the rejection rate due to self-collision was higher in the second case. While ChainTree+ is faster in
both cases, speed-up factors are greater (as much as 5) when starting from the folded state.

It is not clear whether a similar improvement could be obtained with Grid. Indeed, the resolution of the indexing
grid depends on the cutoff distance. Indexing atoms in two different grids — one with small cells for detecting steric
clashes and another with larger cells for computing the energy — may then considerably reduce the advantage of
the two-pass approach.

9 Conclusion

9.1 Summary of contribution

This paper presents a novel algorithm based on the ChainTree and EnergyTree data structures to reduce the average
step time of MCS of proteins, independent of the energy function, step generator, and acceptance criterion used by
the simulator. Tests show that, when the number of simultaneous DOF changes at each step is small (as is usually
the case in MCS), the new method is significantly faster than previous general methods — including the worst-case
optimal grid method — especially for large proteins. This increased efficiency stems from the treatment of proteins
as long kinematic chains and the hierarchical representation of their kinematics and shape. This representation —
the ChainTree — allows us to exploit the fact that long sub-chains stay rigid at each step, by systematically re-using
unaffected partial energy sums cached in a companion data structure — the EnergyTree. Our tests also demonstrate
the advantage of using the ChainTree to detect steric clash before computing the energy function.

9.2 Other applications

Although we have presented the application of our algorithm to classical Metropolis MCS, it can also be used to
speed up other MCS methods as well as other optimization and simulation methodologies.

For example, MCS methods that use a different acceptance criterion can benefit from the same kind of speed-
up as reported in Section 8, since the speed-up only derives from the faster maintenance of the energy function
when relatively few DOFs are changed simultaneously, and is independent of the actual acceptance criterion. Such
methods include Entropic Sampling MC [39], Parallel Hyperbolic MC [63], and Parallel-hat Tempering MC [64].
MCS methods that use Parallel Tempering [29] (also known as Replica Exchange) such as [63, 64], which require
running a number of replicas in parallel, could also benefit by using a separate ChainTree and EnergyTree for each
replica.

Some MCS methods use more sophisticated move sets (trial step generators). Again, our algorithm can be applied
when the move sets do not change many DOFs simultaneously, which is in particular the case of the moves sets
proposed in [2, 3] (biasing the random torsion changes), and in [15] and [52] (moves based on fragment replacement).
More computationally intensive step generators use the internal forces (the gradient of the energy function) to bias
the choice of the next conformation (e.g., Force-Biased MC [46], Smart MC [32] and MC plus minimization [40]). For
such step generators, the advantage of using our algorithm is questionable, since they may change all DOFs at each
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step. Similarly, the so-called Hybrid MC methods [7, 62] that combine MCS and Molecular Dynamics Simulation
would benefit from our algorithm only when relatively few DOFs are changed at each step. The same is true for
pure MDS in torsion-angle space [24, 55].

Some optimization approaches could also benefit from our algorithm. For instance, a popular one uses genetic
algorithms with crossover and mutation operators [47, 56, 59]. The crossover operator generates a new conformation
by combining two halves, each extracted from a previously created conformation. Most mutation operators also
reuse long fragments from one or several previous conformations. For both types of operators, our algorithm would
allow partial sums of energy terms computed in each fragment to be re-used, hence saving considerable amounts of
computation.

9.3 Current and future work

We are currently using our algorithm to run MCS of proteins on the order of 100 residues and larger. To the best
of our knowledge this has not been attempted so far. To this end we have implemented a more detailed energy
function [37] that includes a pairwise implicit solvent term. We also intend to perform MCS of systems of several
small proteins, in order to study protein misfolding, which is known to cause diseases such as Alzheimer. Each
protein in the system will have its own ChainTree, which will be used to detect interaction both within each molecule
and between molecules.

To be physically realistic a simulation should take into account the solvent in which the protein is immersed. In
MDS this is often done by adding solvent molecules into the system. However, such an explicit representation of
the solvent would tremendously slow down MCS. Therefore, in MCS the solvent is often accounted for implicitly by
adding an energy term and changing the parameters of other terms such as the electrostatic potential. A number
of such implicit solvent terms have been proposed in the literature. Since our algorithm is most efficient when
computing pairwise interactions, a solvent term such as the one suggested in [37], that sums up contributions from
pairs of atoms, is most suited for it. It is common to use the solvent accessible surface area of a protein to estimate
the energetic contribution of the solvent (e.g. [10]). In this case the surface area of the molecule must be known at
each simulation step. Two approximate methods for computing the surface area that could integrate well with our
algorithm are (1) a method that collects surface area contributions from pairs of atoms and approximates the error
introduced by ignoring three-way contributions [13], (2) a method that computes the surface area as a sum over the
surface contribution of each atom computed approximately using arrangements of great circles on a sphere [27].

One possible extension of our work would be to use the ChainTree to help select “better” simulation steps. Indeed,
the rejection rate in MCS becomes so high for compact conformations that simulation comes to a quasi standstill.
This is a known weakness of MCS, which makes it less useful around the native conformation. This happens because
almost any DOF change causes a steric clash. To select DOF changes less likely to create such clashes, one could pre-
compute the radius of rotation of every link relative to each DOF. These radii and the distances between interacting
atom pairs at each conformation would allow computing the range of change for each DOF such that no steric clash
will occur.

Another approach to generating moves in a compact conformation, is to attempt local moves, that is, changes
that affect only a short sub-chain while keeping its endpoints fixed. Good candidate sub-chains for this kind of
change are those that have some free space in their vicinity, into which they can be deformed. The ChainTree could
be used to quickly survey the neighborhood of an amino acid to determine whether there is any free space around
it. Once a free space is found the sub-chain could be moved into it using inverse kinematics techniques [61, 65].

Another natural extension, which exploits the hierarchical nature of the ChainTree, is to vary the resolution of
the molecular representation as MCS progresses. This could be accomplished by changing on the fly the level of the
ChainTree that is considered the leaf level (the bottom level). For full atomic resolution, searches in the ChainTree
would continue until reaching the absolute bottom level. If a coarser resolution can be tolerated, the search could be
stopped at a higher level in the hierarchy, where each node represents one or some amino acids. A different energy
function could then be used for each level of resolution. This scheme could entail large savings in CPU time in
regions of the conformation space where the protein structure is not very compact, while not compromising precision
in other regions when it is needed.
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[55] E. Stein, L. Rics, and A. Brünger. Torsion-angle molecular dynamics as a new efficient tool for NMR structure
calculation. J. of Magnetic Resonance, 124:154–164, 1997.

[56] S. Sun. Reduced representation model of protein structure prediction: statistical potential and genetic algo-
rithms. Protein Science, 2(5):762–785, 1993.

[57] S. Sun, P. Thomas, and K. Dill. A simple protein folding algorithm using a binary code and secondary structure
constraints. Protein Engineering, 8:769–778, 1995.

[58] S. Thompson. Use of neighbor lists in molecular dynamics. Information Quaterly, CCP5, 8:20 – 28, 1983.

[59] R. Unger and J. Moult. Genetic algorithm for protein folding simulations. J. of Molecular Biology, 231:75–81,
1993.

[60] G. van den Bergen. Efficient collision detection of complex deformable models using AABB trees. J. of Graphics
Tools, 2(4):1–13, 1997.

[61] W. Wedemeyer and H. Scheraga. Exact analytical loop closure in proteins using polynomial equations. J. of
Computational Chemistry, 20(8):819–844, 1999.

24



[62] H. Zhang. A new hybrid Monte Carlo algorithm for protein potential function test and structure refinement.
Proteins, 34:464–471, 1999.

[63] Y. Zhang, D. Kihara, and J. Skolnick. Local energy landscape flattening: Parallel hyperbolic Monte Carlo
sampling of protein folding. Proteins, 48:192–201, 2002.

[64] Y. Zhang and J. Skolnick. Parallel-hat tempering: A Monte Carlo search scheme for the identification of
low-energy structures. J. of Chemical Physics, 115(11):5027–5032, 2001.

[65] Q. Zheng, R. Rosenfeld, S. Vajda, and C. DeLisi. Loop closure via bond scaling and relaxation. J. of Compu-
tational Chemistry, 14:556–565, 1992.

[66] Y. Zhou and S. Suri. Collision detection using bounding boxes: Convexity helps. In 8th Annual European
Symposium on Algorithms (ESA 2000), pages 437–448, 2000.

Appendix: Proof of Theorem 1

In this appendix we give a proof of Theorem 1 stated in Section 5.2. Along the way we establish successive useful
lemmas.

In order to simplify our proof, we first “regularize” a well-behaved kinematic chain as follows:

1. We replace each link by an enclosing sphere whose radius is equal to that of the largest minimal enclosing
sphere of any link in the chain.

2. We grow all these spheres equally until no two consecutive spheres in the chain are disjoint (of course some or
many of the spheres may already be intersecting).

So, the links of the new chain are spheres of equal radius r. The new chain is also well-behaved since the
regularization only change the size of the enclosing spheres by a constant factor, when the distance between the
centers of the enclosing spheres of any two successive links of the original chain is lower bounded by a constant
(which is the case for proteins). Therefore, the maximal number of links of the new chain that can overlap a single
link is still bounded by a constant, though this constant may be greater than the one for the original chain. None of
the asymptotic bounds below are affected by this change of constant.

From now on, we only consider the regularized chain. We distinguish between two types of BVH for this chain.
In the tight hierarchy, each BV tightly bounds the links it encloses. In the not-so-tight one, each non-leaf BV bounds
tightly the two BVs just below it. In a tight sphere hierarchy, each bounding sphere is the minimum enclosing sphere
of the links it encloses.

Proposition 1 and Lemmas 1 through 3 establish the upper bound of Theorem 1. Proposition 2 then presents a
chain conformation for which this bound is actually attained, hence showing that the bound is tight.

Proposition 1 In the tight, chain-aligned sphere hierarchy of a well-behaved n-link chain, the maximum total number
of overlapping bounding spheres at all levels is O(n

4
3 ).

Proof: At level i of the hierarchy, where i = 0, 1, . . . , log n, with i = 0 being the lowest level, each consecutive
sub-chain of gi = 2i links is bounded by a single sphere of radius at most gir. This radius occurs when the links are
arranged on a straight line. Take any such sub-chain of gi links and let Bi denote its bounding sphere. Let Ci be the
sphere concentric with Bi and having radius 3gir. Any bounding sphere at level i intersecting Bi is fully contained
in Ci.

Now let us bound the number of sub-chains of gi links whose bounding spheres at level i can be contained in
Ci. Since we aim for an upper bound we assume that each such sub-chain is as tightly packed as possible. Because
each link can overlap at most a constant number of other links the volume occupied by a sub-chain of length gi is
bounded from below by qgi

4
3πr3, where 0 < q ≤ 1 is a constant. Hence, the number of bounding spheres at level i

contained in Ci is at most:

Mi =
4
3π27g3

i r3

4
3qgiπr3

=
27g2

i

q
(3)
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Mi is therefore an upper bound on the number of bounding spheres at level i that overlap Bi. Since there are
exactly n/gi bounding spheres at level i, Mi cannot grow larger than n

gi
. The level imax where this bound is reached

is the smallest i defined by:

n

gi
≥ 27g2

i

q
.

Since gi = 2i, we get:

imax = d1
3

log n + log
1
3
q

1
3 e. (4)

For every i < imax, Ti = n
gi

Mi is an upper bound on the number of overlapping bounding spheres at level i.
For every i ≥ imax, Ti = (N

gi
)2 is an upper bound on this number. In what follows, we ignore the constant term

on the right-hand side of Equation (4) as it has no effect on the asymptotic bound we prove. The total number of
overlapping bounding spheres at all levels is therefore:

T =
log n∑

i=0

Ti

=

1
3 log n∑

i=0

(
27g2

i

q

)(
n

gi

)
+

log n∑

i= 1
3 log n

(
n

gi

)2

=
27n

q

1
3 log n∑

i=0

2i + n2

log n∑
1
3 log n

(
2−i

)2

=
27n

q

(
2n

1
3 − 1

)
+

4
3

(
n

4
3 − 1

)

= O
(
n

4
3

)
(5)

2

As a side note, this proof extends with minor changes to spaces of any dimension d ≥ 3. We then get an upper
bound of O

(
n

2(d−1)
d

)
.

One should note that the upper bound of Proposition 1 holds for any chain-aligned BVH (tight or not) as long
as each BV at level i can be enclosed in a sphere of radius c 2ir, for an absolute constant c. We now use this remark
to show that the upper bound holds for the OBB hierarchy of the ChainTree.

Lemma 1 Given two OBBs contained in a sphere D of radius R, the OBB bounding both of them is contained in a
sphere of radius

√
3R concentric with D.

Proof: We let b1 and b2 denote the two OBBs contained in D and B12 denote their OBB. Construct the bound-
ing cube Q of D whose faces are parallel to those of B12. Q contains B12 since along any of the main axes that
define B12, the faces of Q are farther out (or touching). So, the bounding sphere E of Q, which is concentric with
D, also contains B12. Since each side of Q has length 2R, its diagonal has length 2

√
3R and the radius of E is

√
3R. 2

Lemma 2 At level i of the not-so-tight, chain-aligned OBB hierarchy of a well-behaved n-link chain, each OBB is
contained in a sphere of radius c 2ir, where c is an absolute constant.

Proof: Let us choose c1 such that each OBB at levels i = 0, 1, . . . , 4 of the hierarchy is contained in a sphere of
radius c1 2ir. We know c1 exists since there are at most 16 spherical links enclosed by each OBB at these levels. We
will take the constant c to be at least c1.

We now proceed by induction, by assuming that the lemma is correct up to some level i − 1 (i ≥ 5). Consider
32 consecutive OBBs bj , j = 0, . . . , 31, at level i− 5 that are bounded together in an OBB of level i. The induction
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hypothesis implies that the bounding sphere of each bj has radius at most c 2i−5r. We take a sphere S of radius
2ir that contains the sub-chain bounded by the 32bj boxes. Now each sphere bounding one of the bj boxes must
intersect S since at least one link is contained in both spheres. So, no point of box bj is further away than 2ir(1+ c

16 )
from the center of S.

Let S0 be the sphere of radius 2ir(1 + c
16 ) concentric with S. All boxes bj are contained in S0. Consider pairs

which will be bounded together at the next level (i− 4). We apply Lemma 1 to those pairs and realize that a sphere
S1 of radius

√
3 times the radius of S0 and concentric with S0 bounds all OBBs at level i− 4. Continuing this line

of reasoning up to level i we get that a sphere S5 of radius
√

3
5
2ir(1 + c

16 ) contains the OBB at level i that encloses
all of the boxes bj . We must set c such that this radius is smaller than c 2ir. Thus, c must be such that:

2ir
(
1 +

c

16

)√
3
5 ≤ c 2ir

c

(
1
√

3
5 −

1
16

)
≥ 1 (6)

So we choose:

c = max{
(

1
√

3
5 −

1
16

)−1

, c1}.

2

Lemma 2 assures us that the OBBs in the OBB hierarchy of the ChainTree do not become too big as we climb
up the hierarchy, so that the upper bound of Proposition 1 applies to the ChainTree.

Lemma 3 In the not-so-tight, chain-aligned OBB hierarchy of a well-behaved n-link chain, the maximum number of
overlapping bounding boxes at all levels is O(n

4
3 ).

Proof: We have noted previously that the proof given for Proposition 1 holds for any chain-aligned BVH (tight or
not) of a well-behaved n-link chain, as long as each BV at level i can be enclosed in a sphere of radius c 2ir, for an
absolute constant c. Lemma 2 establishes that this is verified by the not-so-tight, chain-aligned OBB hierarchy of
the chain. 2

This completes the proof of Proposition 1, thus establishing the upper bound of Theorem 1. We now show that
this bound can be attained.

Proposition 2 There exists a well-behaved chain of n links such that the number of BV overlap tests needed to
detect self-collision in certain conformations is Ω(n

4
3 ) for any chain-aligned BVH of convex BVs.

Proof: We prove the lemma by presenting a chain conformation that requires this much work no matter what the
BVs are as long as they are convex. Given some coordinate frame, we take the first d links of the chain and place
them along the X axis starting at the origin and proceeding in the positive direction. The spheres are osculating
and the center of the first sphere is at the origin. The center of the dth link is therefore at x0 = 2(d− 1)r. We now
place the next d links of the chain parallel to the Y axis, starting at (x0, 2r, 0) and going in the positive direction.
Next, we place the next d links parallel to the Z axis starting just above where the previous d-link sub-chain ended.
We call this sub-chain of 3d links a unit. With the next additional links of the chain we create d

8 − 1 more units,
each in reverse order of the previous one and translated by (2r,−2r, 0) relative to the previous one. We call these
d
8 units a layer. Figure 12 shows one such layer. Finally, with the rest of the chain, we create d

8 − 1 layers, each in
reverse order of the previous one and translated by (0,−2r, 2r) relative to the previous one.

We noticed that the convex hull of each unit contains the point (2(d−1)r, (d−1)r, 1
4 (d−1)r). So, all these convex

hulls are pairwise intersecting and any hierarchy of convex BVs will therefore contain that many intersecting pairs
of BVs at the level where all the links of each unit are enclosed together in one BV. Since we created d2

64 units in
total, each with 3d links, so have 3d3

64 = n. Hence, d is a small constant times n
1
3 . The d2

64 units yield Ω(n
2
3 ) convex

hulls and therefore Ω(n
4
3 ) intersecting pairs of convex hulls. 2

Together, Lemma 3 and Proposition 2 prove Theorem 1.
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Figure 12: One layer of the chain construction.
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