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Abstract ods for finding a set of correspondences have been pro-

posed [8, 9, 11, 13, 18, 21, 28, 32, 35]. For example, a dy-
It is shown that structural similarity between proteins can lgamic programming approach from sequence alignment
decided well with much less information than what is used Was used in [9].

common similarity measures. The full,.Gepresentation con- Most similarity measures are based on rather fine gran-
tains redundant information because of the inherent chain naty|g feature selection. Typically, the coordinates of all C

of proteins and a limit on the compactness due to excluded gty m centers are considered, and sometimes even those of
ume. A wavelet analysis on random chains and proteins suggesigiitional atoms. For larger proteins, the number of con-
approximating subchains by their centers of mass. For not @@iereq features greatly affect the efficiency of the struc-
compact chain-like structures in general, and proteins in partiﬁ-ra| comparison. For example, intra-molecular distance
ular, similarity measures that use this approximation are higWatrices grow quadratically with the number of residues.
correlated to the exact similarity measures and are therefore UpRe complexity of the dynamic programming algorithm in
ful, e.g. as fast filters. Experimental results with such simplifiﬁg is quadratic in the number of features. While this is not
similarity measures in two applications, nearest neighbor seag:E:baJ problem when comparing a single pair of structures
and automatic structural classification show a significant Spe(‘?lqost proteins have less than 1000 residues), it becomes

up. an important issue when querying a database for similar
structures, or when clustering a large set of structures.
1 Introduction In this paper, we show that the complexity of similarity

measures can be reduced while introducing only a small

Automatic protein structure Comparison is an impoﬂrror. We Uniformly sub-divide the backbone into a small
tant problem in computational structural biology, e_grj,umber of contiguous subchains and represent each of the
in structural databases and classification [10, 24], strgéPchains by the average coordinates of its atom centers.
ture prediction [6, 7, 19, 26, 30, 31], analysis of traject&iMilarity measures can then be defined on these “aver-
ries through conformational space generated by m0|eé\gﬁd conformations”. Although this Simplification intro-
lar dynamics and Monte Carlo simulations [22, 29, 36juces some error, we provide evidence that enough in-
graph_based methods for eva|uating ensemble proper{@énation about relative S|m||a.r|ty is retained to discrim-
[2, 3, 33], etc. inate structures in practical applications. In particular,
As opposed to sequence matching, structural matdépe derived similarity measures using the averaged pro-
ing requires a similarity measure that is based on spatfin representation are highly correlated to their original
atom coordinates. Nevertheless, it is important whetH{gH-atomic counterparts. If high accuracy is a concern,
the structures that are compared have the same anfiRgroximate similarity measures are still useful as a fast
acid sequence or not. For conformational samples frdifer to considerably reduce the number of pairs that need
the same sequence there are no ambiguities about &€ passed to the exact similarity measure. While we
respondences. In this case, similarity measures suclf@not give bounds on the error that is introduced, we
¢cRM S or dRM S are commonly used [18]. These meashow through wavelet analysis of protein structures and
sures are defined as the root mean square (RMS) of eitl@ldom chains that averaging is a reasonable method for
distances between corresponding atoms in the two cEefducing the dimensionality of structure descriptors.
didate structuresczM S) or their corresponding intra- Reducing the computational complexity of similarity
molecular distance matrix entrieg RM S). Comparing measures significantly accelerates many tasks that involve
protein structures that derive from different sequencessisuctural matching. In our experiments we observed de-
more difficult because it is generally not obvious whictreases in running times by large factors, typically from
features (atoms) of one structure should be matched wdthys to hours or even minutes. For very large sets of
which features from the other structure. Numerous metroteins, both the efficiency of structure comparison of a



single pair and the number of such pairs that are actualljWwhen applying these similarity measures to proteins, it
evaluated are important. Many approaches require evalisacommon practice to use the,Gtom centers, ordered
tion of all pairs (“brute-force approach”) even if the task ialong the backbone, as defining points. (Sometimes, ad-
to identify only a small constant number of nearest neigtiitional atoms are included orgGatoms are used instead.)
bors for each conformation in the set. Using our averagéle positions of these atoms are usually considered to de-
representation we show that we can avoid this quadratiemine the shape of the backbone sufficiently well. How-
cost of examining all pairs in & nearest neighbor ap-ever, in the case afRM S, the intra-molecular distance
plication. In another application to automatic structuratatrices grow quadratically with the length of the protein,
classification, the complexity of a previous algorithm thathich significantly slows down thé RM S computation
matches pairs of structures grows quadratically with tfigr large proteins.

number of residues. In this case as well, a small reduction

in the number of features results in substantial savings 1 Apbroximate similarity measures
The rest of the paper is organized as follows. In Se%l PP y

tion 2, we describe in detail the proposed averaging thﬂé propose to reduce the numbeof sample points i

takes advantage of the chain and excluded volume PraRd as follows. In each sequence, we replace contigu-

erties of proteins. In Section 3, we demonstrate our aji;s subsequences of points by their centroids. That is,

proach in ak nearest neighbor application on a large sgfe uniformly partition the sequende of lengthn into m

of different conformations of the same sequence. In Seentiguous subsequences of lenpthim | each. (Ifn/m

tion 4, we show that our approach can serve as a fast g&enot an integer, some subsequences will be chosen to be

filter to significantly speed up the STRUCTAL algorithnionger by one.) For each of the subsequences, we then re-

for classification of structures with different sequencesiace its points by their centroid, which we will dengte

Finally, Section 5 concludes the paper. for subsequencg. For example, if subsequengespans
points(p., ..., ps) then

2 Shape similarity and approxima-

_ 1 >
tion of chains D= TP )
Given two sequences of points in 3-spade = Based on these averaged subsequences we define the
(p1,-..,pPn)and@ = (qu, ..., dn), their coordinate root m-averaged representatidh,, of P as the sequence of
mean square deviation R/ S) is a common measure ofm points(py, . . ., p,,). (For@, we proceed analogously.)
similarity. It is defined as We can now define the simplified RMS measuresigy

and@,, analogously to the above RMS measures on the
original sequences. That is, in the defining formulas
, 1 — (Equations 1, 2 and 3), we replagge(q;) by p; (q;) andn
cRMS(P,Q) = minr - Z | pi —Ta:i [|* (1) by m. We will call these measures-averaged measures
=1 and denote them by,, RM S andd,,, RM S.

where| - || is the EuclidearL,-norm andT" is a rigid Obviously, the error of these simplified similarity mea-

body transform (rotation and translation). Note that the?¥r€S continuously approaches zero as the two com-
is a closed form solution fof’ that yields the optimal Pareéd point sets” and () become more similar, i.e.
alignment [14]. limg_.p e, RMS(P,Q) — cRMS(P,Q)| = 0 and the
Another common RMS shape similarity measur§2mMe holds fod,,, RM S. For general point sets, the error
dRMS, is based on comparing intra-set point distanddroduced by this approximation can be quite substantial.

matrices, i.e. the matrix of distances between all poifi@Wever, for proteins the error is small because of their
within each structure. For a point s& this matrix is chain nature and because van der Waal forces limit the

defined as c_ompactn_ess of po_ssible f:onfqrmations. In the_ n_ext sec-
tion we will try to give an intuition as to why this is the
(df’-) = |Ip: — pyl (2) case using random chains and wavelets analysis.
The distance matrix RMS deviatiod g S) of P and .
Q is then defined as 2.2 Random chains and Haar wavelets
In what follows we will use random chains and the Haar
9 n -1 wavelet transform to argue that averaging is a reasonable
dRMS(P,Q) = v Zz(df‘; — din)z ©) methpd for reducing the size of t_hg re_p_resentation of a
n(n—1) i—2 =1 protein for computing structure similarities. A random



chainC = (cq,...,c,—1) in 3-D is an ordered set ofrepresentation can then be compressed by removing (set-

points in space defined as follows: ting to 0) all coefficients irC' smaller than some thresh-
old. Since the coefficients are scaled, the square of.the
co = 0, error of approximation in this case would be equal to the
Civ1i = ¢ +8-1l i=0,...,n—2 (5) sum of the squares of the removed coefficients [34].

_ _ o Given the normal approximation of the random chain
Wher882 is a random 3-D vector Un|f0rm|y distributed Ortonstruction, we can ana|ytica||y determine w of
the unit 3-D sphere andis the fixed Euclidean distancegach of the coefficients i6' by adding, subtracting and
between two consecutive points of the chaf3.is sam- scaling independent normally distributed variables. The

pled as follows: pdf of each detail coefficient in levglcan be derived as:
sin ¢ cos 6 j 47 +2
Sy = | singsinf (6) d ~N (07 36 -Z- l) ) (10)
cos ¢ and thepdf of their squared., norm is thus:
wheref ~ U|[0,2x] andcos¢ ~ U[—1,1]. Computing - ) 49 +92
the covariance matrix of, reveals that the off-diagonal [d’]|3 ~ x*(3dof) - 3 ! (11)

elements are identically 0, and as a result the three di- _ o,
mensions of each random step are uncorrelated. Simgd a mean of‘% -l and variance of% -12. Since
each step is independent of all other steps the distrilbbe pdfs of the detail coefficients are centered at the ori-
tions of the three dimensions of any point on the chain agi and their variance is decreasing by a factor of roughly
uncorrelated. We have empirically observed that the avdr-they are expected to be ordered (in absolute value) in
age chain behavior can be approximated well by replacifg from largest to smallest. Note that thé2 scaling
S, with a 3-vector sampled from the normal distributioduring the construction of the coefficients would account
N(0, 3 - 7) (whereZ is the3 x 3 identity matrix) when for an average growth of a factor of 2 in their variance
n > 10. from one level to the next. The special structure of ran-
The Haar wavelet transform of a chain is a recursive adem chains accounts for the second factor of 2. Hence as
eraging and differencing of the coordinates of the poin&s.general policy it is best to remove coefficients starting
The transform recursively smoothes the chain while keegi-the lowest level and climbing up. These coefficients
ing the detail coefficients needed to reconstruct the fuliave the lowest variance and thus contain the least infor-
chain from the smoothed out version. We define the fuiation for determining structural similarity. The effect of
resolution chain to be of levet C = C°. We recursively averaging as described in Section 2.1 for= 2? is the
create smoothed versions of the chain by averaging paiesne as that of removing the lowdsgn — v levels of

of consecutive points: coefficients. Since these are expected to be the smallest
, coefficients, we can conclude that usingraraveraged
o= e (Céfl 4 Céf11> { J= L... »lggn ) chain will give the smallest expected error for a represen-
fov2 VT " 1=0,...,95 -1 tation that uses onlyn Haar detail coefficients for each

o dimension. The wavelet analysis allows us to estimate the
As each level of resolution is created we also compute %I‘Sproximation mean squared (MS) error introduced by re-

detailsthat are smoothed out by the averaging: moving all coefficients of levej. It can be computed to
1o(9i L 1 . i
gL (cj‘1 e ) i1, logn be s (20 + 5t1). Th_erefore for anmm-averaged approxi
1T o\ 2i+1 i=0,..., 81" mation the MS error is expected to be on the orde&,éf

This behavior of the Haar detail coefficients is a result

Note that the averages and details are multiplied by a sc3idhe fact that we are dealing with chains that on the av-
factor of /2 at each level. Giveli, the smoothed chain€'age grow further and further away from their starting
at level j, and D7, the detail coefficients of level, it is POINt. The expected distance of théh point from the
possible to reconstruct exactly’ ! by inverting the for- Origin is on the order of/n - I. In Figure 1 we compare

mulas of Equations 7 and 8. The Haar wavelet transfothe variance of the coefficients of random chains to those
of a chainC is thus defined as: of very compact random chains (chains forced to reside

inside small spheres) and to those of point clouds sam-
C = (Cloen, plosn plosn=l Dby, (9) pled randomly from inside a sphere of radiys - I. All
X chains are of length = 64.
The length ol is the same a€ andC'°¢ ™ is the centroid ~ While it is a well-known fact that the positions of neigh-
of the entire chain. Sinc€ can be exactly reconstructedoring residues in native protein structures are highly cor-
from C, no information is lost during the transform. Thiselated (e.g., see [20]), it was shown in [16] that treating
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Figure 1: Comparison of the Haar coefficients of randoRigure 2: Comparison of the Haar coefficients of decoy
chains, compact random chains and random point clousists of protein and randomly generated conformations of
proteins to the coefficients of a set of random chains.

the position of each residue as uniformly distributed on 2 : . L
3-D sphere yields a very good approximation of the avetr-an what is observed for random ch_alns. This is a re-
S'é; of the space taken up by each residue. In our random

age behavior of native protein structures. We performegd_. . .
. in model the points had no volume and the chain may
the same wavelet transform on sets of conformations 0 . . .
. . not be self-avoiding. The random protein conformations,
actual proteins of length 64 residues (only the atoms)

taken fromdecoy setgconformations which are expectetﬁ1 owever, must respect the "volume* of the atoms and are

. . . . gt allowed to have any self-overlaps. Their behavior is
to be similar to the native conformation). See Section 2, o i
ctually modelled better by random chains in which the

for more details on these sets. We obtained results similar : . . :
) . . r}ext step is sampled uniformly fromhemisphereefined

to those of random chains, namely the detail coefficients the direction of the previous ste

are ordered and have a large growth rate. The results%r P P

a few sets of proteins are presented in Figure 2. One im-/Ve thus can conclude, that while decoy sets cannot be

portant difference from random chains is that for dec mpressgd as much as randgm sets, it is possible to re-
sets the growth in the variance of the detail coefficie ove the first few levels and still get a very good approx-

from one level to the next decreases considerably for fRation.

top levels. We explain this as follows. Small pieces of a

protein cannot be highly packed because of steric cIasI*Q_sS Correlation of approximate and exact
while intermediate size pieces are often elongated (sec- similarity measures

ondary structure helices and strands) and hence the vari-

ance of the coefficients grows considerably from one levgihen using the-RAM S measure to compute similarity
to the next at the low and intermediate levels. The tightween random chains we find that the approximate
packing of the secondary structure of the native-like cogyeraged versions yield very good resultsfors small
formations makes the high level coefficients consideral¥ g Fomn, — 4. 8. 12 and20 Pearson’s correlation of the
smaller than in the random chain model. We would haygnroximate measure to the true one is 0.59, 0.92, 0.97
liked to give results for decoy sets of proteins longer thapg 0.99 respectively. When using #ig1/ S measure to
64 residues, however currently no such sets exist and 9&Hmpute similarity between random chains the approxi-
erqting them requires a significant effort, and eXpertiﬁ?atem-averaged versions is highly correlated feras
which we do not posses. small as 12. The correlation values obtained are 0.45,
Random protein conformations (generated as descrilfed8, 0.88 and 0.94 respectively.
in Section 2.3), on the other hand, are considerably les$n order to verify that the analogous behavior of the de-
compact than the decoy sets, and hence behave miahcoefficients of protein sets and random chains carries
more like random chains atl levels of detail coefficients. over to approximate similarity measures we chose 9 struc-
As can be seen in Figure 2 the growth in variance (frotarally diverse proteins used by Park and Levitt in [26]
one level to the next) at the lower levels is even bigg€tCTF, 1IERP, 1R69, 1SN3, 1UBQ, 2CRO, 3ICB, 4PTI,



4RXN) with between 38 and 76 residues. For these piin-the set. Typicallyk is a small constant while the size
teins we obtained (1) decoy sets (conformations highdy the set can be very large.
similar to the native conformation) generated by ParkThe straight forward (“brute-force”) approach is to
and Levitt, containing 10,000 conformations each and @)aluate the similarity measure{M S or dRM S) for
randomly generated conformation sets using the prograth pairs and then report the NNs for each sample.
FOLDTRAJ [7] containing 5000 structures each. However, the quadratic complexity makes this approach

For each set, we randomly chose between 1000 auwdle badly. Spatial data structures such akthiee[4]
4000 pairs whose trudRM S distance was less thancan avoid this complexity under certain circumstances
5A and computed theimn-averaged distances for differenfl, 5, 17, 15, 23, 27]. Note that these data structures allow
values ofm. The correlation of then-averagedcRM S for exact search, i.e., they return the same NNs as would
anddRM S measures to the truRM S anddRM S mea- the brute-force search. However, most of them require
sures for the different decoy sets can be found in Ta-Euclidean metric space of rather limited dimensional-
ble 1(a). As can be seen from the table, for= 8 the ity. Unfortunately,cRM S is not a Euclidean metric. Al-
approximateeRM S measure is already highly correlatethoughd RM S is a Euclidean metric, the dimensionality
with the truecRM .S measure, which means a reductioaf the space of intra-molecular distance matrices is far too
factor of between 5 and 8 still yields a very good apgh. (Typically, for dimensions higher than a few tens,
proximation. FordRM S, high correlation is achieved fornone of the nearest neighbor data structures performs bet-
m = 12, which means a reduction factor of between 3 aner than brute-force search.) Therefore if we hope to use a
6 (since the complexity af RM S is quadratic, the actualspatial data structure to speed up NNs search, we must use
gain is by a factor of between 9 and 36). We note thditedRM S measure but find a way to significantly reduce
the correlation values obtained are quite similar to thode dimensionality of the structure descriptors beyond the
computed for random chains. averaged conformations we presented in Section 2.

The correlation of then-averagedRM S anddRM S

measures to the true measures for the different rand . . .
sets can be found in Table 1(b). Here too, a reduction fagcl'?l‘ Further reduction of distance matrices

tor of between 5 and 8 yields a highly correlated approXjye use the singular value decomposition (SVD) [12] to
mation of thecRM S measure. Foi RM S high correla- fyrther compress the intra-molecular distance matrices of
tion is achieved forn = 8, which means a reduction fac-qveraged proteins, that is to further reduce the number
tor of between 5 and 8 (an actual gain between 25 and Qﬁ’f)parameters involved in computing, RMS. SVD is
Here the correlation values are in fact better than th(&%tandard tool for principa| Components ana|ysis (PCA)
computed for random chains as would be anticipated frgfid computes directions of greatest variance (and thus
the higher growth ratio of the variance of the detail coeftistance information) in a given set of high-dimensional
ficients of random protein sets in comparison to those gdints. These directions are called principal components
random chains (see Figure 2). We note that when exaPcs). The SVD can be used to linearly map a set of
ining all pairs (not only those whos&k)M S distance is high-dimensional input vectors (data points), stored in a
smaller than B , the Pearson’s correlation found is eVematrix A, into a lower-dimensional Subspace while pre-
stronger. serving most of the variance. Such a transform can be
found by decomposing the matrix of the input vectors
L ) into A = USVT, the SVD of A, whereU andV are
3 Application 1: nearest neighbor orthogonal matrices anél is diagonal with the singular
values ofA along the diagonal.
search Efficient algorithms exist that compute the SVD in time

9 : . .
Simulations and other conformational sampling methogfs t) wheres is the smaller and the larger dimension

generate large sets of conformations of a particular p \—/é (rOV\I’;’ t())r colul_mgsi). . l\tlote thlat V\Ilh'lz.": prmmplti,_
tein. For example, the projedtolding@Homé runs could be applied lo Intra-molecuiar distance matri-

arallel molecular dynamics simulations on several thot-= . . .
P y endency on the smaller dimensiondo$hows the im-

sands of computers across the Internet and then centr ant advant ¢ . v the | di
evaluates the obtained data. An important step in evalU3f; rant advantage oraveraging. usuatly, the farger dimen-

ing such data, e.g. for clustering and related tasks, is fiant will reflect the size of the conformational sample

following: given a set of conformations of the same pré—?t while t.he smaller d|men3|myV|II correqund to the-
ze of a single intra-molecular distance matrix. Reducing

tein, find thek nearest neighbors (NNs) for each samp ; o . .
the distance matrix size by using averaged conformations,
Lhttp://bioinfo.mshri.on.ca/trades/ as described in Section 2, is therefore key to performing
2http://folding.stanford.edu the SVD in practice.

s without first averaging protein pieces, the quadratic




1CTF
cRMS dRMS

1ERP
cRMS dRMS

1R69
cRMS dRMS

1SN3
cRMS dRMS

1UBQ
¢cRMS dRMS

2CRO
cRMS dRMS

3ICB
cRMS dRMS

2PTI
cRMS dRMS

4RXN
cRMS dRMS

0.38 0.42

0.88 0.86

0.64 0.47

0.54 0.45

0.37 0.47

0.73 0.52

0.57 0.40

0.42 0.46

0.49 0.49

0.90 0.77

0.97 0.94

0.97 0.87

0.94 0.78

0.84 0.70

0.97 0.89

0.98 0.86

0.95 0.83

0.93 0.79

0.98 0.93

0.98 0.96

0.99 0.92

0.98 0.94

0.98 0.92

0.99 0.95

0.99 0.92

0.98 0.92

0.98 0.94

0.99 0.95

0.99 0.98

0.98 0.92

0.99 0.97

0.98 0.95

0.99 0.97

0.98 0.92

0.98 0.94

0.98 0.97

0.99 0.96

0.98 0.96

0.99 0.96

0.99 0.97

0.99 0.96

0.99 0.97

0.98 0.93

0.99 0.95

0.98 0.95

(@)

1CTF
cRMS dRMS

1ERP
cRMS dRMS

1R69
cRMS dRMS

1SN3
cRMS dRMS

1UBQ
cRMS dRMS

2CRO
cRMS dRMS

3ICB
cRMS dRMS

7P
¢cRMS dRMS

4RXN
cRMS dRMS

0.69 0.59

0.85 0.92

0.68 0.65

0.68 0.63

0.65 0.53

0.70 0.64

0.65 0.55

0.72 0.71

0.73 0.74

0.96 0.90

0.99 0.99

0.97 0.93

0.97 0.92

0.96 0.84

0.97 0.91

0.96 0.86

0.97 0.95

0.97 0.96

0.99 0.97

0.99 0.98

0.99 0.97

0.99 0.97

0.99 0.95

0.99 0.97

0.99 0.95

0.99 0.98

0.99 0.98

0.99 0.98

0.99 0.99

0.99 0.99

0.99 0.99

0.99 0.97

0.99 0.99

0.99 0.97

0.99 0.98

0.99 0.98

0.99 0.98

0.97 0.96

0.99 0.98

0.99 0.98

0.99 0.97

0.99 0.98

0.99 0.97

0.99 0.98

0.99 0.97

(b)

Table 1: Pearson'’s correlation coefficient for differemtvalues evaluated farRM .S anddRM S of (a) decoy sets
and (b) randomly sampled conformations of various proteins.

k=10 k=25 k = 100 k=10 k=25 k = 100

E1 E2 E1 E2 El E2 E1 E2 E1 E2 E1 Eg
1CTF | 1.1 1.04 | 1.116 1.036| 1.104 1.023 decoys | 1.337 1.248| 1.34 1.196| 1.347 1.141
1ERP | 1.3 1.158| 1.292 1.124] 1.246 1.083 decoys2| 1.136 1.052| 1.171 1.049| 1.158 1.036
1R69 | 1.201 1.093] 1.192 1.074| 1.165 1.048 uniform | 1.101  1.035| 1.107 1.029] 1.113  1.02
1SN3 | 1.161 1.086| 1.155 1.063| 1.136 1.04
1UBQ | 1.199 1.105| 1.184 1.08| 1.162 1.045 . . o ) :
SeRS I Lo Tles imes Lo 1o Table 3: 1CTE. Mean errorss; = E(err;) for 100 queries
3CB | 1152 1.054] 1154 1.048 1.129 1.033 of k nearest neighbors. Decoys, decoys2: 100,000 decoys from
4PTI [ 1.186 1.099] 1.188 1.079| 1.17 1.055 Park-Levitt set f» = 16 and 20 PCs). Decoys2: excluding 8
ARXN | 1.179 1.079] 1186 1.072] 1.163 1.046 outliers. Uniform: 100,000 uniformly sampled conformations

=1 d 16 PCs).
Table 2:Mean errorsE; = E(err;) for 100 queries of near- (m =16an S)

est neighbors. Park-Levitt decoys, 20 PCs.

enough to allow for good results in finding most of the

. . true k£ nearest neighbors. In what follows, we illustrate
To perform a SVD on a set of intra-molecular dlstanc[f1is with different error measures

matrices derived fromm-averaged conformations, each of . - <ot of conformations and a given query confor-

these.dlst?ncetmatnc(;etsh|s r;ar\l/v n;t\e/rg)a}sm(mn I'_ cli)t/ Qtﬂ" mation( from that set, we define two subséts and S,
mensionai vector and then the IS applied to the sizek each.S; is the set ofk nearest neighbors @f in

trix that contains z_;tll these vectors. Taking the resultihg S using exactiRMS. S, is the set of: nearest neighbors

matrix and removing all columns that correspond to smal] . S usi Epc MS. Thus.S, is th o

singular values (the directions of little variance), we ha Qin  usingd,,, 1t - 1hus, 2 IS the approximation
o 091 using our reduced similarity measure.

the linear map that takes the set of distance matrices i X )
ana first experiment, we evaluated how many of the ex-

a lower-dimensional Euclidean space while preserving iohb ¢ . ldb
high percentage of the variance and thus distance inforrfigL nearest neighbor conformationsSi would be con-

tion. We found that in practice, a relatively small outpd?med IS as well. To this end, we looked at the= 100 )
dimensionality between 10 and 20 is sufficient to maintalarest neighbors for each of 100 query conformations
about90% of the variance of the distance matrices. ~ a"d computed the average number of such matches over

In the following, we will denote thelR)M S measure the 100 queries. Using,; RM.S on setsS of 10,000 de-
obtained from an SVD compressed sebofiveraged dis- €0YS of 1R69, 4PTl, 2CRO, 1SN3 and 3ICB, these aver-
tance matrices bﬁZCRM S. (PC stands for the numberag'_aS rilgged from 74.8 to 83.3 (roug_hly 80 on average).
of principal components that are used after compressiod9n9 d1g M5 on setss' of 5,000 uniform samples of
the same proteins, corresponding averages were between
86.1 and 94.2 (about 90 on average). These results show
that, using our approximations, not too many extra sam-
ples would have to be drawn in order to obtain sufficiently
Of course, by reducing the dimensionality of distanGfany exact nearest neighbors.

anactrix space fromdRMS over d,,RMS to finally  However, in cases in which significantly more thian
d,, RMS, we lose some information. However, we obeonformations are clustered around the query conforma-

served that in general, the introduced errors are smntah, the number of identical matches may not be a good

3.2 Evaluation of approximation errors



guality measure. In such cases, it may even be possibleto |~ cRMS _cigRMS | dRMS _ digRMS
. . . . 1,000 18.6s 12.4s 31.0s 2.2s
obtain a very different candidate set with almost the same o000 T 72.4s £0.05 137 55 8.0s
distribution of distances from the query conformation. We 5000 | 464.8s 312.0s | 759.8s 434s
100,000 ~52h ~35h ~84h ~4.8h

therefore used the two following error measures to further

evaluate the quality of our approximations. Table 4: Brute-force search usingM S vs ¢,gRM S

) anddRM S vs digRM S for finding thek = 100 near-
err; The ratio of the exacd RM S of the furthest con- ogt neighbors for each & samples.

formation in S, to the exactiRM S of the furthest
conformation inS;.

quadratic down-scaling of intra-molecular distance matri-
ces by averaging proteins. FoeygRM S, the improve-

ment overRM S is smaller. This is because the reduction
by averaging affects the number of involved points only

We first looked at the decoy sets of size 10,000 for eaéfearly and the main effort in computing?A/.S comes
of the nine Park-Levitt proteins. We used = 16 and from finding an optimal rigid body alignment of two point
20 PCs. For each set, we randomly chose 100 query c8fts.
formations and evaluatedr; anderr, for each of them.  Note that the increase in running times agrees quite

Table 2 shows the mearts; = E(err;) of both errors \ell with the expected quadratic scaling of the brute-force
over the 100 queries (standard deviations were genergliarest neighbor approach. The times&or= 100, 000
small). The mean errak;, is usually noticeably smallersamples were therefore extrapolated from the actual run-
than 1.2 which means that the worst-case error by our fﬁjg times measured for the smaller values\ofIn fact,
duction is smaller than 20%. The mean e[EQI'iS almost for dRM S using all G, atom coordinates, we had prob-
always noticeably smaller than 1.1 indicating an averagens storing all intra-molecular distance matrices (how-
error of less than 10%. Note that these percentages &er, these problems do not occur with averaged proteins
respond to small absolute values of abbdth and0.7A,  andd,, RM S).
respectively. . :
We next r th rati ling problem of th
We also evaluated the error measures for two large € next address the quadratic scaling problem of the

ertl‘j’te-force approach. To be able to apply a kd-tree
of 100,000 conformations of 1CTF, a decoy set and a upl-. .. i . : :

we first further reduced the 120-dimensional space of
formly sampled set. Here, we used = 16 and 20 PCs digRM S using SVD and retained 16 principal compo-
for the decoys anedr = 16 and 16 PCs for the uniform’ g princip P

samples. The results are presented in Table 3. For rheents. This further compression took about one minute
ples. P . or the complete set of 100,000 samples. Building the

decoys we noticed both errors to be slightly higher th%l-tree for the resulting 16-dimensional data took only

Logr;hg §$a(l)lfe{hgai?)osetu2?0\5'”&';:?“\’\;\:)?; thrfiZthselreboyltﬁA' seconds. The correlation coefficient of the result-
query ’ INg d,sRM S andd RM S was found to be still about 0.94.

obvious outliers, we got comparable results (row IabeII% . . . S
! . S reported in the previous section, the approximation er-
decoys2). For the uniform samples, both relative errors

o Iso | f. Table 3).
were significantly smaller than for the decoy set. rors are also low (cf. Table 3)

erry The ratio of the average exadRM S of all con-
formations inS; to the average exadtRM S of all
conformations inS;.

We then ran both the brute-force and the kd-tree ap-
. —16 .. .
. . proach usingi,; RM S as similarity measure. Table 5
3.3 Running time shows the running times for finding = 1 andk =

We now consider the running times in a concrete nearédf néarest neighbors for each sample in the full set of

neighbor task: given a set of 100,000 random conformd#20,000 samples. The obtained total speed-up of our

tions of protein 1CTF, find: = 100 nearest neighbors fornearest neighbor search (approximate similarity measures
each sample in the set. The reported times in this s88d @ kd-tree) over the current best approach (brute-force
tion refer to a sequential implementation in C running gif@rch using all’, coordinates) is several orders of mag-

a single 1GHz Pentium processor on a standard desk%tb'de-

PC. In general, the speed-up obtained by using a kd-tree can
We first compare the running times for a brute-fordee expected to increase with increasing sample sef\size
(all-pairs) implementation using botflRM S andd RM S, Due to its quadratic scaling, brute-force search will be-
and their corresponding averaged similarity measumesme very slow for larger sample sets. On the other hand,
Zm RM S andd,,, RM S. Table 4 shows that the latter meathe sub-quadratically scaling kd-tree approach should al-
sures already result in a notable speed-up.df@RM S, low to process even much larger sample sets within a few

a significant speed-up ovéR M S is obtained due to the hours without parallelization on a standard desktop PC.



k_| Bruteforce | kd-tree 4.1 The modified STRUCTAL algorithm

1 30min 4minl0sec
100 41min 19min

All the above methods stand to gain in performance by
Table 5: Brute-force vs kd-tree search fdr nearest neigh- USing our averaging scheme. In order to verify this we
bors for each of 100,000 samples. Used similarity measutested the speed up and accuracy obtained by using the
EigRMS. STRUCTAL method on averaged protein structures. We
could not test our approach on PROSUP and DALI be-
cause both servers did not accept our averaged structures
. . . ... (for file formatting reasons), and the algorithms were too
4 Appllcatlon 2: structural classifi- involved for us to implement reliably.
cation The STRUCTAL algorithm starts with an initial align-
ment of the backbon€', atoms of the two structures ac-
cording to one of a number of possible heuristics (aligning
Given a set of native prOtein structures each haVingtr% beginnings7 the endS, random SegmentS, by sequence
different amino-acid sequence, such as the Protein Dgiriﬂiiarity, etc_) Then a two Step process is repeated un-
Bank (PDBf we would like to automatically classifyiil convergence. First a dynamic programming algorithm
the structures into groups according to their structugsed on the Needleman and Wunsch sequence alignment
similarity. This task has been performed manually ligorithm[25] finds the correspondence between the two
the SCOP (structural classification of proteins) databasgructures that yields the highest score. Scoring is based
[24], where protein structures are hierarChica”y ClaSSiﬁ% assigning a cost to each possibie Corresponding pair,
into classesfolds superfamiliesandfamilies The major which is inversely proportional to the distance between
difﬁCU'ty in performing this classification automaticallyca positions, and a gap penalty for every gap in the
lies in the need to decide, given two protein structuregignment. Computing the best correspondence thus re-
which parts of both structures should be compared, bEf@ﬁﬂresO(nlng + non?) time (v, andn, are the number
it can be determined how similar these partS are. ¢his of residues in each Structure)_ Second, an Optimai aiign_
respondence problemioes not arise when different conment is computed based on the best correspondence us-
formations of the same protein are compared becausgni the method in [14]. TheRAM S distance of the final
that case the Correspondence is trIVIally determined. %nment and the number of Corresponding residues is re-
this reason computing the similarity between structuresifned as a measure of the similarity of the two structures.
different proteins requires considerably more computatigihce the result is sensitive to the initial alignment, the
than the methods described in Section 2. algorithm is usually run a number of times for each pair

There are a variety of algorithms that have been cigfstructures, each time using a different initial alignment.
ated for structural classification. The DALinethod [13] The best (smallest) result of all the runs is kept.
starts with the distance matrices of both proteins. It findsBY using averaging with this algorithm we add an-
all pairs of similar sub-matrices of small fixed size (on@ther degree of freedom to the computation. If we av-
from each protein distance matrix) and then uses a Mogf@ge eachr C, atom positions to create the averaged
Carlo algorithm to assemble the pairs into larger coftructure, we have a choice of= mod(n1,r) starting
sistent alignments. The PROSYmethod [21] initially Positions to start the averaging process for one structure
identifies similar fragments in both proteins and iter@ndb = mod(na, r) for the other. As a result there are
tively expands them to create alignments. A dynamic &-< b possible pairs of averaged structures that could pos-
gorithm is then used to iteratively refine each alignmeily result in different alignment scores. Therefore more
and finally insignificant alignments are removed. TH&NS per pair of structures would be necessary when using
STRUCTAL’ method [9] directly matches the backbone@Ur averaging scheme. However, the gain from averaging
of the two protein structures by iteratively cycling bestands to be very large. Since bethandn, are reduced
tween a dynamic programming algorithm and least-squ&éa factor ofr, the complexity of the dynamic program-
fitting to come up with an alignment that minimizes coofing, which is the main part of the algorithm, is reduced
dinate difference. For other methods see [18]. by a factor ofr?.

4.2 Experimental results

Shttp://www.rcsb.org/pdb/

“http://scop.mre-Imb.cam.ac.uk/scop/ We implemented the STRUCTAL algorithm as it is de-
Shitp://mww2.ebi.ac.uk/dali

Shttp://lore.came.sbg.ac.at/CAME scribed in [9]. Our implementation initially aligns the two
JCAME EXTERN/PROSUP structures by choosing a small random correspondence.
"http://bioinfo.mbb.yale.edu/align Therefore, we ran the algorithm 12 times for every pair



of structures and kept the smallest result as the similary Conclusion

score. In [9] they run the algorithm a few times as well,

each time using a different initial alignment heuristic. WEwo general properties of proteins, their chain nature and

selected 103 protein structures of various sizes (betwdighited compactness, can be exploitet to uniformly reduce

100 and 600 residues) taken from 5 different fold familiégge number of features for structural similarity computa-

in SCOP [24]. We compared all pairs of structures usifigns. Substantial savings in terms of storage and running

the full C,, representation and using averages ef 5 (36 time are attained with small errors.

runs per pair of structures) amd= 8 (60 runs per pair of  In applications in which no approximation error is tol-

structures). erable, our approach can be used as a first step to filter a

) small subset of pairs that are within some tolerance band

Altogether 5253 pairs of structures were evaluated. Thgyund the desired similarity. More expensive exact sim-

correlation of the similarity measure of the averaged reifarity measures can then be used on the reduced set of

resentation to the that of the full representation was 0.8dirs.

forr = 5 and 0.80 for- = 8. When only examining pairs Ty possible applications were presented: finding

where the number of corresponding residues was ab@w&yest neighbors in large sets of conformations of the

100 the correlation was 0.86 and 0.82 respectively. Fime protein and classification of different proteins us-

correspondence larger than 200 the correlation was 0;93 the STRUCTAL algorithm. In these examples, the

and 0.85 respectively. We wanted to evaluate how usefyfning times were reduced from days to hours or even

the averaging scheme is as a pre-filter for classificatighin tes.

When trying to pick oqt the 10 most sim@lar structures to |, general, applications that input very large sets of pro-

each of the structures in the test set, we find on average@igs or that employ computationally intensive algorithms

of them when picking the top 10 using the averaged regy |arge proteins stand to benefit from approximation of
resentation withr = 5, although 25% of the time we getgirctures as suggested in this paper.

less than 5. We find 8.3 on average when picking the top
20 using the averaged representation, getting less thaﬂcEnowledgementS' The authors would like to thank
0 : : . :
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