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Abstract

It is shown that structural similarity between proteins can be
decided well with much less information than what is used in
common similarity measures. The full Cα representation con-
tains redundant information because of the inherent chain nature
of proteins and a limit on the compactness due to excluded vol-
ume. A wavelet analysis on random chains and proteins suggests
approximating subchains by their centers of mass. For not too
compact chain-like structures in general, and proteins in partic-
ular, similarity measures that use this approximation are highly
correlated to the exact similarity measures and are therefore use-
ful, e.g. as fast filters. Experimental results with such simplified
similarity measures in two applications, nearest neighbor search
and automatic structural classification show a significant speed
up.

1 Introduction

Automatic protein structure comparison is an impor-
tant problem in computational structural biology, e.g.,
in structural databases and classification [10, 24], struc-
ture prediction [6, 7, 19, 26, 30, 31], analysis of trajecto-
ries through conformational space generated by molecu-
lar dynamics and Monte Carlo simulations [22, 29, 36],
graph-based methods for evaluating ensemble properties
[2, 3, 33], etc.

As opposed to sequence matching, structural match-
ing requires a similarity measure that is based on spatial
atom coordinates. Nevertheless, it is important whether
the structures that are compared have the same amino
acid sequence or not. For conformational samples from
the same sequence there are no ambiguities about cor-
respondences. In this case, similarity measures such as
cRMS or dRMS are commonly used [18]. These mea-
sures are defined as the root mean square (RMS) of either
distances between corresponding atoms in the two can-
didate structures (cRMS) or their corresponding intra-
molecular distance matrix entries (dRMS). Comparing
protein structures that derive from different sequences is
more difficult because it is generally not obvious which
features (atoms) of one structure should be matched with
which features from the other structure. Numerous meth-

ods for finding a set of correspondences have been pro-
posed [8, 9, 11, 13, 18, 21, 28, 32, 35]. For example, a dy-
namic programming approach from sequence alignment
was used in [9].

Most similarity measures are based on rather fine gran-
ular feature selection. Typically, the coordinates of all Cα

atom centers are considered, and sometimes even those of
additional atoms. For larger proteins, the number of con-
sidered features greatly affect the efficiency of the struc-
tural comparison. For example, intra-molecular distance
matrices grow quadratically with the number of residues.
The complexity of the dynamic programming algorithm in
[9] is quadratic in the number of features. While this is not
a real problem when comparing a single pair of structures
(most proteins have less than 1000 residues), it becomes
an important issue when querying a database for similar
structures, or when clustering a large set of structures.

In this paper, we show that the complexity of similarity
measures can be reduced while introducing only a small
error. We uniformly sub-divide the backbone into a small
number of contiguous subchains and represent each of the
subchains by the average coordinates of its atom centers.
Similarity measures can then be defined on these “aver-
aged conformations”. Although this simplification intro-
duces some error, we provide evidence that enough in-
formation about relative similarity is retained to discrim-
inate structures in practical applications. In particular,
the derived similarity measures using the averaged pro-
tein representation are highly correlated to their original
full-atomic counterparts. If high accuracy is a concern,
approximate similarity measures are still useful as a fast
filter to considerably reduce the number of pairs that need
to be passed to the exact similarity measure. While we
cannot give bounds on the error that is introduced, we
show through wavelet analysis of protein structures and
random chains that averaging is a reasonable method for
reducing the dimensionality of structure descriptors.

Reducing the computational complexity of similarity
measures significantly accelerates many tasks that involve
structural matching. In our experiments we observed de-
creases in running times by large factors, typically from
days to hours or even minutes. For very large sets of
proteins, both the efficiency of structure comparison of a
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single pair and the number of such pairs that are actually
evaluated are important. Many approaches require evalua-
tion of all pairs (“brute-force approach”) even if the task is
to identify only a small constant number of nearest neigh-
bors for each conformation in the set. Using our averaged
representation we show that we can avoid this quadratic
cost of examining all pairs in ak nearest neighbor ap-
plication. In another application to automatic structural
classification, the complexity of a previous algorithm that
matches pairs of structures grows quadratically with the
number of residues. In this case as well, a small reduction
in the number of features results in substantial savings.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe in detail the proposed averaging that
takes advantage of the chain and excluded volume prop-
erties of proteins. In Section 3, we demonstrate our ap-
proach in ak nearest neighbor application on a large set
of different conformations of the same sequence. In Sec-
tion 4, we show that our approach can serve as a fast pre-
filter to significantly speed up the STRUCTAL algorithm
for classification of structures with different sequences.
Finally, Section 5 concludes the paper.

2 Shape similarity and approxima-
tion of chains

Given two sequences of points in 3-spaceP =
(p1, . . . ,pn) andQ = (q1, . . . ,qn), their coordinate root
mean square deviation (cRMS) is a common measure of
similarity. It is defined as

cRMS(P,Q) = minT

√√√√ 1
n

n∑

i=1

‖ pi − Tqi ‖2 (1)

where‖ · ‖ is the EuclideanL2-norm andT is a rigid
body transform (rotation and translation). Note that there
is a closed form solution forT that yields the optimal
alignment [14].

Another common RMS shape similarity measure,
dRMS, is based on comparing intra-set point distance
matrices, i.e. the matrix of distances between all points
within each structure. For a point setP , this matrix is
defined as

(
dP

ij

)
= ‖pi − pj‖ (2)

The distance matrix RMS deviation (dRMS) of P and
Q is then defined as

dRMS(P,Q) =

√√√√ 2
n(n− 1)

n∑

i=2

i−1∑

j=1

(dP
ij − dQ

ij)2 (3)

When applying these similarity measures to proteins, it
is common practice to use the Cα atom centers, ordered
along the backbone, as defining points. (Sometimes, ad-
ditional atoms are included or Cβ atoms are used instead.)
The positions of these atoms are usually considered to de-
termine the shape of the backbone sufficiently well. How-
ever, in the case ofdRMS, the intra-molecular distance
matrices grow quadratically with the length of the protein,
which significantly slows down thedRMS computation
for large proteins.

2.1 Approximate similarity measures

We propose to reduce the numbern of sample points inP
andQ as follows. In each sequence, we replace contigu-
ous subsequences of points by their centroids. That is,
we uniformly partition the sequenceP of lengthn into m
contiguous subsequences of lengthbn/mc each. (Ifn/m
is not an integer, some subsequences will be chosen to be
longer by one.) For each of the subsequences, we then re-
place its points by their centroid, which we will denotepj

for subsequencej. For example, if subsequencej spans
points(pr, . . . ,ps) then

pj =
1

s− r + 1

s∑

i=r

pi (4)

Based on these averaged subsequences we define the
m-averaged representationPm of P as the sequence of
m points(p1, . . . ,pm). (ForQ, we proceed analogously.)
We can now define the simplified RMS measures forPm

andQm analogously to the above RMS measures on the
original sequences. That is, in the defining formulas
(Equations 1, 2 and 3), we replacepi (qi) bypi (qi) andn
by m. We will call these measuresm-averaged measures
and denote them bycmRMS anddmRMS.

Obviously, the error of these simplified similarity mea-
sures continuously approaches zero as the two com-
pared point setsP and Q become more similar, i.e.
limQ→P |cmRMS(P, Q) − cRMS(P, Q)| = 0 and the
same holds fordmRMS. For general point sets, the error
introduced by this approximation can be quite substantial.
However, for proteins the error is small because of their
chain nature and because van der Waal forces limit the
compactness of possible conformations. In the next sec-
tion we will try to give an intuition as to why this is the
case using random chains and wavelets analysis.

2.2 Random chains and Haar wavelets

In what follows we will use random chains and the Haar
wavelet transform to argue that averaging is a reasonable
method for reducing the size of the representation of a
protein for computing structure similarities. A random
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chain C = (c0, . . . , cn−1) in 3-D is an ordered set of
points in space defined as follows:

c0 = 0,

ci+1 = ci + S2 · l i = 0, . . . , n− 2 (5)

whereS2 is a random 3-D vector uniformly distributed on
the unit 3-D sphere andl is the fixed Euclidean distance
between two consecutive points of the chain.S2 is sam-
pled as follows:

S2 =




sin φ cos θ
sinφ sin θ

cos φ


 (6)

whereθ ∼ U [0, 2π] andcos φ ∼ U [−1, 1]. Computing
the covariance matrix ofS2 reveals that the off-diagonal
elements are identically 0, and as a result the three di-
mensions of each random step are uncorrelated. Since
each step is independent of all other steps the distribu-
tions of the three dimensions of any point on the chain are
uncorrelated. We have empirically observed that the aver-
age chain behavior can be approximated well by replacing
S2 with a 3-vector sampled from the normal distribution
N (0, 1

3 · I) (whereI is the3 × 3 identity matrix) when
n > 10.

The Haar wavelet transform of a chain is a recursive av-
eraging and differencing of the coordinates of the points.
The transform recursively smoothes the chain while keep-
ing the detail coefficients needed to reconstruct the full
chain from the smoothed out version. We define the full
resolution chain to be of level0: C = C0. We recursively
create smoothed versions of the chain by averaging pairs
of consecutive points:

cj
i =

1√
2

(
cj−1
2i + cj−1

2i+1

) {
j = 1, . . . , log n
i = 0, . . . , n

2j − 1 .

(7)
As each level of resolution is created we also compute the
detailsthat are smoothed out by the averaging:

dj
i =

1√
2

(
cj−1
2i − cj−1

2i+1

) {
j = 1, . . . , log n
i = 0, . . . , n

2j − 1 .

(8)
Note that the averages and details are multiplied by a scale
factor of

√
2 at each level. GivenCj , the smoothed chain

at levelj, andDj , the detail coefficients of levelj, it is
possible to reconstruct exactlyCj−1 by inverting the for-
mulas of Equations 7 and 8. The Haar wavelet transform
of a chainC is thus defined as:

Ĉ =
(
C log n, Dlog n, Dlog n−1, . . . , D1

)
. (9)

The length ofĈ is the same asC andC log n is the centroid
of the entire chain. SinceC can be exactly reconstructed
from Ĉ, no information is lost during the transform. This

representation can then be compressed by removing (set-
ting to 0) all coefficients inĈ smaller than some thresh-
old. Since the coefficients are scaled, the square of theL2

error of approximation in this case would be equal to the
sum of the squares of the removed coefficients [34].

Given the normal approximation of the random chain
construction, we can analytically determine thepdf of
each of the coefficients in̂C by adding, subtracting and
scaling independent normally distributed variables. The
pdf of each detail coefficient in levelj can be derived as:

dj ∼ N
(
0,

4j + 2
36

· I · l
)

, (10)

and thepdf of their squaredL2 norm is thus:

‖dj‖22 ∼ χ2(3dof) · 4j + 2
36

· l (11)

with a mean of4
j+2
12 · l and variance of(4

j+2)2

216 · l2. Since
thepdfs of the detail coefficients are centered at the ori-
gin and their variance is decreasing by a factor of roughly
4, they are expected to be ordered (in absolute value) in
Ĉ, from largest to smallest. Note that the

√
2 scaling

during the construction of the coefficients would account
for an average growth of a factor of 2 in their variance
from one level to the next. The special structure of ran-
dom chains accounts for the second factor of 2. Hence as
a general policy it is best to remove coefficients starting
at the lowest level and climbing up. These coefficients
have the lowest variance and thus contain the least infor-
mation for determining structural similarity. The effect of
averaging as described in Section 2.1 form = 2v is the
same as that of removing the lowestlog n − v levels of
coefficients. Since these are expected to be the smallest
coefficients, we can conclude that using anm-averaged
chain will give the smallest expected error for a represen-
tation that uses onlym Haar detail coefficients for each
dimension. The wavelet analysis allows us to estimate the
approximation mean squared (MS) error introduced by re-
moving all coefficients of levelj. It can be computed to
be l

12

(
2i + 1

2i−1

)
. Therefore for anm-averaged approxi-

mation the MS error is expected to be on the order ofn·l
6m .

This behavior of the Haar detail coefficients is a result
of the fact that we are dealing with chains that on the av-
erage grow further and further away from their starting
point. The expected distance of thenth point from the
origin is on the order of

√
n · l. In Figure 1 we compare

the variance of the coefficients of random chains to those
of very compact random chains (chains forced to reside
inside small spheres) and to those of point clouds sam-
pled randomly from inside a sphere of radius

√
n · l. All

chains are of lengthn = 64.
While it is a well-known fact that the positions of neigh-

boring residues in native protein structures are highly cor-
related (e.g., see [20]), it was shown in [16] that treating
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Figure 1: Comparison of the Haar coefficients of random
chains, compact random chains and random point clouds.

the position of each residue as uniformly distributed on a
3-D sphere yields a very good approximation of the aver-
age behavior of native protein structures. We performed
the same wavelet transform on sets of conformations of
actual proteins of length 64 residues (only theCα atoms)
taken fromdecoy sets(conformations which are expected
to be similar to the native conformation). See Section 2.3
for more details on these sets. We obtained results similar
to those of random chains, namely the detail coefficients
are ordered and have a large growth rate. The results for
a few sets of proteins are presented in Figure 2. One im-
portant difference from random chains is that for decoy
sets the growth in the variance of the detail coefficients
from one level to the next decreases considerably for the
top levels. We explain this as follows. Small pieces of a
protein cannot be highly packed because of steric clashes,
while intermediate size pieces are often elongated (sec-
ondary structure helices and strands) and hence the vari-
ance of the coefficients grows considerably from one level
to the next at the low and intermediate levels. The tight
packing of the secondary structure of the native-like con-
formations makes the high level coefficients considerably
smaller than in the random chain model. We would have
liked to give results for decoy sets of proteins longer than
64 residues, however currently no such sets exist and gen-
erating them requires a significant effort, and expertise
which we do not posses.

Random protein conformations (generated as described
in Section 2.3), on the other hand, are considerably less
compact than the decoy sets, and hence behave much
more like random chains atall levels of detail coefficients.
As can be seen in Figure 2 the growth in variance (from
one level to the next) at the lower levels is even bigger
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Figure 2: Comparison of the Haar coefficients of decoy
sets of protein and randomly generated conformations of
proteins to the coefficients of a set of random chains.

than what is observed for random chains. This is a re-
sult of the space taken up by each residue. In our random
chain model the points had no volume and the chain may
not be self-avoiding. The random protein conformations,
however, must respect the ”volume“ of the atoms and are
not allowed to have any self-overlaps. Their behavior is
actually modelled better by random chains in which the
next step is sampled uniformly from ahemispheredefined
by the direction of the previous step.

We thus can conclude, that while decoy sets cannot be
compressed as much as random sets, it is possible to re-
move the first few levels and still get a very good approx-
imation.

2.3 Correlation of approximate and exact
similarity measures

When using thecRMS measure to compute similarity
between random chains we find that the approximatem-
averaged versions yield very good results form as small
as 8. Form = 4, 8, 12 and20 Pearson’s correlation of the
approximate measure to the true one is 0.59, 0.92, 0.97
and 0.99 respectively. When using thedRMS measure to
compute similarity between random chains the approxi-
matem-averaged versions is highly correlated form as
small as 12. The correlation values obtained are 0.45,
0.78, 0.88 and 0.94 respectively.

In order to verify that the analogous behavior of the de-
tail coefficients of protein sets and random chains carries
over to approximate similarity measures we chose 9 struc-
turally diverse proteins used by Park and Levitt in [26]
(1CTF, 1ERP, 1R69, 1SN3, 1UBQ, 2CRO, 3ICB, 4PTI,
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4RXN) with between 38 and 76 residues. For these pro-
teins we obtained (1) decoy sets (conformations highly
similar to the native conformation) generated by Park
and Levitt, containing 10,000 conformations each and (2)
randomly generated conformation sets using the program
FOLDTRAJ1 [7] containing 5000 structures each.

For each set, we randomly chose between 1000 and
4000 pairs whose truedRMS distance was less than
5Å and computed theirm-averaged distances for different
values ofm. The correlation of them-averagedcRMS
anddRMS measures to the truecRMS anddRMS mea-
sures for the different decoy sets can be found in Ta-
ble 1(a). As can be seen from the table, form = 8 the
approximatecRMS measure is already highly correlated
with the truecRMS measure, which means a reduction
factor of between 5 and 8 still yields a very good ap-
proximation. FordRMS, high correlation is achieved for
m = 12, which means a reduction factor of between 3 and
6 (since the complexity ofdRMS is quadratic, the actual
gain is by a factor of between 9 and 36). We note that
the correlation values obtained are quite similar to those
computed for random chains.

The correlation of them-averagedcRMS anddRMS
measures to the true measures for the different random
sets can be found in Table 1(b). Here too, a reduction fac-
tor of between 5 and 8 yields a highly correlated approxi-
mation of thecRMS measure. FordRMS high correla-
tion is achieved form = 8, which means a reduction fac-
tor of between 5 and 8 (an actual gain between 25 and 64).
Here the correlation values are in fact better than those
computed for random chains as would be anticipated from
the higher growth ratio of the variance of the detail coef-
ficients of random protein sets in comparison to those of
random chains (see Figure 2). We note that when exam-
ining all pairs (not only those whosedRMS distance is
smaller than 5̊A , the Pearson’s correlation found is even
stronger.

3 Application 1: nearest neighbor
search

Simulations and other conformational sampling methods
generate large sets of conformations of a particular pro-
tein. For example, the projectFolding@Home2 runs
parallel molecular dynamics simulations on several thou-
sands of computers across the Internet and then centrally
evaluates the obtained data. An important step in evaluat-
ing such data, e.g. for clustering and related tasks, is the
following: given a set of conformations of the same pro-
tein, find thek nearest neighbors (NNs) for each sample

1http://bioinfo.mshri.on.ca/trades/
2http://folding.stanford.edu

in the set. Typically,k is a small constant while the size
of the set can be very large.

The straight forward (“brute-force”) approach is to
evaluate the similarity measure (cRMS or dRMS) for
all pairs and then report thek NNs for each sample.
However, the quadratic complexity makes this approach
scale badly. Spatial data structures such as thekd-tree[4]
can avoid this complexity under certain circumstances
[1, 5, 17, 15, 23, 27]. Note that these data structures allow
for exact search, i.e., they return the same NNs as would
the brute-force search. However, most of them require
a Euclidean metric space of rather limited dimensional-
ity. Unfortunately,cRMS is not a Euclidean metric. Al-
thoughdRMS is a Euclidean metric, the dimensionality
of the space of intra-molecular distance matrices is far too
high. (Typically, for dimensions higher than a few tens,
none of the nearest neighbor data structures performs bet-
ter than brute-force search.) Therefore if we hope to use a
spatial data structure to speed up NNs search, we must use
thedRMS measure but find a way to significantly reduce
the dimensionality of the structure descriptors beyond the
averaged conformations we presented in Section 2.

3.1 Further reduction of distance matrices

We use the singular value decomposition (SVD) [12] to
further compress the intra-molecular distance matrices of
averaged proteins, that is to further reduce the number
of parameters involved in computingdmRMS. SVD is
a standard tool for principal components analysis (PCA)
and computes directions of greatest variance (and thus
distance information) in a given set of high-dimensional
points. These directions are called principal components
(PCs). The SVD can be used to linearly map a set of
high-dimensional input vectors (data points), stored in a
matrix A, into a lower-dimensional subspace while pre-
serving most of the variance. Such a transform can be
found by decomposing the matrixA of the input vectors
into A = USV T , the SVD ofA, whereU and V are
orthogonal matrices andS is diagonal with the singular
values ofA along the diagonal.

Efficient algorithms exist that compute the SVD in time
O(s2t) wheres is the smaller andt the larger dimension
of A (rows or columns). Note that while in principle,
SVD could be applied to intra-molecular distance matri-
ces without first averaging protein pieces, the quadratic
dependency on the smaller dimension ofA shows the im-
portant advantage of averaging: usually, the larger dimen-
sion t will reflect the size of the conformational sample
set while the smaller dimensions will correspond to the
size of a single intra-molecular distance matrix. Reducing
the distance matrix size by using averaged conformations,
as described in Section 2, is therefore key to performing
the SVD in practice.
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1CTF 1ERP 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

4 0.38 0.42 0.88 0.86 0.64 0.47 0.54 0.45 0.37 0.47 0.73 0.52 0.57 0.40 0.42 0.46 0.49 0.49
8 0.90 0.77 0.97 0.94 0.97 0.87 0.94 0.78 0.84 0.70 0.97 0.89 0.98 0.86 0.95 0.83 0.93 0.79
12 0.98 0.93 0.98 0.96 0.99 0.92 0.98 0.94 0.98 0.92 0.99 0.95 0.99 0.92 0.98 0.92 0.98 0.94
16 0.99 0.95 0.99 0.98 0.98 0.92 0.99 0.97 0.98 0.95 0.99 0.97 0.98 0.92 0.98 0.94 0.98 0.97
20 0.99 0.96 0.98 0.96 0.99 0.96 0.99 0.97 0.99 0.96 0.99 0.97 0.98 0.93 0.99 0.95 0.98 0.95

(a)

1CTF 1ERP 1R69 1SN3 1UBQ 2CRO 3ICB 4PTI 4RXN
m cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS cRMS dRMS

4 0.69 0.59 0.85 0.92 0.68 0.65 0.68 0.63 0.65 0.53 0.70 0.64 0.65 0.55 0.72 0.71 0.73 0.74
8 0.96 0.90 0.99 0.99 0.97 0.93 0.97 0.92 0.96 0.84 0.97 0.91 0.96 0.86 0.97 0.95 0.97 0.96
12 0.99 0.97 0.99 0.98 0.99 0.97 0.99 0.97 0.99 0.95 0.99 0.97 0.99 0.95 0.99 0.98 0.99 0.98
16 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.97 0.99 0.99 0.99 0.97 0.99 0.98 0.99 0.98
20 0.99 0.98 0.97 0.96 0.99 0.98 0.99 0.98 0.99 0.97 0.99 0.98 0.99 0.97 0.99 0.98 0.99 0.97

(b)

Table 1: Pearson’s correlation coefficient for differentm values evaluated forcRMS anddRMS of (a) decoy sets
and (b) randomly sampled conformations of various proteins.

k = 10 k = 25 k = 100
E1 E2 E1 E2 E1 E2

1CTF 1.1 1.04 1.116 1.036 1.104 1.023
1ERP 1.3 1.158 1.292 1.124 1.246 1.083
1R69 1.201 1.093 1.192 1.074 1.165 1.048
1SN3 1.161 1.086 1.155 1.063 1.136 1.04
1UBQ 1.199 1.105 1.184 1.08 1.162 1.045
2CRO 1.118 1.061 1.155 1.056 1.141 1.041
3ICB 1.152 1.054 1.154 1.048 1.129 1.033
4PTI 1.186 1.099 1.188 1.079 1.17 1.055

4RXN 1.179 1.079 1.186 1.072 1.163 1.046

Table 2:Mean errorsEi = E(erri) for 100 queries ofk near-
est neighbors. Park-Levitt decoys, 20 PCs.

To perform a SVD on a set of intra-molecular distance
matrices derived fromm-averaged conformations, each of
these distance matrices is rewritten as anm(m− 1)/2 di-
mensional vector and then the SVD is applied to the ma-
trix that contains all these vectors. Taking the resultingU
matrix and removing all columns that correspond to small
singular values (the directions of little variance), we have
the linear map that takes the set of distance matrices into
a lower-dimensional Euclidean space while preserving a
high percentage of the variance and thus distance informa-
tion. We found that in practice, a relatively small output
dimensionality between 10 and 20 is sufficient to maintain
about90% of the variance of the distance matrices.

In the following, we will denote thedRMS measure
obtained from an SVD compressed set ofm-averaged dis-

tance matrices byd
PC

m RMS. (PC stands for the number
of principal components that are used after compression.)

3.2 Evaluation of approximation errors

Of course, by reducing the dimensionality of distance
matrix space fromdRMS over dmRMS to finally

d
PC

m RMS, we lose some information. However, we ob-
served that in general, the introduced errors are small

k = 10 k = 25 k = 100
E1 E2 E1 E2 E1 E2

decoys 1.337 1.248 1.34 1.196 1.347 1.141
decoys2 1.136 1.052 1.171 1.049 1.158 1.036
uniform 1.101 1.035 1.107 1.029 1.113 1.02

Table 3: 1CTF: Mean errorsEi = E(erri) for 100 queries
of k nearest neighbors. Decoys, decoys2: 100,000 decoys from
Park-Levitt set (m = 16 and 20 PCs). Decoys2: excluding 8
outliers. Uniform: 100,000 uniformly sampled conformations
(m = 16 and 16 PCs).

enough to allow for good results in finding most of the
true k nearest neighbors. In what follows, we illustrate
this with different error measures.

For a set of conformationsS and a given query confor-
mationQ from that set, we define two subsetsS1 andS2

of sizek each.S1 is the set ofk nearest neighbors ofQ in
S using exactdRMS. S2 is the set ofk nearest neighbors

of Q in S usingd
PC

m RMS. Thus,S2 is the approximation
of S1 using our reduced similarity measure.

In a first experiment, we evaluated how many of the ex-
actk nearest neighbor conformations inS1 would be con-
tained inS2 as well. To this end, we looked at thek = 100
nearest neighbors for each of 100 query conformations
and computed the average number of such matches over

the 100 queries. Usingd
20

16RMS on setsS of 10,000 de-
coys of 1R69, 4PTI, 2CRO, 1SN3 and 3ICB, these aver-
ages ranged from 74.8 to 83.3 (roughly 80 on average).

Using d
18

16RMS on setsS of 5,000 uniform samples of
the same proteins, corresponding averages were between
86.1 and 94.2 (about 90 on average). These results show
that, using our approximations, not too many extra sam-
ples would have to be drawn in order to obtain sufficiently
many exact nearest neighbors.

However, in cases in which significantly more thank
conformations are clustered around the query conforma-
tion, the number of identical matches may not be a good
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quality measure. In such cases, it may even be possible to
obtain a very different candidate set with almost the same
distribution of distances from the query conformation. We
therefore used the two following error measures to further
evaluate the quality of our approximations.

err1 The ratio of the exactdRMS of the furthest con-
formation inS2 to the exactdRMS of the furthest
conformation inS1.

err2 The ratio of the average exactdRMS of all con-
formations inS2 to the average exactdRMS of all
conformations inS1.

We first looked at the decoy sets of size 10,000 for each
of the nine Park-Levitt proteins. We usedm = 16 and
20 PCs. For each set, we randomly chose 100 query con-
formations and evaluatederr1 anderr2 for each of them.
Table 2 shows the meansEi = E(erri) of both errors
over the 100 queries (standard deviations were generally
small). The mean errorE1 is usually noticeably smaller
than 1.2 which means that the worst-case error by our re-
duction is smaller than 20%. The mean errorE2 is almost
always noticeably smaller than 1.1 indicating an average
error of less than 10%. Note that these percentages cor-
respond to small absolute values of about1.5Å and0.7Å,
respectively.

We also evaluated the error measures for two large sets
of 100,000 conformations of 1CTF, a decoy set and a uni-
formly sampled set. Here, we usedm = 16 and 20 PCs
for the decoys andm = 16 and 16 PCs for the uniform
samples. The results are presented in Table 3. For the
decoys we noticed both errors to be slightly higher than
for the smaller data set above. However, when we ig-
nore 8 out of the 100 query conformations, which were
obvious outliers, we got comparable results (row labelled
decoys2). For the uniform samples, both relative errors
were significantly smaller than for the decoy set.

3.3 Running time

We now consider the running times in a concrete nearest
neighbor task: given a set of 100,000 random conforma-
tions of protein 1CTF, findk = 100 nearest neighbors for
each sample in the set. The reported times in this sec-
tion refer to a sequential implementation in C running on
a single 1GHz Pentium processor on a standard desktop
PC.

We first compare the running times for a brute-force
(all-pairs) implementation using bothcRMS anddRMS,
and their corresponding averaged similarity measures
cmRMS anddmRMS. Table 4 shows that the latter mea-
sures already result in a notable speed-up. Ford16RMS,
a significant speed-up overdRMS is obtained due to the

N cRMS c16RMS dRMS d16RMS
1,000 18.6s 12.4s 31.0s 2.2s
2,000 74.4s 50.0s 137.5s 8.0s
5,000 464.8s 312.0s 759.8s 43.4s

100,000 ∼52h ∼35h ∼84h ∼4.8h

Table 4: Brute-force search usingcRMS vs c16RMS
anddRMS vs d16RMS for finding thek = 100 near-
est neighbors for each ofN samples.

quadratic down-scaling of intra-molecular distance matri-
ces by averaging proteins. Forc16RMS, the improve-
ment overcRMS is smaller. This is because the reduction
by averaging affects the number of involved points only
linearly and the main effort in computingcRMS comes
from finding an optimal rigid body alignment of two point
sets.

Note that the increase in running times agrees quite
well with the expected quadratic scaling of the brute-force
nearest neighbor approach. The times forN = 100, 000
samples were therefore extrapolated from the actual run-
ning times measured for the smaller values ofN . In fact,
for dRMS using all Cα atom coordinates, we had prob-
lems storing all intra-molecular distance matrices (how-
ever, these problems do not occur with averaged proteins
anddmRMS).

We next address the quadratic scaling problem of the
brute-force approach. To be able to apply a kd-tree,
we first further reduced the 120-dimensional space of
d16RMS using SVD and retained 16 principal compo-
nents. This further compression took about one minute
for the complete set of 100,000 samples. Building the
kd-tree for the resulting 16-dimensional data took only
about 4 seconds. The correlation coefficient of the result-
ingd

16

16RMS anddRMS was found to be still about 0.94.
As reported in the previous section, the approximation er-
rors are also low (cf. Table 3).

We then ran both the brute-force and the kd-tree ap-

proach usingd
16

16RMS as similarity measure. Table 5
shows the running times for findingk = 1 and k =
100 nearest neighbors for each sample in the full set of
100,000 samples. The obtained total speed-up of our
nearest neighbor search (approximate similarity measures
and a kd-tree) over the current best approach (brute-force
search using allCα coordinates) is several orders of mag-
nitude.

In general, the speed-up obtained by using a kd-tree can
be expected to increase with increasing sample set sizeN .
Due to its quadratic scaling, brute-force search will be-
come very slow for larger sample sets. On the other hand,
the sub-quadratically scaling kd-tree approach should al-
low to process even much larger sample sets within a few
hours without parallelization on a standard desktop PC.
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k Brute-force kd-tree
1 30min 4min10sec

100 41min 19min

Table 5: Brute-force vs kd-tree search fork nearest neigh-
bors for each of 100,000 samples. Used similarity measure:
d
16
16RMS.

4 Application 2: structural classifi-
cation

Given a set of native protein structures each having a
different amino-acid sequence, such as the Protein Data
Bank (PDB)3 we would like to automatically classify
the structures into groups according to their structural
similarity. This task has been performed manually in
the SCOP (structural classification of proteins) database4

[24], where protein structures are hierarchically classified
into classes, folds, superfamiliesandfamilies. The major
difficulty in performing this classification automatically
lies in the need to decide, given two protein structures,
which parts of both structures should be compared, before
it can be determined how similar these parts are. Thiscor-
respondence problemdoes not arise when different con-
formations of the same protein are compared because in
that case the correspondence is trivially determined. For
this reason computing the similarity between structures of
different proteins requires considerably more computation
than the methods described in Section 2.

There are a variety of algorithms that have been cre-
ated for structural classification. The DALI5 method [13]
starts with the distance matrices of both proteins. It finds
all pairs of similar sub-matrices of small fixed size (one
from each protein distance matrix) and then uses a Monte
Carlo algorithm to assemble the pairs into larger con-
sistent alignments. The PROSUP6 method [21] initially
identifies similar fragments in both proteins and itera-
tively expands them to create alignments. A dynamic al-
gorithm is then used to iteratively refine each alignment
and finally insignificant alignments are removed. The
STRUCTAL7 method [9] directly matches the backbones
of the two protein structures by iteratively cycling be-
tween a dynamic programming algorithm and least-square
fitting to come up with an alignment that minimizes coor-
dinate difference. For other methods see [18].

3http://www.rcsb.org/pdb/
4http://scop.mrc-lmb.cam.ac.uk/scop/
5http://www2.ebi.ac.uk/dali
6http://lore.came.sbg.ac.at/CAME

/CAME EXTERN/PROSUP
7http://bioinfo.mbb.yale.edu/align

4.1 The modified STRUCTAL algorithm

All the above methods stand to gain in performance by
using our averaging scheme. In order to verify this we
tested the speed up and accuracy obtained by using the
STRUCTAL method on averaged protein structures. We
could not test our approach on PROSUP and DALI be-
cause both servers did not accept our averaged structures
(for file formatting reasons), and the algorithms were too
involved for us to implement reliably.

The STRUCTAL algorithm starts with an initial align-
ment of the backboneCα atoms of the two structures ac-
cording to one of a number of possible heuristics (aligning
the beginnings, the ends, random segments, by sequence
similarity, etc.) Then a two step process is repeated un-
til convergence. First a dynamic programming algorithm
based on the Needleman and Wunsch sequence alignment
algorithm[25] finds the correspondence between the two
structures that yields the highest score. Scoring is based
on assigning a cost to each possible corresponding pair,
which is inversely proportional to the distance between
Cα positions, and a gap penalty for every gap in the
alignment. Computing the best correspondence thus re-
quiresO(n1n

2
2 + n2n

2
1) time (n1 andn2 are the number

of residues in each structure). Second, an optimal align-
ment is computed based on the best correspondence us-
ing the method in [14]. ThecRMS distance of the final
alignment and the number of corresponding residues is re-
turned as a measure of the similarity of the two structures.
Since the result is sensitive to the initial alignment, the
algorithm is usually run a number of times for each pair
of structures, each time using a different initial alignment.
The best (smallest) result of all the runs is kept.

By using averaging with this algorithm we add an-
other degree of freedom to the computation. If we av-
erage eachr Cα atom positions to create the averaged
structure, we have a choice ofa = mod(n1, r) starting
positions to start the averaging process for one structure
andb = mod(n2, r) for the other. As a result there are
a× b possible pairs of averaged structures that could pos-
sibly result in different alignment scores. Therefore more
runs per pair of structures would be necessary when using
our averaging scheme. However, the gain from averaging
stands to be very large. Since bothn1 andn2 are reduced
by a factor ofr, the complexity of the dynamic program-
ming, which is the main part of the algorithm, is reduced
by a factor ofr3.

4.2 Experimental results

We implemented the STRUCTAL algorithm as it is de-
scribed in [9]. Our implementation initially aligns the two
structures by choosing a small random correspondence.
Therefore, we ran the algorithm 12 times for every pair
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of structures and kept the smallest result as the similarity
score. In [9] they run the algorithm a few times as well,
each time using a different initial alignment heuristic. We
selected 103 protein structures of various sizes (between
100 and 600 residues) taken from 5 different fold families
in SCOP [24]. We compared all pairs of structures using
the fullCα representation and using averages ofr = 5 (36
runs per pair of structures) andr = 8 (60 runs per pair of
structures).

Altogether 5253 pairs of structures were evaluated. The
correlation of the similarity measure of the averaged rep-
resentation to the that of the full representation was 0.81
for r = 5 and 0.80 forr = 8. When only examining pairs
where the number of corresponding residues was above
100 the correlation was 0.86 and 0.82 respectively. For
correspondence larger than 200 the correlation was 0.93
and 0.85 respectively. We wanted to evaluate how useful
the averaging scheme is as a pre-filter for classification.
When trying to pick out the 10 most similar structures to
each of the structures in the test set, we find on average 6.3
of them when picking the top 10 using the averaged rep-
resentation withr = 5, although 25% of the time we get
less than 5. We find 8.3 on average when picking the top
20 using the averaged representation, getting less than 5
only 4% of the time. When trying to pick out the 20 most
similar structures to each of the structures in the test set,
we find on average 13.8 of them when picking the top 20
using the averaged representation withr = 5, although
12% of the time we get less than 10. We find 16.7 on
average when picking the top 30 using the averaged rep-
resentation, getting less than 10 only 3% of the time. The
results for averaging withr = 8 were only slightly worse.
However, when computing similarity between large struc-
tures where the correspondence is larger than 200 residues
(35 in our set of structures), we find that with the 10 most
similar structures using ther = 5 averaged representation
we find 8.7 of the top 10 structures, only 4 times finding
less than 8. Using the top 15 computed with the averaged
representation we find 9.9 on average out of the top 10,
only once finding as little as 8.

As far as the savings in time gained by averaging, it
took 233 hours to compute the similarity measure (using
all Cα atoms) between all pairs of structures in our data
set. Usingr = 5 averaging it took less than 4 hours and
usingr = 8 averaging it took one hour and 10 minutes.
Clearly the speedup is quite significant. As the results
above demonstrate, using the averaged representation as a
pre-filter for finding structurally similar proteins is a very
fast yet not very precise tool. If one is looking fork sim-
ilar structures, it is best to first find about3k structures
using the averaged representation and then use the exact
methods to find the topk. This approach produces the
correct set ofk most of the time.

5 Conclusion

Two general properties of proteins, their chain nature and
limited compactness, can be exploitet to uniformly reduce
the number of features for structural similarity computa-
tions. Substantial savings in terms of storage and running
time are attained with small errors.

In applications in which no approximation error is tol-
erable, our approach can be used as a first step to filter a
small subset of pairs that are within some tolerance band
around the desired similarity. More expensive exact sim-
ilarity measures can then be used on the reduced set of
pairs.

Two possible applications were presented: findingk
nearest neighbors in large sets of conformations of the
same protein and classification of different proteins us-
ing the STRUCTAL algorithm. In these examples, the
running times were reduced from days to hours or even
minutes.

In general, applications that input very large sets of pro-
teins or that employ computationally intensive algorithms
on large proteins stand to benefit from approximation of
structures as suggested in this paper.
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