
Exact Collision Checking of Robot Paths

Fabian Schwarzer
�

Mitul Saha
�

Jean-Claude Latombe
�

Abstract

This paper describes a new eÆcient collision checker to
test single straight-line segments in c-space, sequences
of such segments, or more complex paths. This checker
is particularly suited for probabilistic roadmap (PRM)
planners applied to manipulator arms and multi-robot
systems. Such planners spend most of their time check-
ing local paths between randomly sampled con�gura-
tions for collision. While commonly used approaches
test intermediate con�gurations on a segment at a pre-
speci�ed resolution, the checker presented in this paper
is exact, i.e., it cannot fail to �nd an existing collision,
even when some robot links and obstacles are very thin.
Its eÆciency relies on its core algorithm, which dynami-
cally adjusts the required resolution by relating the dis-
tances between objects in the workspace to the maxi-
mum lengths of the paths traced out by points on these
objects. The checker's eÆciency is further increased by
several additional techniques presented in this paper,
which adequately approximate distances between objects
and lengths of travelled paths in workspace, and order
collision tests to reveal collisions as early as possible.
The new checker has been extensively tested, �rst on
segments randomly generated in c-space, next as part of
an existing PRM planner, and �nally as part of a path
smoother/optimizer. These experiments show that the
checker is faster than a resolution-based approach (with
suitable resolution), with the enormous advantage that
it never returns an incorrect answer. The checker also
admits a number of straightforward extensions. For ex-
ample, it can monitor a minimum workspace distance
between each robot link and other objects (e.g., obsta-
cles, links of other robots).

1 Introduction

Collision checking is a fundamental operation in robot
motion planning, graphic animation and physical simu-
lation [5, 12, 18]. While static collision checking amounts
to testing a single con�guration for spatial overlaps, dy-
namic collision checking requires showing that all con-
�gurations on a continuous path in c-space are collision-
free. Three major families of methods can be used for
dynamic collision checking: feature-tracking, bounding-
volume, and swept-volume methods.

�
Dept. of Computer Science, Stanford University, Stanford, CA

94305. E-mail: schwarzf@stanford.edu, mitul@stanford.edu,

latombe@cs.stanford.edu

Figure 1: Collisions are easily missed in this example with
two skinny 20-DOF arms (320 triangles each) which have to
retract from three �xed thin tori (6300 triangles each).

� Feature-tracking methods rely on the following co-
herence assumption: the pair of closest features be-
tween two objects in relative motion changes only at
discrete points of time and, when it changes, com-
puting the new pair from the old one can be done
eÆciently [3, 7, 16, 17, 19]. However, to be practi-
cal, these methods require each object to be made
of few convex components. Furthermore, they test
a path by small increments, from one end to the
other, which is not always the fastest way to de-
tect if the path collides. The coherence assumption
is particularly problematic for links of a kinematic
chain and may require tiny steps, especially for the
links closer to the end of the chain.

� Bounding-volume (BV) methods precompute, for
each object, a hierarchy of BVs (e.g., spheres, boxes)
that approximate the geometry of the object at
varying resolutions [10, 14, 21, 23]. BVs then
speed up collision checking by making it possible to
quickly discard large portions of objects that cannot
possibly collide. These methods have been success-
fully applied to objects with surfaces described by
several 100,000 triangles, and more. But they are
fundamentally static methods. To test a path for
collision, the common approach is to test interme-
diate con�gurations along the path until a collision
is found or any two successive con�gurations are
less than some prespeci�ed " apart (the con�gura-

1

tions are usually obtained by recursively bisecting
the path). In the second case, the path is declared
collision-free (despite the fact that this answer has a
slight chance of being incorrect). Choosing " is dif-
�cult, especially in scenarios with articulated arms
and/or multiple robots. If " is small, collision check-
ing is ineÆcient because many con�gurations on the
path will be tested. If " is large, the risk of missing
collisions is signi�cant.

� Swept-volume and space-time volume intersection
methods consist of computing the volumes swept
by the objects in the workspace, possibly with a
time dimension added, and testing these volumes for
overlap [6, 9]. However, exact computation of such
volumes is time consuming, especially, when objects
undergo rotations and are geometrically complex.
Moreover, the overlap test can no longer be speeded
up by exploiting precomputed data structures (such
as BV hierarchies). Another problem is that, unless
either the time dimension is added or relative mo-
tions are considered explicitly, swept volumes for
pairs of moving objects may overlap although the
objects themselves do not collide.

Hence, dynamic collision checking remains a major
bottleneck in many applications. In particular, prob-
abilistic roadmap (PRM) planners heavily rely on the
availability of eÆcient dynamic checkers to test \local
paths" between randomly sampled con�gurations for col-
lision [1, 2, 4, 11, 13, 22]. Most such planners use a static
BV method to test intermediate con�gurations along the
local paths at some resolution ". Choosing " involves sev-
eral trial-and-error experiments, which must be repeated
for each new type of robot and environment. Large val-
ues of " are acceptable when both robots and obstacles
are fat. But when objects are thin, collisions are easy to
miss. An example is shown in Fig. 1, which contains two
skinny linkages, with 20 revolute joints each, and thin
obstacles, all with signi�cant geometric complexity. In
this example, even small changes in the joint angles can
make a linkage jump over an obstacle or over the other
linkage. The value of " needed to reliably detect such col-
lisions must be very small, resulting in ineÆcient PRM
planners. Further examples illustrating this problem are
shown in Fig. 2 and Fig. 6.
This paper describes a new eÆcient dynamic collision

checker to test single straight-line segments in c-space,
sequences of such segments, or more complex paths. This
checker is particularly suited for PRM planners applied
to manipulator arms and multi-robot systems. It is exact
in the sense that it always returns the correct answer. In
particular, it cannot fail to �nd an existing collision, even
when some robot links and obstacles are very thin. Its
exactness and eÆciency are obtained by dynamically ad-
justing the local resolution at which con�gurations along
a path are tested by relating the distances between ob-
jects in the workspace to the maximum lengths of the
paths traced out by points on these objects. While the

Figure 2: IRB 2400 robot carrying a thin rod.

basic idea of adjusting the resolution has been described
before (e.g., in [2, 5]), our approach extends it in sev-
eral ways by techniques for adequately approximating
distances between complex objects and lengths of paths
traced out in workspace, and for ordering collision tests
(along single segments or entire paths) to reveal colli-
sions as quickly as possible.
Applications that will bene�t from our new segment

checker, both in terms of speed and accuracy, are
e.g., PRM planners and path smoothing algorithms.
We have extensively tested the checker, �rst on seg-
ments randomly generated in c-space for multiple robots
in di�erent environments, next as part of an exist-
ing PRM planner [22], and �nally as part of a path
smoother/optimizer. These experiments show that our
checker is faster than previous resolution-based check-
ers (with suitable resolution "), with the enormous ad-
vantage that it never returns an incorrect answer. Our
techniques also admit a number of straightforward ex-
tensions. For example, they can easily be adapted to
monitor a minimum workspace distance between each
robot link and other objects (e.g., obstacles, links of
other robots).
The rest of the paper is organized as follows. Section 2

introduces the problem of checking straight line segments
in c-space, points out shortcomings of the commonly
used approach and presents the idea of using distance
information for collision checking. Section 3 generalizes
this idea and develops our new adaptive segment check-
ing algorithm. Section 4 reports on our experiments with
a lazy PRM planner and a randomized path smoothing
algorithm. Section 5 brie
y explains how the basic algo-
rithm can be extended to check for minimum clearances
along entire segments. Section 6 concludes the paper
and points to possible future work.

2 Checking segments in c-space

Our problem can be stated as follows: given two con�g-
urations q and q

0 and the straight line segment between

2

them

[q; q0] = fq(t) j q(t) � tq + (1� t)q0; t 2 [0; 1]g

show that all con�gurations on this segment are collision-
free. A commonly used approach is to test only a �-
nite number of equally spaced intermediate con�gura-
tions qi = q(ti) on this segment for collision. For a
given resolution " > 0, the intermediate con�gurations
are chosen such that each neighboring pair of them is
closer than " according to some given metric d(�; �) in
c-space, i.e., d(qi; qi+1) < ". The entire segment is then
declared to be collision-free if all intermediate con�gura-
tions have been found to be free.
In the case of a colliding segment, heuristic ordering of

the tests of the intermediate con�guration can decrease
the expected time for �nding the collision. For example,
the lazy PRM planner in [22] assumes that the interme-
diate con�gurations on a segment have di�erent proba-
bilities of being in collision. Given that the endpoints of
the segment are free, the midpoint q(1

2
) has a high prior

collision probability and it is thus tested �rst. Once the
midpoint has been found to be free, the segment can be
broken into two sub-segments and now their midpoints
q(1

4
) and q(3

4
) have high collision probabilities and will

be tested next. The general strategy corresponds to a
breadth-�rst recursion which terminates when a collision
is found or the length of the smallest sub-segment is less
than " (otherwise it would not terminate on collision-free
segments).
However, choosing a proper c-space resolution " is dif-

�cult and has to be done for each con�guration space
anew. For example, in a centralized planner for multiple
robots, " depends not only on the types of the individ-
ual robots but also on their number, unless a c-space
metric is used that is independent of the dimensionality.
In particular, when a Euclidean metric is used, " has to
be decreased with increasing dimensionality. Choosing
" very small will result in many intermediate con�gura-
tions and thus make the collision checker unnecessarily
slow. Choosing it too large might result in missing colli-
sions. Since collision checking is still the major compu-
tational bottleneck in PRM planners, we would like to
keep the number of discrete intermediate con�gurations
as small as possible while still guaranteeing not to miss
any collisions.
The key diÆculty here is that even small motions in

c-space may cause large motions in workspace. This ef-
fect is especially distinctive for manipulator arms where
the joints close to the base a�ect many links along the
kinematic chain. We would therefore like to bound the
motions of the links in workspace. In fact, any given met-
ric in c-space can be related to distance in workspace [2]:
for any robot, a constant � > 0 can be determined such
that no point on the robot traces a curve in workspace
that is longer than � d(q; q0) when we interpolate on a
straight line from q to q

0. Note that although the con-
nection in c-space is a straight line, the curves traced by
points on the robot are usually non-linear. Further note

Figure 3: Uncovered and covered (safe) segments.

that � depends on both the robot type and the used c-
space metric. In Section 3.3, we describe in detail how
� can be derived in practice.
Assume for the moment that we have a single robot

and its �-value, and we are only interested in detecting
collisions of the robot with static obstacles in the envi-
ronment. Further assume that we have a function �(�)
that maps any con�guration q to the Euclidean distance
(in the workspace) between the robot placed according
to q and the obstacles. Then, the entire segment [q; q0]
is free if:

� d(q; q0) < �(q) + �(q0) (1)

To prove this, assume that the robot comes in contact
with an obstacle at some con�guration q(tc) on the seg-
ment. A point on the robot that hits an obstacle at tc
would have to move at least �(q) to reach the obstacle at
the con�guration q(tc) and then again at least �(q0) to
move from q(tc) to its position at q0. However, this con-
tradicts the assumption that no point on the robot traces
a curve longer than � d(q; q0). Note that the opposite is
not true: criterion (1) can be violated for a segment that
is collision-free. In fact, � d(q; q0) can exceed �(q)+�(q0)
without introducing a collision. If criterion (1) is vio-
lated, we bisect the segment and compute �(q(1

2
)). If

this yields a collision, we stop and report the collision.
Otherwise, we test the criterion (1) recursively for the
segments [q; q(1

2
)] and [q(1

2
); q0]. Eventually, we will ei-

ther �nd a colliding con�guration or all sub-segments
will satisfy the collision-free criterion.
Inequality (1) can be illustrated schematically by

drawing a segment of length proportional to � d(q; q0)
and centering discs with radii proportional to the
workspace distances at the endpoints of the segment and
at additional bisection points (see Fig. 3). The motion
along the segment is collision-free when the segment is
covered by such discs.
While the above approach gives an exact algorithm

for dynamic collision checking, a number of issues would
make it rather ineÆcient in practice. The next section
discusses them and proposes solutions.

3 Generalized adaptive bisection

method

In the following, we consider the robot (or the robots)
and all obstacles as a single collection of moving and
static rigid bodies A1; : : : ;An. This allows us to con-
sider each pair (Ai;Aj) independently of all other pairs.
For each body Ai, let �i(qa; qb) denote an upper bound
on the length of the curve segment traced by any point
on Ai when the con�guration of the system is linearly

3

interpolated from some con�guration qa to another con-
�guration qb. Clearly, �i(qa; qb) = 0 if Ai is an obstacle.
Given the discussion in the previous section, we could de-
�ne �i(qa; qb) = � d(qa; qb) for each moving body Ai.
However, in the case of manipulator arms, links closer to
the base typically move less than links closer to the end-
e�ector, and thus using the same � for all links would
give poor bounds for some links. Instead, we could de-
termine an individual �i for each link and use �id(qa; qb),
but this may still result in a rather loose bound, depend-
ing on the chosen metric d(�; �). Section 3.3 describes in
detail how a better bound �i(qa; qb) can be derived in
practice.
Given �i(qa; qb) for all rigid bodies in the system, we

can now derive from inequality (1) a similar certi�cate
for an arbitrary pair (Ai;Aj):

�i(qa; qb) + �j(qa; qb) < �ij(qa) + �ij(qb) (2)

Here, �ij(qa) and �ij(qb) are the workspace distances
(or lower bounds for them) between bodies Ai and Aj

at con�gurations qa and qb, respectively.
First, notice that (2) includes the case in which one

of the two bodies is a static obstacle. To see this, as-
sume that Aj is static and thus set �j(qa; qb) = 0.
In fact, in this case, the entire argumentation from (1)
applies, when we notice that �i(qa; qb) corresponds to
� d(qa; qb).
Now let bothAi andAj move, but consider the motion

of Ai in Aj 's local frame. This lets us treat Aj as a
static object. Replacing �i(qa; qb) + �j(qa; qb) by an
upper bound on the lengths of the curves traced by the
points on Ai in Aj 's frame, denoted by �ij(qa; qb), leads
us back to the above case where Aj is a static obstacle.
However, computing the bounds �ij(qa; qb) explicitly

for each pair of bodies may be expensive. Instead, we use
the fact that Lij(qa; qb) � Li(qa; qb)+Lj(qa; qb), where
L denotes the exact curve lengths. (The proof directly
follows by integration after using the triangle inequality
for the absolute and relative velocities). We can thus use
�i(qa; qb) + �j(qa; qb) instead of Lij(qa; qb) in (2). In
some cases, (2) may be rather conservative (e.g., consider
two synchronously moving bodies).

3.1 Core algorithm

The new segment checking algorithm uses the certi�-
cate (2) to decide whether a segment is collision-free or
whether it has to be further examined.
It is important to note that (2) applies to a single pair

of bodies. We can therefore check each pair of objects in-
dependently of the other pairs. For example, links closer
to the base of a manipulator usually require fewer bisec-
tions of the segment than links closer to the tip. Fur-
thermore, the pairs can be processed in an order that de-
pends on their relative distances and motions and thus
decreases the expected time to �nd possible collisions.
For example, pairs whose bodies are close and move a

(a) (b) (c)

Figure 4: Segment covering strategies.

lot will be examined before pairs of slowly moving, far-
apart bodies. To realize this, our algorithm maintains a
priority queue of pair-speci�c (sub-)segments.
Each such entry in the queue is of the form [qa; qb]ij .

It indicates that the pair (Ai;Aj) remains to be tested
for collisions along [qa; qb]. (Section 3.4 describes how
we assign priorities to these entries.) Initially, the queue
is �lled with entries [q; q0]ij spanning the entire given
segment for each pair of rigid objects which we would
like to check. The algorithm then processes the queue
by removing the �rst element, say [qa; qb]ij , and tests if
it satis�es (2). If successful, which means that [qa; qb]ij
is covered (see Fig. 3), it continues with the next ele-
ment in the queue. Otherwise, it checks if the indexed
pair (Ai;Aj) collides at qmid = (qa + qb)=2. If this is
the case, the whole procedure can stop and report the
con�guration and the colliding pair of objects. If Ai and
Aj do not collide at qmid, two new entries [qa; qmid]ij
and [qmid; qb]ij , are inserted into the queue and the al-
gorithm continues with the �rst element in the queue.
When the queue is empty, the input segment [q; q0] can
be reported to be collision-free.
Instead of adding a single bisection con�guration qmid

exactly at the midpoint of the (sub-)segment (Fig. 4(a)),
one could come up with di�erent strategies to re�ne a yet
uncovered (sub-)segment. For example, we could add
two new con�gurations and place them as shown by the
solid discs in Fig. 4(b). This would require re-inserting
only one new sub-segment into the priority queue, in-
stead of two. However, half of the new distance informa-
tion would be wasted in redundantly covering part of the
segment. This remark yields another strategy, bisecting
in the middle of the uncovered section of the segment
(Fig. 4(c)). However, in practice we could not notice
a signi�cant di�erence between approaches (a) and (c).
Furthermore, (c) has the drawback of bisecting at di�er-
ent points for di�erent pairs of bodies. In fact, we fa-
vor (a) because it allows for implementing an additional
caching and indexing mechanism for rigid body trans-
forms at the inserted con�gurations (see Section 4).
The bisection depth for an entry [qa; qb]ij will depend

on the minimum distance �min that Ai and Aj assume
over all con�gurations on the sub-segment [qa; qb]. Us-
ing a pure collision-check to evaluate the bisection point
qmid may therefore lead to a deep recursion, if the two
bodies happen to come extremely close during the mo-
tion without colliding. One way to deal with this issue is
to introduce a constant minimum (workspace) clearance
Æ and replace the collision check of qmid by a test if the
distance between Ai and Aj (or an upper bound for it)
is smaller than Æ. If one of these tests succeeds, we can
report a \pseudo-collision".

4

3.2 Greedy distance computation

One tenet of our approach is the availability of an ef-
�cient algorithm to compute non-trivial lower distance
bounds (or exact distances) between pairs of complex
polyhedral bodies. Tighter bounds allow segment to be
covered with less bisection, but they are also more ex-
pensive to compute.
Bounding volume (BV) hierarchies are commonly used

for checking collision and/or computing distances be-
tween bodies (see Section 1). However, computing ex-
act distances has proven signi�cantly more expensive
that pure collision checking. The eÆciency gained by
our adaptive bisection in using distances can easily be
dwarfed by the higher cost of computing exact dis-
tances. Some BV algorithms are able to compute ap-
proximate distances much faster than exact distances
(e.g., [14, 21]), but still slower than they can check col-
lision. Furthermore, their eÆciency depends on the al-
lowed relative or absolute error, a parameter that may
be diÆcult to set.
Instead, we settled for a new algorithm that greedily

computes lower distance bounds between general non-
convex polyhedra, while checking collision or minimal
separation Æ (as indicated in Section 3.1). This algo-
rithm, called greedy-dist, is also based on BV hierar-
chies. While being barely more expensive than a similar
pure collision-detection algorithm, in practice it returns
good lower bounds most of the time. It is independent of
the choice of BV, as long as the distance between pairs of
BVs can be computed eÆciently. In our implementation,
we use RSS [14].
We assume that each BV hierarchy is an approxi-

mately balanced binary tree of BVs, with each leaf be-
ing a triangle of the surface of the polyhedral body rep-
resented by the hierarchy. To compute a lower bound
on the distance between two bodies, we call greedy-
dist(Bi; Bj), where Bi and Bj denote the BVs at the
roots of the hierarchies representing the two bodies. The
algorithm is as follows, where Æ � 0 is the required min-
imum separation between the two bodies and Bj1 and
Bj2 are the two children of Bj in the BV hierarchy:

Algorithm greedy-dist(Bi; Bj)
d distance(Bi; Bj)
if Bi and Bj are both triangles then return d

if d > Æ then return d

if Bi is bigger than Bj then switch Bi and Bj

� greedy-dist(Bi; Bj1)
if � > Æ then
� greedy-dist(Bi; Bj2)
if � > Æ then return minf�; �g

return 0

If the original call greedy-dist(Bi; Bj) returns 0,
then the distance between the two bodies is less than
or equal to Æ, otherwise it is greater than Æ and the re-
turned value is a lower bound.

#BV/Tri pairs [%]
Fig.# Coll New Dist 0.5-Dist � �0

1 2.1/0.03 2.1/0.03 822/226 8.0/0.17 78 59
6(a) 11/0.12 13/0.15 502/51 29/0.66 91 64
6(b) 4.8/0.17 4.7/0.14 466/47 23/0.78 88 63
7(a) 14/0.52 14/0.45 2342/458 69/2.4 65 60
7(b) 73/2.1 85/2.2 1363/216 174/6.6 52 57
7(c) 44/0.52 52/0.66 1845/215 172/4.2 58 59

Table 1: Comparison of greedy-dist with collision checking
and exact and approximate distance computation algorithms.

This algorithm is much more eÆcient than exact dis-
tance computation because it terminates as soon as a
separation greater than Æ has been shown, which hap-
pens for many con�gurations. In fact, when Æ is set to 0,
the algorithm visits exactly the same pairs of BVs and
triangles as a standard recursive collision checker using
the same BV type would do. But it additionally returns
a non-zero lower bound on the distance if the two bodies
do not intersect. The experiments reported below show
that in practice this bound is quite good.
Table 1 compares the performance of greedy-dist

with Æ = 0 to algorithms as described in [14] for pure
collision checking, exact distance computation and ap-
proximate distance computation (with 0.5 relative error
in this case). Since the original approximate distance
algorithm in [14] reports only an upper approximation,
we slightly modi�ed it along the lines of [21] to compute
a lower approximation instead. The number returned by
the algorithm is then guaranteed to be between 0:5d and
d, where d is the exact distance.
Columns 2 through 5 of Table 1 give average numbers

of pairs of BVs and triangles tested by each of the four
implemented algorithms. These numbers were generated
as follows, for the six examples shown in Fig. 1, 6 and
7. In each example, we generated 1,000 random con-
�gurations of the robot(s) and at each con�guration all
robot links were tested against all �xed obstacles. The
numbers reported in Table 1 are averages over all con-
�gurations and all tested pairs. They show that the per-
formance of greedy-dist is similar to the pure collision
checker (note that, in this case, computing the distance
between two triangles or two RSSs costs only a small con-
stant factor more than checking whether they intersect).
But the performance of greedy-dist is much better, by
large factors, than the algorithm performing exact dis-
tance computation. It is also signi�cantly better than
the algorithm computing an 0.5-approximate distance.
The reason is that, independent of the selected relative
error, the approximate-distance algorithm recurses down
to the leaf level of the BV hierarchies at least once, while
greedy-dist often terminates the search at higher lev-
els.
The last two columns of Table 1 compare the lower

distance bounds returned by greedy-dist with the dis-
tances returned by the other two algorithms. The col-
umn labelled by � describes the lower bounds by their
average fractions in % of the exact distances. Here, the

5

averages were computed only for the collision-free con-
�gurations. Indeed, with Æ = 0, when there is a collision,
greedy-dist always returns the exact distance. All the
factors in column � are larger than 50%; half of them
are signi�cantly larger. The column labelled �

0 gives
the distances returned by the approximate-distance al-
gorithm by their average fractions in % of the exact dis-
tances. In most cases, the �

0 factor is smaller than the
� factor, indicating that greedy-dist usually provides
tighter bounds than the approximate-distance algorithm
with 0.5 relative error, at smaller computational cost.
As is often the case with such comparison, there are

subtleties that we must be aware of. Several types of
BVs (e.g., spheres, AABBs, OBBs, RSSs, k-DOPs) have
been proposed and discussed in the literature [18]. The
BVs used by greedy-dist, RSSs, provide reasonably
tight approximations for a wide range of bodies found in
robotic scenarios and allow fast distance computation.
However, a distance query on two RSSs is slightly more
expensive than an intersection query on two OBBs (the
close relatives of RSSs). The implementation that was
used for the pure collision checker uses OBBs. Since
OBBs and RSSs are geometrically related, in most cases
OBB and RSS hierarchies are very similar. This explains
why the results in columns 2 and 3 of Table 1 are almost
the same (hence, comparable). On the other hand, in our
experiments, we found that performing an intersection
query on two OBBs is, on average, only less than twice
faster than computing the distance between two RSSs.

3.3 Bounding motions in workspace

As the con�guration of the system changes by linear in-
terpolation along a (sub-)segment [qa; qb], every point
of each moving body Ai traces a speci�c curve segment
in 3-space. Our algorithm needs to eÆciently compute a
good upper bound �i(qa; qb) on the lengths of all curve
segments traced by points of Ai.
It can be shown that one of the vertices of a con-

vex bounding polyhedron for Ai traces a curve segment
that is not shorter than the curve segments traced by
any point on Ai. Our problem can thus be reduced to
computing bounds for the motion of a small number of
points. Assume that the motion of one such point is
given by p(t) for t 2 [0; 1]. The exact length of the curve

segment traced by p(t) is given by L =
R
1

0
k _p(t)kdt. For

general linkages, this integral cannot be solved analyt-
ically, and numerical evaluation with the required pre-
cision can be costly. Obviously, the straightforward ap-
proach of sampling the curve traced by p(t) and approxi-
mating it with a sequence of straight line segments yields
an underestimate of the length, while we need an upper
bound to guarantee that no collisions will be missed.
Most practical manipulators contain either revolute or

prismatic joints and a few of them contain both types.
For robots with only prismatic joints, traced curves are
straight segments whose exact lengths are easy to com-
pute.

0 2 4 6 8 10 12 14
−10

0

10

20

30

40

50

60

No. of Links

R
el

at
iv

e
E

rr
or

(a)

(b)

Figure 5: Relative errors and standard deviations of the two
simple curve length bounds for di�erent vertices on a planar
linkage. (a) �i d(qa; qb), (b) �i(qa; qb)

To illustrate how we deal with revolute joints consider
the following simpli�ed example. Let the robot be a
planar linkage, consisting of m straight line segments
connected by m revolute joints with angles '1; : : : ; 'm.
Link 1 is directly connected to the environment and con-
trolled by angle '1, link 2 is connected to the endpoint
of link 1 and a�ected by angles '1 and '2, etc. Let each
link have unit length and assume a simple correspon-
dence between joint angles and c-space parameters, i.e.
q = (q1; : : : ; qm) and 'i = qi.
A simple upper bound of the length of the curve traced

by the endpoint of link i is:

�i d(qa; qb) =

iX

j=1

(i� j + 1)d(qa; qb)

where d(�; �) is the c-space distance de�ned by the L
1-

norm and �i =
Pi

j=1(i� j + 1) is the radius of the disc
in which the endpoint of link i can move.
However, this bound can be improved by using the

actual parameter di�erences and we obtain the bound

�i(qa; qb) =

iX

j=1

(i� j + 1)jq
(a)

j � q
(b)

j j

Fig. 5 shows the relative errors and standard devia-
tions of the above two bounds for the endpoints of planar
linkages of di�erent lengths. The plots were obtained by
sampling 1,000 random segments for linkages of lengths
between one and twelve and comparing the upper bounds
to the result of a numerical integration with high preci-
sion. Although �i(qa; qb) overestimates the curve length
for the endpoint after 6 links by a factor of about 6 on
average, this estimate will be cut in half by each bisec-
tion step and we therefore expect it to be reduced rather
quickly. Furthermore observe that the error is smaller
for links closer to the base. In our experiments in Sec-
tion 4 �i(qa; qb) appeared to be frequently dominated

6

by large workspace distances �ij(qa) and �ij(qb) even
for kinematic chains of length up to 10 links.
The above discussion can be easily extended to robots

with both prismatic and revolute joints, and also to more
realistic robots with polyhedral links but we omit the
details here.

3.4 Ordering of the priority queue

We now discuss the ordering of the entries [qa; qb]ij in
the priority queue used by the core algorithm presented
in Section 3.1. For a collision-free segment, the ordering
has no impact on the eÆciency of the check, since all
entries will be eventually processed. However, for a col-
liding segment, an appropriate ordering of the entries can
be very e�ective to discover a collision quicker. In PRM
planning, a signi�cant amount of time is \wasted" in
showing that candidate segments between sampled mile-
stones are actually colliding.
In [8, 22], it was shown that in practice the prior

probability of a segment to be colliding increases with
its length in c-space. The planners in [20, 22] exploit
this result to test multi-segment paths, by maintaining
a priority queue of (sub-)segments sorted by decreasing
length.
Here, we can take advantage that we also know bounds

on workspace distances and on lengths of traced curves
for each (sub-)segment. Intuitively, two bodies are more
likely to collide if they are closer at one or both segment
endpoints and/or the points in these bodies trace longer
curves. This intuition is directly related to inequality
(2). This leads us to proceed as follows. For each entry
[qa; qb]ij in the priority queue we compute the length of
the subsegment that is not covered (in the sense de�ned
by the schema in Fig. 3). This is done by subtracting the
left-hand side of (2) from its right-and side. We call the
result the non-covered length of the segment between qa

and qb for the bodiesAi andAj . If this length is negative
or null, then the two bodies are guaranteed not to collide
along the segment, hence the entry is not inserted in the
queue. All other entries are sorted by decreasing non-
covered length.
This heuristic ordering can be extended from single

segments and their sub-segments to multi-segment paths
[22]. Instead of checking all segments on such a path in
some �xed sequence, the checker can enter all of them
in the same priority queue and thus switch dynamically
among them, as dictated by the uncovered lengths. In
most cases, if a segment collides, this collision will be de-
tected before having spent much time toward the valida-
tion of collision-free segments, hence making it possible
to reject the entire path quickly. Actually, a better im-
plementation is to maintain two levels of priority queues,
one priority queue for the path (with one entry per seg-
ment that has not yet been shown free of collision), and
one priority queue for each segment. The priority queue
for a segment is the same as above. The priority of a seg-
ment in the path priority queue is the uncovered length

of the �rst entry of this segment's priority queue. With
these two levels of queues, if the path is eventually found
to collide, we can then cache the priority queues of the
segments that have neither been shown to collide nor to
be collision-free. So, if these segments are later parts of
other paths, the prior collision-checking work does not
have to be repeated.

4 Experiments

All experiments were performed on a 1GHz Pentium III
PC with 1GB RAM, using a single processor. In our
current implementation we recompute rigid-body trans-
forms for both bodies of each tested pair whenever a
(sub-)segment is bisected for this pair. In some examples
presented in this section, more than 70% of the total run-
ning time is consumed by these partly redundant com-
putations. Since we bisect the subsegments in the same
uniform way for all pairs of bodies, identical transforms
could be shared across pairs. We could also take fur-
ther advantage of partly computed forward kinematics
for manipulator arms. To this end, we are currently im-
plementing a caching and indexing mechanism for rigid-
body transforms that will allow for substantial reduction
of running times in most examples.

4.1 Random segments

We �rst consider random segments to compare the per-
formance of our new segment checker to a simple �xed-
resolution approach that is used in most PRM planners.
The simple approach bisects the segments and orders the
(sub-)segment tests until their lengths in c-space become
smaller than a �xed " as described in [22].
Table 2 shows the results for 1,000 random colliding

segments with collision-free endpoints. Since the seg-
ments are known to be colliding, we ran the simple
checker with " = 0 and our new checker with Æ = 0. (By
setting " = 0, we assure that the simple checker �nds
the collision.) The simple checker seems to perform bet-
ter except for the example in Fig. 7(b). However, this is
mainly due to redundant recomputations of transforms
(a minor reason is that distance computation for a RSSs
pair is slower than an intersection test for two OBBs).
For example, in Fig. 7(c), there are many pairs of mov-
ing links and for each pair, the current implementation
of the new segment checker recomputes transforms for
both links of the pair. In Fig. 6, the redundancy is less
obvious but can be explained by the fact that each wire
of the cage is modeled as an individual obstacle. Thus,
the transform for each robot link is recomputed when
tested against a part of the cage. As noted before, we
are currently implementing a caching mechanism that
will eliminate the redundant recomputations of trans-
forms. Another way to solve the problem in Fig. 6 would
be to construct a BV hierarchy for the entire cage.
Table 3 compares the average times per segment for

1,000 random collision-free segments which were gener-

7

(a) (b)

Figure 6: Examples with thin obstacles (cages). (a) IRB
2400 robot (2,991 triangles), (b) Fanuc 200 robot (2,502 tri-
angles) with arc welding gun.

Colliding segments

Fig. Simple (" = 0) New (Æ = 0)
6(a) 2.04 2.97
6(b) 2.18 3.38
7(a) 0.96 0.99
7(b) 2.2 1.3
7(c) 3.2 15

Table 2: Average times per segment (in millisec.) of simple
and new collision checker for 1,000 random colliding segments
(with free endpoints).

Free segments

n Simple New New
Fig. " t [ms] Æ t [ms] Æ t [ms]
6(a) 0.0120 90 0.001 44 0.01 14
6(b) 0.0060 104 0.001 31 0.01 14
7(a) 0.0012 52 0.001 26 0.01 6.5
7(b) 0.0120 56 0.001 24 0.01 6.6
7(c) 0.0120 295 0.001 81 0.01 16

Table 3: Average times per segment (in millisec.) for sim-
ple and new collision checker for 1,000 random collision-free
segments.

SBL A-SBL

Example " t [sec] t [sec]
Fig. 6(a) 0.0120 83 44
Fig. 6(b) 0.0060 17 4.80
Fig. 7(a) 0.0012 3.20 2.10
Fig. 7(b) 0.0120 1.20 0.81
Fig. 7(c) 0.0120 85 52

Table 4: Comparison of original SBL planner and A-SBL
variant with new segment checker.

(a)

(b)

(c)

Figure 7: (a) Fanuc 200 with arc welding gun and a machine
tool (obstacles: 34,171 triangles). (b) IRB 2400 robot in
workshop (obstacles: 74,681 triangles). (c) Six IRB 2400
robots working on a car body (car: 19,668 triangles).

8

ated using the new checker with Æ = 0:001. (This value
is three orders of magnitude smaller than the sizes of the
robot links and corresponds to a millimeter for a robot of
realistic size.) A di�erent value of " was determined ex-
perimentally for each of the examples in order to achieve
a reasonable tradeo� between performance and accuracy
of the simple collision checker (see Section 4.2). Both the
simple checker and the new checker were then run on the
generated segments. The results show that our new seg-
ment checker performs faster than the simple checker,
although the abovementioned overhead of using RSSs
and redundant computations of transforms applies here
as well.

We generated another set of 1,000 random free seg-
ments using the new checker with Æ = 0:01 (which cor-
responds to one centimeter). While the performance of
the simple checker is una�ected by the increased distance
from the obstacles, the new checker (with Æ = 0:01) per-
formed signi�cantly better (see columns 6 and 7 in Ta-
ble 3).

4.2 Application in a PRM path planner

The PRM planner described in [22], called SBL, bisects
each segment up to a given resolution " (see Section 2).
It assumes that the segment is collision-free if all inter-
mediate points are collision-free. This approach does
not prove that a segment is actually collision-free, but
the error probability can be made arbitrarily small by
decreasing ". However, reducing " also means that more
bisection points have to be checked and this increases the
planning time. It thus requires some trial-and-error ex-
perimentation to determine a reasonable value of " and
this has to be done for every environment anew.

We have replaced this discrete segment checking algo-
rithm in the original SBL implementation by our new
adaptive segment checker. We call the resulting planner
\adaptive SBL" (A-SBL). This planner is guaranteed
to return a collision-free path. To prevent deep recur-
sion, as described in Section 3.1, we set the minimum
workspace clearance to Æ = 0:01 which is two orders of
magnitude smaller than the sizes of the links.

In Table 4 we compare the running times of SBL and
A-SBL on examples in the �ve environments shown in
Fig. 6 and 7. For each environment, a parameter " was
determined for SBL such that the planner returned a
collision-free path for 10 successive runs on the respective
problem. The values of " are indicated in the table. The
times reported in the table are averages over 10 runs of
each planner. For these examples and values of ", A-
SBL is faster than the original version of SBL, with the
enormous advantage that unlike most implemented PRM
planners, it is absolutely guaranteed to return collision-
free paths.

Figure 8: A skinny 20-DOF linkage amongst thin lattices.
Another, similar version contains nine linkages, each threaded
through a di�erent set of holes of the grids.

4.3 Application to path smoothing

We implemented a simple but e�ective randomized path
smoother that works as follows. At each step, it samples
a pair of con�gurations (not necessarily vertices) on the
path and then tries to shortcut the path section between
them by a single straight line segment. This is where our
new collision checker is used. Sampling the endpoints of
the potential shortcut uniformly from the entire path
may lead to a high rejection rate, so we maintain a dy-
namic window from which the two new con�gurations are
picked at each step. The smoother works well in practice
and can be stopped at any time, either after a prespec-
i�ed number of iterations or when the path length has
converged. Since it is only an application example, we
omit further details here.

With this simple path smoother, we were able to �nd
quite good paths for a set of diÆcult examples (Figs. 1,
8), even with a remarkably simple planner. The starting
con�gurations are given by the fully extended linkage(s)
which are attached with one end to the base plate. The
goal is to retract the linkage(s) downward out of the ob-
stacles but no goal positions are given explicitly. All
possible collisions are checked. These examples are not
only diÆcult because they describe narrow channels in
high-dimensional c-spaces but also because it is easy to
miss collisions when checking segments at a �xed resolu-
tion. In fact, the c-spaces could be intuitively described
as \high-dimensional swiss cheese". A segment checker
based on discrete static collision checks would require
extremely small step sizes in order not to miss a wall of
the channel and thus waste most of its time on checking

9

Random walk Smoothing �

segs. t [sec] # steps t [sec] [%]
Fig. 1 85,784 898 10,000 735 7
Fig. 8 6,795 95 2,000 83 17
(*) 27,596 8,079 20,000 8,891 22

Table 5: Results for random walks and smoothing. Example
(*) is similar to Fig. 8 but has nine linkages (180 DOFs).

those parts of the robot which are far apart from the
obstacles and cannot collide.
The \planner" that we used here performs a random

walk in c-space by changing a single DOF at each step.
The reason why a simple random walk �nds out of the
channels in the above examples is that the expected ra-
dius of gyration (the radius of the smallest circumsphere)
of a chain with n links is proportional to

p
n [15].

The path smoother interpolates in the full-dimensional
space and thus introduces simultaneous coordinated mo-
tions of all DOFs. Table 5 shows the obtained results for
\planning" and smoothing, respectively. The number of
tested segments include both free and colliding segments.
The number of smoothing steps was given in advance and
corresponds to the number of potential shortcuts tested
by the smoother. The column � shows the fraction in
% of the path length after smoothing, respectively. The
example (*) is similar to Fig. 8 but contains nine iden-
tical linkages, each threaded through a di�erent set of
grid holes.
In all of these examples, the computation of rigid-body

transforms currently consumes about 60%-70% of the to-
tal running time. These examples would therefore bene-
�t signi�cantly from the method for caching and re-using
transforms which we are currently implementing.

5 Extensions

The basic algorithm can be extended to allow for requir-
ing a minimum clearance along an entire segment/path.
In the form presented in Section 3, our algorithm reports
a pseudo-collision if any two bodies are found to be less
than Æ apart at one of the interpolated con�gurations.
However, this does not guarantee that they are at least Æ
apart during the entire motion. Inequality (2) rules out
only true intersections along the segment. To guarantee
that a pair (Ai;Aj) is further than Æ apart for all con-
�gurations on the segment, (2) can be restricted in the
following way.
Suppose we dilate both bodies with a sphere of radius

r = Æ=2 and thus obtain two 'hull' bodies Ar
i and Ar

j .
Proving the segment collision-free for the pair (Ar

i ;A
r
j)

would certify the required separation of (Ai;Aj). Each
of the workspace distances of (Ar

i ;A
r
j) at qa and qb

would be smaller by Æ than the corresponding distances
�ij(qa) and �ij(qb) of the pair (Ai;Aj), respectively. In-
stead of actually using the hulls we subtract 2Æ from the
right hand side of the original certi�cate (2). Further-
more, the curve length bounds have to be replaced by

bounds derived for the hulls, �ri (qa; qb) and �
r
j (qa; qb),

because points on the hulls may trace longer curves. Fol-
lowing Section 3.3, this is straight-forward and does not
require actual computation of the hulls, either.
A more conservative variant of (2) which guarantees Æ

clearance of (Ai;Aj) along the entire segment can thus
be written as

�
r
i (qa; qb) + �

r
j (qa; qb) < �ij(qa) + �ij(qb)� 2Æ (3)

Without going into further details, we note that we can
even use a di�erent minimum clearance for each pair
of bodies, which may be important in certain practical
situations.
A similar extension would be to consider Æ < 0 for

allowing bounded penetration by less than jÆj. How-
ever, in order to allow for bounded penetration along
the entire segment, the function �ij(�; �) would have to
be extended to compute negative penetration distances
in order to verify the segment endpoints and the con�g-
urations generated by the bisection.

6 Conclusion and future work

We have presented a new exact collision checker for
straight line segments and entire paths in c-space that is
particularly suited for PRM planners applied to manip-
ulator arms and multi-robot systems. Unlike the com-
monly used approach of checking discrete con�gurations
up to a �xed resolution, it has the enormous advantage
of never missing a collision. It also obviates the need
for experimentally determining a reasonable resolution
parameter.
Exactness and eÆciency are obtained by dynamically

adjusting the local resolution at which con�gurations
along a path are tested by relating the distances between
objects in the workspace to the maximum lengths of the
paths traced out by points on these objects. While this
basic idea has been proposed before, we introduced sev-
eral new techniques that make the method applicable to
PRM planners and scenarios with realistic complexity.
These techniques include a greedy distance computation
algorithm that is as eÆcient as collision checking, a sim-
ple and eÆcient method for bounding lengths of paths
traced out in workspace, and a scheme for ordering col-
lision tests to reveal collisions as quickly as possible.
In our experiments, the new checker was faster than

the �xed-resolution method with an appropriately set
resolution. Beyond pure collision checking, new our al-
gorithm can be easily extended to monitor individual
minimum workspace clearances between each pair of ob-
jects.
We are currently implementing a caching and index-

ing mechanism for rigid-body transforms that will allow
for substantial reduction of running times in many of
the presented examples. Future work will include fur-
ther optimization of the tradeo� between bisection and
re�nement of bounds on distances and curve lengths.

10

Acknowledgements: This work was partially funded
by an NSF ITR grant, a gift from General Motors, and
a grant from ABB.

References

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones,
and D. Vallejo. OBPRM: An obstacle-based PRM
for 3d workspaces. In Proc. of the Workshop on
Algorithmic Foundations of Robotics (WAFR'98),
pages 155{168, March 1998.

[2] J. Barraquand, L. Kavraki, J. C. Latombe, T.Y. Li,
R. Motwani, and P. Raghavan. A random sampling
scheme for path planning. Inernational Journal of
Robotics Research, 16(6):759{774, 1996.

[3] Basch, Guibas, and Hershberger. Data structures
for mobile data. In SODA: ACM-SIAM Symposium
on Discrete Algorithms (A Conference on Theoret-
ical and Experimental Analysis of Discrete Algo-
rithms), 1997.

[4] R. Bohlin and L. Kavraki. Path planning using lazy
PRM. In Proc. of the Int. Conf. on Robot. & Autom.
(ICRA), pages 521{528, 2000.

[5] S. Cameron. A study of the clash detection problem
in robotics. In Proc. IEEE Int. Conf. on Robotics
& Automation, volume 1, pages 488{493, 1985.

[6] S. A. Cameron. Collision detection by four-
dimensional intersection testing. IEEE Trans.
Robotics Automat., 6:291{302, June 1990.

[7] J. D. Cohen, M. C. Lin, D. Manocha, and M. Pon-
amgi. I-COLLIDE: An interactive and exact colli-
sion detection system for large-scale environments.
In Sym. on Interactive 3D Graphics, pages 189{196,
218, 1995.

[8] L. Dale, G. Song, and N. Amato. Faster, more ef-
fective connection for probabilistic roadmaps. Tech-
nical Report TR00-005, Department of Computer
Science, Texas A&M University, 20, 2000.

[9] A. Foisy and V. Hayward. A safe swept volume
method for collision detection. In The Sixth In-
ternational Symposium of Robotics Research, pages
61{68, Pittsburgh (PE), Oct. 1993.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-
Tree: A hierarchical structure for rapid interfer-
ence detection. Comp. Graphics, 30(Annual Conf.
Series):171{180, 1996.

[11] D. Hsu, J. C. Latombe, and R. Motwani. Path
planning in expansive con�guration spaces. Inter-
national Journal of Computational Geometry and
Applications, 9(4&5):495{512, 1999.

[12] P. Jim�enez, F. Thomas, and C. Torras. 3D colli-
sion detection: A survey. Computers and Graphics,
25(2):269{285, 2001.

[13] L. E. Kavraki, P. Svestka, J. C. Latombe, and
M. Overmars. Probabilistic roadmaps for path
planning in high-dimensional con�guration spaces.
IEEE Transactions on Robotics and Automation,
12(4):566{580, 1996.

[14] E. Larsen, S. Gottschalk, M. C. Lin, and
D. Manocha. Fast distance queries with rectangular
swept sphere volumes. In IEEE Conf. on Rob. and
Auto., 2000.

[15] A. Leach. Molecular Modelling: Principles and Ap-
plications. Longman, Essex, England, 1996.

[16] M. Lin, D. Manocha, J. Cohen, and S. Gottschalk.
Collision detection: Algorithms and applications.
In J. P. Laumond and M. Overmars, editors, Al-
gorithms for Robotic Motion and Manipulation:
WAFR 1996, pages 129{142. A. K. Peters, 1996.

[17] M. C. Lin and J. F. Canny. A fast algorithm for in-
cremental distance calculation. In IEEE Int. Conf.
on Rob. and Auto., pages 1008{1014, 1991.

[18] M. C. Lin and S. Gottschalk. Collision detection be-
tween geometric models: a survey. In IMA Confer-
ence on Mathematics of Surfaces, volume 1, pages
602{608, San Diego (CA), 1998.

[19] B. Mirtich. V-clip: Fast and robust polyhedral col-
lision detection. ACM Transactions on Graphics,
17(3):177{208, July 1998.

[20] Ch. Nielsen and L. E. Kavraki. A two-level fuzzy
PRM for manipulation planning. In Proc. of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Japan, 2000.

[21] S. Quinlan. EÆcient distance computation between
non-convex objects. In IEEE Intern. Conf. on Rob.
and Auto., pages 3324{3329, 1994.

[22] G. Sanchez and J. C. Latombe. A single-query bi-
directional probabilistic roadmap planner with lazy
collision checking. In Int. Symposium on Robotics
Research (ISRR'01), Lorne, Victoria, Australia,
2001.

[23] G. Van der Bergen. EÆcient collision detection
of complex deformable models using AABB trees.
Journal of Graphic Tools, 2(4):1{13, 1997.

11

