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Abstract

Existing data mining algorithms on graphs look
for nodes satisfying specific properties, such as
specific notions of structural similarity or specific
measures of link-based importance. While such
analyses for predetermined properties can be ef-
fective in well-understood domains, sometimes
identifying an appropriate property for analysis
can be a challenge, and focusing on a single prop-
erty may neglect other important aspects of the
data. In this paper, we develop a foundation for
mining the properties themselves. We present a
theoretical framework defining the space of graph
properties, a variety of mining queries enabled by
the framework, techniques to handle the enormous
size of the query space, and an experimental sys-
tem called F-Miner that demonstrates the utility
and feasibility of property mining.

1 Introduction

Graph analyses have been used for a variety of applications
to analyze interrelationships among entities. Some of these
analyses concern standard graph-theoretic properties, such
as the radius of the graph or embedded cliques. Other anal-
yses yield high-level, subjective information about the data.
For example, the web graph has been analyzed using the
PageRank [20] and HITS [16] algorithms to identify web
pages likely to be deemed “important” by the user. The
citation structure of scientific papers has been analyzed to
find papers related to a given paper [13, 15, 21].

These techniques have in common that they analyze
graph structures for predetermined properties. Although
such analyses can be very effective, coming up with a good
property for analysis is often a challenge, especially when
little is known about the data to begin with. Moreover, by
fixing specific properties for analysis, other important as-
pects of the data may be ignored. Therefore the space of
properties itself should be explored.

As a concrete example, consider the simple case of look-
ing for intuitively “similar” nodes in the graph of Figure 1.
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Figure 1: Graph example.

One possibility is to conclude that Prof1 and Prof2 are
similar because they are both pointed-to by Univ, as in the
commonly used co-citation metric [21]. Analogously, we
may conclude that StudentB and StudentC are sim-
ilar because they are both pointed-to by Prof2. On the
other hand, we may argue that StudentA, StudentB,
and StudentC are all similar because they are pointed-
to by a node that is pointed-to by Univ, as in the re-
cursive SimRank metric introduced in [13]. Each or all
of these inferences may be valid, depending on the do-
main and application. However, current methods require
the user to fix one measure of similarity (e.g., co-citation
or SimRank) and query for nodes found to be similar un-
der this measure. Ideally, we would like to query simply
for “similar” nodes and get as a result the sets {Prof1,
Prof2}, {StudentB, StudentC}, and {StudentA,
StudentB, StudentC} along with explanations for why
they are similar. This functionality is not supported by any
current system we know of. It is supported by F-Miner, an
implementation of the framework to be presented.

In this paper, we develop a framework for mining “in-
teresting” or “important” graph properties. Essentially, we
treat the space of properties as a domain and perform data
mining on this domain. Our goal is to develop an appro-
priate analysis for mining the space of properties, just as
analyses have been developed for mining the graph data
itself. An obvious challenge is in handling the enormous
size of the space of properties, in which even the simplest
data mining operations seem hopelessly infeasible. We de-
velop techniques that allow computational resources to be
focused on only the most important properties, allowing us
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Figure 2: A logical diagram of the property mining framework, as seen by the user.

to implement a practical mining system based on the frame-
work.

The main contributions of this paper are:

• A theoretical framework that defines the space of
graph properties to be queried.

• Several specific data mining query types enabled by
this framework, offering new capabilities not sup-
ported by existing systems.

• Techniques for dramatically reducing the computa-
tional resources required to answer queries within the
framework.

• A simple and intuitive metric for calculating the “im-
portance” of properties.

• The F-Miner experimental system, an implementation
of the framework presented, demonstrating its utility
and feasibility.

2 Framework for Property Mining

Before we can pose queries on the space of graph proper-
ties, we first have to define precisely what this space is.

• We begin with a labeled directed graph representing
the objects and relationships in the domain we want
to mine. Each edge represents a basic relationship be-
tween two objects.

• We encode properties as formulas in the syntax and
semantics of Datalog [23]. Each property (formula)
is composed of the basic relationships (predicates) in
the domain.

• We consider the set F of all formulas and their extents,
the objects which satisfy the formula. Queries on the
space of properties can be stated as queries on F.

A logical diagram of the framework, as seen by the user, is
shown in Figure 2. The property mining framework itself is
enclosed in the dashed box. The framework enables query-
ing on properties of the input data (in our case a graph),
from which a set of predicates representing basic relation-
ships are derived. It is possible to derive predicates from
sources other than graphs, such as the less-than relationship
in a numeric data set, but for concreteness we limit our-
selves in this paper to discussing predicates corresponding
to graph edges. The predicates form the basis of formulas,
and the user’s queries posed are on the set of all formu-
las and their extents F. Of course, F is only an abstraction
provided to the user; in most cases F would never be mate-
rialized by an implementation. We define F formally in the
next section.

2.1 The Query Space

Let G = (V, E) be a labeled directed graph, where E ⊆
V × V × L, for an arbitrary set L of strings serving as edge
labels. For simplicity, we do not consider edge weights,
although they can be added to the framework with slight
modification. The fundamental relationships encoded in
the edges are building blocks for the properties we will
consider. In many domains there is an obvious canonical
representation of the data as a graph, although in some do-
mains the representation may require some consideration.
As an example, consider the data shown in Figure 3, which
is a small fragment of a survey of members of the Stanford
Database Group. The obvious representation of the data
as a labeled graph is also shown in the figure. Many data
types can readily be modeled as a graph, including data in
relational and XML format.

The next step is to represent properties of the domain
as formulas. We use formulas in the language of Data-
log [23], although arbitrary logic formulas, say of first or-
der logic, are also possible. Clearly, the more powerful the
logic, the greater the semantic and computational complex-
ity of the system. Datalog has expressive power far beyond
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Figure 3: Sample data and its graph representation.

what we can hope to support in practice. As we shall see,
even the very restricted subset of Datalog that we use al-
lows functionality well beyond what existing systems can
support. We will define the syntax and semantics of our
formula language as we go along.

The constants (or objects) of the logic are the nodes in
G (i.e., objects of the domain), while predicates correspond
to edges (i.e., relationships of the domain). We consider
Datalog formulas f of the form:

f(A) :– p1(α1, β1) & · · · & pk(αk, βk)

for k ≥ 1, where pi ∈ L, A is the head variable, and
each αi, βi is either a variable or a constant (object). We
use capital letters to denote variables, lowercase letters to
denote constants, and Greek letters to denote either. Each
predicate p(α, β) corresponds to the existence of an edge
with label p between its two arguments: predicate p(u, v),
for u, v ∈ V , is true if and only if the edge 〈u, v, p〉
exists in G. In the example of Figure 3, the predicate
Food(Sriram, Indian) is true. A formula f is satisfied
by the satisfying assignment a, a function that maps vari-
ables to constants, if all the predicates in f are true when
all variables X in f have been replaced by a(X). In a for-
mula, at least one of the arguments of each predicate must
be a variable, for otherwise the predicate would have a con-
stant truth value. Two formulas that are identical except
for variables names and predicate ordering are considered
identical.

The most important aspect of a formula f is its extent,
denoted E(f). It is the set of all objects v for which there
exists a satisfying assignment a such that a(A) = v (re-
call that A is always the head variable). Intuitively, each
formula specifies a “property” of the domain, and the ex-
tent of the formula is the set of objects which satisfy the
property. For example, the formula

f(A) :– Advisor(B, A) & Food(B, Chinese)

encodes the property “being the advisor of someone who
likes Chinese food”, and its extent is {Hector}.

We define the set F = {(f, E(f)) | f is a formula} of all
formulas and their extents as the space in the context of

which we pose our queries. A fragment of F is shown in
Figure 2 as a relation. Of course, F is infinite, and is not
meant to be computed. It serves only as the logical relation
over which queries are posed.

2.2 Sample Query Types

There are many interesting data mining operations one can
perform over F, and many common notions in data mining,
such as the frequent itemsets computation [3], have ana-
logues in the space of formulas. Here are some examples:

• Object similarity. Two or more objects can be con-
sidered similar if they satisfy “many” formulas in
common. In contrast to previous approaches, now
similarity can be computed based on multiple aspects
(as in the example of Section 1), with the system au-
tomatically identifying the more “important” aspects
(Section 4).

Furthermore, similarity can be explained. Rather than
simply returning a score, the formula(s) which con-
tributed to the score can be returned as an explanation
of the results.

Finally, “find more” queries can be supported. Given a
set of objects U presumed to be similar in some ways,
we can query for objects similar to objects in U in the
same ways that objects in U are similar to one another.
The objects returned are those which occur frequently
in the formulas satisfied by members of U .

These features are supported in the F-Miner system
(Section 5).

• Frequent itemsets. We can run a frequent itemsets
computation on the set of all extents, identifying those
sets U ⊆ V for which U is a subset of “many” extents.
Each subset U represents a group of objects having “a
lot” in common. For example, in the survey data to be
discussed in Section 5, the set of all professors may be
a frequent itemset because they all have advisees and
have written many papers.

• Frequent substructures. Many graph structures cor-
respond to formulas, and vice versa. We can find fre-
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quent substructures in the graph by finding formulas
which have large extents. For example, the formula

f(A) :– e(A, B) & e(B, C) & e(C, D)

corresponds to a path of length 3 (with edge labels e).
If the extent of f is large, the graph contains many
paths of length 3.

• Association rules. We can look for association rules
of the form f =⇒ g, where f and g are formulas
whose extents have “a lot” of overlap. The rule says
that objects which satisfy f also satisfy g, or at least
with a high probability.

• Explanations. Given a set of objects U , we can “ex-
plain” what the objects in U have in common with
one another by considering the formulas they satisfy
in common. This functionality is demonstrated in F-
Miner (Section 5).

These are but some examples of the kinds of queries that
can be posed on F. We use the examples as motivation
for some of the techniques we develop, but it is important
to remember that these queries are end-applications of the
framework, which itself consists only of the logical relation
F. Other queries are possible in the framework and some
may be more application-specific. In contrast to traditional
data mining, the queries here generally focus on the prop-
erties themselves, rather than the objects which satisfy the
properties.

As a reminder, it is not possible (nor necessary) to ma-
terialize F in order to query it. Rather, once a specific
application has been determined (e.g., finding similar ob-
jects), we can solve the end-to-end problem without explic-
itly constructing F.

2.3 Challenges

There are two major technical challenges to answering
queries within our framework. The first is in dealing with
the enormous size of the query space. We develop tech-
niques to handle this problem in Section 3. The second
challenge is in determining the “importance” of formulas.
This is a major component of property mining: just as we
look for important (interesting) objects in traditional data
mining, here we look for important properties. Moreover,
identifying important formulas is intertwined with reduc-
ing the space considered, since we would like as much as
possible to restrict ourselves to considering only the most
important formulas. Computing importance of formulas is
discussed in Section 4.

3 Building Blocks Approach

The query space F is infinite, and it is impossible to con-
sider all formulas in F. Instead, we want to focus as much
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Figure 4: Graph example.

of our computational resources as possible on the most im-
portant formulas. This poses a dilemma, since one of the
goals of our mining is to identify these important formulas!

At a high level, our solution is to construct formulas
from basic building blocks called pseudopredicates. We
analyze these building blocks for importance instead of an-
alyzing the actual formulas. This allows us to determine the
importance of the formulas that can be constructed from the
building blocks, so that only the most important formulas
are ever created. Hence much of the mining actually takes
place in the space of pseudopredicates. Our approach can
be broken into 3 steps:

1. A set of pseudopredicates is computed to serve as ba-
sic building blocks for formulas.

2. Importance scores are computed for the pseudopredi-
cates, identifying those from which important formu-
las can be constructed.

3. Important formulas are constructed from the pseudo-
predicates.

In this section we present steps (1) and (3). Step (2) is
presented in Section 4.

3.1 Example

We motivate our approach using an example. Consider the
top half of the structure shown in Figure 4, a hypothetical
fragment of the web graph. The web pages u1, . . . , uk all
point to FOXSports.com, so they satisfy the formula

f(A) :– e(A,FOXSports.com) (1)

where e is taken to be the label of every edge in the (un-
labeled) graph. FOXSports.com in turn points to base-
ball’s MLB.com, so FOXSports.com satisfies the for-
mula

g(A) :– e(A,MLB.com) (2)

Finally, u1, . . . , uk all satisfy

h(A) :– e(A, B) &e(B,MLB.com) (3)

It seems redundant to record this fact, however, since it fol-
lows immediately from the facts that ui, for all 1 ≤ i ≤ k,
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satisfies formula (1) and that FOXSports.com satisfies
formula (2). More generally, for any formula g satisfied by
FOXSports.com, each ui points to a node that satisfies
g. That is, ui satisfies the formula

h(A) :– e(A, B) & g(B)

where g(B) is g with head variable A replaced by a variable
B not appearing already in g.1

Now we consider the entire Figure 4, where v1, . . . , vm

all point to the sports site ESPN.com. Since ESPN.com
points to MLB.com, u1, . . . , uk and v1, . . . , vm are all re-
lated by their common satisfaction of formula (3), a conse-
quence of the fact that the ui’s and vj’s all point to either
FOXSports.com or ESPN.com. We record this by say-
ing that ui’s and vj’s satisfy the pseudoformula

f(A) :– e(A, {FOXSports.com, ESPN.com})

3.2 Pseudopredicates and Pseudoformulas

A pseudopredicate is a predicate that may have as an
argument a nonempty set of objects, as well as vari-
ables. It is a generalization of a regular predicate, which
can be thought of as the special case when the only
set-arguments of a pseudopredicate are singleton sets.
We have already seen one example of a pseudopredicate
in Section 3.1, e(A, {FOXSports.com,ESPN.com}),
which represents the property of pointing to either
FOXSports.com or ESPN.com. We define a pseudo-
formula as a formula consisting of pseudopredicates, and
define the extent of a pseudoformula f as the set of objects
v for which there exists a satisfying assignment a for f such
that a(A) = v, where a assigns each set-argument to one of
its members. For example, the extent of the pseudoformula

f(A) :– (A, {FOXSports.com, ESPN.com})

is {u1, . . . , uk, v1, . . . , vm}.
Note that the set of formulas can be thought of as a sub-

set of the set of pseudoformulas, since we can replace each
constant argument v by {v} to get a pseudoformula having
the same semantics. Conversely, some pseudoformulas can
be converted to formulas: if all set-arguments of a pseudo-
formula f are either singleton sets or the set of all objects
V , then f has the same semantics as the formula f ′ which
is a copy of f except with singleton objects replaced by
their sole members, and each set-argument V replaced by
a dangling variable not appearing anywhere else in f ′.

3.3 Chaining Pseudoformulas

We take the set of basic building blocks to be (P, E(P)), the
set of all head pseudopredicates P and their extents E(P).

1Technically, we do not allow formulas within formulas, so g’s pred-
icates must be substituted explicitly into h with appropriate variable re-
naming.

A head pseudopredicate is a pseudopredicate whose two
arguments are the head variable A and a set-argument S ⊆
V . These pseudopredicates can be treated as 1-predicate
pseudoformulas. In the coming sections, we will talk about
extents of head pseudopredicates as though they were 1-
predicate pseudoformulas, and omit the “head” qualifica-
tion when the meaning is clear.

From this base set of head pseudopredicates we can
compose a large class of more complex pseudoformulas
and thus formulas, which as noted before are a subset of
pseudoformulas. The two composition steps are conjoin-
ing and chaining.

Conjoining two formulas f and g creates a new formula
h whose predicates are a conjunction of the predicates in f

and g, with appropriate renaming of non-head variables to
avoid conflict. For example:

f(A) :– Advisor(B, A) & Food(B, Chinese)

g(A) :– Advisor(B, A) & Home(B, India)

h(A) :– Advisor(B, A) & Food(B, Chinese)

& Advisor(C, A) & Home(C, India)

Chaining is a formalization of the example in Section
3.1 of deriving formula h from f and g. Suppose we
have a 1-predicate pseudoformula f(A) :– p(A, S). Then
for any pseudoformula g whose extent is a superset of S,
any object satisfying f also satisfies the pseudoformula
h(A) :– p(A, B) & g(B). We say that h is the result of
chaining f and g. In the general case, if S appears as
a set-argument in f , and S ⊆ E(gi) for some formulas
g1, . . . , gk, then we can derive a new formula h by chaining
f with g1, . . . , gk on S, as follows:

• Let h be f with S replaced by a new variable X not
appearing in f .

• For i = 1 . . . k, append to h all predicates of gi, with
non-head variables in gi renamed so as not to conflict
with those already appearing in h, and with head vari-
able A in gi renamed to X .

Note that the resulting h has an extent E(h) that is a super-
set of E(f). Moreover, if S = E(gi) for all 1 ≤ i ≤ k, then
E(h) = E(f).

A key concept here is that an object-set S ⊆ V , when
it occurs as a set-argument in a pseudoformula, represents
the set of pseudoformulas satisfied by all members of S.
Pseudoformulas (and formulas) are thus partitioned into
classes according to their extents. In computation, we deal
with the set of object-sets (seen as both extents and set-
arguments), with each object-set representing a class of for-
mulas. There are 2n such sets, which although large is at
least finite.

Through chaining and conjoining, the base set of pseu-
dopredicates P can be used to construct more complex
pseudoformulas and formulas. For a formula f , let G(f)
be the undirected, unlabeled graph corresponding to f :
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• The nodes of G are the variables and constants appear-
ing in f , except that all instances of a constant in f are
treated as different nodes.

• For every predicate p(α, β) in f there is a correspond-
ing edge between α and β in G, so that p1(A, X) and
p2(A, X) would yield two edges between A and X .

Then we can state the following theorem about the formu-
las that can be constructed.

Theorem. If G(f) is a tree, then f can be constructed by
chaining and conjoining pseudoformulas, starting from P.

The theorem says that we can construct all formulas cor-
responding to tree structures. In general, formulas that are
not tree-structured cannot be constructed; however, it is im-
portant to note that this does not mean the input graph must
be tree-structured. A stronger version of this theorem is
stated and proven in Section 3.4.

3.4 Computing a Working Subset of P

The set P has size O(2n|L|), which, although much smaller
than that of the set of all formulas (which is infinite), is
still enormous. In practice, we have to restrict ourselves
to using only a subset of P, at the cost of restricting the
set of formulas that can be constructed. Ideally, we would
use only the most important pseudopredicates as building
blocks, from which the most important formulas can be
constructed. But we cannot tell which pseudopredicates are
important in advance, so we start with an initial set of pseu-
dopredicates P1 as seed, then iteratively expand (or refine)
the set of pseudopredicates included.

We maintain a series of head pseudopredicates and their
extents (Pi, E(Pi)), for i ≥ 1. Each Pi is the set of pseudo-
predicates created on iteration i, and E(Pi) is the set of their
extents. We compute (Pi+1, E(Pi+1)) from (Pi, E(Pi)) on
each iteration i + 1. Their successive unions:

Pi =
⋃

1≤k≤i

Pk

E(Pi) =
⋃

1≤k≤i

E(Pk)

are the working (trimmed) sets of basic building blocks.
We take P1 to be the set of all head pseudopredicates

whose set-argument is a singleton set or the set of all ob-
jects. On each iteration, we consider the extents of the
pseudopredicates already created, as well as the extents’ in-
tersections, and create new pseudopredicates having these
sets as set-arguments. More precisely, given that we have
(Pi, E(Pi)), we perform the following steps on iteration
i + 1 to get (Pi+1, E(Pi+1)):

• Compute Ii, the intersection-closure of E(Pi) (i.e., the
smallest set such that E(Pi) ⊆ Ii and S1 ∩S2 ∈ Ii for
all S1, S2 ∈ Ii).

• Compute Pi+1 as:

Pi+1 = {p(A, S) | p ∈ L, S ∈ Ii}

∪ {p(S, A) | p ∈ L, S ∈ Ii}

Each successive iteration considers formulas correspond-
ing to trees one level deeper. This idea is formalized by the
following theorem.

Theorem. A formula f whose corresponding graph G(f)
is a tree of depth at most k from A can be constructed by
chaining and conjoining pseudoformulas starting from Pk.

Note that the sole formula with a G(f) depth of 0 is the
trivial formula f(A) :– p(A, A), which we do not consider.

Proof. The proof is by induction on the depth of G(f). As
the base case, the set of formulas with depth 1 is exactly
the base set P1 = P1. Now assume that the theorem is true
for some k ≥ 1, and suppose that G(f) is a tree of depth
k + 1 starting from A. Each child of A is the root of a sub-
tree Ti having depth at most k. Consider those subtrees Ti

that have depth at least 1 (i.e., not constants and dangling
variables). By the inductive hypothesis, the formula gi cor-
responding to each subtree Ti can be constructed from Pk,
after we rename the root variable of each subtree (and other
instances in the subtree) to A (note that A cannot appear in
the subtree already since G(f) is acyclic).

We want to show that there is a pseudopredicate
p(A, S′) ∈ Pk such that E(p(A, S ′)) ⊆ E(gi). First let us
assume that gi has only one head predicate, p(A, α) (anal-
ogous arguments can be made for p(α, A)). There are two
cases:

1. α is a constant. In this case, all other predicates of gi,
if any, are irrelevant, and E(p(A, S ′)) = E(gi) where
S′ = {α}, and p(A, S ′) ∈ P1 ⊆ Pk.

2. α is a variable. Then p(A, α) was added to gi through
chaining, of a predicate p(A, S ′) ∈ Pk and g′i, for
some formulas g′

1, . . . , g
′
k. Since gi is the product of

chaining p(A, S′) with other formulas, E(p(A, S ′)) ⊆
E(gi).

In either case E(p(A, S ′)) ⊆ E(gi), and E(p(A, S′)) ∈
E(Pk). Now if gi has more than one head predicate, we
can apply the same argument as above on each of its head
predicates to derive a corresponding p(A, S ′

j) for each of
its head predicates. Since Ik is the intersection-closure of
E(Pk), the set Si =

⋂
j p(A, S′

j) is in Ik, and Si ⊆ E(gi).
Since Si ∈ Ik , all head predicates with set-argument Si are
in Pk+1 and thus Pk+1.

We are finally ready to construct f from Pi+1. Let f ′ be
the formula which has, for each head predicatep(A, α) in f

(and analogously for predicates p(α, A)), a head predicate
of the form:

• p(A, α) if α is a constant or dangling variable
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• p(A, Si) if α is a variable which is the root of some
subtree Ti corresponding to formula gi

Then f ′ can be constructed by conjoining predicates in
Pi+1, and f is the chain of f ′ and g1, . . . , gk on set-
arguments S1, . . . , Sk.

It follows immediately from the theorem that in the limit
where k = ∞, all formulas corresponding to tree struc-
tures can be constructed from P∞ (and hence P, a superset
of P∞), from which follows the weaker version of the the-
orem, as stated in Section 3.3.

The larger the k, the more formulas can be constructed,
at the cost of using more computational resources. In the
F-Miner system, we found that k = 3 accounts for a wide
range of interesting formulas while having very manage-
able resource requirements (Section 5).

There are many ways the set Pk can be further pruned
or tailored for the class of formulas suitable for a specific
application. First, instead of taking I to be the intersection-
closure of E(Pi) in the iterative step i + 1, we can simply
take I to be E(Pi), or take I to be the (first-level) intersec-
tion of elements of E(Pi). Thus conjunctions of pseudofor-
mulas are only formed when their extents are equal. Sec-
ond, those pseudopredicates in Pk and those sets in E(Pk)
deemed unimportant (Section 4) can be pruned away after
each iteration. By keeping only a fixed number of the most
important pseudopredicates and their extents, we can limit
the growth of (Pk, E(Pk)), while still allowing important
formulas corresponding to deep tree structures to be con-
sidered.

4 Computing Importance

In Section 3 we established a set of head pseudopredicates
and their extents (P, E(P)) as building blocks for formu-
las. Formulas can be constructed from P through conjoin-
ing and chaining. Because P is usually extremely large, we
showed how to iteratively compute a manageable subset Pk

of P.
The next step is to construct important formulas from

Pk. We first analyze (Pk, E(Pk)) as to the importance of
the formulas that can be constructed. The problem of com-
puting importance on formulas becomes that of computing
importance on sets (representing classes of formulas sat-
isfied by these sets) and pseudopredicates. Just as in tradi-
tional data mining we look for interesting objects satisfying
some predefined property, we now mine the space of prop-
erties for interesting properties satisfying some predefined
notion.2 Accordingly, the development of a good measure

2Now, we might mine the space of notions-on-properties to identify
the important notions, but obviously this just pushes the same problem up
a level. Instead, we settle for mining the space of properties using some
predefined notions. Note this does not mean that we are back to where we
started, since we can now mine for (first-level) properties instead of just
atomic objects. Extension to mining higher-level properties (i.e., proper-
ties of properties) is a possible direction for future work.

of importance for properties is fairly ad-hoc, although we
try as much as possible to develop upon known principles.
The ranking techniques presented in this section are largely
based on empirical experimentation. We present these tech-
niques only as a concrete, viable example. In practice, the
computation of importance should be specialized to the ap-
plication.

4.1 Ranking Head Pseudopredicates and Sets

We start with some fundamental notions of importance for
head pseudopredicates (simply “predicates” in the rest of
this section), and then let the analysis compute importance
based on these notions. We borrow a technique from the
field of web search. The PageRank [20] and HITS [16]
algorithms have been used to analyze web pages for impor-
tance to aid in web search. The idea behind PageRank is
that a web page is important if it is pointed-to by important
web pages. Similarly, the HITS algorithm identifies good
hub pages and good authority pages recursively: good hubs
are those which point to good authorities, and good author-
ities are those pointed-to by good hubs. Good authorities
are regarded as important pages. Common to these two al-
gorithms is their recursive, mutually-reinforcing definition
of importance, and the iterative computation method (cor-
responding to an eigenvector computation).

In the same spirit, we develop an iterative algorithm for
ranking the importance of sets and pseudopredicates. And
analogous to the definition of hubs and authorities in HITS,
we say that:

• A pseudopredicate is important if its set-argument is
important.

• A set is important if it satisfies important pseudopred-
icates.

Thus, the basic notions from which we derive importance
are satisfaction of pseudopredicates (for sets), and impor-
tance of the set-argument (for pseudopredicates).

To compute importance scores, this intuition must be
formalized mathematically. We take importance scores to
be in the interval [0, 1], with importance scores for all pseu-
dopredicates summing to 1, and importance scores for all
extents of pseudopredicates summing to 1. For S ∈ E(Pk),
we define Pk(S) to be the set of predicates satisfied by S:

Pk(S) = {p ∈ Pk |S ⊆ E(p)}

As a basis, we start with the core equations

I(p) = I(arg(p))

for predicates, which says that the importance I(p) of a
predicate p is the importance of its set-argument arg(p),
and

I(S) =
c

|E(Pk)|
+ (1 − c)

∑

p∈Pk(S)

I(p)
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which says that the importance of a set S has two compo-
nents: (1) a small inherent importance c

|E(Pk)| (in our ex-
periments we used c = 0.2), and (2) the sum of the impor-
tances of the predicates p satisfied by S. This “recursive”
equation is analogous to that used for PageRank [20].

These two core equations provide a good starting point
in capturing the recursive intuition presented, but more spe-
cific details of the analysis should be incorporated.

First, instead of summing over the set of all predi-
cates p satisfied by S, we should sum only over those
that are not subsumed by another predicate satisfied by
S. We say that a pseudopredicate p(A, S) subsumes an-
other pseudopredicate p(A, S ′) if S ⊆ S′, in which case
E(p(A, S)) ⊆ E(p(A, S ′)). Intuitively, p(A, S) specifies
a property more specific than that specified by p(A, S ′).
For example, in Figure 4, if we already know that v1 satis-
fies e(A,ESPN.com), it is pointless to also record that v1

satisfies e(A, {FOXSports.com , ESPN.com}).
Another aspect that can be improved is when S ⊆ E(p),

but S is only a small fraction of the objects in E(p). Then
I(p)’s contribution to I(S) should be weighed lower than
to I(S′), where S′ = E(p). For example, in Figure 4, we
have

E(e(A,ESPN.com)) = {v1, . . . , vm}

so e(A,ESPN.com)’s contribution to the importance of a
set S = {v1, v2} should be smaller than to that of S ′ =
{v1, v2, v3, v4}. Thus we consider the term

δ(S, p) =
w1(|S|, |E(p)|)∑

S′∈E(Pk)
S′⊆E(p)

w1(|S′|, |E(p)|)

which assigns weights according to the relative sizes of
S and E(p), as compared with other sets S ′ satisfying p.
For both data sets in our experiments we used w1(x, y) =

(x
y
)

1

3 , which we found to work well empirically.
We may also attribute more importance to those sets that

satisfy many pseudopredicates independently of the impor-
tance of the pseudopredicates. Let

σ(S) = w2(|Pk(S)|)

be the number of predicates satisfied by S, weighted by a
function w2(x). In our experiments, we found w2(x) =

x
1

10 to work well empirically.
The equations we used in our experiments for scoring

predicates and sets are:

I(p) = I(arg(p)) (4)

I(S) =
c

|E|
+ (1 − c)σ(S)

∑

p∈Pk(S)

δ(S, p)I(p) (5)

As with the HITS equations, equations (4) and (5) can
be solved by iterating to a fixed-point. On each itera-
tion, the scores are normalized so that

∑
p I(p) = 1 and

∑
S I(S) = 1. For equation (5), the set Pk(S) must be

precomputed for each S, which in general is an expen-
sive operation. One way to alleviate the problem is to set
w1(|S|, |E(p)|) to 0 when it is below a certain threshold t,
in which case we need not check whether S ⊆ E(p) at all.
In our experiments, we used t = 0.01, which sped up the
computation with no noticeable effect on quality of results.

Note that an appropriate choice of equations is in gen-
eral dependent on the data set and query type. However,
we have found the above equations to work well on the two
data sets and two query types we tried. Also note that inher-
ent importances can be assigned nonuniformly to bias the
results when there are sets we know apriori to be impor-
tant. This is analogous to biasing web pages nonuniformly
in PageRank to enable a personalized web search [9, 14].

4.2 Selective Construction of Pseudopredicates

The importance rankings for the base set of pseudopredi-
cates and their extents (Pk, E(Pk)) tell us the importance
of the formulas that can be constructed. Using the chaining
procedure as described in Section 3.3, it is straightforward
to construct formulas from Pk. However, many queries,
such as those in Section 2.2, are computed based on the
importance scores of the extents, while the actual formulas
serve only as an explanation to the user. Thus an exhaus-
tive construction of all constructable formulas is usually not
necessary (nor feasible). Instead, we want to construct only
the most appropriate formulas, taking into account not only
the computed importance of the formulas but such human
aspects as the formulas’ brevity, comprehensibility, and va-
riety. Here we present the chaining operation from Section
3.3 as a procedure that allows us to take these factors into
account.

We define the function chain(f), which takes a pseud-
oformula f as argument and returns the result f ′ of chain-
ing f with some pseudopredicates. The result is a pseudo-
formula whose graph G(f ′) is one level deeper than f :

• Start off with f ′ set equal to f .

• For each pseudopredicate (not just head pseudopredi-
cates) p in f ′ having a non-singleton set-argument:

1. Let S be the set-argument of p, and let P (S) ⊆
Pk(S) be a set of pseudopredicates satisfied by
S.

2. Replace S in p by a new variable X not appear-
ing anywhere in f ′.

3. For each p′ ∈ P (S), append p′ to f ′ with head
variable A of p′ replaced by X .

• Return f ′.

The function P (S) can be adjusted, based on the computed
importance of the pseudopredicates (and human factors,
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etc.), to suit the specific query types and end application.
As a general rule, it should consist of the m most impor-
tant pseudopredicates satisfied by S. Most of the variabil-
ity is in choosing m properly so as to produce informative
formulas while minimizing complexity for the sake of user
intelligibility. Specific rules for choosing m in the F-Miner
system are discussed in Section 5.

Each call to chain results in a more complex formula.
In theory, we could chain some formulas indefinitely,
since the same set may be chained over and over again in
a cycle. In practice, users will want formulas to be simple,
so a maximum-depth or cycle-detection stopping criterion
will be used anyway.

As an example, consider the pseudoformula

f(A) :– Home({Glen, Beverly}, A)

which represents the property of “being the home of Glen
or Beverly”. If Glen and Beverly both like either
Chinese or Indian food, then the formula may be ex-
panded (through one call to chain) to

f ′(A) :– Home(B, A) & Food(B, {Chinese, Indian})

which represents the property of “being the home of some-
one who likes Chinese or Indian food”. Finally, this
formula may be expanded to

f ′′(A) :– Home(B, A) & Food(B, C)

& Food(Jennifer, C)

if Jennifer likes Chinese and Indian food.

5 The F-Miner Experimental System

Based on the framework and algorithms presented in the
previous sections, we have implemented an experimental
system, F-Miner, that supports some of the data mining
queries discussed in Section 2.2. Specifically, F-Miner
supports the following two query types on arbitrary input
graphs:

• Similarity. Given a set of input objects, return a
ranked list of objects similar to members of that set
in the same ways the objects in the set are similar to
one another. For example, given two professors in the
research group data described below, F-Miner returns
a third professor.

• Explanation. Given a set of input objects, return for-
mulas “explaining” what the objects have in common.
This function can be used to explain the answers re-
turned in the similarity queries.

For efficiency, the user may assign types to each object
to minimize redundant comparisons by the system. For ex-
ample, a university would never be considered as an argu-
ment to an Advisor predicate between two people. Types

Formulas satisfied:
4.72: f(A) :- Position(A, MS Student)
2.08: f(A) :- Advisor(A, Jennifer)

Most similar objects:
[input]: 79.5
Jing: 20.2
Glen: 13.8
Chris: 13.5
Beverly: 13.4
Brian: 10.1

Figure 5: Results for query “Steve”.

help to speed up the implementation without having any ef-
fect on semantics.

The exact parameters used in F-Miner are given in Sec-
tion 5.3.

5.1 First Data Set: Database Group Survey

We ran F-Miner on two data sets. The first is based on
a survey of Stanford University’s Database Group, along
with publication data from the Database Group’s publica-
tion server [1]. The data is modeled as a graph where nodes
represent all entities that participate in relationships, such
as people, food types, and publications. The edges repre-
sent relationships, including those that denote food pref-
erences, advisors, undergraduate institution, home coun-
try, research interests, and authorship for publications. The
graph consists of 1725 nodes and 3552 edges.

When the system is first run, the set of basic building
blocks (Pk, E(Pk)) is precomputed as described in Section
3.4. A prompt is then presented to the user where a list of
objects can be entered as a query for both similarity and
explanation. The precomputation takes less than a minute,
and each query returns in milliseconds.

We begin with a simple single-object query for
“Steve”. The results of the query are shown in Figure 5.
Scores in the query results for this data set have been scaled
by 106 for legibility. The top portion of the output shows
the most important formulas (as determined by the system)
satisfied by the input. We find that Steve is a Masters stu-
dent, and that his advisor is Jennifer. We chose to list
these as separate formulas, although they can be printed as
a single conjunctive formula instead. Among the properties
satisfied by Steve, including the foods he likes and where
he went as an undergrad, these two are found to be the
most important by the algorithm. The importance scores
are listed next to the formulas. The bottom portion of the
output lists the 5 objects most similar to Steve, along with
their similarity scores. The similarity score s(x) for an ob-
ject x is the weighted sum of the importance scores of the
extents satisfied by both x and Steve:

s(x) =
∑

E∈E(Pk)
Steve,x∈E

w1(2, |E|)I(E)

where w1 is the same weighting function used in Section
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Formulas satisfied:
11.6: f(A) :- Undergrad(A, Stanford)
7.72: f(A) :- Home(A, California)

Most similar objects:
[input]: 107
John: 72.4
Brian: 66.2
Jing: 65.9
Glen: 60.5
Wang: 59.9

Figure 6: Results for “Steve, Beverly”.

Formulas satisfied:
3.89: f(A) :- Undergrad(A, B)

& Undergrad(C, B) & Advisor(C, Jeff)
1.67: f(A) :- Undergrad(A,B)

& Undergrad(C, B) & Advisor(C, Hector)
Most similar objects:

[input]: 34.0
Chris: 32.0
Taher: 29.1
John: 26.0
Wang: 26.0
Calvin: 25.4

Figure 7: Results for “Glen, Qi”.

4.1. The self-similarity s(Steve) is given as a reference
(listed as [input]) for comparison. In effect, the pro-
gram finds those people who have “a lot” in common with
Steve, taking into account the numerous properties they
may share. The top match is Jing, whom we know to be
the only other Masters student in the group. The following
are two of Jennifer’s other students. The next match,
Beverly, is neither a Masters student nor Jennifer’s
student.

To find out why Beverly is listed, we can type in
“Steve, Beverly” as a new query. The results are
shown in Figure 6. We find that Beverly and Steve
both went to Stanford as undergrads and are from Califor-
nia originally. Note that these attributes were not regarded
by the program to be Steve’s most important attributes,
but they are the most important of those attributes he shares
with Beverly. Appropriately, the top matches returned
are other students who went to Stanford as undergrads, fol-
lowed by other students from California.

The next example illustrates more complex formulas for
the query “Glen, Qi”. The results are in Figure 7. Com-
paring the absolute magnitudes of the formula scores with
those for the query “Steve, Beverly”, we see that there
is relatively little in common between Glen and Qi. The
first formula says that the two people both went to schools
that Jeff’s students tend to go as undergrads. The second
formula is analogous. The two students do not share advi-
sors or other preferences, and these formulas are the best
connection between them.

Of course, we can also query on objects other than peo-
ple. The query results for “UC Berkeley, Stanford”
are shown in Figure 8. The formula identifies these as

Formulas satisifed:
148: f(A) :- Undergrad(B, A)
& Home(B, California)

Most similar objects:
[input]: 543
Cal Poly: 223
IIT Madras: 217
MIT: 153
IIT Bombay: 137
University of Colorado: 137

Figure 8: Results for “UC Berkeley, Stanford”.

Formulas satisfied:
0.182: f(A) :- Gender(A, Male)
0.169: f(A) :- Knows(A, B) & Knows(B, user-178)

& Knows(user-178, B)
0.152: f(A) :- Knows(B, A) & Knows(B, user-898)

Most similar objects:
user-2244: 21.8
user-500: 21.8
user-297: 21.7
user-1081: 21.7
user-2353: 21.7

Figure 9: Results for “user-8, user-9, user-10”.

schools that tend to be attended by people from California.
This is indeed the most intuitive result that can be inferred
from the data.3

5.2 Second Data Set: Club Nexus

To test F-Miner on a larger data set, we used data from
Club Nexus [2], which contains various personal informa-
tion about 2469 Stanford students. Attributes used include
the student’s academic standing, major, and a list of Club
Nexus members he knows. The data is modeled in F-Miner
analogously to the Database Group survey data. The result-
ing graph has 2852 nodes and 74197 edges. The precompu-
tation step, which needs to be done only once, takes about
3 hours, and each query at the prompt takes about 2 sec-
onds. (Note that our system has not yet been optimized
or tuned for scalability.) Sample results for the random
queries “user-8, user-9, user-10” and “user-7,
user-98, user-178” are shown in Figure 9 and Figure
10, respectively. Scores in the query results for this data set
have been scaled by 1010 for legibility.

The results in Figure 9 say that the input students are
related because they are all males, they all know someone
who knows and is known by user-178, and they all know
someone who knows user-898. The results in Figure 10
say that the students are related because they are all under-
graduates and are known by a person who majors in inter-
national relations. These kinds of connections are found by

3Note that the Undergrad, Home, and Advisor relationships tend
to be favored over, say, Food because each person has a unique choice for
these attributes, whereas he usually has multiple food preferences. This
is an effect of the δ function (Section 4.1), which causes a preference
for a particular food to be deemphasized when the person has other food
preferences.
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Formulas satisifed:
0.102: f(A) :- Academic(A, Undergrad)
0.101: f(A) :- Knows(B, A)

& Major(B, International Relations)
Most similar objects:

[input]: 6.45
user-1503: 6.41
user-188: 6.41
user-1854: 6.41
user-304: 6.40
user-1735: 6.40

Figure 10: Results for “user-7, user-98,
user-178”.

the system for most random groups of people.

5.3 Implementation Details

Our experiments were run on a 2.4GHz Pentium with 1GB
of RAM using Java SDK 1.4.1. The code is written entirely
in Java, unoptimized and without native methods. The core
of the F-Miner system is implemented based on the tech-
niques presented in the previous sections. The same pa-
rameter settings were used for both data sets. We used
k = 3 when deriving the basic building blocks (Pk, E(Pk)),
and ranked pseudopredicates using 10 steps of the fixed-
point iteration process. In computing E(Pk+1), we used
I = E(Pk), omitting the intersection step for speed, and
found this to have little effect on the results (conjunctions
were already accounted for).

A proper setting of m for P (S), as discussed in Section
4.2, is largely a user-interface issue. We have developed a
heuristic to determine m. Let pi (i = 1, 2, . . . ) be the i-
th ranked predicate in order of decreasing importance. We
take m to be the minimum of 10, the smallest i such that∑

1≤j<i I(pj) ≥ 10 ∗ pi (i.e., when extra pseudopredi-
cates are trivial compared to those already included), and
the smallest i such that

∑
1≤j≤i I(pj) ≥ 0.9 ∗

∑
1≤j I(pj)

(i.e., when at least 90% of pseudopredicates have been ac-
counted for). We have found this heuristic to work well in
most cases, providing the results illustrated in the previous
figures.

6 Related Work

Our framework most resembles that of inductive databases
[11], which are based on the inductive logic programming
(ILP) framework [19]. In inductive databases, rules (e.g.,
association rules) about database objects are treated as first-
class objects of the database, so that queries (e.g., in SQL)
may be posed on rules as well as objects. For example, in
the MolFea [10] system for molecular databases, one can
query for “all structures (represented by formulas) occur-
ring as substructures in more than 30 molecular structures”.
While our framework also supports such queries (Section
2.2), it further develops the treatment of formulas as first-
class objects by considering the interrelationships between
formulas and objects and among formulas themselves. This

development is manifested in two key features of F-Miner:
the relationships between objects and formulas are used to
support similarity queries, and the relationships among for-
mulas are analyzed in the recursive computation of impor-
tance.

Along similar lines, the traditional association rules of
market basket analysis are generalized in the WARMR sys-
tem [6, 7] to association rules on Prolog formulas (similar
to our Datalog formulas) evaluated on a relational database.
The goal is to find association rules of the form f =⇒ g

where f and g are formulas. As discussed in Section 2.2,
this extension of association rule mining can be formulated
as a query type in our framework.

The traditional data mining problem of finding frequent
itemsets in market basket data [3] has also been extended to
graph structures [12, 17, 18, 24, 25]. The focus in graphs
is on finding frequent substructures, the graph equivalent
of frequent itemsets. Again, such queries are but one in-
stance of the query types supported in our framework, as
discussed in Section 2.2.

Other instances of property mining have been studied in
specific contexts. One is the problem of identifying “pat-
terns and relations” in the unstructured text of web pages,
e.g., [5, 22]. Patterns are essentially regular-expressions
and correspond to the formulas of this paper; relations cor-
respond to extents. The sets of patterns and relations are ex-
panded iteratively starting from a small initial set of known
relations. The process can be seen roughly as an exten-
sion of the frequent itemsets problem in our framework:
frequent itemsets are used to discover additional frequent
itemsets.

Other graph mining algorithms to compute similarity of
nodes based on graph structure include co-citation [21] and
its generalization SimRank [13]. Again, similarity is but
one application for our framework, and advantages of the
similarity computation enabled by our framework over spe-
cific measures of similarity were noted in Section 2.2.

A particular feature of F-Miner is the ability to relate
nodes in a graph through relationships beyond just a single
edge, as in the query of Figure 7. This feature was also ex-
hibited in the proximity search of [8], which finds nodes in a
graph that are nearby in terms of graph distance. However,
there is no mechanism in [8] for explaining query results,
one of the strengths of our approach. A system was pre-
sented in [4] that, given keywords matching tuples across
different tables in a relational database, returns a tree de-
noting the schema relating the matching tuples, where the
edges of the tree are foreign-key relationships. The tree
serves to explain how the tuples are related. However, these
tree structures lack the expressive power of our formulas,
and there is no ranking of explanations.

As discussed in Section 4.1, the recursive notion of im-
portance of pseudopredicates is analogous to the notion of
importance computed by the PageRank [20] and HITS [16]
algorithms for web pages.
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The syntax and semantics of the formulas used in our
framework are borrowed from the logic-programming lan-
guage Datalog [23].

7 Conclusion

The main contributions of this paper are summarized as fol-
lows:

• We presented a framework under which data mining
queries can be posed on graph properties. We showed
that many common notions in data mining have ana-
logues in the space of formulas that can be formulated
as query types in our framework.

• We developed techniques to deal with the enormous
size of the query space. Our basic building blocks
approach partitions properties into classes, bypassing
the prohibitive process of analyzing each property in-
dividually.

• We defined a general measure of importance for prop-
erties by treating properties as first-class objects and
applying known techniques. The measure was a vital
component of the experimental system.

• We implemented the F-Miner experimental system
supporting queries under the property mining frame-
work that are not supported by existing systems.

Our experiments to date have been with relatively small
data sets. Much work is yet to be done in algorithms,
approximations, tuning, and optimizations if we wish to
scale to the largest data sets, such as the web. Nonethe-
less, many modest-sized data sets with acceptable precom-
putation and query response times pose interesting appli-
cations for our framework already, such as the examples in
our experiments. With the proliferation of XML and other
easy means of expressing and interlinking data, we expect
in the near future to see numerous graph-structured datasets
amenable to property mining.

The intent of this paper is mainly to provide a founda-
tion for the mining of (graph) properties. The emphasis has
been on demonstrating the utility and feasibility of this new
kind of data mining. We have only scratched the surface in
terms of theory, algorithms, implementation, and applica-
tions; many aspects are open for further research.
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