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Abstract

In word sense disambiguation, a system attempts
to determine the sense of word from contex-
tual features. Major barriers to building a high-
performing word sense disambiguation system
include the difficulty of labeling data for this task
and of predicting fine-grained sense distinctions.
In contrast, we can use parallel language corpora
as a large supply of potential data. In this paper
we present algorithms for solving the word trans-
lation problem and demonstrate a significant im-
provement over a baseline system. The predic-
tions resulting from this system can then be used
to inform a standard machine translation system.

1 Introduction
The problem of distinguishing between multiple
possible senses of a word is an important sub-
task in many NLP applications. However, despite
its conceptual simplicity, and its obvious formula-
tion as a standard classification problem, achiev-
ing high levels of performance on this task has
been a remarkably elusive goal.

In its standard formulation, the disambiguation
task is specified via an ontology defining the dif-
ferent senses of ambiguous words. In the Sen-
seval competition, for example, WordNet (Fell-
baum, 1998) is used to define this ontology. How-
ever, ontologies such as WordNet are not ide-
ally suited to the task of word-sense disambigua-
tion. In many cases, WordNet is overly “specific”,
defining senses which are very similar and hard
to distinguish. For example, there are seven def-
initions of “respect”as a noun(Table 1; there
are even more when the verb definitions are in-
cluded as well. Such closely related senses pose a
challenge both for automatic disambiguation and
hand labeling. Moreover, the use of a very fine-
grained set of senses, most of which are quite rare

in practice, makes it very difficult to obtain suffi-
cient amounts of training data.

These issues are clearly reflected in the perfor-
mance of current word-sense disambiguation sys-
tems. When given a large amount of training data
for a particular word with reasonably clear sense
distinctions, existing systems perform fairly well.
However, for the “all-words” task, where all am-
biguous words from a test corpus must be disam-
biguated, it has so far proven difficult to perform
significantly better than the baseline heuristic of
choosing the most common sense for each word1.

In this paper, we propose a different formulation
of the word-sense disambiguation task. Rather
than considering this task on its own, we con-
sider a task of disambiguating words for the pur-
pose of some larger goal. Clearly, word-sense
disambiguation is important for many natural lan-
guage tasks, but perhaps the most direct and com-
pelling application of a working word-sense dis-
ambiguator is to machine translation. If we knew
the correct semantic meaning of each word in the
source language, we could more accurately deter-
mine the appropriate words in the target language.
Importantly, for this application, subtle shades of
meaning will often be irrelevant in choosing the
most appropriate words in the target language, as
closely related senses of a single word in one lan-
guage are often encoded by a single word in an-
other. Thus, in the context of this larger goal, we
can focus only on sense distinctions that a human
would consider when choosing the translation of a

1See results of Senseval-2, available at
http://www.sle.sharp.co.uk/senseval2



WordNet Synset Definition
respect, regard (usually preceded by ‘in’) a detail or point
esteem, regard, respect the condition of being honored (esteemed or respected or well regarded)
respect, esteem, regard an attitude of admiration or esteem
deference, respect a courteous expression (by word or deed) of esteem or regard
obedience, respect behavior intended to please your parents
regard, respect a feeling of friendship and esteem
deference, respect, respectfulnesscourteous regard for people’s feelings

Table 1: WordNet Noun Synsets containing “respect”

word in the source language.
We therefore consider the task of word-sense

disambiguation for the purpose of machine trans-
lation. Instead of trying to predict the sense of a
particular wordw, we predict the possible transla-
tions ofw into the target language. We both train
and evaluate the system on this task. This for-
mulation of the word-sense disambiguation task,
which we will to refer to asword translation, has
multiple advantages. First, a very large amount of
“partially-labeled” data is available for this task in
the form of bilingual corpora (which exist for a
wide range of languages). Second, the “labeling”
of these corpora (that is, translation from one lan-
guage to another), is a task at which humans are
quite proficient and which does not generally re-
quire the labeler (translator) to make difficult dis-
tinctions between fine shades of meaning.

In the remainder of this paper, we first define
how training data for this task can be acquired au-
tomatically from bilingual corpora. We then pro-
vide learning algorithms for word translation. Al-
though our algorithms can also be applied to more
standard formulations of the word-sense disam-
biguation task, we show how we can leverage the
special properties of our formulation. We then
present results for our algorithm, showing that it
improves performance on this task. We also show
how we can incorporate the results of the word
translation task into a machine translation system.

2 Machine Translation

In machine translation, wish to translate a sentence
s in our source language intot in our target lan-
guage. The standard approach to machine transla-
tion uses thesource-channel model,

argmaxtP (t|s) = argmaxtP (t)P (s|t),

where P (t) is the language modelfor the tar-
get language, andP (s|t) is an alignment model
from the target language to the source language.

Together they define a generative model for
source/target pair(s, t): first t is generated ac-
cording to the language modelP (t); thens is gen-
erated fromt according toP (s|t).

Typically, strong independence assumptions are
then made about the distributionP (s|t). For ex-
ample, in the IBM Models (Brown et al., 1993),
each wordti independently generates 0, 1, or more
words in the source language. Thus, the words
generated byti are independent of the words gen-
erated bytj for eachj 6= i. This means that corre-
lations between words in the source sentence are
not captured byP (s|t), and so the type of features
we use in our word translation models to predictti
givensi are not available to a system making these
types of independence assumptions. In this type of
system, semantic and syntactic relationships be-
tween words are only modeled in the target lan-
guage; most or all of the semantic and syntactic
information contained in the source sentence is ig-
nored.

Standard n-gram language models assign prob-
abilities to target sentencest by assigning proba-
bilities to the component n-grams within the sen-
tence. While some local context is captured by
these models, the models are very sensitive to
word order. Also, no longer range dependencies
are captured by these models. Thus, language
model also only captures a limited amount of se-
mantic and syntactic information.

3 Task Formulation

We focus on determining a word or phrase in the
target languaget which is the translation for an in-
dividual wordw in the source languages. Clearly,
there are cases wherew is part of a multi-word
phrase that needs to be translated as a unit. Our
approach can be extended to this case if we pre-
process the data ins to find phrases, and then exe-
cute the entire algorithm treating phrases as atomic
units. We do not explore this extension in this pa-



per, instead focusing on the word-to-phrase trans-
lation problem.

As we discussed, a key advantage of the word
translation task vs. word sense disambiguation is
the availability of large amounts of training data
for machine translation. These data are in the form
of bilingual corpora, such as the European Par-
liament proceedings2. Such documents provide
many training instances, where a word in one lan-
guage is translated into another. However, the data
is only partially labeled in that we are not given
a word-to-word alignment between the two lan-
guages, and thus we do not know what every word
in the source languages translates to in the tar-
get languaget. While sentence-to-sentence align-
ment is a fairly easy task, word-to-word alignment
is considerably more difficult.

In order to obtain word-to-word alignments, we
used GIZA++3, an implementation of the IBM
Models. As the goal is to obtain a large amount
of data which will help us determine how to trans-
late a particular word, we stemmed the text of both
languages as a preprocessing step.

The alignment algorithm can be run in either di-
rection. When run in thes → t direction, the al-
gorithm aligns each word ins to at most one word
in t. Consider some sentence ins that contains the
wordw, and letu = t1, . . . , tk be the set of words
that align tow in the target languaget. In general,
we can consideru to be a candidate translation for
w in t. However, this definition is quite noisy: a
word ti might have been aligned withw arbitrar-
ily; or, ti might be a word that itself corresponds
to a multi-word translation ins. Thus, we also
align the sentences in thet → s direction, and
require thatti aligns either withw or with noth-
ing. We then say thatw in s translates to a phrase
u = t1, . . . , tk in t if w aligns withu in thes → t
alignment, and eachti lines up with eitherw or
with nothing in thet → s direction. As this pro-
cess is still fairly noisy, we only consideru to be a
candidate translation forw only if it occurs some
minimum number of times in the data.

The final result of our processing of the cor-
pus is, for each source wordw, a set of target
words/phrasesUw, and a set of sentences where, in

2Available athttp://www.isi.edu/ koehn/
3Available athttp://www.isi.edu/ och/GIZA++.html

each sentence,w is aligned to someu ∈ Uw. For
any sentencew and wordw, letuw,w ∈ Uw be the
label assigned tow in w. We can now treat this
set of sentences as a fully-labeled corpus, which
can be split into a set used for learning the word-
translation model and a test set used for evaluating
its performance.

We note, however, that there is a limitation to
using accuracy on the test set for evaluating the
performance of the algorithm. A source wordw in
a given context may have two equally good, inter-
changeable translations into the target language.
Our evaluation metric only rewards the algorithm
for selecting the target word/phrase that happened
to be used in the actual translation. Thus, accura-
cies measured using this metric may be artificially
low. This problem arises when defining an evalua-
tion metric for any machine translation task. In our
setting, we could correct for this problem either by
using a thesaurus in the target language to identify
synonyms, or (as done in the BLEU score (Pap-
ineni et al., 2002)) by considering multiple transla-
tions of the same sentence and accepting the trans-
lation associated withw in any of them. We return
to this issue in Section 5.

4 Word Translation Algorithms

The word translation task and the word-sense dis-
ambiguation task have the same form: Each word
w is associated with a set of possible labelsUw;
given a sentencew containing wordw, we must
determine which of the possible labels inUw to
assign tow in the contextw. The only difference
in the two tasks is the setUw: for word transla-
tion it is set of possible translations ofw, while
for word sense disambiguation it is the set of pos-
sible senses ofw in some ontology. Thus, we may
use any word sense disambiguation algorithm as a
word translation algorithm by appropriately defin-
ing the senses (assuming that the WSD algorithm
does not assume that a particular ontology is used
to choose the senses).

We considered two similar models for word
translation: Naive Bayes, a generative model; and
logistic regression (Minka, 2000), a discrimina-
tive model. While training for the Naive Bayes
model is simple and efficient, for rich sets of fea-
tures, the independence assumptions made in the



German (freq.) Translation
augenblick(24), moment(24) instant, “in a minute”
minut redezeit(37) minute speech
sitzungsprotokoll(11), protokoll sitzung(28)meeting proceedings
parlament protokoll(181) parlament proceedings
protokoll(1557) proceedings
minut(1072), minut zeit(13) a minute of time
minut lang(19) minute-long
minut verf̈ugung(22) minute decision

Table 2: Aligned translations for ”meeting” occurring at least 10 times in the corpus

small; little; diminutive; minute; fine; inconsiderable; paltry; faint; slender; ... (25 words)
hour; day; week; month; quarter; year; decade; decenniumm lustrum; ... (18 words)
moment; instant; second; minute; twinkling; trice; flash; breath; crack; jiffy; ... (14 words)
minute; diminutive; microscopic; microzeal; inconsiderable; exiguous; puny; ... (32 words)
record; note; minute; register; registry; roll; cartulary; diptych; ... (25 words)
compendium; abstract; precis; epitome; multum in parvo; analysis; pandect; ... (21 words)

Table 3: Entries for ”minute” in Roget’s 1911 Thesaurus

model are highly violated. It is known both the-
oretically and empirically (e.g., (Ng and Jordan,
2002)) that discriminative models achieve higher
accuracies than generative models if enough data
is available. For the traditional word-sense disam-
biguation task, data must be hand-labeled, and is
therefore usually too scarce to allow for discrim-
inative training. In our setting, however, train-
ing data is acquired automatically from bilingual
corpora, which are widely available. Thus, dis-
criminative training is a viable option for the word
translation problem.

4.1 Features

Our word translation model for a wordwi in a sen-
tencew = w1, . . . , wk is based on features con-
structed from the word and its context within the
sentence:

• the part of speech ofwi (generated using the
Brill tagger4);

• the close context ofwi — the (stemmed)
wordswj for |j − i| <= δ for some small
δ. Note that the since we do not consider the
order of the words in the context ofwi, our
features are more robust to word order than
an n-gram model.

Let φwi,w be the set of features extracted for
wordwi in the context of a sentencew.

4Available athttp://www.cs.jhu.edu/ brill/

4.2 Models

The Naive Bayes model encodes the joint dis-
tribution over the sentence and possible transla-
tions for each wordw, (Pw(uw,w = u,w) :
u ∈ Uw). It is parameterized by the conditional
probability distributionsPw(uw,w), Pw(wi | u),
and Pw(pos(w) | u), wherepos(w) is the part
of speech ofw in sentencew. Let cw(w) be
the nearby context ofw in w. Then we define
Pw(u,w) to be

Pw(u)Pw(pos(w) | u)
∏

w′∈cw(w)

Pw(w′ | u).

The logistic regression model instead encodes the
conditional distribution(P (uw,w = u | w,w) :
u ∈ Uw). Such a model is parameterized by a set
of vectorsθw

u , one for each wordw and each pos-
sible targetu ∈ Uw, where each vector contains
a weightθw

u,j for each featureφw,w
j . We can now

define our conditional distribution:

Pθw(u | w,w) =
1

Zw,w
eθw

u φw,w

where the partition function is

Zw,w =
∑

u′∈Uw

eθw
u′φ

w,w

.

4.3 Single sense per discourse

We can use either of these models to classify each
wordw in each sentencew in isolation. However,
this approach ignores an important source of infor-
mation about the word sense: the observation that



many words (specifically nouns) tend to take only
one of their possible senses (or translations) in a
single discourse.

This type of constraint can be incorporated into
our framework by considering the set of classifica-
tion decisions for a given wordw in a set of related
sentences not as a set of independent classification
tasks, but as acollective classificationtask. It is
particularly natural to write this model as an ex-
tension of logistic regression, as follows.

We construct a Markov network (Pearl, 1988),
with a node (variable)Yw for each sentencew
containing the wordw in the discourse; the value
of Yw corresponds to the label ofw in w. Each
variableYw is associated with anode potential,
which is simply the unnormalized conditional dis-
tribution Zw,wPθw(uw,w | w,w). We also define
a set ofedge potentialsτw, which connect the vari-
ables corresponding to consecutive mentions ofw
in the discourse. These potentials encode our pref-
erence for maintaining the same translation for the
two mentions. The product of these two sets of
potentials defines an (unnormalized) probability
function over all occurrences of the wordw within
the current discourse; importantly, it can be writ-
ten in an exponential form similar to logistic re-
gression.

Extending Naive Bayes to use single sense per
discourse is less straightforward; we extend Naive
Bayes using a hybrid discriminative-generative
model. Namely, we calculate the conditional dis-
tribution P (φwi,w|uw,w) for each sentencew us-
ing the joint distribution defined by our Naive
Bayes model, replacePw(u) with a node potential
Yw, and incorporate the same edge potentialsτw

as in the logistic case. The product of these three
types of factors again produces a joint probabil-
ity model over occurrences ofw within the current
discourse. Then, for each occurrence of wordw,
we choose the value ofuw,w which maximizes the
marginal probability ofuw,w.

In both cases, each wordw defines its own sim-
ilarity potential τw. Thus, different words may
have stronger or weaker correlations between con-
secutive occurrences. This potential is a full po-
tential, i.e. for each pairu, u′ ∈ Uw, we may a
different value forτw(u, u′). Thus, we can also
capture correlations between related but different

translations of our source wordw.

4.4 Training

One of the main advantages of the Naive Bayes
model is that training is simple and efficient. We
train the model in order to maximize the joint
probability of the observed labels and the features.
More precisely, consider the model for wordw,
and letDw be the set of all sentences in our train-
ing data containingw. Our goal in training the
model forw is to maximize∏

w∈Dw

Pw(uw,w,w).

We can maximize this expression by calculating
counts over our observed data. For example, we
estimate

Pw(w′ | u) =
∑

w 1[w ∈ w, w′ ∈ cw(w)]∑
w 1[w ∈ w]

.

We train the logistic regression model to in-
stead maximize the conditional likelihood of the
observed labels given the features in our training
set. Thus our goal in training the model forw is to
maximize ∏

w∈Dw

Pθw(w | w,w).

We maximize this objective by maximizing its log-
arithm (the log-conditional-likelihood) using con-
jugate gradient descent (Shewchuk, 1994).

We also learn the parameters for the single sense
per discourse edges in slightly different ways for
each model. In the case of logistic regression, we
optimize the parameter vectorsθw and the edge
potentialsτw simultaneously, using conjugate gra-
dient descent. For the Naive Bayes model, we first
estimatePw(wi | u) andPw(pos(w) | u) using
empirical counts as for the standard Naive Bayes
model; we are then left with a Markov network
which we can again optimize using gradient de-
scent.

4.5 Thesaurus-based smoothing

One additional improvement that arises naturally
in our task is a form of smoothing. Consider two
wordsw andw′ that have synonymous senses; in
many cases, these words will also have similar



possible translations. In such cases, we can reduce
the sparsity of our data by sharing the data for both
words.

Specifically, consider wordsw andw′ that have
senses that appear in the same entry in some the-
saurus. Moreover, assume that there is a possible
translationu that appears both inUw and inUw′ .
We then count every sentencew wherew′ has la-
beluw′ = u as a sentence wherew is translated to
uw = u (and vice versa). More precisely, we add
such a sentencew to Dw, and use them as part of
the training, takingφw,w to beφw′,w.

For example, the word “web” occurs paired
with “netz” only 10 times in our entire corpus,
however, “network” (listed as a synonym in our
thesaurus) is paired with “web” over 1700 times,
and both words probably have very similar con-
texts for this meaning.

For this component we used the freely-available
1911 edition of Roget’s Thesaurus5. We chose to
use this thesaurus instead of WordNet because the
size of the thesaurus entries were much larger on
average for Roget’s Thesaurus, allowing us to ap-
ply this procedure more often.

5 Experimental Results
We tested our single word accuracy on the first
25 ambiguous words (those with more than one
candidate translation) chosen from a randomly se-
lected document. We compared our models to
two different baselines: one that chooses the most
common translation for the given word and a sec-
ond that chooses the most common translation
given the tagger-generated parts of speech.

Our most accurate model improves 7% over the
basic baseline and 6% over the part of speech base-
line. In general, logistic with single sense per dis-
course worked the best, although this didn’t hold
for every word. There was large variation in our
models’ improvement over baseline. Sometimes
the grouping improved our accuracy about one
percent, but often it significantly hurt it. The sin-
gle sense per discourse edges consistantly showed
a small improvement for most of the words. The
Naive Bayes model generally had the same or
slightly lower accuracy than the Logistic model.

On a few of the words, we achieved very large

5http://wiretap.area.com/Gopher/Library/Classic/roget.txt

increases in accuracy. The word “minute” had a
baseline accuracy of 59% including part of speech.
The logistic model improved the accuracy to 78%,
and adding single sense per discource edges in-
creased the accuracy to 80%. Our improvement
was not limited to nouns: the verb “rise” showed a
15% increase over baseline without part of speech
and an 8% increase over baseline with part of
speech.

Our accuracies are artificially low since in many
cases a single word can be translated to many dif-
ferent words with the same meaning, if we trans-
late “minutes” to “sitzungsprotokoll” while in our
corpus it was translated to “protokoll sitzung”, we
are marked wrong when we have a correct trans-
lation. At the same time the accuracies are arti-
ficially inflated by the fact that we only consider
cases where we can find an aligned word in the
German corpus, so translations where a word is
dropped or inserted into a compound word are not
counted.

5.1 Impact on Machine Translation
Using our word translation system, we obtain pre-
dictions for the translation of each source wordsi.
We would like to use these predictions, which take
into account local and nonlocal dependencies in
the source language, in order to improve the per-
formance of machine translation. For a baseline
system, we used the CMU-Cambridge toolkit6 to
construct a language model and the already men-
tioned GIZA++ for an alignment model. The fi-
nal component is a decoder, which searches in the
space of target sentencest for a sentence maximiz-
ing P (t|s). We used a greedy decoder (Germann
et al., 2001), the isi-rewrite-decoder7.

In order to use our word-translation model for
translating the sentences, we need to obtain pre-
dictions for the wordssi. There are several types
of words we do not train models for. First, we did
not train models for stop words; we rely on the
language model to choose appropriate translations
for these words. Second, we do not train models
for any word having 0 or 1 candidate translations
(recall that we only consider a possible translation
if it occurs some minimum number of times).

6Available athttp://mi.eng.cam.ac.uk/ prc14/toolkit.html
7Available at http://www.isi.edu/licensed-sw/rewrite-

decoder/



Model Macro Average Micro Average
Baseline 0.526 0.434
Baseline with Part of Speech 0.536 0.442
Logistic 0.559 0.493
Logistic with Single Sense 0.564 0.503
Naive Bayes with Single Sense0.563 0.502
Naive Bayes with Grouping 0.546 0.489
Logistic with Grouping 0.547 0.489

Table 4: Aligned Word Prediction Accuracy

The isi-rewrite decoder provides a way to force
the wordsi to be translated as a particular word
tj . Thus, a natural way to use our word translation
system is to force each wordsi to be translated
as argmaxtP (t|si, s). The problem with this
method is that while we choose the right transla-
tion more often than baseline, we do not take into
account the language model when choosing the
correct translation. When not using single sense
per discourse, our word-translation model makes
the assumption that the most likely translations of
wordssi andsj are independent given the source
sentences (single sense per discourse introduces
correlations between the predictions of different
occurrences of the same word). A further prob-
lem is that we do not consider phrase-translations,
which ignores a case particularly common for Ger-
man where several English words translate to a
single compound German word. Still, forcing the
translator to choose our model’s best guess im-
proves the BLEU score 7

In order to demonstrate potential improvements
over the IBM translation model, we restricted our
predictions to words where we had a large gain
over baseline on the word translation task. Specif-
ically, for each of the words “minute” and “rise”,
we built a test set consisting of sentences con-
taining these words. We then forced the transla-
tions of these words only, allowing the language
and alignment models to predict all other words.
Our performance vs. the IBM Model was lower
for “minute” and higher. This may be related to
the fact that the translations of “minute” depends
highly on adjacent words (and thus can be pre-
dicted by the language model), while for “rise”,
a verb, the directly adjacent words may not be as
useful.

A second way to use our predictions is to rerank
the n-best candidate translations generated by the
decoder. Unfortunately, the isi-rewrite decoder

uses greedy search to find a good translation, and
thus does not have the capability to produce a use-
ful list of candidate translations.

A final way to use our predictions would be to
modify the alignment modelP (s|t) on a sentence-
by-sentence basis, using the confidences gener-
ated by our word-translation model. While the
isi-rewrite decoder does not directly allow for
sentence-by-sentence parameter modification, we
can achieve the same effect by running the decoder
separately for each sentence, using a different set
of parameters each time. Notice, however, that the
alignment model is actually in the wrong direc-
tion, so this method does not have a probabilistic
interpretation. We do not yet have experimental
results for this method.

6 Related Work
(Diab and Resnik, 2002) suggests using large

bilingual corpora in order to improve performance
on the word sense disambiguation. The main idea
is that knowing a German word may help deter-
mine the meaning of the corresponding English
word. They apply this intuition to the Senseval
word disambiguation task by running off-the-shelf
translators in order to produce translations which
they can then use for disambiguation.

(Ng et al., 2003) addresses word sense dis-
ambiguation by manually annotating each sense
in WordNet with its translation in the target lan-
guage (Chinese), and then producing labeled ex-
amples using the IBM Models. They show that
they can achieve comparable results by replacing
hand-labeled examples with examples automati-
cally extracted from a bilingual corpus.

(Koehn and Knight, 2003) focuses on the task
of noun-phrase translation. They improve perfor-
mance on the noun-phrase translation task, and
show that they can use this to improve full transla-
tions. A key difference is that in predicting noun-
phrase translations, they do not consider the con-



Translation Model Random Sentence Score”Rise” Sentences Score”Minute” Sentences Score
Force Any Word 0.1112
Force Best Word 0.1193 0.0809 0.1134
No Modification 0.1196 0.0787 0.1161

Table 5: Translation BLEU Scores

text of nouns. They present results which indicate
that humans can accurately translate noun phrases
without looking at the surrounding context. We
contend that while this may be true, context may
still be helpful for a (sub-human-level) machine
translator.

7 Discussion and Conclusions

In this paper we have addressed the word-
translation problem. By viewing word-sense dis-
ambiguation in the context of a larger task, we
are able to obtain large amounts of training data
and directly evaluate the usefulness of our sys-
tem for a real-world task. The word-translation
task is an important subtask for machine trans-
lation, since while producing syntacticly well-
formed sentences is very important for machine
translation, the most spectacular failures of ma-
chine translation systems often are a result of se-
mantically incorrect word translations. We have
shown that we improve over a baseline system
(choosing the most common translation) which is
difficult to outperform in the word sense disam-
biguation task. Also, we presented results which
indicate that this increased accuracy can lead to
improved machine translation.

The word translation model could be improved
in a variety of ways. Leveraging the fact that dis-
criminative models can incorporate highly corre-
lated features, we could use more complex fea-
tures such as features extracted from an automat-
ically generated parse tree. We can extend our
model to deal with translating phrases as well as
individual words; also, we can evaluate our model
on other language pairs. Our data sharing model
could likely be improved by more carefully choos-
ing what words to share data between.

This work suggests an important and interesting
direction in improving machine translation sys-
tems. Standard systems use very simple syntactic
transformation models and very simple language
models. Improvements can be gained by introduc-
ing into the model some richer model of the sen-

tence being translated. This is illustrated in (Char-
niak et al., 2003) where sentence syntax is used in
order to build a better translator.

Discriminative models can particularly easily
incorporate constraints on the target sentence us-
ing information from the source sentence. This
type of model might potentially lead to a general
machine translation system with efficient decod-
ing and increased translation accuracy.
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