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Adaptive Dynamic Collision Checking
for Single and Multiple Articulated Robots

in Complex Environments
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Abstract— Static collision checking amounts to testing a given
configuration of objects for overlaps. In contrast, the goal of
dynamic checking is to determine whether all configurations
along a continuous path are collision-free. While there exist
effective methods for static collision detection, dynamic checking
still lacks methods that are both reliable and efficient. A common
approach is to sample paths at some fixed, prespecified resolution
and statically test each sampled configuration. But this approach
is not guaranteed to detect collision whenever one occurs,
and trying to increase its reliability by refining the sampling
resolution along the entire path results in slow checking. This
paper introduces a new method for testing path segments in
c-space or collections of such segments, that is both reliable and
efficient. This method locally adjusts the sampling resolution
by comparing lower bounds on distances between objects in
relative motion with upper bounds on lengths of curves traced
by points of these moving objects. Several additional techniques
and heuristics increase the checker’s efficiency in scenarios with
many moving objects (e.g., articulated arms and/or multiple
robots) and high geometric complexity. The new method is
general, but particularly well suited for use in probabilistic
roadmap (PRM) planners, where it is critical to determine
as quickly as possible whether given path segments collide,
or not. Extensive tests, in particular on randomly generated
path segments and on multi-segment paths produced by PRM
planners, show that the new method compares favorably with
a fixed-resolution approach at “suitable” resolution, with the
enormous advantage that it never fails to detect collision.

Keywords: Collision checking, motion planning, distance compu-
tation, probabilistic roadmaps, robotics

I. INTRODUCTION

A. Dynamic collision checking

COLLISION checking is a fundamental operation in robot
motion planning, graphic animation, and physical simu-

lation [1], [2], [3]. While static checking amounts to testing a
single configuration of objects for overlaps, dynamic checking
requires determining whether all configurations on a continu-
ous path are collision-free.

Four major families of methods have been proposed for
dynamic collision checking:

� Feature-tracking methods track pertinent features (ver-
tices, edges, faces) of two objects – usually, the pair
of closest features – to determine if the objects remain
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separated along a path. They rely on the following coher-
ence assumption: the pertinent features change relatively
rarely and, when they do change, the new ones can be
computed efficiently from the old ones [4], [5], [6], [7],
[8]. This assumption requires each object to be made
of few convex components and to have relatively small
geometric complexity. It is poorly verified by kinematic
chains (e.g., robot arms) in practical environments. Then,
paths must be tested by tiny increments, to avoid missing
collisions, especially collisions involving links at the end
of the chains.

� Bounding-volume hierarchy (BVH) methods pre-
compute, for each object (robot link, obstacle), a
hierarchy of BVs (e.g., spheres, boxes) that approximates
the geometry of the object at successive levels of
detail [9], [10], [11], [12], [13], [14]. To check two
objects for collision, their BVHs are searched from
the top down, making it possible to quickly discard
large subsets of the objects contained in disjoint BVs.
Such methods have been applied to complex objects
with surfaces described by several 100,000 triangles,
and more [9], [12]. But they are fundamentally static
methods. To test a path, the common approach is to
check intermediate configurations spaced along the path
at a prespecified resolution. If all these configurations
are found collision-free, then the path is declared
collision-free, but this answer may not be correct.

� Swept-volume intersection methods compute the volumes
swept out by the objects and test these volumes for
overlap [15], [16]. However, exact computation of swept
volumes is expensive, especially when objects undergo
rotations and have complex geometry. Moreover, the
overlap test can no longer be speeded up by using
pre-computed data structures, such as BVHs. Another
difficulty is that swept volumes for pairs of moving
objects may overlap even when the objects do not collide.
Hence, when multiple objects move relative to each other,
one must either consider the relative motions for all pairs,
or compute and test volumes swept out in 4D space-time.
Both ways yield costly computations.

� Trajectory parameterization methods express the geom-
etry of the objects along the tested path by algebraic
polynomials in a single variable

�
[17], [18]. These poly-

nomials are then used to construct a collision condition
on

�
. In principle, finding the values of

�
verifying this

condition gives the exact intervals of collision along
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Fig. 1. � : Two skinny 20-DOF arms (320 triangles each) in environment with three fixed thin tori (6,000 triangles each), and detail showing arms in top
ring. � : IRB 2400 robot with thin arc welding gun (3,500 triangles) and snapshots along a straight path segment in c-space

a given path. But, in general, the polynomials have
high degrees, so that solving the condition for

�
can be

prohibitively expensive and furthermore pose numerical
problems. Simplifications yielding polynomial equations
of degrees no greater than 3 are proposed in [19].

Combinations of methods have also been proposed, where
a BVH method is used to filter out irrelevant parts of objects.
For instance, in [20] the bounding surface of each object is
decomposed into convex surface patches, out of which a hier-
archy of convex hulls is created. During a collision check, the
precomputed BVHs are used to quickly prune pairs of surface
patches that cannot intersect and a feature-tracking method
is applied to test the remaining pairs. Similarly, in [21], a
BVH method (augmented with interval-arithmetic techniques)
is combined with a trajectory-parameterization method [19].
The methods in [20], [21] can find the time of first contact
between two objects along a short trajectory segment, hence
are well suited for haptic interaction and dynamic simulation,
where penetration could lead to an inappropriate collision
response. In contrast, in applications like motion planning, it
is more crucial to determine as quickly as possible if a given
trajectory of arbitrary length collides.

B. Fixed-resolution dynamic checking

Hence, while there exist effective methods for static col-
lision checking (e.g., BVH methods), dynamic checking re-
mains a practical bottleneck in many applications. In partic-
ular, probabilistic roadmap (PRM) planners rely on the avail-
ability of efficient checkers to test simple path segments (called
local paths, usually straight segments) between randomly
sampled configurations (called milestones) [22], [23], [24],
[25], [26], [28]. Most PRM planners use a static BVH method
to test intermediate configurations spaced along each local
path at some given resolution � (in the c-space metric). These
configurations are usually obtained by recursively bisecting
the local path, until either a collision is found, or any two
successive configurations are closer apart than � [28], [29].

Choosing � requires a delicate compromise between effi-
ciency and reliability. This is especially true in scenarios with

articulated arms and/or multiple robots. Rather large values
of � , which reduce the number of static checks, may be
acceptable when robot links and obstacles are fat. But when
these objects are thin or have sharp edges, the checker will
then easily miss collisions. Trying to increase reliability by
reducing � results in slow checking of path segments. In the
example of Figure 1 � , which contains two long skinny serial
linkages and three thin obstacles, tiny changes in joint angles
can make the linkages jump over obstacles and/or each other.
In Figure 1 � , a small rotation of the robot’s base may cause the
welding gun to pass through an obstacle. In both examples, �
must be set very small for collisions to be reliably detected,
yielding a slow dynamic checker.

One way to address this difficulty is to “grow” object
models [30], by pre-computing the Minkowski sums of the
original models and a sphere of radius � . The value of �
is chosen such that, if the grown models do not overlap at
the intermediate configurations, then the original models are
guaranteed to be collision-free between these configurations.
However, this further complicates the choice of � . A large

� allows a large � , but it also increases the chances that a
path segment is incorrectly found to collide. To reduce the
number of false collisions, while rarely missing true collisions,
one must choose both � and � small, which yields again an
inefficient checker. The checker proposed in [30] addresses
this difficulty by pre-computing several grown copies of each
model, each with a different value of � . Then, at each step of
a segment test, the checker switches to the largest collision-
free grown model and adjusts the next step size accordingly.
However, this approach is expensive (in both memory and
time) and requires difficult tuning.

C. Adaptive bisection of paths

This paper introduces a new dynamic collision checking
method that avoids these difficulties by locally adjusting the
value of � . By comparing lower bounds on distances between
objects in relative motions with upper bounds on lengths of
curves traced by points of these moving objects, this method
automatically decides whether a path segment between two
collision-free configurations needs to be bisected further. It not
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only frees the user from choosing � ; it also guarantees that no
collision will ever be missed. Our checker is applicable to path
segments of any given shape (e.g., straight, circular) in c-space
or collections of such segments (e.g., multi-segment paths).
It is particularly suited for scenarios with manipulator arms
and/or multiple robots, where it can detect collision between
robot links and obstacles, as well as between links of the same
or different robots.

The basic idea of relating distances to path lengths has been
suggested before (e.g., [1], [23]), though rarely implemented.
We exploit this idea further by separately adjusting the bisec-
tion resolution for different pairs of objects. Indeed, very few
pairs of objects (link-obstacle or link-link) require bisecting a
path down to the same resolution. Exploiting this fact leads
to testing a rapidly decreasing number of object pairs at each
new level of bisection. At the end of this paper, we push this
idea one step further by separately adjusting the resolution for
different pairs of BVs.

We also give a number of new techniques and heuristics
that make the approach more efficient, especially when it is
used in PRM planners and/or applied to geometrically complex
environments. One is a BVH algorithm that computes non-
trivial lower bounds on distances between pairs of objects
almost as efficiently as if it was only testing the objects for
collision. Another technique bounds link motions: given a path
segment of a robot in c-space and a link of this robot, it quickly
computes an upper bound on the lengths of the curves traced
in workspace by all points in this link.

We have extensively tested our dynamic checker on ran-
domly generated path segments and multi-segment paths
produced by randomized planners. These tests show that it
compares favorably to a fixed-resolution checker at “suitable”
resolution, with the enormous advantage that it never fails to
detect collision.

D. Paper organization

Section II describes our dynamic collision checking method
based on adaptive bisection. Sections III and IV respectively
present the techniques used to compute lower bounds on
distances between objects and upper bounds on lengths of
curves traced out by points of moving objects. Section V
discusses experimental results on various examples that were
obtained with the implemented new adaptive checker and a
fixed-resolution checker, for comparison. Section VI refines
the method by separately adjusting the bisection resolution
for different pairs of BVs (instead of objects). Section VII
summarizes our work, describes its limitations, and points to
possible future work.

Throughout this paper, let the workspace be the Euclidean
space �

�
. Distances between objects and lengths of curves in

workspace are all measured using the Euclidean metric.

II. ADAPTIVE DYNAMIC COLLISION CHECKING

In this section we present our adaptive bisection algorithm
for dynamic collision checking. We begin by establishing a
basic result on which the algorithm is based.

A. Basic result

We consider the robot(s) and all obstacles as a collection
of rigid objects �������	���
���
� whose placements in workspace
are uniquely determined by a tuple ������� � �	�	���	������� , the
configuration of the system. All objects are allowed to move.

Let �
������� denote object ��� at configuration � . Let ���! "���#� be
any non-trivial lower bound on the Euclidean distance between
�
�����$� and �% ������ , &�� '"� , �(�! "���$�)�+* if and only if �������#� and
�% ����#� overlap.

Each � � is a set of points. Each point traces a distinct curve
segment in workspace when the configuration of the system
is interpolated between configurations ��, and �$- along some
given path segment . . For a given . , we define / � ��� , ��� - �
to be an upper bound on the lengths of the curves traced by
all points in � � , such that / � ���#,"���#-0�1�2* whenever � � stays
fixed during the interpolation (for example, if 3 � is a fixed
obstacle).

We now state a sufficient condition for two objects �4� and
�% not to collide along . in c-space:

Lemma 1: Two objects �4� and �% do not collide at any
configuration � on the path segment . joining � , and � - in
c-space, if:

/5����� , ��� - �768/9 "��� , ��� - �;:8�(�! "��� , �<6=�(�! "��� - �>� (1)

Proof: Assume that Inequality (1) is verified. If �4� and
�  collide, then a point ? � of � � must coincide with a point
?  of �  at some intermediate configuration �<@ along . . LetA � ���B���DCE� be the length of the curve traced by ? � between any
two configurations � and �$C in . . Define

A  ���B���DCF� in the same
way for point ?  . For ? � and ?  to coincide at �$@ , we must
have:

A � ��� , ���$@0�B6 A  ��� , ���$@���G � �! ��� , �>�A � ��� @ ���$-��B6 A  ��� @ ���$-���G � �! ����-��>�
Since

A � ��� , ���$@0�16 A � ����@���� - �H� A � ��� , ��� - � and
A  ��� , ���#@0�16A  ��� @ ���$-��I� A  ���$,"���$-0� , summing the previous two relations

yields:
A � ��� , ��� - �76 A  ��� , ��� - �JGK� �L ��� , �B6M� �L ��� - �>�

Using / � ��� , ��� - �NG A � ��� , ��� - � and /  ��� , ��� - �HG A  ��� , ��� - � ,
we get:

/ � ��� , ��� - �B6O/  ��� , ��� - �JGK� �L ��� , �B6M� �L ��� - �
which contradicts our initial hypothesis that Inequality (1) is
verified. So, � � and �  do not collide.

The reverse of Lemma 1 is not true: / � ��� , ��� - ��6H/  ��� , ��� - �
may exceed � �L ���$,��P6Q� �! ���$-�� without introducing a collision.

B. Adaptive bisection algorithm

Our algorithm uses Lemma 1 to decide whether a given
path segment between two collision-free configurations �<,
and � - must be bisected: if Inequality (1) is verified for all
pairs of objects 3 � and 3  , then the segment is collision-free;
otherwise, it must be bisected. Lemma 1 guarantees that no
collision can be missed.

However, considering all pairs of objects simultaneously
may yield a large amount of unnecessary work. Indeed, pairs
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Algorithm ADAPTIVE-BISECTION( �7���$C )
1. Initialize priority queue � with � �B���$C��E�! for all pairs

of objects ���
�����% � that need to be tested.

2. While � is not empty do

2.1 � � , ��� - �F�! �� remove-first( � )

2.2 If /D����� , ��� - �B68/9 ���� , ��� - �;G8���L "��� , �76M�(�! "��� - �
then

2.2.1 ��� �F� � mid-configuration along
path segment between � , and � -

2.2.2 If ���L ������ �F� � � * then return collision

2.2.3 Else insert � � , ��� � � � � �L and � � � �F� ��� - � �L 
into �

3. Return no collision

Fig. 2. Adaptive bisection algorithm

of objects that are well-separated and undergo small displace-
ments require fewer bisections than pairs that are closer and/or
undergo greater displacements. So, taking advantage of the fact
that Inequality (1) applies to an individual pair of objects, we
check this condition for each pair, independent of the other
pairs, and discard those pairs which verify the inequality. In
this way, as a path segment gets bisected at a finer resolution,
the number of remaining object pairs tends to drop quickly.
Moreover, we can perform the tests in an order that speeds up
the discovery of a collision, when there is one.

Figure 2 shows our algorithm, ADAPTIVE-BISECTION, to
check a path segment between two collision-free configura-
tions � and �#C . It maintains a priority queue � of elements of
the form � � , ��� - � �L . The presence of � � , ��� - � �! in � indicates
that the objects � � and �  still need to be tested for collision
between � , and � - . At Step 1, � is filled with the elements
� �7���#C	� �! , for all object pairs that need to be tested. Then, at
each loop of Step 2, the first element, say � ��,"���#-
� �L , is removed
from � . If this element satisfies Inequality (1), then � � and �  
cannot possibly collide between � , and � - , and the algorithm
continues with the next element in the queue. Else it computes
�(�L P��� � �F� � , where � � �F� is the mid-configuration along the path
segment between ��, and �$- . If this computation reveals a
collision — that is, if ���L P��� � �F� ��� * — then the algorithm
reports the collision and halts. Otherwise, two new elements,
� �$,"����� � � � �L and � ��� �F� ���#-�� �L , are inserted into � . When � is
empty, the path segment between � and �$C is reported free of
collision.

In Sections III and IV, we will describe the techniques used
in our implementation of ADAPTIVE-BISECTION to compute
bounds on distances and curve lengths.

C. Ordering of the priority queue

If the path segment tested by ADAPTIVE-BISECTION is
collision-free, then the ordering of � has no impact on the
running time of the algorithm, since all elements in � will
eventually have to be processed. But, for a colliding segment,
an appropriate ordering can lead to finding a collision quicker.
This is important in applications like PRM planning, where a
large fraction of candidate paths are colliding.

In [28], [29], it was shown that in practice the prior
probability of a path segment to be colliding increases sharply
with its length in c-space. This result justifies bisecting a
segment into two sub-segments of equal lengths. The planners
in [28], [31] exploit this result further to test multi-segment
paths, by maintaining a priority queue of (sub-)segments sorted
by decreasing lengths and treating the longest (sub-)segment
first.

ADAPTIVE-BISECTION takes also advantage of the com-
puted bounds on both distances between objects and lengths of
traced curves. Intuitively, two objects are more likely to collide
when they are closer to each other at one or both segment
endpoints and/or the points in these objects trace longer curves.
This intuition is directly related to Inequality (1) and leads us
to sort the entries � � , ��� - �F�! in the priority queue by decreasing
values of the difference: /#������,"���$-��B6=/9 "���$,"���$-0�
� ���L ����$,��
�
�(�! ���� - � . Our tests show that, on average, this heuristic ordering
leads to finding a collision faster than sorting � by decreasing
lengths of segments.

D. Checking multi-segment paths

ADAPTIVE-BISECTION can be extended to concurrently test
multiple segments forming a continuous, multi-segment path.
This is simply done by filling � , at Step 1, with the elements
� �B���DC�� �! , for all segments � �7���$C	� and all object pairs that need
to be tested. The same heuristic ordering of � as above can be
used. In general, it will lead to discovering a colliding segment
before having spent much time testing collision-free segments.

However, a slightly more useful implementation in practice
is to maintain several priority queues: one for the path and
one for each segment. The priority queues for the individual
segments are maintained as above. The queue for the path
contains one entry per segment that has not yet been shown to
be collision-free. The entries of the path queue are sorted by
decreasing values of the differences / � ���$,"���$-0�"6Q/  ���$,P���#-����
� �! ��� , ��� � �! ��� - � , each computed for the first element of
the corresponding segment’s queue. Intuitively, this ordering
corresponds to placing the segment that is the most likely
to collide on top of the path queue. The advantage of using
several queues is the following: if a segment in the path is
eventually found to collide, we then cache the priority queue
associated with each of the other segments that has not yet
been found to collide or not to collide. If any of these segments
must later be tested for collision, the cached queue of this
segment is re-used, hence saving the collision-checking work
previously done. This improvement is particularly important
when the collision checker is used in a PRM planner that
delays collision tests [28].

The same extension actually holds for an arbitrary collection
of segments.

E. Covering strategies

Inequality (1) can be illustrated by the following diagram:
draw a line segment of length /#����� , ��� - � 6 /9 ���� , ��� - � and two
circles of radii ���L P��� , � and �(�! "��� - � centered at the endpoints of
this segment. See Figure 3 � . (The segment in this figure is not
the path segment in c-space.) We call the circles the covering
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Fig. 3. Different covering strategies (see text)

circles of �$, and �$- . If they cover the entire segment, as is
the case in Figure 3 � , then � � and �  do not collide along
the straight path joining � , and � - in c-space. Otherwise, and
if there is no collision along the path, ADAPTIVE-BISECTION

will produce intermediate configurations � � � � whose covering
circles will eventually complete the coverage of the entire line
segment, as depicted in Figure 3 � .

The above diagram, though only illustrative (as it is embed-
ded neither in c-space, nor in workspace), suggests decompo-
sition/covering strategies of the path between � , and � - other
than bisecting at the midpoint. For example, we could compute
the two configurations where the covering circles of � , and
� - intersect the segment (Figure 3 � ), and check whether their
covering circles complete the covering of the segment. This
strategy would require inserting at most one new entry into
the priority queue at each iteration, instead of two. But half
the coverage by the new circles would be wasted to cover
parts of the segment that were covered by previous circles.
This could nevertheless be a useful strategy if one wanted to
check a path by small increments from one end to the other,
as is the case, for example, in haptic interaction with virtual
worlds and physical simulation in order to find the time of
first contact [20], [21].

Another strategy would be to place a configuration at the
middle point of the uncovered section (assuming it can be
easily computed), as illustrated in Figure 3 � . In term of cov-
erage, this would be slightly better than the bisection strategy
of our algorithm. However, our experimental tests indicate
that the potential gains are small. Moreover, this strategy
produces different intermediate configurations for different
pairs of objects. This is a drawback with articulated linkages,
since it then requires computing the forward kinematics of
these linkages at many more configurations. Instead, with the
strategy of Figure 3 � , the results of the forward kinematics
computation done to determine the placement of a link at some
configuration can be cached and later re-used to retrieve or
compute the placement of another link in the same linkage at
the same configuration.

F. Bounding the running time of ADAPTIVE-BISECTION

Ignoring floating-point arithmetics issues, ADAPTIVE-
BISECTION always gives a correct answer in a finite amount
of time. However, this time is not bounded in the worst
case, as one can easily create examples where the algorithm
would bisect an arbitrary number of times. Very bad cases
are unlikely in practice, but they may eventually occur when
several thousands of path segments are tested, as is often the
case in PRM planning.

There are several ways to deal with this issue. One is to
switch to another dynamic collision-checking method when

a (sub-)segment shorter than some threshold requires being
bisected further. Then, the potential collision is already well
localized, so that only restricted subsets of the objects (hence,
small number of triangles) need to be considered. A similar
idea has been previously exploited in [20], [21].

Another way is to modify slightly the definition of the
lower bound � �! ����� on the distance between � � and �  at
configuration � . In the new definition, � �L ���$�I� * whenever
the actual distance between the objects is less than some small
predefined � , and � �! ���$� G�� otherwise. Any ���K* results in
bounding the running time of ADAPTIVE-BISECTION. Then,
the algorithm is slightly conservative: while it still cannot miss
a collision, it may incorrectly return that a path segment is
colliding when two objects come closer than � apart. Note that
choosing � is very different from setting the resolution � of
a fixed-resolution checker. A fixed-resolution checker always
breaks a segment into sub-segments of length � to determine
that the segment is collision-free. In contrast, in most cases,
our checker stops bisecting before any � �! ���$� gets smaller than
� . Setting � is also different from growing the objects by some

� as suggested at the end of Section I-B. Indeed, � must be
chosen large enough to prevent any collision from happening
along sub-segments of length � . So, � is directly related to the
length of the maximal displacement of points in the moving
objects, and can be quite large.

In our implementation, we bound the running time of
ADAPTIVE-BISECTION by setting a threshold � as described
above. Our experiments show that � can be set very small
without affecting significantly the average running time of
ADAPTIVE-BISECTION, meaning that the threshold is rarely
needed in practice.

III. COMPUTING LOWER BOUNDS ON DISTANCES

BETWEEN OBJECTS

ADAPTIVE-BISECTION requires that non-trivial lower
bounds on distances between objects be efficiently computed.
Tighter bounds may yield fewer bisections, but are usually
more expensive to compute. Here, we describe a greedy
algorithm, based on bounding volume hierarchies (BVHs), that
computes lower bounds on distances at about the same cost
as if it was testing the objects for collision.

A. Distance computation using BVHs

Bounding volume hierarchies (BVHs) are widely used to
check collision and/or compute distances between objects of
high geometric complexity. An object’s BVH is an approxi-
mately balanced binary tree whose leaves are triangles of the
object surface and intermediate nodes are BVs, each bounding
the triangles below it. It is pre-computed using techniques such
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as those described in [9], [12], [13]. Various types of BVs
have been proposed, including spheres, axis-aligned bounding
boxes (AABB), oriented bounding boxes (OBB), and rectangle
swept spheres (RSS) [3].

To determine if two objects collide at a given configuration,
their hierarchies are searched from the top down. Each step
of a search path consists of testing whether two BVs or two
triangles, one from each hierarchy, are separated. A collision
is reported whenever two triangles are found to intersect.
A search path is terminated as soon as two tested BVs are
separated, because disjoint BVs cannot contain intersecting
triangles. In the worst case, if each object has � ���B� triangles,
the algorithm takes � ����� � time. But, in practice, the average
running time is often sub-linear, as many search paths are
terminated early.

The same algorithm can be used to compute the exact
distance between two objects, with few changes to maintain
the closest distance � found so far. Initially, � is set to a
very large number. A search path is terminated whenever the
distance between two tested BVs is greater than � . If a search
path reaches a pair of triangles and the distance between these
triangles is less than � , then � is re-set to this new distance.
The algorithm terminates as soon as � � * (the objects are
colliding) or when all search paths have been terminated. In
both cases, the final value of � is the distance between the two
objects.

BVH methods are widely used, because they have been
found more efficient in practice than other techniques, espe-
cially for complex objects. Nevertheless, they take much more
time to compute exact distances than to check collision. As any
two tested BVs are more likely to be disjoint than separated by
at least � �O* , search paths to compute distances are longer.

Two approaches have been proposed to speed up distance
computation:

� One approach is to prune search paths more effectively,
either by re-using data computed at a previous configura-
tion, or by better selecting which search path to explore
next [12], [32]. For example, triangle caching initializes
� to the distance between the two closest triangles at
the previous configuration. But it is effective only if the
coherence assumption is verified. Priority directed search
schedules the pending tests of BVs and triangles into a
priority queue sorted by distances. It does not rely on any
coherence assumption.

� The other approach computes an approximate distance
with a guaranteed bound on the relative error [12], [13].
The algorithm in [13] computes a lower bound � C on the
distance � between two objects, such that � � � � C ��� ���
	 ,
where * : 	 :�� is an input constant. It initializes � C to a
large value (as in the exact case). When it finds that two
triangles are closer than � C apart, it resets � C to be � � 	
times the distance between them. The final value of � C
verifies �
� � 	 � ����� C � � . The algorithm becomes faster
as 	 is increased, but it is still slower than pure collision
checking. The algorithm in [12] computes a upper bound
on the distance.

In fact, the speed of distance computation turns out to
be crucial for the overall efficiency of the new adaptive dy-

Algorithm GREEDY-DIST( �%�����  )
1. � � � &�� � � � � 'P���%� ���  �
2. If �%� and �  are both triangles then return �

3. If � �O* then return �

4. If �%� is bigger than �) then switch �I� and �  
5. Set �  � and �  � to the two children of �  in the BVH

6. � � GREEDY-DIST( � � ���  � )
7. If � �O* then

7.1 � � GREEDY-DIST( � � ���  � )
7.2 If � � * then return ���������1�����

8. Return 0

Fig. 4. Greedy distance computation algorithm

namic collision checking approach. That is, while ADAPTIVE-
BISECTION may perform fewer bisections to test a path than
a fixed-resolution checker with small � , it could nevertheless
take longer to run because standard methods for distance
computation are much slower than pure collision checking.
The next section therefore proposes a new algorithm, called
GREEDY-DIST, that computes lower distance bounds almost as
fast as a typical BVH algorithm checks for collision.

B. Greedy distance computation algorithm

To compute a lower bound on the distance between two
objects, our implementation of ADAPTIVE-BISECTION calls
GREEDY-DIST( � �$���"! ), where GREEDY-DIST is the algorithm
shown in Figure 4 and � � and �"! identify the root BVs
of the hierarchies representing these objects. The call returns
a positive lower bound on the distance, if the objects are
separated, and 0 otherwise.

GREEDY-DIST works like a classical BVH collision
checker [12]. It follows the same search paths, tests the same
pairs of BVs and triangles, and terminates each search path
when a pair of tested BVs has null intersection. But, instead
of testing if two BVs or triangles intersect, it computes the
distance between them and eventually returns the smallest
distance found. It is faster than an approximate distance
computation algorithm because it skips the additional search
needed to verify that the relative error is smaller than a given	 . Though GREEDY-DIST offers no guarantee on the relative
error, our tests show that it returns a good approximation on
average.

GREEDY-DIST is independent of the choice of BV, as long as
the distance between pairs of BVs can be computed efficiently.
In our implementation, we use RSSs. An RSS is defined as
the Minkowski sum of a rectangle and a sphere [12]. The RSS
of an object is created by first estimating the two principal
directions spanned by the object [9]. A rectangle # is then
constructed along these directions to enclose the projection of
the object onto the plane defined by these directions. The RSS
is the Minkowski sum of # and the sphere whose radius is
half the length of the interval spanned by the object along the
direction perpendicular to # . In comparison, the OBB of the
object is the cross-product of # by this interval. It is often
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Fig. 5. A bad case for GREEDY-DIST: two distant objects are bounded by
disjoint RSSs that are very close

possible to improve the quality of the RSS fit by shrinking #
(each side can be reduced by at most twice the radius). Like
OBBs, RSSs provide reasonably tight fits for objects of various
shapes. But distance computation between RSSs is faster than
between OBBs [12].

To bound the running time of ADAPTIVE-BISECTION using
the parameter � (see Section II-F), we modify the algorithm
of Figure 4 by replacing the zeros in step 3, 7, and 7.2 by � .
Then, GREEDY-DIST returns a positive lower bound whenever
the distance is greater than � , and 0 otherwise.

C. Experimental analysis

As Figure 5 illustrates, in a bad case, the relative error on
a bound computed by GREEDY-DIST can be arbitrarily close
to 1 (when ��� * ). Our experiments, however, show that the
average bounds returned by GREEDY-DIST are quite good and
compare favorably to those computed (at a greater cost) by an
approximate distance computation algorithm.

We tested GREEDY-DIST (with � � * ) and three similar
BVH algorithms: COLL-CHECKER for pure collision checking,
EXACT-DIST for exact distance computation, and APPROX-
DIST for approximate distance computation with relative error	 � * ��� . APPROX-DIST uses the approach of [13], hence
returns a value between *5� � � and � , where � is the exact
distance. We use RSSs in EXACT-DIST and APPROX-DIST,
as in GREEDY-DIST, but OBBs in COLL-CHECKER. Indeed,
while being closely related to RSSs, OBBs are slightly faster
to test for overlap. Finally, we “tuned” EXACT-DIST using both
priority directed search and triangle caching (see Section III-
A). To make the best use of triangle caching, we initialize the
distance � (used for pruning the search) with the exact distance
(computed separately). This leads EXACT-DIST to terminate a
search path as soon as a BV pair is found to be further apart
than the exact distance. In practice, such perfect initialization
is impossible, and could only be approached in cases where
the coherence assumption is verified extremely well.

We compared the performance of the four algorithms as fol-
lows. For each of the seven environments shown in Figures 1 � ,
11 � - � and 12 � - � , we generated 1,000 random configurations
of the robot(s) and, at each configuration, we tested all robot
links against all fixed obstacles. The results are summarized
in Table I. Column 1 identifies the environment and column 2
indicates the total number of object pairs examined by each
of the four algorithms. Columns 3-6 give the average numbers
of pairs of BVs/triangles tested per query by each of the
four algorithms. As expected, the numbers for COLL-CHECK

and GREEDY-DIST are about the same. The small differences
result from the fact that one uses OBBs and the other RSSs.

Since computing the distance between two RSSs is only
a small factor slower than testing two OBBs for overlap,
GREEDY-DIST is almost as fast as COLL-CHECK. In contrast,
EXACT-DIST examines many more pairs of BVs and triangles,
despite the perfect initialization of triangle caching. APPROX-
DIST also examines significantly more BVs and triangles than
GREEDY-DIST; its running time is greater in the same ratio.

The last two columns of Table I measure the quality of
the bounds. Column 7 gives the average ratio � of the bound
returned by GREEDY-DIST by the exact distance, in each envi-
ronment, computed only for the collision-free pairs of objects.
The values of � are excellent for the first three environments in
which obstacles are tightly bounded by RSSs, and they remain
greater than 0.5 in the other four environments, where objects
have diverse shapes. The last column gives the average ratio
�<C computed for the bounds returned by APPROX-DIST. In the
first three environments, � C is smaller than � ; in the last four,
the two factors are similar, meaning that GREEDY-DIST returns
on average similar bounds, at smaller computational cost.

For ADAPTIVE-BISECTION, the average performance of the
algorithm computing distance bounds matters more than its
worst-case performance. Indeed, if GREEDY-DIST returns a
bad lower bound, then ADAPTIVE-BISECTION may have to
bisect the segment once more and call GREEDY-DIST again at a
new configuration. The probability of encountering several bad
cases in a row is small. We have tested ADAPTIVE-BISECTION

with GREEDY-DIST, EXACT-DIST, and APPROX-DIST (with
different values of 	 ). The best results were obtained with
GREEDY-DIST.

IV. BOUNDING MOTIONS IN WORKSPACE

ADAPTIVE-BISECTION also requires computing an upper
bound /D�����#,P���#-�� on the lengths of the curve segments traced
by all points of a moving object ��� , when the system is
interpolated between ��, and �$- along some path segment . .
Tight bounds could be computed by numeric integration, but
this may be quite slow in practice. Moreover, the cost of the
computation would increase with the distance between �B, and
� - .

In this section, we derive the expression of an upper bound
/D����� , ��� - � that is fast to evaluate, and is valid for kinematic
chains with revolute and prismatic joints. We first establish this
expression on a simple example, then in the general case. Next,
we propose a technique to compute constant factors appearing
in this expression. Finally, we experimentally evaluate the
quality of the bound.

Throughout this section, we adopt simplifying conventions
that do not restrict the generality of our results. We assume
a one-to-one correspondence between the joint parameters of
the robot(s) and moving obstacles and the configuration pa-
rameters. We define these parameters such that: (1) a rotation
of any revolute joint by some angle � (in radians) produces a
variation of � of the corresponding configuration parameter,
and (2) a translation of any prismatic joint by some vector �
results in a variation of ����� of the corresponding parameter.
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Fig. # queries COLL-CHECKER GREEDY-DIST EXACT-DIST APPROX-DIST � �7C
1a 40,000 1.7 / 0.1 2.1 / 0.1 859 / 141 3.7 / 0.1 0.99 0.53

11a 54,000 47 / 0.6 54 / 0.8 946 / 78 105 / 2.0 0.82 0.64

11b 42,000 26 / 1.0 25 / 0.8 827 / 67 58 / 1.9 0.81 0.61

12a 14,000 14 / 0.4 14 / 0.3 1,444 / 268 70 / 2.2 0.64 0.60

12b 22,000 42 / 0.9 46 / 1.0 819 / 125 129 / 5.4 0.51 0.58

12c 18,000 25 / 1.3 26 / 1.4 1,248 / 128 111 / 3.2 0.57 0.62

12d 21,000 2.6 / 0.1 3.9 / 0.2 703 / 170 74 / 16 0.58 0.58
TABLE I

COMPARISON OF COLL-CHECKER, GREEDY-DIST, EXACT-DIST AND APPROX-DIST (SEE TEXT)

1

2

3

4

1

2

3

4

A

A

A

A

q

q

q

q

Fig. 6. Planar linkage with three revolute joints and one prismatic joint

A. Example

We first establish an expression of /#����� , ��� - � for the planar
linkage of Figure 6 moving along a linear path segment (i.e.,
a straight line in c-space). This linkage has three revolute
joints corresponding to joint parameters ������� � , and ��� , and
one prismatic joint corresponding to � � . Each of the links
�4�����	���
����� has length

�
and zero width. Each revolute joint

can perform a single full rotation, hence we define ��� , � � , and
� � to vary, each, between 0 and ��. . When prismatic joint 3
is completely retracted, the distance between revolute joints
2 and 4 (equivalently, between the base of � � and the tip of
� � ) is

�
. When joint 3 is maximally extended, this distance

is
� 6�� . So, we define � � to vary between 0 and � .
For this linkage, we can write the bounds / � ( & � �(���	���
��� )

as follows:

/#�(��� , ��� - � � �
	 � ,�� � � � -�� � 	
/ � ��� , ��� - � � � �
	 � ,�� � � � -�� � 	 6 �
	 � ,�� � � � -�� �

	

/ � ��� , ��� - � � ��� � 6�� � 	 � ,�� � � � -�� � 	

6 � � 6�� � 	 � ,�� � � � -�� �
	 6 	 � ,�� � � � -�� � 	

/ � ��� , ��� - � � ��� � 6�� � 	 � ,�� � � � -�� � 	

6 ��� � 6�� � 	 � ,�� � � � -�� �
	 6 	 � ,�� � � � -�� � 	

6 �
	 � ,�� � � � -�� � 	

The bound /$� ��� , ��� - � is established by considering the point
in ��� that is the furthest away from the center of rotation of
joint 1. While the second term of / � ��� , ��� - � is established
in a similar way, its first term is derived by considering the
maximal distance between a point of � � and the center of
rotation of joint 1. This distance is achieved by the tip of

� � when �4� and � � are aligned. Clearly, no point of � �
can move by a larger amount than the sum of the two terms
defining / � ��� , ��� - � . The other two bounds are generated in a
similar way.

We can write each of the bounds above in the form:

/D����� , ��� - � �
��
��� �

# �� 	 � -�� � � � ,�� � 	

where &
� �(�	���	����� . If � is a prismatic joint, then # �� � � ;
otherwise, # �� is is an upper bound on the distances between
the points of � � and the center of rotation of joint � . So, in
the above expression, we have:

# �� � �
# � � ��� � , # �� �

�
# � � ��� � 6�� , # �� �

� 6�� , # �� � �
# � � ��� � 6�� , # �� ��� � 6�� , # �� � � , # �� � �

B. Upper bound in general case

In the following, we focus our attention on the moving
object � � . Without loss of generality, we let �����	���	����� � denote
the configuration parameters that influence � � ’s placement.
We first assume that the system configuration is linearly
interpolated between � , and � - (Lemma 2). Next, we show
how the result extends to non-linear path segments between
� , and � - .

Lemma 2: When the system configuration is linearly inter-
polated between � , and � - , an upper bound on the lengths of
the curves traced by the points of object �4� is:

/D����� , ��� - � �
��
��� �

# �� 	 � -�� � � � ,�� � 	 (2)

where � � �	�	���
����� are the configuration parameters that influ-
ence the placement of ��� , and # �� � * is a constant factor
defined as follows:
- if � is a prismatic joint, then # �� � � ,
- otherwise, # �� is an upper bound on the distances between
the points of � � and the axis of rotation of joint � .

Proof: Let ? be an arbitrary point of �4� . The straight path
segment in c-space between � , and � - can be parameterized
by �7� � �1� �
� � � � � , 6 � � - , with

��� � * � � � . Let �
��� � � and ?;� � �
denote the placement of ��� and ? at configuration � � � � .
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The length
� ? of the curve traced by ?;� � � when

�
varies

from 0 to 1 is:

� ? ��� �� ���?;� � � � � �
(3)

where:

�?;� � �1�
��
��� ��� ?� �

� �� � � � �>�

We can bound the modulus of �?;� � � by applying the triangle
inequality:

* � ���?J� � � � �
��
��� ������

� ?� �
� ����

	 �� � � � � 	 � (4)

Along the straight path between � , and � - , we have:

�� � � � �1� � -�� � � � ,�� � � (5)

Moreover, by definition of the configuration parameters and
the constants # �� , we have:

����
� ?� �
� ����
� # �� � (6)

By first plugging (4) into (3) and then using relations (6)
and (5), we get:

� ? � � ��
��
��� ������

� ?� �
� ����

	 �� � � � � 	 � �

�
��
��� �

# �� � �� 	 �� � � � � 	 � �

�
��
��� �

# �� 	 � -�� � � � ,�� � 	 � (7)

Since we made no assumption on the location of ? in � � , this
bound holds for all points of � � .

Note that the bound / � ��� , ��� - � defined by Equation (2) is
null if and only if � , � � - . In general, we use Equation (2)
to compute both /D����� , ��� - � and /P P��� , ��� - � in (1). However,
for two links & and 	 (	H:8& ) on the same kinematic chain, we
can derive tighter bounds by considering motions in the local
frame of link 	 . Thus, /9 "��� , ��� - � � * and for /D����� , ��� - � , we
simply sum over �Q��	
6 ���	���	�
��& instead of � � �(�	���	�
��& in
(2).

The result in Lemma 2 can be extended to parameters � � � � �
that are non-linear functions in the “pseudo-time”

�
, as long

as
	 �� � � � � 	 can be bounded. An upper bound on

	 �� � � � � 	 then
replaces

	 � -�� � � � ,�� � 	 in (7), hence in (2). This modification
covers any linkage made of revolute and/or prismatic joints,
including those with closed loops. (Note that parallelogram
mechanisms, which involve only linear parametric changes,
can be handled directly without this extension.) It also makes
it possible to bound curve lengths when the path segment .
in c-space is not straight.

Algorithm COMPUTE-SPHERE( &0� � )

1. If & ��� then 
 � &0� � 6 ��� � ENCLOSING-SPHERE( ��� )
2. Else 
 � &0� � 6 � � � COMPUTE-SPHERE( &0� �I6 � )
3. If joint � is prismatic then

Sweep 
 � &0� � 6 � � along the full translational
range of joint � and construct the sphere
 ��&0� � � that tightly encloses the swept volume.

4. Else if joint � is revolute then
Sweep 
 ��&0� �I6 � � around the axis of joint � by

performing a full ��. rotation and construct the
sphere 
 � &0� � � that tightly encloses the
swept volume.

5. Return 
 ��&�� � �
Fig. 7. Computation of sphere �
���������

S(i,k)

axis k

r(i,k+1)
c(i,k+1)

S(i,k+1)

r(i,k)

c(i,k)
Fig. 8. Construction of ����������� at Step 4 of algorithm COMPUTE-SPHERE

C. Computation of factors # ��
We now describe a general technique to compute the

constant factors # �� in Equation (2) for robot arms in three-
dimensional workspace, when � is a revolute joint. Recall that
# �� must be an upper bound on the distances between the
points of �
� and the axis of rotation of joint � .

Our technique computes a sphere bounding the volume
swept out by each link when the configuration parameters
vary over their full ranges (which we take to be at least
��. for revolute joints). Thus, the computed factors # �� are
independent of any considered path segment in c-space, and
are computed only once during pre-processing.

If & ��� , then we compute the distances of all link vertices to
the axis of rotation of joint & and return # �� to be the maximum
of these distances.

For every � : & , we compute a sphere 
 ��&�� � � of radius
# �� ���9� &0� � � centered at a point �5� &0� � � located in the axis of
rotation of joint � , that is guaranteed to enclose link & for any
values of the configuration parameters � � ���	�	�	��� � .

The spheres 
 ��&0� � � , � � & , are computed recursively by the
algorithm of Figure 7. At Step 1, ENCLOSING-SPHERE( � � )
computes a tight enclosing sphere of � � using a standard
algorithm [33]. At Step 3, computing the sphere that tightly
encloses the volume swept by moving 
 � &0� �46���� along the
entire range of the prismatic joint � is straightforward. At
Step 4, we proceed as follows: we compute the center �#� &0� � �
of 
 � &0� � � as the projection of �D� &0� �<6 � � on the axis of rotation
of joint � and the radius �9� &0� � � of 
 � &0� � � as the sum of�9� &0� � 6 � � and the distance between �D��&�� �46���� and �5��&0� � � ,
as illustrated in Figure 8.
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Fig. 9. Histograms showing the distributions of the quality of the bound ��� ��� ������� for three robots. The horizontal axis shows a upper bound on the ratio of
��� �	� ���
� � by the length of the curve. The closer to 1 this ratio, the better the quality. Histogram � additionally includes slightly different ratios that account
for self-collision testing (see text)

D. Experimental analysis

The bounds defined as above are clearly conservative, but
they are also very fast to compute. To evaluate their average
quality, we made the following experiments with the robots of
Figures 1 � , 11 � , and 11 � .

For each robot, we generated 10,000 segments � � ���<C	� by
uniformly sampling two independent endpoints � and �<C . For
each segment, we computed the bounds / � ���7���#CE� for all links,
as well as lower bounds

A � ���B���DCF� obtained by integrating
Equation (3) at a low resolution for some randomly chosen
point on � � . We computed the ratio / � ��� ���#C ��� A � ���7���#CF� for
each link over all 10,000 segments. Note that this ratio is not
bounded in the worst case, even if

A � ���7��� C � was the exact
length of the longest curve traced by a point of � � .

The histograms � , � , and � in Figure 9 present 99% of
the results in order to crop outliers. They show that, most
of the time, the bounds /D����� , ��� - � are within a rather small
factor from optimal. For example, for the IRB 2400 and F
200 robots, more than 80% of them are within factor 5 from
the corresponding lower bounds

A � ���7���#CF� . Even for the hyper-
redundant arm (histogram � ), the ratio is smaller than 15 most
of the time.

The histogram � shows the distribution of the ratios
/5�����7���#CE��� A �����7���#C � as above plus additional, slightly different,
ratios /D�L ���� ��� C ��� A �! ����7��� C � that account for self-collision test-
ing, as follows. For two links ��� and �% (	 :K& ) of the same

Lref Lref

IRB 2400 robot F 200 robot

Fig. 10. Reference links of IRB 2400 and F 200 robots

robot, we compute /D�! "���7���DCF� to bound the lengths of curves
traced by all points on �4� in �% ’s local reference frame, as
described in Section IV-B. Similarly,

A �L ����B���DCE� is a non-trivial
lower bound on the length of curves traced by all points of
�
� in �% ’s local frame, obtained by integrating Equation (3),
in �  ’s frame, for some randomly chosen point on � � .

V. EXPERIMENTAL RESULTS

We have experimented with ADAPTIVE-BISECTION on nu-
merous problems ranging from testing randomly generated
segments, to testing local paths in multi- and single-query
roadmaps, to optimizing jerky paths. In this section, we present
a subset of our results.

A. Experimental setup

All the results below were obtained on a 1GHz Pentium
III PC with 1GB RAM. Our implementation of ADAPTIVE-
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� � �
Fig. 11. Examples with thin obstacles. � : IRB 2400 robot (2,991 triangles), cage (432 triangles). � : F 200 robot with arc welding gun (2,502 triangles), cage
(432 triangles). � : 20-DOF arm (320 triangles), obstacle lattice (384 triangles)

� �

� �
Fig. 12. � : F 200 robot with arc welding gun (2,502 triangles), machine tool (34,171 triangles). � : IRB 2400 robot (5,450 triangles) in workshop (74,681
triangles). � : Six IRB 2400 robots (6 � 3,594 triangles), car body (19,668 triangles). � : Six F 200 robots (6 � 2,502 triangles), car body (4,016 triangles)
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FIXED-RES-BISECTION ADAPTIVE-BISECTION

� � * � � * �
� *5� *�* �
Fig.

�
(ms) BV Tri

�
(ms) BV Tri

�
(ms) BV Tri

11 � 0.44 375 3.1 0.33 197 3.0 0.29 169 2.6
11 � 0.46 380 3.5 0.43 324 3.9 0.38 255 3.2
12 � 0.67 522 18.7 0.40 501 18.0 0.37 420 21.8
12 � 1.21 1,035 10.1 0.57 571 10.8 0.40 440 13.4
12 � 3.11 2,866 13.1 2.44 686 12.1 2.23 610 12.7
12 � 1.14 999 16.3 1.93 609 19.5 1.71 528 21.6

TABLE III

COMPARISON OF FIXED-RES-BISECTION WITH ��� �
AND ADAPTIVE-BISECTION WITH ��� �

AND ��� ��� ����	

Fig. 1 � 11 � 11 � 11 � 12 � 12 � 12 � 12 �
���
��
0.5 1.77 1.65 0.5 1.16 0.64 1.59 1.32

TABLE II
���
��
(IN UNITS) IN DIFFERENT EXAMPLES.

BISECTION computes lower bounds on distances between
objects using the algorithm GREEDY-DIST of Section III-B and
upper bounds on lengths of traced curves using Equation (2),
with the factors # �� computed as described in Section IV-
C. Our implementation of GREEDY-DIST uses functions from
the PQP library1 to construct RSS hierarchies and compute
distances between pairs of RSSs. We tried several algorithms
other than GREEDY-DIST to compute exact and approximate
distances, but GREEDY-DIST gave the best results overall.

Since ADAPTIVE-BISECTION bisects (sub-)segments in the
same way for all pairs of objects, we share results of forward
kinematics computations across pairs, by caching the rigid-
body transforms defining the positions and orientations of
robot links at every configuration considered by the checker.
In environments with manipulator arms, such caching avoids
many redundant computations.

Pairs of objects that cannot possibly collide (due to con-
straints on their motion) are identified in a pre-processing
phase by bounding the swept volumes of all objects by
spheres (as in Section IV-C) and then testing these spheres
for intersection. If two swept spheres are disjoint, then the
underlying object pair is never inserted in the priority queue
� processed by ADAPTIVE-BISECTION. Likewise, pairs of
static objects (e.g., robot bases or obstacles) are not tested
for intersection.

We tested ADAPTIVE-BISECTION with various values of � .
To relate these values to the size of the robots and obstacles
in each environment, we give the lengths

�������
of key robot

links in Table II. For the linkages in Figures 1 � and 11 � , � �����
is the length of any individual link. For the IRB 2400 and F
200 robots, it is the length of the robot’s forearm as shown in
Figure 10 (Different values for the same reference link across
examples are due to different robot scaling factors.)

We compared ADAPTIVE-BISECTION to a classical fixed-
resolution checker, which we call FIXED-RES-BISECTION.

1http://www.cs.unc.edu/˜geom/SSV/

� � 	�� � ��� ���
Fig. � � (s) � � (s)

11 � 0.00402 4.13 0.00232 5.15
11 � 0.00078 12.26 0.00078 13.87
12 � 0.00833 0.17 0.00833 0.17
12 � 0.00162 7.52 0.00038 16.45
12 � 0.00694 2.72 0.00279 3.82
12 � 0.01200 0.67 0.00833 0.92

TABLE IV

AVERAGE RUNNING TIMES OF SBL ON FIVE DISTINCT PATH-PLANNING

PROBLEMS FOR
� � 	��

AND
� ��� ��� CONSECUTIVE CORRECT RUNS

(SEE MAIN TEXT IN SECTION V-D).

� .01 .005 .001 .0005 .0001 .00005 .00001 .0

11 � 5.59 5.04 5.60 7.95 11.17 13.38 17.07 24.85
11 � 11.78 12.37 11.47 13.17 16.03 16.99 20.59 27.54
12 � 0.16 0.22 0.42 0.49 1.32 1.87 3.48 21.48
12 � 6.71 7.33 9.55 12.63 27.53 31.91 67.52 251.56
12 � 2.00 1.59 1.80 1.76 2.95 2.89 3.83 5.54
12 � 0.43 0.65 0.71 0.86 2.05 2.42 3.23 10.90

TABLE V

AVERAGE RUNNING TIMES OF A-SBL FOR SUCCESSIVE VALUES OF � (SEE

MAIN TEXT IN SECTION V-D).

This checker follows exactly the bisection algorithm given
in [28]: Given a straight path segment with collision-free end-
points, it bisects this segment and its sub-segments until either
the mid-point of a (sub-)segment is found to collide, or all
sub-segments are shorter than some given � (in the Euclidean
metric of c-space). Longer sub-segments are bisected before
shorter ones, hence in a breadth-first ordering, in order to find
collisions quicker (as longer sub-segments are more likely to
collide). For each tested mid-point, FIXED-RES-BISECTION

checks all pairs of objects for collision, except those iden-
tified as never colliding in the pre-processing phase. Like
ADAPTIVE-BISECTION, FIXED-RES-BISECTION can be used
to test individual segments or multi-segment paths.

FIXED-RES-BISECTION uses hierarchies of OBBs to test
configurations. The construction of the OBB hierarchies and
the collision test of two OBB hierarchies are carried out by
functions of the PQP library.
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FIXED-RES-BISECTION ADAPTIVE-BISECTION

Fig. � (ms) BV Tri � (ms) BV Tri
11 � 14.6 15,060 19.8 11.3 9,239 200.8
12 � 5.1 4,032 17.9 3.9 3,834 158.6

TABLE VI

COMPARISON OF FIXED-RES-BISECTION WITH ��� ��� �����
AND

ADAPTIVE-BISECTION WITH � � ��� ����	

B. Random colliding segments

In this series of experiments, we compared the performance
of the adaptive and fixed-resolution checkers on colliding path
segments. In each of the six environments of Figures 11 � - �

and 12 � - � , we generated 1,000 colliding segments by sampling
pairs of collision-free endpoints uniformly at random, and
retaining those segments which ADAPTIVE-BISECTION (with
� � * ) found to be colliding. We then tested each segment
using: (1) FIXED-RES-BISECTION with �
� * , (2) ADAPTIVE-
BISECTION with �H�+* , and (3) ADAPTIVE-BISECTION with
�I� * � *(* � . When a segment is known to be colliding, FIXED-
RES-BISECTION with �
� * is guaranteed to detect a collision
in finite time.

Table III shows data gathered during these tests. For each
checker, we indicate the average running time and the av-
erage number of BV and triangle pairs tested per segment.
ADAPTIVE-BISECTION (with �Q� * and *5� *�* � ) tests signifi-
cantly fewer pairs of BVs than FIXED-RES-BISECTION. This
gain derives from both the use of Inequality (1), which results
in bisecting path segments at a coarser average resolution, and
the better ordering of the priority queue.

The most significant savings were achieved in the environ-
ment of Figure 12 � where collisions between thin end-effectors
are quite difficult to detect. The environment of Figure 12 � is
similar, but collisions between a robot and the car body are
easier to detect in this case, which results in smaller differences
between the checkers.

The times shown in the table indicate that, except for the
environment of Figure 12 � , ADAPTIVE-BISECTION with � � *
is faster on average than FIXED-RES-BISECTION, despite the
fact that computing distances between RSSs is not as fast as
testing OBBs for overlap.

The results with �8� *5� *�* � show a small speed-up over
those obtained with � � * because with � �K* , some segments
are rejected as soon as a pair of objects is found to come closer
than � .

C. Random collision-free segments

The above experiment favors the fixed-resolution checker,
since we could set � � * . When segments may not be col-
liding, this is not possible. To illustrate the respective effects
of � and � , we used FIXED-RES-BISECTION and ADAPTIVE-
BISECTION to test collision-free path segments. For the results
presented below, we set � � *5� *�*�� and � � * � *(* � .

Like in the previous experiment, in each considered envi-
ronment we generated 1,000 random collision-free segments,
by picking end-points at random and using the adaptive
checker (with � � * � *(* � ) to test them. Table VI shows the

Fig. 13. Curve traced by the tip of the end-effector of the robot in Figure 11 �
for a typical path segment. The black dots along the curve correspond to the
configurations tested by FIXED-RES-BISECTION, with � � ��� �����

. Each dot
is a cube whose side length is equal to 0.01 unit

same quantities as Table III measured in the environments
of Figures 11 � and 12 � . The value of � was chosen so that
the fixed-resolution checker took only slightly longer than the
adaptive checker.

Figure 13 shows, as a thin line, the curve traced by the tip
of the end-effector when the robot of Figure 11 � moves along
a typical straight path segment in c-space. The dots along this
curve correspond to the configurations tested by FIXED-RES-
BISECTION with � � * � *(*�� . In reality, each dot is a cube
whose side length is 0.01 units (in the workspace metric),
hence twice the value selected for � . To make FIXED-RES-
BISECTION sample the curve at resolution � , we would have to
set � so small that the running time of FIXED-RES-BISECTION

would be considerably longer.

D. PRM planning

In this section we compare the dynamic and fixed-resolution
checkers when they are integrated in the PRM planner de-
scribed in [28], called SBL. We briefly recall how this planner
works.

SBL constructs a roadmap made of two trees of milestones
(collision-free configurations sampled at random) rooted at the
two query configurations input by the user. At each iteration,
the planner performs the following operations:
(1) It picks a new milestone � C at random in a neighborhood

of an existing milestone � and installs �QC as a child of �
without testing the straight path segment between them for
collision.
(2) It selects two milestones, one from each tree, and connects

them by a candidate straight path segment. This connection
creates a multi-segment path between the two query configu-
rations, but only the vertices of this path (milestones) have so
far been tested for collision.
(3) It checks this entire path for collision. If no collision is

detected, it returns the path. Otherwise it removes the segment
found to be colliding from the roadmap, caches the collision-
checking work done along other segments (to avoid repeating
it if any of these segments is part of a candidate path at a later
iteration), and proceeds to the next iteration.
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Hence, SBL tests segments between milestones only when
this is absolutely needed. This so-called “lazy collision check-
ing” strategy has been shown to significantly reduce the
amount of work spent on collision-free segments that are not
on the final solution path.

The implementation of SBL described in [28] uses FIXED-
RES-BISECTION to test multi-segment paths. Hence, it requires
setting the value of � for each new environment, and is never
guaranteed to return a collision-free path. We have created a
new version of SBL, called A-SBL, by replacing the fixed-
resolution checker by ADAPTIVE-BISECTION. Like SBL, A-
SBL also records the collision-checking work done along
path segments that have not been fully tested (by maintaining
a distinct priority queue for each segment, as described in
Section II-D).

We ran SBL and A-SBL on several path-planning problems,
each defined by a pair of query configurations in a given
environment. For each problem, we performed several series of
runs of SBL with decreasing values of � . During each series,
� kept the same value, but a different seed of the random
number generator was used at each run to construct a different
roadmap, hence a different path. We tested each path returned
by SBL using ADAPTIVE-BISECTION with �H� * . Whenever
a collision was detected in a path, we terminated the series,
cut the value of � by 1.2, and started another series. Starting
with a rather large value of � , we retained the first series of 50
(respectively 100) consecutive runs of SBL that did not return
a single colliding path.

Tables IV and V list results obtained for six planning
problems in the environments of Figures 11 � - � and 12 � - � . For
each problem, Table IV gives the first value of � that produced�

consecutive correct runs, for
� � � * and ��*(* , and the

average running time of SBL over these
�

runs. Note that �
is much smaller for

� � ��*(* in all cases, except two (11 �

and 12 � ), meaning that the values of � obtained for
� � � *

are usually not sufficient to guarantee the reliability of SBL.
Table V lists the average running times (over 100 indepen-

dent runs) of A-SBL for decreasing values of � . As expected,
the average running time of A-SBL increases when � goes
to 0. However, the increase is moderate until � reaches very
small values, and even then remains relatively small for most
problems. Note that in two examples (11 � and 12 � ), for
relatively large � , the running time even decreases slightly
when the value of � goes down. In these cases, planning may
be slightly harder for larger values of � as more collision-free
paths are rejected by ADAPTIVE-BISECTION.

A-SBL has the considerable advantage over SBL that it is
guaranteed to never return a colliding path. This is not the
case of SBL, even for the values of � allowing 100 consecutive
correct runs. In most examples, selecting a value of

�
greater

than 100 would have led to smaller values of � .

E. Path Smoothing

We conducted the following experiment in the environment
of Figure 1 � . First, starting at a configuration where both link-
ages stand straight up through the three rings, we performed
a random walk of collision-free steps until both linkages lie

Random walk Smoothing
Fig. #segments � (s) � � (s) �
1 � 40,439 82 1,000 152 0.06
11 � [1 linkage] 4,208 5.9 500 16 0.11
11 � [9 linkages] 47,744 823 6,000 5,952 0.25

TABLE VII

RESULTS FOR RANDOM WALKS AND PATH SMOOTHING

All links Only end-effector
checked checked

� �
BV Tri BV Tri

0.1 0.1 11,232 0 8,789 0
0.01 0.01 62,866 0 62,727 0

0.001 0.001 990,766 0 990,595 0
0.0001 0.0001 7.91e+06 0 7.91e+06 0

0.1 0.0001 258 0 127 0
0.01 0.0001 753,939 0 753,800 0

0.001 0.0001 1.12e+06 0 1.12e+06 0
0.0001 0.0001 7.91e+06 0 7.91e+06 0

TABLE VIII

NUMBER OF BV/TRIANGLE PAIRS TESTED IN FIGURE 14 �

All links Only end-effector
checked checked

� �
BV Tri BV Tri

0.1 0.1 1,421 105 1,397 105
0.01 0.01 5,664 101 5,646 101
0.001 0.001 73,018 122 72,998 122

0.0001 0.0001 578,220 3,358 578,200 3,358
0.1 0.0001 33 0 17 0

0.01 0.0001 23,801 0 23,783 0
0.001 0.0001 67,165 0 67,145 0

0.0001 0.0001 578,220 3,358 578,200 3,358

TABLE IX

NUMBER OF BV/TRIANGLE PAIRS TESTED IN FIGURE 14 �

All links Only end-effector
checked checked

� �
BV Tri BV Tri

0.1 0.1 653 5 634 5
0.01 0.01 3,059 51 3,045 51
0.001 0.001 27,685 87 27,671 87

0.0001 0.0001 202,870 2,153 202,856 2,153
0.1 0.0001 27 0 15 0

0.01 0.0001 315 0 301 0
0.001 0.0001 15,426 0 15,412 0

0.0001 0.0001 202,870 2,153 202,856 2,153

TABLE X

NUMBER OF BV/TRIANGLE PAIRS TESTED IN FIGURE 14 �
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� � �
Fig. 14. Three bad-case examples for ADAPTIVE-BISECTION

entirely below the rings, hence were retracted from the rings.
ADAPTIVE-BISECTION was used to test each attempted step
(straight segment) of the random walk. Next, we smoothed the
obtained path by performing � times the following operations:
Pick a point � at random in the path; let ��� � ( � � � ) be the
midpoint along the path between the first (last) configuration
of the path and � . If the straight line segment between � � � and
� � � tests collision-free, shortcut the path section between them
by this segment, otherwise reset � � � ( � � � ) to the midpoint along
the path between itself and � , and recurse. Again, ADAPTIVE-
BISECTION was used to test each attempted shortcut. We did
the same experiment in the environment of Figure 11 � , first
with a single linkage, then with 9 identical linkages, each
threaded through a different set of grid holes in their initial
configuration.

The goal of these experiments was to demonstrate that
ADAPTIVE-BISECTION enables the implementation of a brute-
force planning scheme requiring many collision tests be-
tween very thin objects. These experiments would be quasi-
impossible using FIXED-RES-BISECTION, as we would then
have to chose � extremely small.

Table VII shows data obtained for a typical run of each
experiment. For the random walk, it gives the number of
segments tested and the computation time of the walk. For
path smoothing, it lists the value of � , the running time, and
the ratio � of the final length of the path by its initial length.
Note that each of the � iterations usually results in many
segment tests, due to the recursive attempts to shortcut path
sections.

F. Bad-case scenarios

A very unfavorable case for ADAPTIVE-BISECTION is when,
along a path segment in c-space, two or more objects in rela-
tive motion stay at very close distance from each other, without
coming closer than the threshold � . To study the behavior
of ADAPTIVE-BISECTION in such cases, we constructed three
examples shown in Figure 14. In all three examples, the robot
(2,502 triangles) moves a full ��. rotation around its first joint,
with all other joints remaining fixed. This motion defines a
long straight segment in c-space. In Figure 14 � , the robot is
placed directly on the floor, a flat surface tessellated by 8,000
triangles. During the motion, the tip of the end-effector (1,080
triangles) traces a circle at a constant clearance above the floor

that is slightly bigger than a given � � * . The example in
Figure 14 � is similar, but the robot is now placed on top of
a box, and during the rotation the end-effector grazes the top
face of another box, again with a constant clearance slightly
bigger than � � * . Hence, the end-effector now comes close
to an obstacle only during a fraction of the rotation. Each face
of the box is modeled with 8,000 triangles. The example in
Figure 14 � is almost identical: the box is narrower, but its
faces still contain 8,000 triangles, each.

Tables VIII–X show the numbers of pairs of BVs and
triangles tested in each of the above three examples, for
different combinations of values of � and � . In each table
the numbers are reported for all robot links and for the end-
effector only.

The numbers of BV/triangle pairs tested by the checker
depend on both � and � . However, in each example, the tables
show that links other than the end-effector barely influence
these numbers. This is due to the fact that the checker tests
each pair of objects independently of the others, starting with
the object pairs that are the most likely to collide. Links
other than the end-effector, which are rather far away from
any obstacle, are quickly eliminated (as not colliding), if ever
tested.

Another observation is that the checker focuses on the
critical portion of the path segment. Indeed, the numbers of
BV/triangle tests decrease significantly from the first example
to the third, although the three path segments have equal
length and the obstacle’s top surface has the same number
of triangles in each case. This comes from the fact that the
use of Inequality (1) allows the checker to sample the path
segment more coarsely when obstacles are further away from
the end-effector.

As we expected, this experiment shows that the perfor-
mance of ADAPTIVE-BISECTION degrades when two objects
in relative motion remain very close apart and both � and �
approach zero. Nevertheless, even for very small values of �
and � , the checker remains reasonably efficient as long as the
small clearance occurs over short path sections. In PRM path
planning, where segment endpoints are selected at random,
this condition is likely to be verified. But in some applications,
such as machining and assembly, small clearances over long
segments may occur more frequently. Then, methods based
on swept-volume computation or trajectory parameterization
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Algorithm REFINED-ADAPTIVE-BISECTION( �B���$C )
1. For every pair of objects ( �������% ) that needs to be

tested, insert � �B���#C ��������� into � , where �%� and
�  denote the roots of the BVHs of �4� and �% ,
respectively

2. While � is not empty, do

2.1 � � , ��� - � ���	� � remove-first(Q)

2.2 COLLISION-TEST( �H���4C���� , ��� - )
Fig. 15. Refined adaptive bisection algorithm

Algorithm COLLISON-TEST( �H���4C ��� , ��� - ))
1.


 � intersection of the two trees of BV pairs
computed by GREEDY-DIST2( �H����C����$, ) and
GREEDY-DIST2( �H���4C���� - )

2. Perform a depth-first traversal of



. For every
node � � � � CF� of



, if

/ - ��� , ��� - �B6O/ C- ��� , ��� - �J:K� - - � ��� , �B6=� - - � ��� - � ,
then backtrack. Else if � � � � CF� is a leaf of



then

2.1 � � �F� � mid-configuration along
path segment between � , and � -

2.2 If � - - ����� � � � � � * then return collision

2.3 Else insert � � , ��� � �F� � - - � and � � � � � ��� - � - - �
into �

Fig. 16. Finding elements to insert into the priority queue �

might be more appropriate, possibly in combination with
adaptive bisection.

VI. REFINED CHECKER

In the above checker, the priority queue � is filled with
elements � �$,P���#-�� �! indicating that a pair of objects — � � and
�  — must be tested for collision along a given path segment
connecting configurations � , and � - . However, whenever the
same two objects are tested, the traversal of their BVHs starts
at their respective roots. Instead, Inequality (1) could be used
during a test to detect that pairs of BVs need not be tested
again later. This yields a refined version of the checker in
which the priority queue is filled with elements � � , ��� - ���	� �
indicating that a pair of BVs — � and ��C — from two
different hierarchies must be tested for collision along the path
segment connecting � , and � - .

Figure 15 describes the refined checker, REFINED-
ADAPTIVE-BISECTION. At Step 2.2, the new checker calls
a function, COLLISION-TEST, to determine the elements that
must be inserted into � . This function, shown in Figure 16,
identifies the pairs of BVs compared by the greedy distance
algorithm at both � , and � - . We describe how this is done
below.

For any node � of a BVH, we let
	 � 	 denote the set of

triangles associated with the leaves of the sub-hierarchy rooted
at � . Let the function GREEDY-DIST2( � ����C ��� ) compute a
lower-bound ���	�������$� on the distance between

	 � 	 and
	 ��C 	

at � . It is the same algorithm as GREEDY-DIST (described in
Section III-B), with one difference: it either returns 0 (meaning

that a collision occurs at � between the triangles in
	 � 	 and

those in
	 ��C 	 ), or it provides the tree of BV pairs � � � � CF� that

were compared by the recursive calls. Each node � � � � CF� of this
tree contains the lower bound � - - � ���$� computed for this pair.
In addition, we let /
�)��� , ��� - � stand for an upper bound on the
lengths of the curves traced out by the vertices of the triangles
in
	 � 	 when the configuration varies from � , to � - along the

considered path segment. The function / � is computed using
the same techniques as presented in Section IV.

COLLISION-TEST( �H����C���� , ��� - ) first computes the intersec-
tion of the two trees computed by GREEDY-DIST2( � ����C����$, )
and GREEDY-DIST2( � ���4C���� - ). It then performs a depth-first
traversal of the tree formed by this interesection. At each
traversed node it perfoms a test similar to that of Inequality (1).
If the node passes this test, then the triangles in � and � C
cannot collide between � , and � - . Otherwise, it yields Steps
2.1 through 2.3, which are the same as Steps 2.2.1 through
2.2.3 in the original checker of Figure 2.

Table XI compares REFINED-ADAPTIVE-BISECTION with
ADAPTIVE-BISECTION. The results are averages over 1,000
randomly generated segments in the same environments used
in Section V and under the same conditions. The running times
of the refined checker range between 0.5 and 0.9 times those of
the original checker. The gains are modest, but still significant.

VII. CONCLUSION

This paper describes a new dynamic collision checker to
test path segments in c-space or collections of such segments,
including continuous multi-segment paths. This checker is
general, but particularly suited for PRM planners applied
to manipulator arms and/or multi-robot systems. Its main
advantage over the commonly used fixed-resolution approach
is to never miss a collision. In addition, it eliminates the need
for experimentally determining a suitable value of the c-space
resolution parameter � and its running time compares favorably
to that of a fixed-resolution checker.

Reliability and efficiency are obtained by dynamically ad-
justing the local resolution at which configurations along a
path are tested by relating the distances between objects in
the workspace to the maximum lengths of the paths traced
out by points on these objects. This idea is combined with
other techniques, including:
- a greedy distance computation algorithm that is nearly as
efficient as a pure collision checker,
- a fast technique for bounding lengths of paths traced out in
workspace,
- a heuristics for ordering collision tests to reveal collisions as
quickly as possible.

Relatively simple extensions are possible. For example, one
could guarantee that no two objects come closer than some
minimal distance � � * along a tested path segment, by using
the following variant of Inequality (1):

/
�
� ���#,"���#-0�<6O/

�
 ���$,"���$-0�J:8� �! ����,��<6=� �! ����-�� � � �

where /
�
� ��� , ��� - � (similarly /

�
 ��� , ��� - � ) bounds the motions

of �
�
� which is defined as the Minkowski sum of �4� and a

sphere of radius �
� � � � .
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ADAPTIVE-BISECTION REFINED-
ADAPTIVE-BISECTION

Fig.
�

(ms) BV Tri
�

(ms) BV Tri
11 � 0.066 17491 45 0.037 1510 10
11 � 0.060 13182 201 0.040 1342 14
12 � 0.020 5038 222 0.010 546 15
12 � 0.032 7299 66 0.023 1144 14
12 � 0.155 15978 367 0.142 2914 30
12 � 0.507 73579 4623 0.373 8523 169

TABLE XI

COMPARISON OF ADAPTIVE-BISECTION AND REFINED-ADAPTIVE-BISECTION

We believe that our checker could still gain in efficiency by
computing tighter bounds on lengths of curves traced out by
points of moving objects. For example, instead of computing
factors # �� that are valid across the entire c-space, we could
partition the c-space of each linkage into a coarse grid of cells,
and compute smaller factors over each cell.

The new checker has certain limitations, however. In some
applications, one may want to determine the first collision
configuration when moving from one end of a path segment
to the other. Then, our bisection algorithm, which is tuned
to determine as quickly as possible whether a path segment
is colliding, or not, is not the best approach. However, even
in this case, a variant of Inequality (1) could be used to
decompose the segment into a series of safe segments. Another
limitation is that the checker loses efficiency when two moving
objects come arbitrarily close and/or stay very close along a
long section of a path segment. To bound the running time we
have introduced a clearance parameter � � * . Though � can
be set quite small in practice, it may be undesirable for some
applications (e.g., mechanical assembly). An alternative dis-
cussed in Section II-F is to locally switch to another dynamic
collision-checking method, for instance, a swept-volume or
a trajectory parameterization method. Such a method is then
made practical by the fact that the potential collision can
only occur on restricted sections of the segment and between
restricted portions of the objects. Finally, the new checker
leads PRM planners to consume more memory. Unlike a fixed-
resolution checker, it requires maintaining a priority queue of
pairs of objects to be tested for collision. The refined checker
of Section VI requires even more memory as it also stores
trees of BV pairs.
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