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Abstract.

We examine a novel addition to the known methods for learning Bayesian
networks from data that improves the quality of the learned networks. Our
approach explicitly represents and learns the local structure in the condi-
tional probability distributions (CPDs) that quantify these networks. This
increases the space of possible models, enabling the representation of CPDs
with a variable number of parameters. The resulting learning procedure in-
duces models that better emulate the interactions present in the data. We
describe the theoretical foundations and practical aspects of learning local
structures and provide an empirical evaluation of the proposed learning pro-
cedure. This evaluation indicates that learning curves characterizing this
procedure converge faster, in the number of training instances, than those
of the standard procedure, which ignores the local structure of the CPDs.
Our results also show that networks learned with local structures tend to
be more complex (in terms of arcs), yet require fewer parameters.

1. Introduction

Bayesian networks are graphical representations of probability distribu-
tions; they are arguably the representation of choice for uncertainty in
artificial intelligence. These networks provide a compact and natural rep-
resentation, effective inference, and efficient learning. They have been suc-
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Figure 1. A simple network structure and the associated CPD for variable S (showing
the probability values for S = 1).

cessfully applied in expert systems, diagnostic engines, and optimal decision
making systems.

A Bayesian network consists of two components. The first is a directed
acyclic graph (DAG) in which each vertex corresponds to a random variable.
This graph describes conditional independence properties of the represented
distribution. It captures the structure of the probability distribution, and is
exploited for efficient inference and decision making. Thus, while Bayesian
networks can represent arbitrary probability distributions, they provide
computational advantage to those distributions that can be represented
with a sparse DAG. The second component is a collection of conditional
probability distributions (CPDs) that describe the conditional probability of
each variable given its parents in the graph. Together, these two components
represent a unique probability distribution (Pearl, 1988).

In recent years there has been growing interest in learning Bayesian net-
works from data; see, for example, Cooper and Herskovits (1992); Buntine
(1991b); Heckerman (1995); and Lam and Bacchus (1994). Most of this
research has focused on learning the global structure of the network, that
is, the edges of the DAG. Once this structure is fixed, the parameters in
the CPDs quantifying the network are learned by estimating a locally ex-
ponential number of parameters from the data. In this article we introduce
methods and algorithms for learning local structures to represent the CPDs
as a part of the process of learning the network. Using these structures, we
can model various degrees of complexity in the CPD representations. As we
will show, this approach considerably improves the quality of the learned
networks.

In its most naive form, a CPD is encoded by means of a tabular repre-
sentation that is locally exponential in the number of parents of a variable
X: for each possible assignment of values to the parents of X, we need
to specify a distribution over the values X can take. For example, con-
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sider the simple network in Figure 1, where the variables A, B, F/ and S
correspond to the events “alarm armed,” “burglary,” “earthquake,” and
“loud alarm sound,” respectively. Assuming that all variables are binary,
a tabular representation of the CPD for S requires eight parameters, one
for each possible state of the parents. One possible quantification of this
CPD is given in Figure 1. Note, however, that when the alarm is not armed
(i.e., when A = 0) the probability of S = 1 is zero, regardless of the values
B and FE. Thus, the interaction between S and its parents is simpler than
the eight-way situation that is assumed in the tabular representation of the
CPD.

The locally exponential size of the tabular representation of the CPDs is
a major problem in learning Bayesian networks. As a general rule, learning
many parameters is a liability, since a large number of parameters requires
a large training set to be assessed reliably. Thus learning procedures gen-
erally encode a bias against structures that involve many parameters. For
example, given a training set with instances sampled from the network in
Figure 1, the learning procedure might choose a simpler network structure
than that of the original network. When the tabular representation is used,
the CPD for S requires eight parameters. However, a network with only
two parents for S, say A and B, would require only four parameters. Thus,
for a small training set, such a network may be preferred, even though it
ignores the effect of ¥ on S. This example illustrates that by taking into
account the number of parameters, the learning procedure may penalize a
large CPD, even if the interactions between the variable and its parents are
relatively benign.

Our strategy is to address this problem by explicitly representing the local
structure of the CPDs. This representation often requires fewer parameters
to encode CPDs. This enables the learning procedure to weight each CPD
according to the number of parameters it actually requires to capture the
interaction between a variable and its parents, rather than the maximal
number required by the tabular representation. In other words, this explicit
representation of local structure in the network’s CPD allows us to adjust
the penalty incurred by the network to reflect the real complexity of the
interactions described by the network.

There are different types of local structures for CPDs, a prominent ex-
ample is the noisy-or gate and its generalizations (Heckerman and Breese,
1994; Pearl, 1988; Srinivas, 1993). In this article, we focus on learning local
structures that are motivated by properties of context-specific independence
(CSI) (Boutilier et al., 1996). These independence statements imply that
in some contezts, defined by an assignment to variables in the network, the
conditional probability of variable X is independent of some of its parents.
For example, in the network of Figure 1, when the the alarm is not set
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Figure 2.  Two representations of a local CPD structure: (a) a default table, and (b) a
decision tree.

(i.e., the context defined by A = 0), the conditional probability does not
depend on the value of B and F; P(S| A=0,B =b,F =€) is the same
for all values b and e of B and F. As we can see, CSI properties induce
equality constraints among the conditional probabilities in the CPDs. In
this article, we concentrate on two different representations for capturing
the local structure that follows from such equality constraints. These rep-
resentations, shown in Figure 2, in general require fewer parameters than a
tabular representation. Figure 2(a) describes a default table, which is simi-
lar to the usual tabular representation, except that it does not list all of the
possible values of S’s parents. Instead, the table provides a default prob-
ability assignment to all the values of the parents that are not explicitly
listed. In this example, the default table requires five parameters instead
of the eight parameters required by the tabular representation. Figure 2(b)
describes another possible representation based on decision trees (Quinlan
and Rivest, 1989). Each leaf in the decision tree describes a probability
for S, and the internal nodes and arcs encode the necessary information
to decide how to choose among leaves, based on the values of S’s parents.
For example, in the tree of Figure 2(b) the probability of S =1 is 0 when
A = 0, regardless of the state of B and F; and the probability of S =1 is
0.95 when A =1 and B = 1, regardless of the state of E. In this example,
the decision tree requires four parameters instead of eight.

Our main hypothesis is that incorporating local structure representa-
tions into the learning procedure leads to two important improvements in
the quality of the induced models. First, the induced parameters are more
reliable. Since these representations usually require less parameters, the
frequency estimation for each parameter takes, on average, a larger num-
ber of samples into account and thus is more robust. Second, the global
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structure of the induced network is a better approximation to the real
(in)dependencies in the underlying distribution. The use of local struc-
ture enables the learning procedure to explore networks that would have
incurred an exponential penalty (in terms of the number of parameters re-
quired) and thus would have not been taken into consideration. We cannot
stress enough the importance of this last point. Finding better estimates of
the parameters for a global structure that makes unrealistic independence
assumptions will not overcome the deficiencies of the model. Thus, it is
crucial to obtain a good approximation of the global structure.

The experiments described in Section 5 confirm our main hypothesis.
Moreover, the results in that section show that the use of local represen-
tations for the CPDs significantly affects the learning process itself: The
learning procedures require fewer data samples in order to induce a net-
work that better approximates the target distribution.

The main contributions of this article are: the derivation of the scoring
functions and algorithms for learning the local representations; the formu-
lation of the hypothesis introduced above, which uncovers the benefits of
having an explicit local representation for CPDs; and the empirical inves-
tigation that validates this hypothesis.

CPDs with local structure have often been used and exploited in tasks
of knowledge acquisition from experts; as we already mentioned above, the
noisy-or gate and its generalizations are well known examples (Heckerman
and Breese, 1994; Pearl, 1988; Srinivas, 1993). In the context of learn-
ing, several authors have noted that CPDs can be represented via logis-
tic regression, noisy-or, and neural networks (Buntine, 1991b; Diez, 1993;
Musick, 1994; Neal, 1992; Spiegelhalter and Lauritzen, 1990). With the
exception of Buntine, these authors have focused on the case where the
network structure is fixed in advance, and motivate the use of local struc-
ture for learning reliable parameters. The method proposed by Buntine
(1991b) is not limited to the case of a fixed structure; he also points to
the use of decision trees for representing CPDs. Yet, in that paper, he does
not provide empirical or theoretical evidence for the benefits of using local
structured representations with regards to a more accurate induction of the
global structure of the network. To the best of our knowledge, the benefits
that relate to that, as well as to the convergence speed of the learning pro-
cedure (in terms of the number of training instances), have been unknown
in the literature prior to our work.

The reminder of this article is organized as follows: In Section 2 we re-
view the definition of Bayesian networks, and the scores used for learning
these networks. In Section 3 we describe the two forms of local structured
CPDs we consider in this article. In Section 4 we formally derive the score
for learning networks with CPDs represented as default tables and decision
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trees, and describe the procedures for learning these structures. In Sec-
tion 5 we describe the experimental results. We present our conclusions in
Section 6.

2. Learning Bayesian Networks

Consider a finite set U = {X3,..., X,,} of discrete random variables where
each variable X; may take on values from a finite domain. We use capital
letters such as X, Y, Z to denote variable names, and lowercase letters such
as z, y, z to denote specific values taken by those variables. The set of values
X can attain is denoted as Val(X); the cardinality of this set is denoted as
|| X|| = | Val(X)|. Sets of variables are denoted by boldface capital letters
such as X, Y, Z, and assignments of values to the variables in these sets are
denoted by boldface lowercase letters such as x,y,z (we use Val(X) and
||X]] in the obvious way).

Let P be a joint probability distribution over the variables in U, and
let X,Y,Z be subsets of U. X and Y are conditionally independent, given
Z, if for all x € Val(X),y € Val(Y), and z € Val(Z), we have that P(x |
z,y) = P(x | z) whenever P(y,z) > 0.

A Bayesian network is an annotated DAG that encodes a joint prob-
ability distribution of a domain composed of a set of random variables.
Formally, a Bayesian network for U is the pair B = (G, £). G is a DAG
whose nodes correspond to the random variables X4,..., X,, and whose
edges represent direct dependencies between the variables. The graph struc-
ture GG encodes the following set of independence statements: each variable
X; is independent of its nondescendants, given its parents in G. The set
composed of a variable and its parents is usually referred to as a family.

Standard arguments (Pearl, 1988) show that any distribution P that sat-
isfies the independence statements encoded in the graph G can be factored
as

n
P(Xy,..., X,) = [T P(Xi | Pay), (1)
=1
where Pa; denote the parents of X; in G. Note that to completely specify
a distribution of this form, we only need to provide the conditional prob-
abilities on the right hand side. This is precisely the second component of
the Bayesian network, namely L. This set of CPDs specify the conditional
probability P(X; | Pa;) for all variables X;. It immediately follows that
there is exactly one distribution that has the form of Equation 1 with the
conditional probabilities specified in L.

When we deal with discrete variables, we usually represent the CPDs in

L as conditional probability tables such as the one in Figure 1. These tables
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contain a parameter 6|, for each value z; € Val(X;) and pa; € Val(Pa;).
The problem of learning a Bayesian network can be now stated as follows.
Given a training set D = {uy,...,un} of instances of U, find a network
B = (G, L) that best matches D." To formalize the notion of goodness of
fit of a network with respect to the data, we normally introduce a scoring
function, and to solve the optimization problem we usually rely on heuristic
search techniques over the space of possible networks (Heckerman, 1995).
Several different scoring functions have been proposed in the literature. In
this article we focus our attention on the ones that are most frequently
used: the Minimal Description Length (MDL) score (Lam and Bacchus,
1994) and the BDe score (Heckerman et al., 1995a).

2.1. THE MDL SCORE

The MDL principle (Rissanen, 1989) is motivated by universal coding. Sup-
pose that we are given a set D of instances, which we would like to store
in our records. Naturally, we would like to conserve space and save a com-
pressed version of D. One way of compressing the data is to find a suitable
model for D that the encoder can use to produce a compact version of D.
Moreover, as we want to be able to recover D, we must also store the model
used by the encoder to compress D. The total description length is then de-
fined as the sum of the length of the compressed version of D and the
length of the description of the model used in the compression. The MDL
principle dictates that the optimal model is the one (from a particular class
of interest) that minimizes the total description length.

In the context of learning Bayesian networks, the model is a network.
Such a network, B, describes a probability distribution, Pg, over the in-
stances appearing in the data. Using this distribution, we can build an
encoding scheme that assigns shorter code words to more probable in-
stances (e.g., using Shannon encoding or a Huffman code; see Cover and
Thomas (1991)). According to the MDL principle, we should choose a net-
work, B, such that the combined length of the network description and
the encoded data (with respect to Pg) is minimized. This implies that the
learning procedure balances the complexity of the induced network with
the degree of accuracy with which the network represents the frequencies
in D.

We now describe in detail the representation length required for the
storage of both the network and the coded data. The MDL score of a
candidate network is defined as the total description length. To store a

'"Throughout this article we will assume that the training data is complete, i.e., that
each u; assigns values to all variables in U. Existing solutions to the problem of missing
values apply to the approaches we discuss below; see Heckerman (1995).
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network B = (GG, L), we need to describe U, GG, and L.

To describe U, we store the the number of variables, n, and the cardi-
nality of each variable X;. Since U is the same for all candidate networks,
we can ignore the description length of U in the comparisons between net-
works.

To describe the DAG G, it is sufficient to store for each variable X; a
description of Pa; (namely, its parents in (). This description consists of
the number of parents, k, followed by the index of the set Pa; in some
(agreed upon) enumeration of all (}) sets of this cardinality. Since we can
encode the number k using logn bits, and we can encode the index using
log (7) bits, the description length of the graph structure is?

DLgeapn (G) = Z <logn + log <|P::|)) .

k3

To describe the CPDs in £, we must store the parameters in each condi-
tional probability table. For the table associated with X;, we need to store
||Pa;||(]| X5|| — 1) parameters. The representation length of these parame-
ters depends on the number of bits we use for each numeric parameter. The
usual choice in the literature is 1/2log N (see Friedman and Yakhini (1996)
for a thorough discussion of this point). Thus, the encoding length of X;’s
CPD is

DLiay (X, Pag) = Z||Pay[[(|[Xil| - 1) log N.

1
2

To encode the training data, we use the probability measure defined by
the network B to construct a Huffman code for the instances in D. In this
code, the exact length of each codeword depends on the probability as-
signed to that particular instance. There is no closed-form description of
this length. However, it is known (Cover and Thomas, 1991) that we can
approximate the optimal encoding length using — log Pg(u) as the encod-
ing length of each instance u. Thus, the description length of the data is
approximated by

N
DLdata(D | B) = — Zlog PB(UZ').
=1

We can rewrite this expression in a more convenient form. We start by
introducing some notation. Let Pp be the empirical probability measure

2Since description lengths are measured in terms of bits, we use logarithms of base 2
throughout this article.
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induced by the data set D. More precisely, we define

1N
Pp(A) = ﬁZlA(“i) where 14(u) =

=1

1 ifueA
0 ifugA

for all events of interest, i.e., A C Val(U). Let N2(x) be the number of
instances in D where X = x (from now on, we omit the subscript from PD,
and the superscript and the subscript from N)lg, whenever they are clear
from the context). Clearly, N(x) = N - P(x). We use Equation 1 to rewrite
the representation length of the data as

N
DLawa(D | B) = =) log Py(u;)
= —NY P(u) log [ (i | pay)
= —Z ZN(SCi,Pai) log P(z; | pa;). (2)

i Zi,Ppa;

Thus, the encoding of the data can be decomposed as a sum of terms that
are “local” to each CPD: these terms depend only on the counts N (z;, pa;).
Standard arguments show the following.

Proposition 2.1: If P(X; | Pa;) is represented as a table, then the param-
eter values that minimize DLgaq(D | B) are 85, pa, = P(z; | pa;).

Thus, given a fixed network structure GG, learning the parameters that min-
imize the description length is straightforward: we simply compute the ap-
propriate long-run fractions from the data.

Assuming that we assign parameters in the manner prescribed by this
proposition, we can rewrite DLgu,(D | B) in a more convenient way in
terms of conditional entropy: N>, H(X; | Pa;), where H(X | Y) =
— ey ]5(36, y) log ]5(36 | y) is the conditional entropy of X, given Y. This
formula provides an information-theoretic interpretation to the representa-
tion of the data: it measures how many bits are necessary to encode the
value of X;, once we know the value of Pa,.

Finally, the MDL score of a candidate network structure G, assuming
that we choose parameters as prescribed above, is defined as the total de-
scription length

DL(G7D) = DLgmph(G)+ZDLtab(Xi7Pai)+

NZ H(X;| Pa;). (3)
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According to the MDL principle, we should strive to find the network struc-
ture that minimizes this description length. In practice, this is usually done
by searching over the space of possible networks.

2.2. THE BDE SCORE

Scores for learning Bayesian networks can also be derived from methods
of Bayesian statistics. A prime example of such scores is the BDe score,
proposed by Heckerman et al. (1995a). This score is based on earlier work
by Cooper and Herskovits (1992) and Buntine (1991b). The BDe score is
(proportional to) the posterior probability of each network structure, given
the data. Learning amounts to searching for the network(s) that maximize
this probability.

Let G denote the hypothesis that the underlying distribution satisfies
the independencies encoded in GG (see Heckerman et al. (1995a) for a more
elaborate discussion of this hypothesis). For a given structure G, let O¢
represent the vector of parameters for the CPDs quantifying G. The pos-
terior probability we are interested in is Pr(Gh D). Using Bayes’ rule we
write this term as

Pr(G" | D) = aPr(D | G") Pr(G"), (4)

where « is a normalization constant that does not depend on the choice of
G. The term Pr(G") is the prior probability of the network structure, and
the term Pr(D | G") is the probability of the data, given that the network
structure is G.

There are several ways of choosing a prior over network structures. Heck-
erman et al. suggest choosing a prior Pr(G") o« a®(G") | where A(G,G"),
is the difference in edges between G and a prior network structure G’, and
0 < a < 11is penalty for each such edge. In this article, we use a prior based
on the MDL encoding of G. We let Pr(G") 9PLgraph(D)

To evaluate the Pr(D | G") we must consider all possible parameter
assignments to GG. Thus,

Pr(D | G") = / Pr(D | O, G") Pr(Oc | G")dOg, (5)

where Pr(D | O, G") is defined by Equation 1, and Pr(Og | G") is the
prior density over parameter assignments to G. Heckerman et al. (following
Cooper and Herskovits (1992)) identify a set of assumptions that justify
decomposing this integral. Roughly speaking, they assume that each distri-
bution P(X; | pa;) can be learned independently of all other distributions.
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Using this assumption, they rewrite Pr(D | G") as

Pr(D | ") = [TTT [ TI6X 2™ PriOx, pa, | G")dOx om0

i Pa; Tq

(This decomposition is analogous to the decomposition in Equation 2.)
When the prior on each multinomial distribution Ox, ., is a Dirichlet
prior, the integrals in Equation 6 have a closed-form solution (Heckerman,
1995).

We briefly review the properties of Dirichlet priors. For more detailed
description, we refer the reader to DeGroot (1970). A Dirichlet prior for a
multinomial distribution of a variable X is specified by a set of hyperpa-
rameters {N! 1z € Val(X)}. We say that

Pr(©x) ~ Dirichlet({N. : z € Val(X)})
if /
Pr(®x) = ozHHi,VE,

where « is a normalization constant. If the prior is a Dirichlet prior, the
probability of observing a sequence of values of X with counts N (z) is

e ) D(N. 4 N(2))
ST priox | Ghdox = e Ty

where ['(z) = [;7t“"te~"dt is the Gamma function that satisfies the prop-
erties ['(1) =1 and I'(z + 1) = 2I'(z).
Returning to the BDe score, if we assign to each Ox,|pa, a Dirichlet prior

with hyperparameters N/ Jpa.’ then
D|Gh HH El’,N;Zh)a) HF( z|pa —|—N($Z,pa ))
i pa; Iz z |pa + N( )) i F(N;Jpa )

(7)

There still remains a problem with the direct application of this method.
For each possible network structure we would have to assign priors on the
parameter values. This is clearly infeasible, since the number of possible
structures is extremely large. Heckerman et al. propose a set of assumptions
that justify a method by which, given a prior network B? and an equivalent
sample size N’, we can assign prior probabilities to parameters in every
possible network structure. The prior assigned to Ox,|p,, in a structure G
is computed from the prior distribution represented in BP. In this method,
we assign | = N'- Ppy(z;,pa;). (Note that Pa; are the parents of

T |pa
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X; in GG, but not necessarily in BP.) Thus, their proposal essentially uses
the conditional probability of X;, given pa,, in the prior network BP as
the expected probability. Similarly, the confidence in the prior (e.g., the
magnitude of the hyperparameters) is proportional to the expected number
of occurrences of the values of Pa;.

The exposition above shows how to score a network structure G. In order
to make predictions about the probability distribution over the set of vari-
ables u, given a structure GG, we need to compute the set of parameters to
quantify the G. According to the Bayesian methodology, we should average
over all possible assignments to O¢g. Thus,

Pr(u| D,G") = /Pr(u |06, G") Pr(©g | D,G")dOg.

Once again we can decompose this term using the structure of the . Using
the assumptions stated above of completely observable data, and parameter
independence, we get that Pr(u | D,G") = [, Pr(; | pa;, D, G") where

PI‘(:CZ' | Pa;, D7 Gh) = /0X¢|pai Pl‘(0X¢|pai | Pa;, Da Gh)deXﬂpai'
If we use Dirichlet priors, then these integrals have the closed-form solution

Pr(‘ri | pai7D7Gh) = Z l|]Iifalt| —I—N(pa)
Iy z;|Pa; 3

When we consider large data sets, the MDL score and the BDe score tend
to score candidate structures similarly. More precisely, these two scores
are asymptotically equivalent. This equivalence can be derived by using
asymptotic approximations to the I'(-) function in Equation 7, as done by
Bouckaert (1994), or by using a general result of Schwarz (1978). Schwarz
shows that, given some regularity constraints on the prior,

. d
logPr(D | G") =~ logPr(D | ©g,G") — §log N, (8)

where O¢ are the maximum likelihood parameters for G, given D, and d is
the dimension of G, which in our setting is the number of free parameters
in G.

Note that the term on the right-hand side of Equation 8 (which one
attempts to maximize) is the negative of the MDL score of Equation 3
(which one attempts to minimize), when we ignore the description of G,
which corresponds to the logarithm of the prior Pr(G"). Note also that this
term is negligible in the asymptotic analysis, since it does not depend on

N.
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3. Local Structure

In the discussion above, we have assumed the standard tabular repre-
sentation of the CPDs quantifying the networks. This representation re-
quires that for each variable X; we encode a locally exponential number,
||Pa;||(]| X4|| — 1), of parameters. In practice, however, the interaction be-
tween X; and its parents Pa; can be more benign, and some regularities
can be exploited to represent the same information with fewer parameters.
In the example of Figure 1, the the CPD for S can be encoded with four
parameters, by means of the decision tree of Figure 2(b), in contrast to the
eight parameters required by the tabular representation.

A formal foundation for representing and reasoning with such regularities
is provided in the notion of context-specific independence (CSI) (Boutilier
et al., 1996). Formally, we say that X and Y are conteztually independent,
given Z and the context ¢ € Val(C), if

P(X|Z,c,Y)=P(X|Z,c) whenever P(Y,Z,c) > 0. 9)

CSI statements are more specific than the conditional independence state-
ments captured by the Bayesian network structure. CSI implies the inde-
pendence of X and Y, given a specific value of the context variable(s), while
conditional independence applies for all value assignments to the condition-
ing variable. As shown by Boutilier et al. (1996), the representation of CSI
leads to several benefits in knowledge elicitation, compact representation,
and computational efficiency. As we show here, CSI is also beneficial to
learning, since models can be quantified with fewer parameters.

As we can see from Equation 9, CSI statements force equivalence re-
lations between certain conditional probabilities. If X; is contextually in-
dependent of Y given Z and ¢ € Val(C), then P(X; | Z,¢c,y) = P(X; |
Z,c,y') for y,y' € Val(Y). Thus, if the parent set Pa; of X; is equal to
YUZUC, such CSI statements will induce equality constraints among the
conditional probability of X; given its parents. This observation suggests
an alternative way of thinking of local structure in terms of the partitions
they induce on the possible values of the parents of each variable X;. We
note that while CSI properties imply such partitions, not all partitions can
be characterized by CSI properties.

These partitions impose a structure over the CPDs for each X;. In this
article we are interested in representations that explicitly capture this struc-
ture that reduces the number of parameters to be estimated by the learning
procedure. We focus on two representations that are relatively straightfor-
ward to learn. The first one, called default tables, represent a set of singleton
partitions with one additional partition that can contain several values of
Pa;. Thus, the savings it will introduce depends on how many values in
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Val(Pa;) can be grouped together. The second representation is based on
decision trees and can represent more complex partitions. Consequently it
can reduce the number of parameters even further. Yet the induction al-
gorithm for decision trees is somewhat more complex than that of default
tables.

We introduce a notation that simplifies the presentation below. Let L be
a representation for the CPD for X;. We capture the partition structure
represented by L using a characteristic random variable T,. This random
variable maps each value of Pa; to the partition that contains it. Formally,
Yr(pa;) = Tr(pal) for two values pa; and pa} of Pa;, if and only if these
two values are in the same partition in L. It is easy to see that from the
definition of Y, we get P(X; | Tr) = P(X; | Pa;), since if Pa; and Pa!
are in the same partition, it must be that P(X; | pa;) = P(X; | pal).
This means that we can describe the parameterization of the structure L
in terms of the characteristic random variable Y, as follows: ©7, = {0/, :
z; € Val(X;),v € Val(Yr)}.

As an example, consider the tabular CPD representation, in which no CSI
properties are taken into consideration. This implies that the corresponing
partitions contain exactly one value for Pa;. Thus, in this case, Val(Yr)
is isomorphic to Val(Pa;). CPD representations that specify CSI relations
will have fewer partitions, and thus will require fewer parameters.

In the sections below we formally describe default tables and decision
trees, and the partition structures they represent.

3.1. DEFAULT TABLES

A default table is similar to a standard tabular representation of a CPD, ex-
cept that only a subset of the possible values of the parents of a variable are
explicitly represented as rows in the table. The values of the parents that
are not explicitly represented as individual rows are mapped to a special
row called the default row. The underlying idea is that the probability of a
node X is the same for all the values of the parents that are mapped to the
default row; therefore, there is no need to represent these values separately
in several entries. Consequently, the number of parameters explicitly repre-
sented in a default table can be smaller than the number of parameters in
a tabular representation of a CPD. In the example showing in Figure 2(a),
all the values of the parents of S, where A = 0 (the alarm is not armed),
are mapped to the default row in the table, since the probability of S =1
is the same in all of these situations, regardless of the values of B and F.
Formally, a default table is an object D = (Sp,Op). Sp describes the
structure of the table, namely, which rows are represented explicitly, and
which are represented via the default row. We define Rows(D) C Val(Pa;)
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to be the set of rows in D that are represented explicitly. This structure
defines the following characteristic random variable. If pa; € Rows(D), then
the value T (pa;) is the partition that contains only pa;. If pa;, ¢ Rows(D),
then the value Y(pa;) is the default partition that contains all the values
that are not explicitly represented, that is Val(Pa;) — Rows(D). Thus, the
partitions defined by the default table correspond to the rows in the explicit
representation of the table (e.g., as in Figure 2(a)).

The set of parameters, ©p, constitutes the parameterization for D. It
contains parameters 6., for each value z; € Val(Yp). To determine P(z; |
pa;) from this representation we need to consider two cases. If pa, €
Rows(D), then P(z; | pa;) = 04,7 =(pa,}- If Pa; € Rows(D), then P(z; |
pa;) = O, r,=p, where D = Val(Pa;) = Rows(D) is the partition that
corresponds to the default row.

3.2. DECISION TREES

A decision tree for variable X is a tree in which each internal node is
annotated with a parent variable, outgoing edges from a particular node
are annotated with the values that the variable represented by that node
can take, and leaves are annotated with a probability distribution over X.
The process of retrieving the probability of X, given a value of its parents,
is as follows. We start at the root node and traverse the tree until we reach
a leaf. At each internal node, we choose which subtree to traverse by testing
the value of the parent that annotates that node and following the outgoing
edge that corresponds to that value. Thus, suppose that we would like to
know Pr(S=1| A =1,B=0,F = 1) in the tree shown in Figure 2(b).
We follow the edge to the right subtree at A, since this edge is annotated
with the value 1 for A. Similarly, we follow the left edge at B (annotated
with 0), and again the right edge at F, till we reach the appropriate leaf.
Formally, we denote a tree as an object 7 = (S7,07). The first com-
ponent, S represents the structure of the tree, and is defined recursively.
A tree can be either a leaf or a composite tree. A leaf is represented by a
structure equal to a special constant S+ = A. A composite tree is repre-
sented by a structure of the form S+ = (Y, {S7, : y € Val(Y)}), where Y
is the test variable at the root of the tree, and S7, is a tree structure, for
each value y of Y. We denote by Label(T) the variable tested at the root of
T, and by Sub(T,v) the subtree associated with the value v of Label(T).
Finally, we need to describe the partitions induced by this representa-
tion. Let a path be the set of arcs lying between the root and a leaf. A path
is consistent with pa, if the labeling of the path is consistent with the as-
signment of values in pa;. It is easy to verify that for every pa; € Val(Pa;)
there is a unique consistent path in the tree. The partitions induced by a
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decision tree correspond to the set of paths in the tree, where the partition
that correspond to a particular path p consists of all the value assignments
that p is consistent with. Again, we define the set of parameters, O, to
contain parameters 6, |, for each value z; € Val(Tp). That is, we associate
with each (realizable) path in the tree a distribution over X;. To deter-
mine P(z; | pa;) from this representation, we simply choose 6,,,, where
v = {pal | pal is consistent with p}, where p is the (unique) path that is
consistent with pa,.

4. Learning Local Structure

We start this section by deriving both the MDL and BDe scoring functions
for default table and decision tree representations. We then describe the
procedures for searching for high scoring networks. Note that the material
in this section can be easily generalized to derive a score and produce
a learning procedure for any structured representation of the CPDs that
represents a partition over the values of the parent variables. (See Boutilier
et al. (1996) for a discussion of such representations.)

4.1. SCORING FUNCTIONS

We introduce some notations necessary for our derivations. Let L denote
a local representation of P(X; | Pa;), e.g., a default table, a tree, or a
(complete) table. We denote by Sy, the structure of the local representation
L, and by ©p, the parameterization of L. We assume that O = {0, :
z; € Val(X;),v € Val(Yr)}.

4.1.1. MDL Score for Local Structure
Let B = (G,{L;}) be a Bayesian network, where L; is the local representa-
tion of P(X; | Pa;). The MDL encoding of the DAG G remains the same
as in Section 2.1. Changes occur in the encoding of L;. We now have to
encode the structure Sy, and the parameters Oy,. Additionally, the choice
of optimal parameters, given the data, now depends on the choice of local
structure.

First, we describe the encoding of S7, for both default table and tree
representations.

When L is a default table D, we need to describe the set of rows that are
represented explicitly in the table, that is, Rows(D). We start by encoding
the number k£ = | Rows(D)|; then we describe Rows(D) by encoding its index

in some (agreed upon) enumeration of all (”P;i”) sets of this cardinality.
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Thus, the description length of the structure D is

Pa;
DLlocal-struct(D) = log ||Pa2|| + IOg (H :||) '

When L is a tree T, we need to encode the structure of the tree, and
the labeling of internal nodes in the tree. We use the encoding proposed by
Quinlan and Rivest (1989).% A tree is encoded recursively as follows: a leaf is
encoded by a single bit with value equal to 0. The encoding of a composite
tree starts with a bit set to the value 1, to differentiate it from a leaf,
followed by a description of the associated test variable and the description
of all the immediate subtrees. The encoding of the test variable depends
on the position of the node in the tree. At the root, the test variable can
be any of X;’s parents. In contrast, at the a subtree, the choice of a test
variable is more restricted, since along a single path we test each variable
at most once. In general, if there are k variables that have not been tested
yet in the path from the root to the current node in the tree, then we need
to store only log(k) bits to describe the test variable. The total description
length of the tree structure is described by the following recurring formula:

1 if 7 is a leaf,
DLy (T,k) =14 1+log(k)+ >, DL7(T;,k — 1) if T is a composite tree
with subtrees 71, ..., 7.

Using this formula, we define DLjcarstruct(T) = DL7(T, |Payl).
Next, we encode the (||X;|| — 1)||Y|| parameters for L with description
length

1
DLparam (L) = 5([[Xill = DIIT1[[log N.

Finally, as we did in Section 2.1, we describe the encoding of the data
given the model using Equation 2.

We now generalize Proposition 2.1 to describe the optimal choice of pa-
rameters for a network when CPDs are represented using local structure.

Proposition 4.1: If P(X; | Pa;) is represented by local representation L;,
fori=1,...,n, then we can rewrite DL 4,(D | B) as

DLgata(D | B) = =N Z Z ZP(‘r“ T, =v)log 0Ii|u-
¢ weVal(Yyp;) T

*Wallace and Patrick (1993) note that this encoding is inefficient, in the sense that
the number of legal tree structures that can be described by n-bit strings, is significantly
smaller than 2". Their encoding, which is more efficient, can be easily incorporated into
our MDL encoding. For clarity of presentation, we use the Quinlan and Rivest encoding
in this article.



18 NIR FRIEDMAN AND MOISES GOLDSZMIDT
Moreover, the parameter values for L that minimize DLgq,(D | B) are

01?,‘|TL£.:U = P('rl | TLi = IU)'

As in the case of tabular CPD representation, DL ., is minimized when
the parameters correspond to the appropriate frequencies in the train-
ing data. As a consequence of this result, we find that for a fixed lo-
cal structure L, the minimal representation length of the data is simply
N -H(X | Yg). Thus, once again we derive an information-theoretic inter-
pretation of DL 444(0r, D). This interpretation shows that the encoding of
X depends only on the values of Y. From the data processing inequality
(Cover and Thomas, 1991) it follows that H(X; | Tr,) > H(X; | Pa;). This
implies that a local structure cannot fit the data better than a tabular CPD.
Nevertheless, as our experiments confirm, the reduction in the number of
parameters can compensate for the potential loss in information.

To summarize, the MDL score for a graph structure augmented with a
local structure L; for each X is

DL(G7 L17 sy Lna D) - DLgmph(G) + Z(DLlocal-struct(Li) + DLpamm(Li))

+NY H(X|TL,).

4.1.2. BDe Score for Local Structure

We now describe how to extend the BDe score for learning local struc-

ture. Given the hypothesis G", we denote by E}C‘; the hypothesis that the

underlying distribution satisfies the constraints of a set of local structures

L=AL;:1<1i<n}, where L; is a local structure for the CPD of X; in G.
Using Bayes’ rule, it follows that

Pr(G" LL | D) o Pr(D | LE, GMY Pr(LL | G*) Pr(G").

The specification of priors on local structures presents no additional compli-
cations other than the specification of priors for the structure of the network
G". Buntine (1991a, 1993), for example, suggests several possible priors on
decision trees. A natural prior over local structures is defined via the MDL
Gh) x 27 Zz DLiseal-struct(L) i

For the term Pr(D | L%, G"), we make an assumption of parameter in-
dependence, similar to the one made by Heckerman et al. (1995a) and by
Buntine (1991b): the parameter values for each possible value of the charac-
teristic variable T, are independent of each other. Thus, each multinomial

description length, by setting Pr(ﬁg
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sample is independent of the others, and we can derive the analogue of
Equation 6:

Pr(D |t GM=1] 1[I /Ho “iv) pr( (Ox,, | Li",GM)dOx,,
i vE Val(TL )
(10)
(This decomposition is analogous to the one described in Proposition 4.1.)
As before, we assume that the priors Pr(Ox,, | Lk G") are Dirichlet, and
thus we get a closed-form solution for Equation 10,

B (e Now) D(N,, + N(zi,v))
Pr(D | L5, 6N =T 11 U, N2, + N(v)) 4 L(N.) '

i wE Val(Tp,;)

Once more we are faced with the problem of specifying a multitude of
priors, that is, specifying Pr(Ox,, | Lk G") for each possible combination
of global and local structures. Our objective, as in the case tabular CPDs,
is to set these priors from a prior distribution represented by a specific
network BF.

Recall that the values of the characteristic random variable are the par-
titions imposed by the local structure over Val(Pa;). We make two assump-
tions regarding the priors and the groupings generated by this partition.

First, we assume that the prior for a value of the characteristic vari-
able does not depend on the local structure. It depends only on the set of
instances of the parents that are grouped by this particular value of the
characteristic random variable. For example, consider two possible trees for
the same CPD, one that tests first on Y and then on Z, and another that
tests first on Z and then on Y. Our assumption requires that the leaves
that correspond to Y =y, Z = z, be assigned the same prior in both trees.

Second, we assume that the vector of Dirichlet hyperparameters assigned
to an element of the partition that corresponds to a union of several smaller
partitions in another local structure is simply the sum of the vectors of
Dirichlet hyperparameters assigned to these smaller partitions. Again, con-
sider two trees, one that consists of a single leaf, and another that has one
test at the root. This assumption requires that for each z; € Val(X;), the
Dirichlet hyperparameter N;AU, where v is the root in the first tree, is the
sum of the Ng’MU, for all the leaves in the second tree.

It is straightforward to show that if a prior distribution over structures,
local structures, and parameters satisfies these assumptions and the as-
sumptions of Heckerman et al. (1995a), then there must be a distribution
P’ and a positive real N’ such that for any structure G and any choice of
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local structure L4 for G

Pr(©x,, | LL,G") ~ Dirichlet({N'- P'(z;,TF = v) : 2; € Val(X;)}) .
(1)
This result allows us to represent the prior information using a Bayesian
network B’ (that specifies the prior distribution P’) and a positive real
N’. From these two, we compute the Dirichlet hyperparameters for every
hypothesis we need to evaluate during learning.
Finally, we note that we can use Schwarz’s result (1978) to show that
the MDL and BDe scores for local structure are asymptotically equivalent.

4.2. LEARNING PROCEDURES

Once we define the appropriate score, the learning task reduces to finding
the network that maximizes the score, given the data. Unfortunately, this is
an intractable problem. Chickering (1996) shows that finding the network
(quantified with tabular CPDs) that maximizes the BDe score is NP-hard.
Similar arguments also apply to learning with the MDL score. Moreover,
there are indications that finding the optimal decision tree for a given fam-
ily also is an NP-hard problem; see Quinlan and Rivest (1989). Thus, we
suspect that finding a graph G and a set of local structures {Ly,...,L,}
that jointly maximize the MDL or BDe score is also an intractable problem.

A standard approach to dealing with hard optimization problems is
heuristic search. Many search strategies can be applied. For clarity, we fo-
cus here on one of the simplest, namely greedy hillclimbing. In this strategy,
we initialize the search with some network (e.g., the empty network) and
repeatedly apply to the “current” candidate the local change (e.g., adding
and removing edges) that leads to the largest improvement in the score.
This “upward” step is repeated until a local maxima is reached, that is,
no modification of the current candidate improves the score. Heckerman et
al. (1995a) compare this greedy procedure with several more sophisticated
search procedures. Their results indicate that greedy hillclimbing can be
quite effective for learning Bayesian networks in practice.

The greedy hillclimbing procedure for learning network structure can be
summarized as follows.

procedure LearnNetwork( G )
Let chrrent — GO
do
Generate all successors S = {G1,...,G,} of Geyrrent
AScore = maxges Score(G) — Score(Geurrent)
If AScore > 0 then
Let Giurrent ¢ argmaxges Score(()
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while( AScore > 0)

return chrrent

The successors of the current structure are generated by adding an arc,
removing an arc, and reversing the direction of an arc. (We consider only
legal successors that do not involve a cycle.)

This greedy procedure is particularly efficient for learning Bayesian net-
works since the scores we use decompose. That is, both the MDL score and
the (logarithm of the) BDe score have the the form }~; Score(X; | Pa;).
Since the successors considered during the search modify at most two par-
ent sets, we only need to recompute few terms to evaluate each successor.
Moreover, we can cache these computations to get additional savings; see
Bouckaert (1994) and Buntine (1991b).

When allowing local structured representations, we modify this loop by
adding a learning operation before scoring each successor of GG. This modi-
fication invokes a local search procedure that attempts to find (an approxi-
mation to) the best local structure for the each CPD. Since only one or two
parent sets are modified in each successor, we invoke this procedure only
for these CPDs.

The specific procedures used for learning default tables and decision trees
are described next. Since these procedures are applied independently to
each CPD, we fix the choice of X; and of its parents Pa; in the discussion
below. Both procedures rely on additional decomposability properties of
the score functions, in terms of the underlying partitions defined by the
characteristic random variable. More precisely, the score of the data, given
the local structure (i.e., ; DL a4, for MDL, and log Pr(D | G", LL) for BDe),
can be written as a sum

Z Z Score(X; | v),

i wE Val(Tp,;)

where Score(X; | v) is a function of counts of the possible values X; takes
in these instances where Y7, = v. This decomposition implies that if we
consider refining the local structure by replacing one partition (that corre-
sponds to one value of Tr,,) by the union of several partitions, then we only
need to reevaluate the terms that correspond to these new subpartitions.
We use a greedy strategy for inducing default tables. The procedure
starts with a trivial default table containing only the default row. Then,
it iteratively refines the default row, by finding the single row (i.e., assign-
ment of values to the parents) that when represented explicitly leads to the
biggest improvement in the score. This refinement can be done efficiently,
since we need only to replace the term that corresponded to the previous
default row with the sum of the terms that correspond to the new row and
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the new default row. This greedy expansion is repeated until no improve-
ment in the score can be gained by adding another row. The procedure is
summarized as follows.

procedure LearnDefault()
Let Rows(D) + 0
do
Let r = argmax, ¢ yyjpa;)— Rows(D) Score(Rows(D) U {r})
if Score(Rows(D) U {r}) < Score(Rows(D)) then
return Rows(D)
Rows(D) + Rows(D) U {r}

end

For inducing decision trees, we adopt the approach outlined by Quinlan
and Rivest (1989). The common wisdom in the decision-tree learning liter-
ature (e.g., Quinlan (1993)), is that greedy search of decision trees tends to
become stuck at bad local minima. The approach of Quinlan and Rivest at-
tempts to circumvent this problem using a two-phased approach. In the first
phase we “grow” the tree in a top-down fashion. We start with the trivial
tree consisting of one leaf, and add branches to it in a greedy fashion, until
a maximal tree is learned. Note that in some stages of this growing phase,
adding branches can lower the score: the rationale is that if we continue to
grow these branches, we might improve the score. In the second phase, we
remove harmful branches by “trimming” the tree in a bottom-up fashion.
We now describe the two phases in more details.

In the first phase we grow a tree in a top-down fashion. We repeatedly
replace a leaf with a subtree that has as its root some parent of X, say Y;
and whose children are leaves, one for each value of Y. In order to decide on
which parent Y we should split the tree, we compute the score of the tree
associated with each parent, and select the parent that induces the best
scoring tree. Since the scores we use are decomposable, we can compute
the split in a local fashion by evaluating on the instances with respect to
the training data that are compatible with the path from the root of the
tree to the node that is being split. This recursive growing of the tree stops
when the node has no training instances associated with it, the value of X
is constant in the associated training set, or all the parents of X have been
tested along the path leading to that node.

In the second phase, we trim the tree in a bottom-up manner. At each
node we consider whether score of the subtree rooted at that node is better
or equal to the score replacing that subtree by a leaf. If this is the case,
then the subtree is trimmed and replaced with a leaf.

These two phases can be implemented by a simple recursive procedure,
LearnTree, that receives a set of instances and returns the “best” tree for
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this set of instances.

procedure SimpleTree(Y')
For y € Val(Y), let [, < A (i.e., a leaf)
return (Y, {l, 1y € Val(Y)})
end
procedure LearnTree(D)
if D =0 or X; is homogeneous in D then
return A.
// Growing phase
Let Yspir = arg maxy pgy. Score(SimpleTree(Y) | D)
for y € Val(Yspiir)
Let Dy = {u; € D : Yy =y in u;}
Let 7, = ExpandTree( A, D,)
let 7 = (Ypit,{Ty 1y € Val(Y)})
// Trimming phase
if Score(A| D) > Score(T | D) then
return A
else
return T
end

5. Experimental Results

The main purpose of our experiments is to confirm and quantify the hy-
pothesis stated in the introduction: A learning procedure that learns local
structures for the CPDs will induce more accurate models for two reasons:
1) fewer parameters will lead to a more reliable estimation, and 2) flexible
penalty for larger families will result in network structures that are better
approximations to the real (in)dependencies in the underlying distribution.

The experiments compared networks induced with table-based, tree-
based, and default-based procedures, where an X-based procedure learns
networks with X as the representation of CPDs. We ran experiments using
both the MDL score and the BDe score. When using the BDe score, we
also needed to provide a prior distribution and equivalent sample size. In
all of our experiments, we used a uniform prior distribution, and examined
several settings of the equivalent sample size N’. All learning procedures
were based on the same search method discussed in Section 4.2.

We ran experiments with several variations, including different settings
of the BDe prior equivalent size and different initialization points for the
search procedures. These experiments involved learning approximately 15,000
networks. The results are summarized below.
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TABLE 1. Description of the networks used in the experiments.

Name Description | n [14]]| O]

Alarm A network by medical experts for monitoring patients in | 37 253.95 509
intensive care (Beinlich et al., 1989).

Hailfinder | A network for modeling summer hail in northeastern Col- | 56 210656 2g54
orado (http://www.lis.pitt.edu/"dsl/hailfinder).

Insurance | A network for classifying insurance applications (Russell et | 27

al., 1995).

244.57 1008

5.1. METHODOLOGY

The data sets used in the experiments were sampled from three Bayesian
networks whose main characteristics are described in Table 1. From each of
these networks we sampled training sets of sizes—250, 500, 1000, 2000, 4000,
8000, 16000, 24000, and 32000 instances—and ran the learning procedures
on them. The learning procedures received only the data sets, and did not
have access to the generating network. In order to increase the accuracy of
the results, we repeated the experiment with 10 (independently sampled)
sets of training data. In all of the experiments, the methods we compared
received as input the same training data.

By virtue of having a golden model in each experiment, represented by
the original networks, we could precisely quantify the error between the
induced models and the original model. We were also able to quantify the
effect of the local structures on the parameter estimation and the structure
selection.

5.2. MEASURES OF ERROR

As the main measurement of error we use the entropy distance (also known
as Kullbak-Leibler divergence and relative entropy) from the generating dis-
tribution to the induced distribution. The entropy distance from a distri-
bution P to an approximation () is defined as

D(PIQ) = ¥ Ple) %

This quantity is a measure of the inefficiency incurred by assuming that
the distribution is ) when the real distribution is P. Note that the en-
tropy distance is not symmetric, i.e., D(P|Q) is not equal in general to
D(Q|P). Another important property of the entropy distance function is
that D(P|Q) > 0, where equality holds if and only if P = Q.
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There are several possible justifications for using the entropy distance.
On the axiomatic side, Shore and Johnson (1980) suggest several desirable
properties of approximation measures, and show that entropy distance is
the only function that satisfies all of them. There are also motivating exam-
ples from data compression and gambling. In both examples, the entropy
distance measures the loss incurred by using the distribution @ instead of
the true distribution P (e.g., additional bits needed or expected monetary
losses). We refer the reader to Cover and Thomas (1991) for a discussion
and a detailed analysis of these examples.

Measuring the entropy distance of the induced networks allows us to
compare the generalization error of the different procedures. We are also
interested in assessing the separate influences of the parameter estimation
and the induced network structure on this error.

Let G be a network structure. We define the inherent error of G with
respect to a target distribution P* as

Daract(P*1G) = min D(P)(G, 0)).

The inherent error of G is the smallest error achievable by any possible
choice of CPDs L for G. Thus, even if we can find the “best” possible param-
eters for GG, we still cannot hope to get a smaller error than Dggpuct(P*|G).

As it turns out, this measure of error can be evaluated by means of
a closed-form equation. As we might expect, the best CPDs for G are
those where the conditional distribution of X;, given Pa;, is identical to
P*(X; | Pa;).

Proposition 5.1: Let G be a network structure and let P* be a distribu-
tion. Then Dgpruet(P*|G) = D(P*|(G, L*)), where L* is such that P(X; |
Pa;) = P*(X; | Pa;) for alli.

An alternative way of thinking about the inherent error of a network
structure G, is as a measure of how “reasonable” are the independence
assumptions encoded in G. We can attempt to measure the error of the
network structure by estimating to what degree each of these independen-
cies is violated in P*. One way of measuring the strength of the depen-
dency between variables is the measure of conditional mutual information.
Let X,Y,Z be three sets of variables; the conditional mutual information
between X and Y, given Z, is defined as

1p(X;Y | Z) = Hp(X | 2) - Hp(X | Y, 2).

Intuitively, this term measures how much the knowledge of Y helps us
compress X when we already know Z. It well known that Ip(X;Y | Z) > 0,
and that Ip(X;Y | Z) = 0, if and only if X is independent of Y, given Z
(Cover and Thomas, 1991).
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Using the mutual information as a quantitative measure of strength of de-
pendencies, we can measure the extent to which the independence assump-
tions represented in GG are violated in the real distribution. This suggests
that we evaluate this measure for all conditional independencies represented
by GG. However, many of these independence assumptions “overlap” in the
sense that they imply each other. Thus, we need to find a minimal set of
independencies that imply all the other independencies represented by G.
Pearl (1988) shows how to construct such a minimal sets of independence.
Assume that the variable ordering Xy,..., X, is consistent with the arc
direction in G (i.e., if X; is a parent of X, then ¢ < j). If, for every ¢,
X; is independent of {X1,...X;_1} — Pa,;, given Pa;, then using the chain
rule we find that P can be factored as in Equation 1. As a consequence, we
find that this set of independence assumptions implies all the independence
assumptions that are represented by G. Starting with different consistent
orderings, we get different minimal sets of assumptions. However, the next
proposition shows that evaluating the error of the model with respect to
any of these sets leads to the same answer.

Proposition 5.2: Let G be a network structure, Xy, ..., X,, be a variable
ordering consistent with arc direction in G, and P* be a distribution. Then

Dytruct(P*|G) = > Ip+ (Xi;{X1,... Xi.1} — Pa; | Pa;) .

This proposition shows that Dggruct(P*|G) = 0 if and only if G is an I-
map of P*; that is, all the independence statements encoded in G are also
true of P*. Small values of Dggruct(P*|G) indicate that while G is not an
[-map of P*, the dependencies not captured by GG are “weak.” We note that
Dgtruct(P*|G) is a one-sided error measure, in the sense that it penalizes
structures for representing wrong independence statements, but does not
penalize structures for representing redundant dependence statements. In
particular, complete network structures (i.e., ones to which we cannot add
edges without introducing cycles) have no inherent error, since they do not
represent any conditional independencies.

We can postulate now that the difference between the overall error (as
measured by the entropy distance) and the inherent error is due to errors
introduced in the estimation of the CPDs. Note that when we learn a lo-
cal structure, some of this additional error may be due to the induction
of an inappropriate local structure, such as a local structure that makes
assumptions of context-specific independencies that do not hold in the tar-
get distribution. As with global structure, we can measure the inherent
error in the local structure learned. Let G be a network structure, and let
Stys...,SL, be structures for the CPDs of GG. The inherent local error of
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G and St,,...,51, 1s

Dlocal(P*”Gv {SL17 . -7SLn}) = o min D(P” (G7 {(SLN ®L1)7 SERE) (SLm ®Ln)}))

Ly Lp

From the above, we get the following expected generalization of Proposi-
tion 5.1.

Proposition 5.3: Let G be a network structure, let Sy, ..., S, be local
structure for the CPDs of G, and let P* be a distribution. Then

Diocat (PG5 {51y -5 Sp,}) = D(PT|(G, L£7)),
where L* is such that P(X; | Yr,) = P*(X; | Yr,) for all 1.

From the definitions of inherent error above it follows that for any net-

work B = (G, L),
D(P*”PB) > Dlocal(P*"G7 {SL17 .- -7SLn}) > Dstruct(P*"G)-

Using these measures in the evaluation of our experiments, we can mea-
sure the “quality” of the global independence assumptions made by a net-
work structure (Dsgruct), the quality of the local and global independence
assumptions made by a network structure and a local structure (Diocal),
and the total error, which also includes the quality of the parameters.

5.3. RESULTS

We want to characterize the error in the induced models as a function
of the number of samples used by the different learning algorithms for
the induction. Thus, we plot learning curves where the z-axis displays the
number of training instances N, and the y-axis displays the error of the
learned model. In general, these curves exhibit exponential decrease in the
error. This makes visual comparisons between different learning procedures
hard, since the differences in the large-sample range (N > 8000) are ob-
scured, and, when a logarithmic scale is used for the z-axis, the differences
at the small-sample range are hard to visualize. See for example Figure 3(a)
and (b).

To address this problem, we propose a normalization of these curves,
motivated by the theoretical results of Friedman and Yakhini (1996). They
show that learning curves for Bayesian networks generally behave as a linear
function of %. Thus, we plot the error scaled by %. Figure 5(a) shows
the result of the application of this normalization to the curves in Figure 3.
Observe that the resulting curves are roughly constant. The thin dotted
diagonal lines in Figure 5(a) correspond to the lines of constant error in
Figure 3. We plot these lines for entropy distances of 1/2¢ for i = 0,...,6.
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Figure 3. (a) Error curves showing the entropy distance achieved by procedures using
the MDL score in the Alarm domain. The z-axis displays the number of training instances
N, and the y-axis displays the entropy distances of the induced network. (b) The same
curves with logarithmic y-axis. Each point is the average of learning from 10 independent
data sets.

Figures 4 and 5 display the entropy distance of networks learned via the
BDe and MDL scores (Table 2 summarizes these values.) In all the exper-
iments, the learning curves appear to converge to the target distribution:
eventually they would intersect the dotted line of ¢ entropy distance for all
€ > 0. Moreover, all of them appear to (roughly) conform to the behavior
specified by the results of Friedman and Yakhini.

With respect to the entropy distance, tree-based procedures performed
better in all our experiments than table-based procedures. With few excep-
tions, the default-based procedures also performed better than the table-
based procedures in the Alarm and Insurance domains. The default-based
methods performed poorly in the Hailfinder domain.

As a general rule, we see a constant gap in the the curves corresponding
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Figure 4. Normalized error curves showing the entropy distance achieved by procedures
using the BDe (with N’ = 1) score in the (a) Alarm domain, (b) Hailfinder domain, and
(c) Insurance domain. The z-axis displays the number of training instances N, and the
y-axis displays the normalized entropy distances of the induced network (see Section 5.2).
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Figure 5. Normalized error curves showing the entropy distance achieved by procedures
using the MDL score in the (a) Alarm domain, (b) Hailfinder domain, and (c) Insurance
domain.



LEARNING BAYESIAN NETWORKS WITH LOCAL STRUCTURE 31

to different representations. Thus, for a fixed NV, the error of the procedure
representing local structure is a constant fraction of the error of the cor-
responding procedure that does not represent local structure (i.e., learns
tabular CPDs). For example, in Figure 4(a) we see that in the large-sample
region (e.g., N > 8000), the errors of procedures that use trees and default
tables are approximately 70% and 85% (respectively) of the error of the
table-based procedures. In Figure 5(c) the corresponding ratios are 50%
and 70%.

Another way of interpreting these results is obtained by looking at the
number of instances needed to reach a particular error rate. For example,
In Figure 4(a), the tree-based procedure reaches the error level of 55 with
approximately 23,000 instances. On the other hand, the table-based proce-
dure barely reaches that error level with 32,000 instances. Thus, if we want
to ensure this level of performance, we would need to supply the table-based
procedure with 9,000 additional instances. This number of instances might
be unavailable in practice.

We continued our investigation by examining the network structures
learned by the different procedures. We evaluated the inherent error, Dgiruct,
of the structures learned by the different procedures. In all of our experi-
ments, the inherent error of the network structures learned via tree-based
and default-based procedures is smaller than the inherent error of the net-
works learned by the corresponding table-based procedure. For example,
examine the Dgiryet column in Tables 3 and 4. From these results, we con-
clude that the network structures learned by procedures using local rep-
resentations make fewer mistaken assumptions of global independence, as
predicted by our main hypothesis.

Our hypothesis also predicts that procedures that learn local represen-
tation are able to assess fewer parameters by making local assumptions of
independence in the CPDs. To illustrate this, we measured the inherent
local error, Diycal, and the number of parameters needed to quantify these
networks. As we can see in Tables 3 and 4, the networks learned by these
procedures exhibit smaller inherent error, Dgiruct; but they require fewer
parameters, and their inherent local error, Diycal, is roughly the same as
that of networks learned by the table-based procedures. Hence, instead of
making global assumptions of independence, the local representation pro-
cedures make the local assumptions of independence that better capture
the regularities in the target distribution and require fewer parameters.
As a consequence, the parameter estimation for these procedures is more
accurate.

Finally, we investigated how our conclusions depend on the particular
choices we made in the experiments. As we will see, the use of local structure
leads to improvements regardless of these choices. We examined two aspects
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of the learning process: the choice of the parameters for the priors and in
the search procedure.

We start by looking at the effect of changing the equivalent sample size
N’. Heckerman et al. (1995a) show that the choice of N’ can have drastic
effects on the quality of the learned networks. On the basis of on their
experiments in the Alarm domain, Heckerman et al. report that N’ = 5
achieves the best results. Table 5 shows the effect of changing N’ from 1 to
5 in our experiments. We see that the choice of N’ influences the magnitude
of the errors in the learned networks, and the sizes of the error gaps between
the different methods. Yet these influences do not suggest any changes on
the benefits of local structures.

Unlike the BDe score, the MDL score does not involve an explicit choice
of priors. Nonetheless, we can use Bayesian averaging to select the parame-
ters for the structures that have been learned by the MDL score, as opposed
to using maximum likelihood estimates. In Table 6 we compare the error
between the maximum likelihood estimates and Bayesian averaging with
N’ = 1. As expected, averaging leads to smaller errors in the parameter es-
timation, especially for small sample sizes. However, with the exception of
the Alarm domain, Bayesian averaging does not improve the score for large
samples (e.g., N = 32,000). We conclude that even though changing the
parameter estimation technique may improve the score in some instances,
it does not change our basic conclusions.

Finally, another aspect of the learning process that needs further investi-
gation is the heuristic search procedure. A better search technique can lead
to better induced models as illustrated in the experiments of Heckerman
et al. (1995a). In our experiments we modified the search by initializing
the greedy search procedure with a more informed starting point. Follow-
ing Heckerman et al. (1995a) we used the mazimal branching as a starting
state for the search. A maximal branching network is one of the highest-
scoring network among these where |Pa;| < 1 for all i. A maximal branch-
ing can be found in an efficient manner (e.g., in low-order polynomial time)
(Heckerman et al., 1995a). Table 7 reports the results of this experiment.
In the Alarm domain, the use of maximal branching as an initial point led
to improvements in all the learning procedures. On the other hand, in the
Insurance domain, this choice of for a starting point led to a worse error.
Still, we observe that the conclusions described above regarding the use of
local structure held for these runs as well.

6. Conclusion

The main contribution of this article is the introduction of structured rep-
resentations of the CPDs in the learning process, the identification of the
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benefits of using these representations, and the empirical validation of our
hypothesis. As we mentioned in the introduction (Section 1), we are not
the first to consider efficient representations for the CPDs in the context
of learning. However, to the best of our knowledge, we are the first to con-
sider and demonstrate the effects that these representations may have on
the learning of the global structure of the network.

In this paper we have focused on the investigation of two fairly simple,
structured representations of CPDs: trees and default tables. There are
certainly many other possible representation of CPDs, based, for example,
on decision graphs, rules, and CNF formulas: see Boutilier et al. (1996). Our
choice was mainly due to the availability of efficient computational tools
for learning the representations we use. The refinement of the methods
studied in this paper to incorporate these representations deserves further
attention. In the machine learning literature, there are various approaches
to learning trees, all of which can easily be incorporated in the learning
procedures for Bayesian networks. In addition, certain interactions among
the search procedures for global and local structures can be exploited, to
reduce the computational cost of the learning process. We leave these issues
for future research.

It is important to distinguish between the local representations we exam-
ine in this paper and the noisy-or and logistic regression models that have
been examined in the literature. Both noisy-or and logistic regression (as
applied in the Bayesian network literature) attempt to estimate the CPD
with a fired number of parameters. This number is usually linear in the
number of parents in the CPD. In cases where the target distribution does
not satisfy the assumptions embodied by these models, the estimates of
CPDs produced by these methods can arbitrarily diverge from the target
distribution. On the other hand, our local representations involve learning
the structure of the CPD, which can range from a lean structure with few
parameters to a complex structure with an exponential number of parame-
ters. Thus, our representations can scale up to accommodate the complexity
of the training data. This ensures that, in theory, they are asymptotically
correct: given enough samples, they will construct a close approximation of
the target distribution.

In conclusion, we have shown that the induction of local structured rep-
resentation for CPDs significantly improves the performance of procedures
for learning Bayesian networks. In essence, this improvement is due to the
fact that we have changed the bias of the learning procedure to reflect the
nature of the distribution in the data more accurately.
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TABLE 2. Summary of entropy distance for networks learned by the procedure
using the MDL score and BDe score with N’ = 1.

MDL Score BDe Score
Domain Size Table Tree Defualt Table Tree Default
(x 1,000)
Alarm 0.25 5.7347 5.5148 5.1832 1.6215 1.6692 1.7898

0.50 | 3.5690  3.2925 2.8215 0.9701 1.0077 1.0244
1.00 | 1.9787 1.6333 1.2542 0.4941  0.4922 0.5320
2.00 | 1.0466 0.8621 0.6782 0.2957  0.2679 0.3040
4.00 | 0.6044 0.4777 0.3921 0.1710 0.1697 0.1766
8.00 | 0.3328 0.2054 0.2034 0.0960  0.0947 0.1118
16.00 | 0.1787 0.1199 0.1117 0.0601  0.0425 0.0512
24.00 | 0.1160 0.0599 0.0720 0.0411  0.0288 0.0349
32.00 | 0.0762 0.0430 0.0630 0.0323  0.0206 0.0268

Hailfinder 0.25 | 9.5852 9.5513 8.7451 6.6357  6.8950 6.1947
0.50 | 4.9078 4.8749 4.7475 3.6197 3.7072 3.4746

1.00 | 2.3200 2.3599 2.3754 1.8462  1.8222 1.9538

2.00 | 1.3032 1.2702 1.2617 1.1631  1.1198 1.1230

4.00 | 0.6784 0.6306 0.6671 0.5483  0.5841 0.6181

8.00 | 0.3312 0.2912 0.3614 0.3329 0.3117 0.3855

16.00 | 0.1666 0.1662 0.2009 0.1684  0.1615 0.1904

24.00 | 0.1441 0.1362 0.1419 0.1470 0.1279 0.1517

32.00 | 0.1111 0.1042 0.1152 0.1081  0.0989 0.1223

Insurance 0.25 | 4.3750 4.1940 4.0745 2.0324 1.9117 2.1436
0.50 | 2.7909 2.5933 2.3581 1.1798 1.0784 1.1734

1.00 | 1.6841 1.1725 1.1196 0.6453 0.5799 0.6335

2.00 | 1.0343 0.5344 0.6635 0.4300 0.3316 0.3942

4.00 | 0.5058 0.2706 0.3339 0.2432  0.1652 0.2153

8.00 | 0.3156 0.1463 0.2037 0.1720 0.1113 0.1598

16.00 | 0.1341 0.0704 0.1025 0.0671  0.0480 0.0774

24.00 | 0.1087 0.0506 0.0780 0.0567  0.0323 0.0458

32.00 | 0.0644 0.0431 0.0570 0.0479 0.0311 0.0430
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TABLE 3. Summary of inherent error, inherent local error, and number of parameters for the
networks learned by the table-based and the tree-based procedures using the BDe score with

N' =1.
Table Tree
Domain Size D Dgiruct/ Dlocal Param D Digcal  Dstruct Param
(x 1,000)

Alarm 1 | 0.4941 0.1319 570 | 0.4922 0.1736 0.0862 383
4 | 0.1710 0.0404 653 | 0.1697 0.0570 0.0282 453

16 | 0.0601 0.0237 702 | 0.0425 0.0154 0.0049 496

32 | 0.0323 0.0095 1026 | 0.0206 0.0070 0.0024 497

Hailfinder 1 1.8462 1.2166 2066 | 1.8222  1.1851 1.0429 1032
4 | 0.5483 0.3434 2350 | 0.5841 0.3937 0.2632 1309

16 | 0.1684 0.1121 2785 | 0.1615 0.1081 0.0758 1599

32 | 0.1081 0.0770 2904 | 0.0989 0.0701 0.0404 1715

Insurance 1 | 0.6453 0.3977 487 | 0.5799 0.3501 0.2752 375
4 | 0.2432 0.1498 724 | 0.1652 0.0961 0.0654 461

16 | 0.0671 0.0377 938 | 0.0480 0.0287 0.0146 525

32 | 0.0479 0.0323 968 | 0.0311  0.0200 0.0085 576

TABLE 4. Summary of inherent error, inherent local error, and number of parameters for the
networks learned by the table-based and tree-based procedures using the MDL score.

Table Tree
Domain Size D Dgiruct/ Plocal Param D Digcal  Dstruct Param
(x 1,000)

Alarm 1 | 1.9787 0.5923 361 | 1.6333 0.4766 0.3260 289
4 | 0.6044 0.2188 457 | 0.4777 0.1436 0.0574 382

16 | 0.1787 0.0767 639 | 0.1199 0.0471 0.0189 457

32 | 0.0762 0.0248 722 | 0.0430 0.0135 0.0053 461

Hailfinder 1| 2.3200 1.0647 1092 | 2.3599 1.1343 0.9356 1045
4 | 0.6784 0.4026 1363 | 0.6306  0.3663 0.2165 1322

16 | 0.1666 0.1043 1718 | 0.1662  0.1107 0.0621 1583

32 | 0.1111 0.0743 1864 | 0.1042 0.0722 0.0446 1739

Insurance 1| 1.6841 1.0798 335 | 1.1725  0.5642 0.4219 329
4 | 0.5058 0.3360 518 | 0.2706 0.1169 0.0740 425

16 | 0.1341 0.0794 723 | 0.0704 0.0353 0.0187 497

32 | 0.0644 0.0355 833 | 0.0431 0.0266 0.0140 544
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TABLE 5. Summary of entropy distance for procedures that use the BDe score
with N'=1and N' = 5.

N' =1 N' =5
Domain Size Table Tree Default Table Tree Default
(x 1,000)
Alarm 1 0.4941 0.4922 0.5320 0.3721 0.3501 0.3463

4 | 0.1710 0.1697 0.1766 0.1433 0.1187 0.1308
16 | 0.0601 0.0425 0.0512 0.0414  0.0352 0.0435
32 | 0.0323 0.0206 0.0268 0.0254 0.0175 0.0238

Hailfinder 1 | 1.8462 1.8222 1.9538 1.4981 1.5518 1.6004
4 | 0.5483 0.5841 0.6181 0.4574  0.4859 0.5255

16 | 0.1684 0.1615 0.1904 0.1536  0.1530 0.1601

32 | 0.1081 0.0989 0.1223 0.0996  0.0891 0.0999

Insurance 1 | 0.6453 0.5799 0.6335 0.5568 0.5187 0.5447
4 | 0.2432 0.1652 0.2153 0.1793 0.1323 0.1921

16 | 0.0671 0.0480 0.0774 0.0734 0.0515 0.0629

32 | 0.0479 0.0311 0.0430 0.0365  0.0284 0.0398

TABLE 6. Summary of entropy distance for procedures that use the MDL score
for learning the structure and local structure combined with two methods for
parameter estimation.

Maximum Likelihood Bayesian, N’ =1
Domain Size Table Tree Default Table Tree Default
(x 1,000)
Alarm 1 1.9787 1.6333 1.2542 0.8848 0.7495 0.6015

4 | 0.6044 04777 0.3921 0.3251  0.2319 0.2229
16 | 0.1787 0.1199 0.1117 0.1027  0.0730 0.0779
32 | 0.0762 0.0430 0.0630 0.0458 0.0267 0.0475

Hailfinder 1 | 2.3200 2.3599 2.3754 1.7261 1.7683 1.8047
4 | 0.6784 0.6306 0.6671 0.5982  0.5528 0.6091

16 | 0.1666 0.1662 0.2009 0.1668  0.1586 0.1861

32 | 0.1111 0.1042 0.1152 0.1133  0.0964 0.1120

Insurance 1| 1.6841 1.1725 1.1196 1.1862 0.7539 0.8082
4 | 0.5058 0.2706 0.3339 0.3757 0.1910 0.2560

16 | 0.1341 0.0704 0.1025 0.1116  0.0539 0.0814

32 | 0.0644 0.0431 0.0570 0.0548  0.0368 0.0572
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TABLE 7. Summary of entropy distance for two methods for initializing the
search, using the the BDe score with N’ = 1.

Empty Network Maximal Branching Network
Domain Size Table Tree Default Table Tree Default
(x 1,000)
Alarm 1 0.4941 0.4922 0.5320 0.4804 0.5170 0.4674

4 | 0.1710 0.1697 0.1766 0.1453  0.1546 0.1454
16 | 0.0601 0.0425 0.0512 0.0341  0.0350 0.0307
32 | 0.0323 0.0206 0.0268 0.0235 0.0191 0.0183

Hailfinder 1 | 1.8462 1.8222 1.9538 1.7995 1.7914 1.9972
4 | 0.5483 0.5841 0.6181 0.6220 0.6173 0.6633

16 | 0.1684 0.1615 0.1904 0.1782  0.1883 0.1953

32 | 0.1081  0.0989 0.1223 0.1102  0.1047 0.1162

Insurance 1 | 0.6453 0.5799 0.6335 0.6428  0.6350 0.6502
4 | 0.2432 0.1652 0.2153 0.2586  0.2379 0.2242

16 | 0.0671 0.0480 0.0774 0.1305 0.0914 0.1112

32 | 0.0479 0.0311 0.0430 0.0979  0.0538 0.0856




