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Abstract

Many domains require us to reason about system change. Examples include life

history data analysis, financial risk modelling, fault diagnosis, and the study of evo-

lution. Reasoning about such systems involves asking questions about event timing,

e.g., when will a person find employment. Our answers, best expressed as probability

distributions over time, must account for many factors that are, themselves, changing.

Unfortunately, as the number of variables increases, the state space over which we

must maintain a distribution grows exponentially. Such exponential growth makes

modelling these domains difficult.

We introduce the framework of continuous time Bayesian networks (CTBNs) to

address this problem. The approach is based on the framework of finite state, ho-

mogeneous Markov processes, but uses ideas from Bayesian networks (BNs) to define

continuous time models over a structured state space. The CTBN framework uses

cyclic graphs that encode conditional independencies in the distribution over the evo-

lution of the system. It explicitly represents temporal dynamics and allows us to

query the network for distributions over the times when particular events of interest

occur.

We specify the class of processes representable by CTBNs and prove there is a

unique minimal CTBN structure to encode any representable process. We provide

algorithms for learning parameters and structure of CTBN models from both fully ob-

served and partially observed data. We prove that the structure learning problem for

CTBNs is easier than for traditional BNs or dynamic Bayesian networks (DBNs). We

develop an inference algorithm for CTBNs which is a variant of expectation propaga-

tion and leverages domain structure and the explicit model of time for computational

vi



advantage. We also show how to use CTBNs to model a rich class of distributions

over time. Finally, we compare our framework to DBNs. Importantly, our framework

does not require that we choose some fixed temporal granularity; hence, we avoid

the DBN requirement that we represent and reason about the process at the finest

granularity. Finally, we demonstrate on a real, life history data set that CTBNs with

non-exponential duration distributions achieve better performance than DBNs.
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Chapter 1

Introduction

1.1 Motivation

Change is ubiquitous. Whether we are playing catch, cooking a meal, investing money,

or pursuing a scientific understanding of some corner of the universe, we are reasoning

about change. In doing so, we must have some understanding about which changes

are likely to occur and when they will happen.

The time and nature of any particular change is influenced by many factors which

are, themselves, changing. Consider a medical situation where we have administered

a drug to a patient and wish to know how long it will take for the drug to take

effect. The answer to this question is likely to depend on various factors, such as

how recently the patient has eaten. We want to reason about the temporal process

for the effect of the drug and how its dynamics depend on these other factors. As

another example, we might want to predict the amount of time that a person remains

unemployed, which can depend on the state of the local economy where they live, on

their own financial situation, and more.

Although these questions touch on a wide variety of issues, they are all questions

about distributions over time. Standard ways of approaching such questions — event

history analysis (Blossfeld et al., 1988; Blossfeld & Rohwer, 1995; Andersen et al.,

1993) and Markov process models (Aalen, 1975; Andersen & Borgan, 1985; Duffie

et al., 1996; Lando, 1998) — work well, but there is a catch. Including more factors

1



CHAPTER 1. INTRODUCTION 2

in our model comes at the price of an exponential increase in the size of our state

space. We need only two states to describe whether or not a person is employed. But

that doubles to four states if we include information about whether or not the person

is married. And it doubles again, to eight states, if we want to include information

about whether or not the person has children. While eight states is not, in itself, a

problem, additional factors will quickly lead us to models that would require millions

of states and more.

This exponential explosion in the state space makes investigating these questions

more difficult. One approach is to pretend that these other factors never change.

So we can learn a two-state model for the employment of a person who is married

without children and a separate two-state model for the employment of a person who

is married with children. But this is unsatisfactory on several levels. If I want a true

estimate of how long a person who is married without children will remain employed

(or employed at their current job), I should include the possibility that that person

might have children. And someone else might want to ask a slightly different question,

such as when a person is likely to have children. Should we have to learn an entirely

new set of models?

The solution is to allow the specification of models with structured state spaces

where some variables do not directly depend on others. For example, the distribution

over how fast a drug takes effect might be mediated by how fast it reaches the blood-

stream which may itself be affected by how recently the person has eaten. Also, if the

drug is supposed to alleviate pain a person feels in their joints, the drug’s influence

may be affected by aggravating factors such as whether the barometric pressure is

changing. But barometric pressure is not likely to have a direct effect on how recently

the person has eaten.

Unfortunately, the previous approaches to answering these kinds of questions have

not allowed us to make use of this kind of structure. Bayesian networks (Pearl, 1988)

are a standard approach for modelling structured domains. With such a representa-

tion we can be explicit about the direct dependencies which are present and use the

independencies to our advantage computationally. However, Bayesian networks are

designed to reason about static situations, and cannot be used directly to answer the
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types of questions that concern us here.

Dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989) are the standard

extension of Bayesian networks to temporal processes. DBNs model a dynamic sys-

tem by discretizing time at some granularity, ∆t, and providing a Bayesian network

fragment that represents the probabilistic transition of the state at time t to the state

at time t + ∆t. Thus, DBNs represent the state of the system at different points in

time, but do not represent time explicitly. As a consequence, it is very difficult to

query a DBN for a distribution over the time at which a particular event takes place.

Moreover, the DBN representation forces us to choose one particular granularity

for the entire process — it must always propagate the joint distribution over the

variables at the same, regular rate. And once we have chosen to use some particular

granularity, we must use it to model all the factors in a system — even if some parts

of the system change more slowly.

This is not just a representation issue. It leads to computational inefficiencies

in inference tasks, where we are computing the answer to some query given some

evidence. If we obtain observations which are irregularly spaced in time, we must

still represent and perform computations over the intervening time slices at which no

evidence is obtained.

Finally, many processes do not have any natural granularity. Does barometric

pressure change over minutes, hours, days, or weeks? Will pain medication take effect

over minutes or hours? Will a person stay employed for months, years, or decades? If

we want to capture all the possibilities we imagine, we may have to model the system

at the finest possible granularity (i.e., the smallest ∆t). So the inefficiencies described

above are unavoidable.

The purpose of this thesis is to address these issues by providing a method of using

continuous time models over a structured state space. By modelling time directly we

avoid the requirement to choose some granularity for the entire system. We can

also answer queries, such as when some medication will take effect, directly with

distributions over time. By using a structured state space, we avoid the exponential

blow-up in our representation, which we then leverage for computational advantage

in learning models from data and using models to answer queries.
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1.2 Contributions

The central contribution of this thesis is to introduce the framework of continuous

time Bayesian networks (CTBNs). The approach is based on the framework of ho-

mogeneous Markov processes, but utilizes ideas from Bayesian networks to provide

a graphical representation language for these systems. In particular, the graphical

structure encodes conditional indepencies in the distribution over the evolution of the

system.

Moreover, this framework explicitly represents temporal dynamics and allows us to

query the network for the distribution over the time when particular events of interest

occur. Unlike DBNs, it does not require that we choose some temporal granularity.

Given sequences of observations spaced irregularly through time, we can propagate

the joint distribution from observation to observation.

More specifically, the contributions of this thesis are:

• We introduce CTBNs, a new framework for modelling finite-state, continuous

time processes over a factored state. The graphical representation allows for

natural, cyclic dependency graphs. There is no need to specify a temporal

granularity for a model.

• We provide two alternative semantics for CTBNs and prove their equivalence.

• We specify the class of processes representable by CTBNs and prove that for

any representable process, there is a unique minimal structure among CTBNs

that encode it.

• We provide algorithms for learning CTBN parameters from complete data, in-

cluding maximum likelihood and Bayesian approaches.

• We show how to use score-based structure search to learn CTBN structure from

complete data. This includes the derivation of a Bayesian score for evaluating

CTBN structures.

• We prove that, when restricted to networks with a fixed maximum number of

parents per node, finding the highest scoring CTBN structure can be done in
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polynomial time in the number of variables and the size of the dataset. The

equivalent problem for regular, dynamic Bayesian networks is NP-hard.

• We show how to use expectation maximization (EM) and structural expectation

maximization (SEM) to learn CTBN parameters and structure from incomplete

data.

• We develop an inference algorithm for CTBNs — a variant of expectation prop-

agation (EP) — that uses message-passing in a cluster graph. It takes compu-

tational advantage of the conditional independencies and the explicit temporal

model describing how quickly each node is expected to change. That way, com-

putational resources are focused on parts of the system that are likely to change

more rapidly.

• We extend the basic CTBN representation to allow for more complex distribu-

tions over when the next state transition will occur.

• We provide a comparison between the CTBN and DBN frameworks and demon-

strate on a real, life history data set that CTBNs with non-exponential duration

distributions achieve better performance than DBNs.

1.3 Overview

In the next chapter, we review the basic background on Bayesian networks, dynamic

Bayesian networks, and continuous time Markov processes. The discussion there

about the two forms of parameterization for continuous time Markov processes intro-

duces some new terminology, but is not, in itself, novel.

The contribution of this thesis begins with Chapter 3, covering representation and

semantics. It begins with the new definition of conditional Markov processes, which

form the basic building block of CTBNs. It then defines the CTBN representation

and gives two alternative semantics which are shown to be equivalent. After a brief

discussion of conditional independence, we provide some results describing the class

of Markov processes representable by CTBNs.
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Chapter 4 covers the form of the likelihood function and sufficient statistics for

CTBNs. It follows from the definitions of Chapter 3 and sets the stage for the next

chapters.

Chapter 5 treats the problem of learning CTBNs, providing an algorithm for use

when we have complete data. This chapter includes a Bayesian approach to learning

parameters and structure. It also contains the key complexity result for model search.

Chapter 6 compares the CTBN and DBN frameworks including some experimental

results.

Chapter 7 shows how to use expectation maximization to extend CTBN parameter

and structure learning to situations where we have missing data.

Chapter 8 looks at the problem of inference and provides a message-passing cluster

graph algorithm that is a variant of Expectation Propagation (Minka, 2001a).

Chapter 9 provides a powerful and general method for increasing the representa-

tional power of CTBNs. It also revisits the comparison with DBNs.

Chapter 10 discusses related work and Chapter 11 concludes the thesis with a

summary and discussion of future work.

1.4 Publications

Much of the content of this thesis has appeared in previous publications. The publi-

cations are

• Nodelman, U., Shelton, C. R., & Koller, D. (2002). Continuous time Bayesian

networks. Proceedings of the Eighteenth Conference on Uncertainty in Artificial

Intelligence (pp. 378–387).

• Nodelman, U., Shelton, C. R., & Koller, D. (2003). Learning continuous time

Bayesian networks. Proceedings of the Nineteenth Conference on Uncertainty

in Artificial Intelligence (pp. 451–458).

• Nodelman, U., & Horvitz, E. (2003). Continuous time Bayesian networks

for inferring users’ presence and activities with extensions for modeling and

evaluation (Technical Report MSR-TR-2003-97). Microsoft Research.
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• Nodelman, U., Koller, D., & Shelton, C. R. (2005a). Expectation propaga-

tion for continuous time Bayesian networks. Proceedings of the Twenty-first

Conference on Uncertainty in Artificial Intelligence (pp. 431–440).

• Nodelman, U., Shelton, C. R., & Koller, D. (2005b). Expectation maximiza-

tion and complex duration distributions for continuous time Bayesian networks.

Proceedings of the Twenty-first Conference on Uncertainty in Artificial Intelli-

gence (pp. 421–430).

Chapter 3 includes material from Nodelman et al. (2002; 2003) and Nodelman

et al. (2005a). Chapter 4 includes material from Nodelman et al. (2003; 2005b).

Chapter 5 and Chapter 6 are largely drawn from Nodelman et al. (2003). The

material in Chapter 7 is from Nodelman et al. (2005b). Chapter 8 includes material

from from Nodelman et al. (2002; 2003; 2005a). Finally, Chapter 9 is from Nodelman

and Horvitz (2003) and Nodelman et al. (2005b).



Chapter 2

Preliminaries

This chapter provides background material about Bayesian networks (BNs) (Pearl,

1988), dynamic Bayesian networks (DBNs) (Dean & Kanazawa, 1989), and Markov

processes. The mathematical underpinnings of continuous time Bayesian networks

(CTBNs) come from continuous time Markov processes but the key idea of factored

state representation and the form of the learning and inference algorithms come from

the theory of Bayesian networks. In this way, CTBNs provide an alternative to DBNs

for modelling factored state stochastic processes.

We begin with a brief description of some notational conventions we will follow.

We then introduce the BN framework, DBNs, and finally continuous time Markov

processes.

2.1 Notation

We begin this chapter with a brief discussion of the notation we use for the thesis.

This includes reference to some concepts that have not yet been introduced, but is

placed here to provide for quick reference.

Process variables, which can be viewed as a continuous time indexed collection

of random variables are also denoted by upper case letters — e.g., E, Xi, Z. As a

result, regular random variables are generally written with a particular time index —

e.g., E(t), Xi(t). In a few cases where we are discussing BNs instead of CTBNs, we

8
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will use non-indexed upper case letters for random variables.

Values of variables are denoted by the corresponding lower case letters, sometimes

with subscripted numbers to represent different values — e.g., e1, e2, z. The set of

instantiations to a variable Z is denoted Val(Z). The number of instantiations is

denoted Card(Z) (i.e., the cardinality of the set of instantiations).

Sets of variables are denoted by bold-face upper case letters — e.g., V , X — and

instantiations to the set are denoted by the corresponding bold-face lower case letter

— e.g., v, x. The set of instantiations to a set of variables X is denoted Val(X) and

the number of these instantiations is denoted Card(X).

The probability distribution over the value of X(t) is denoted P (X(t)) or some-

times more simply PX(t). The initial distribution (at time t = 0) is denoted P 0
X .

The conditional distribution of X(t) given X(s) is denoted P (X(t) | X(s)). The

expectation of a function f given a distribution P is denoted EP [f ].

In a graph G, the parent set of a variable Xi is denoted PaG(Xi) or, more simply,

Ui. The set of children of Xi is denoted CdG(Xi), and the set of co-parents of Xi

(i.e., the set of other parents of children of Xi) is denoted

So, for a fixed t, X(t) is simply a random variable. However, Sometimes it is

convenient to write Xt for X(t) and Xs:t for the trajectory of X on the time interval

[s, t).

2.2 Bayesian Networks

We now provide a brief overview of Bayesian networks whose factored representation

is leveraged to enable more efficient learning (constructing models from data) and

inference (answering probabilistic queries).

2.2.1 Representation

The key insight behind the Bayesian network representation is the importance of con-

ditional independence. To explain this, we begin with the definition of independence

for random variables.
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Definition 2.2.1 Two random variables B1 and B2 are independent iff

P (B1, B2) = P (B1)P (B2) .

That is, iff their joint probability is equal to the probability of the marginals.

Another way to think of this is to observe that if B1 and B2 are independent, then

P (B1 | B2) = P (B1). Intuitively, this says that having evidence about B2 does not

change our distribution over B1.

If we wish to model a complex domain, using some set of variables, it is unlikely

that any of the variables will be independent of each other. Conditional independence

is a weaker notion of independence, but it is more common.

Definition 2.2.2 Two random variables B1 and B2 are conditionally independent

given a set of random variables C iff

P (B1 | C, B2) = P (B1 | C) .

This means that if we have evidence over the variables C, then B1 and B2 do

not influence each other. Intuitively, the influence B1 and B2 have on each other is

mediated through C.

It is easier to believe that, in a given domain, most variables will not directly affect

most other variables. Instead, for each variable, only a limited set of other variables

influence it.

That is the key idea of a factored representation and with it, we now define the

Bayesian network representation.

Definition 2.2.3 A Bayesian network, B, over a set of random variables B is a

compact representation of a joint probability distribution. It is specified in terms of

• A directed acyclic graph (DAG) G whose nodes correspond to the random vari-

ables Bi ∈ B.
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• A conditional probability distributions (CPDs) for each Bi, specifying the con-

ditional distribution P (Bi | PaG(Bi)) of Bi as a function of its parent set in

G.

For each B ∈ B with parent set U, we write the probability that P (B = b | U = u) =

θb|u, i.e., this how we write the relevant multinomial distribution parameter from the

CPD for B.

The CPDs form a set of local probability models that can be combined to describe

the full joint distribution over the variables B via the chain rule:

P (B1, B2, ..., Bn) =
n∏

i=1

P (Bi | PaG(Bi)) .

The graph G of a Bayesian network encodes a set of conditional indepence as-

sumptions. In particular a variable B ∈ B is independent of its non-descendents

given its parents PaG(B).

There is a useful notion of separation that allows us to characterize independencies

in a Bayesian network. We can construct an undirected graph GM called the moralized

graph, such that sets of variables Y and W are conditional independent given some

set of variables Z if variables Z separate Y and W in GM (Lauritzen et al., 1990).

Separation in GM simply means that all paths from any node in Y to any node in W

must go through a node in Z. The construction of the moralized graph is as follows.

Definition 2.2.4 We construct the moralized graph, GM , which is undirected, from

the directed graph G in two steps. Starting with an empty graph GM , we add an

undirected edge between any two nodes X and Y that share a common child in G.

Then, we add an undirected edge to GM between any two nodes X and Y connected

by an arc in G.

If we want to separate a variable Y from all other variables in the network, it is

natural to look at the set of variables that are contained in CIMs with Y . Clearly

this includes the parents of Y , PaG(Y ), and the children of Y , CdG(Y ). But it also

includes variables that are co-parents with Y of some other variable because the CIM
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of the shared child contains both Y and the co-parent. This leads us to the following

definition (Pearl, 1988).

Definition 2.2.5 Suppose we have a directed graph G over variables X. The Markov

blanket BY of a set of variables Y ⊆ X is the set of variables of X that are not

members of Y but are parents or children of some Y ∈ Y or co-parents with some

variable Y ∈ Y . (We say that Y and V are co-parents if they share a child.) More

formally, we write

BY =

(
⋃

Y ∈Y

PaG(Y ) ∪CdG(Y ) ∪CoPaG(Y )

)

\ Y .

The Markov blanket BY separates the nodes Y from the rest of the nodes W in

the moralized graph GM , so the set Y is independent of W given its Markov blanket

W .

2.2.2 Learning

The data D we need to learn a BN is a set of instantiations of its variables. As a

member of the exponential family of probabilistic models, the relevant part of the

data for learning can be summarized by aggregating sufficient statistics.

The sufficient statistics for a Bayesian network B are counts of the co-occurrence of

a particular value for a variable under different possible instantiations of its parents.

So, for variable B ∈ B with parent set U, M [b|u] be the number of occurrences in D

of the co-occurrence of B = b with U = u.

Significantly, the likelihood of the data given the model decomposes by family and

can be written as a product of local likelihoods for each variable B

LB(θ : D) =
∏

u

∏

b

θ
M [b|u]
b|u

where θ is the set of CPD parameters. The log-likelihood is thus a sum of local
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log-likelihoods for each variable B,

ℓB(θ : D) =
∑

u

∑

b

M [b|u] ln(θb|u) .

If we want to learn maximum likelihood parameters for the Bayesian network B,

we can set

θ̂b|u =
M [b|u]

M [u]

where M [u] =
∑

bM [b|u].

More details on BN learning can be found in Heckerman (1995).

2.2.3 Inference

Theoretically, since a Bayesian network defines a full joint distribution over its vari-

ables, we can answer any probabilistic query by forming the joint distribution and

then marginalizing out any variables as appropriate. Unfortunately, in most cases

this is impractical because the size of the full joint distribution is exponential in the

number of variables and once we have more than a few variables we cannot form the

joint distribution.

Message passing algorithms work by creating a secondary structure called a cluster

graph. In cluster graph algorithms, we construct a graph whose nodes correspond

to clusters of variables, and pass messages between these clusters to produce an

alternative parameterization, in which the marginal distribution of the variables in

each cluster can be read directly from the cluster. In discrete graphical models,

when the cluster graph is a clique tree, two passes of message passing produce exact

marginals. In generalized belief propagation (Yedidia et al., 2000), message passing

is applied to a graph which is not a clique tree, in which case the algorithm may

not converge, and produces only approximate solutions. There are several forms of

message passing algorithm. We briefly review the multiply-marginalize-divide scheme

of Lauritzen and Spiegelhalter (1988). But first, we must define the notion of a factor

and its basic operations.
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Definition 2.2.6 A factor, φ(V ), over set of variables or scope V , is a function

from Val(V ) to the set of non-negative real numbers.

If V 1, V 2, and V 3 are disjoint sets of variables, and we have φ1(V 1,V 2) and

φ2(V 2,V 3) then we define the factor product as φ1 × φ2 as a new factor ψ where

ψ(V 1,V 2,V 3) = φ1(V 1,V 2) · φ2(V 2,V 3) ,

that is, the product is a new factor over the union of the variables defined by mul-

tiplying the value of φ1 according to the particular instantiation of V 1 ∪ V 2 by the

value of φ2 according to the the instantiation of V 2 ∪ V 3.

If V 1 and V 2 are disjoint sets of variables, and we have φ1(V 1,V 2) and φ2(V 2)

then the factor division of φ1/φ2 is a new factor ψ where

ψ(V 1,V 2) =
φ1(V 1,V 2)

φ2(V 2)
.

We define the factor marginalization of V 1 in φ(V 1,V 2) as a factor ψ over V 2

defined as

ψ(V 2) =
∑

v2∈V al(V 2)

φ(V 1,V 2) .

At a high level, a cluster graph is defined in terms of a set of clusters Ci, whose

scope is some subset of the variables X. Clusters are connected to each other by edges,

along which messages are passed. The edges are annotated with a set of variables

called a sepset Si,j which is the set of variables in C i∩Cj . The messages passed over

an edge C i—Cj are factors over the scope Si,j.

Definition 2.2.7 We say that a cluster graph has the running intersection property

if, whenever there is a variable X such that X ∈ Ci and X ∈ Cj, then X is also in

every cluster in the path between Ci and Cj.

Each cluster Ci maintains a potential πi, a factor which reflects its current beliefs

over the variables in its scope. Each edge similarly maintains a message µi,j, which
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encodes the last message sent over the edge. The potentials are initialized with a

product of some subset of factors parameterizing the model (CIMs in our setting).

Messages are initialized to be uninformative. Clusters then send messages to each

other, and use incoming messages to update their beliefs over the variables in their

scope. The message δi→j from Ci to Cj is the marginal distribution Si,j according

to πi. The neighboring cluster Cj assimilates this message by multiplying it into πi,

but avoids double-counting by first dividing by the stored message µi,j. Thus, the

message update takes the form πj ← πj ·
δi→j

µi,j
.

More details on message passing algorithms for inference in Bayesian networks

can be found in Huang and Darwiche (1996).

2.2.4 Dynamic Bayesian Networks

The dynamic Bayesian network (DBN) framework (Dean & Kanazawa, 1989) is a

method for modelling discrete time, or time-sliced, stochastic processes. Essentially,

it provides a way to define a regular Bayesian network over a countably infinite

collection of time indexed random variables.

We have a set of a random variables D which are used to describe the state of

the system at a single time-slice. The entire collection of random variables in the

underlying Bayesian network are all variables in the set {D0,D1,D2, ...}.

Definition 2.2.8 A dynamic Bayesian network (DBN) is a pair 〈B0,B2T 〉 where B0

is a Bayesian network over D0, and B2T is called a 2-TBN, or 2 time slice Bayesian

network. It provides a transition model from time slice i to i + 1 as a Bayesian

network over the variables of Di+1 conditional on the instantiation of Di. Two sorts

of arcs are allowed:

• Intra-time-slice arcs are allowed between the variables within a time slice — e.g.,

between D and D′ for D,D′ ∈Di+1.

• Inter-time-slice arcs are allowed from a variable in one time-slice to any variable

in the next time slice — e.g., between D ∈Di and D ∈Di+1 or between D ∈Di

and D′ ∈Di+1.
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The 2-TBN specifies the CPDs for the variables in Di+1 but not in D.

More details on dynamic Bayesian networks can be found in Murphy (2002).

2.3 Continuous Time Markov Processes

2.3.1 Background

We can think of a continuous time random process X as a collection of random

variables indexed by time t ∈ [0,∞). it is often more convenient to view X across all

values of t as a single process variable or PV. The instantiation of a particular set of

values for X(t) for all t is called a trajectory.

Definition 2.3.1 The Markov assumption is the assumption that the future of a

process is independent of its past given its present. More explicitly, the process X

satisfies the Markov assumption iff P (X(t+∆t) | X(t), X(s)) = P (X(t+∆t) | X(t))

for all s, t such that s < t <∞. (Norris, 1997)

2.3.2 Definitions

We begin the discussion of continuous time with finite state, continuous time Markov

processes. Such a process is generally defined by an initial distribution and a matrix

of transition intensities where the (i, j) entry gives the intensity of transitioning from

state i to state j and the entries along the main diagonal make each row sum to zero.

As will be seen later, the CTBN framework will be based on homogeneous Markov

processes — in which the transition intensities do not depend on time.

Definition 2.3.2 Let X be a process variable whose state changes over continuous

time. Let the domain of X be Val(X) = {x1, x2, . . . , xN}. Then X is a homogeneous

Markov process iff its behavior can be specified in terms of an initial distribution

PX
0 over Val(x) and a Markovian transition model usually presented as an intensity
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matrix:

QX =










−q1 q12 · · · q1N

q21 −q2 · · · q2N

...
...

. . .
...

qN1 qN2 · · · −qN










,

where qi =
∑

j 6=i qij and qi, qij ≥ 0.

Intuitively, the intensity qi gives the ‘instantaneous probability’ of leaving state

xi and the intensity qij gives the ‘instantaneous probability’ of transitioning from xi

to xj . More formally,

lim
∆t→0

P (X(t+ ∆t) = xj | X(t) = xi) = lim
∆t→0

qij∆t+O(∆t2), for i 6= j

lim
∆t→0

P (X(t+ ∆t) = xi | X(t) = xi) = lim
∆t→0

1− qi∆t+O(∆t2) . (2.1)

As a whole, the matrix QX defines the instantaneous behavior of the process X and

makes X satisfy the Markov assumption. We can see this because the future behavior

of X is defined by Q(X) solely in terms of its current state. Thus P (X(t + ∆t) |

X(t), X(s)) = P (X(t+ ∆t) | X(t)) for 0 < s < t <∞.

The instantaneous specification of the transition model of X induces a probability

distribution over its trajectories. To see the way the distribution is induced, we must

first introduce a matrix function.

Definition 2.3.3 The matrix exponential for a matrix Q is defined as

exp Q =
∞∑

k=0

Qk

k!
.

Note that though the matrix exponential is defined with this equation, it is not generally

a good way to compute it — see Moler and Loan (2003).
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Now, analogously to Equation 2.1, we have

lim
∆t→0

P (X(t+ ∆t) | X(t)) = lim
∆t→0

exp(QX∆t)

= lim
∆t→0

I + QX∆t+O(∆t2) . (2.2)

The relationship between the intensity matrix QX and the probability distribution

over the trajectory of X is discussed further in Section 2.3.5.

Given the QX matrix we can describe the transient behavior of X(t) as follows.

If X(0) = xi then it stays in state xi for an amount of time exponentially distributed

with parameter qi. Thus, the probability density function f and corresponding dis-

tribution function F for X(t) remaining equal to xi are given by

f(t) = qi exp(−qit), t ≥ 0

F (t) = 1− exp(−qit), t ≥ 0 .

The expected time of transitioning is 1/qi. Upon transitioning, X shifts to state xj

with probability qij/qi.

Example 2.3.4 Assume that we want to model the behavior of the barometric pres-

sure B(t) discretized into three states (b1 = falling, b2 = steady, and b3 = rising), we

could write the intensity matrix as

QB =







−.21 .2 .01

.05 −.1 .05

.01 .2 −.21






.

If we view units for time as hours, this means that if the pressure is falling, we expect

that it will stop falling in a little less than 5 hours (1/.21 hours). It will then transition

to being steady with probability .2/.21 and to falling with probability .01/.21.

It is also useful to note the following definitions.

Definition 2.3.5 Two Markov processes are said to be stochastically equivalent if

they have the same state space and transition probabilities (Gihman & Skorohod,
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1973).

Definition 2.3.6 Two Markov processes X and Y are independent if P (X, Y ) =

P (X)P (Y ). That is, if the distribution over their joint trajectories is equal to the

product of the marginal distributions over their trajectories.

2.3.3 Pure Intensity and Mixed Intensity Parameterizations

When the transition model is defined solely in terms of an intensity matrix (as above),

we refer to it as using a pure intensity parameterization. The parameters for an N

state process are {qi, qij ∈ QX : 1 ≤ i, j ≤ N, i 6= j}.

This is not the only way to parameterize a Markov process. Note that the distri-

bution over transitions of X factors into two pieces: an exponential distribution over

when the next transition will occur and a multinomial distribution over where the

state transitions — the next state of the system.

Definition 2.3.7 The mixed intensity parameterization for a homogeneous Markov

process X with N states is given by the two sets of parameters

qX = {qi : 1 ≤ i ≤ N},

θX = {θij : 1 ≤ i, j ≤ N, i 6= j},

where qX is a set of intensities parameterizing the exponential distributions over when

the next transition occurs and θX is a set of probabilities parameterizing the distribu-

tion over where the state transitions.

In both cases we use N2 parameters, although there are only N2−N free param-

eters. To relate these two parametrizations we note the following theorem.

Theorem 2.3.8 Let X and Y be two Markov processes over the same state space with

the same initial distribution. If X is defined by the intensity matrix QX and Y is de-

fined by the mixed intensity parameterization qY , θY then X and Y are stochastically
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equivalent if and only if qi ∈ qY is identical to qi ∈ QX and

θij =
qij
qi

.

Proof: X and Y share the same state space and stay in state i for time exponentially

distributed with parameter qi after which they transition to state j 6= i with probabil-

ity qij/qi. So, by Definition 2.3.5 they are stochastically equivalent. If any qi ∈ qY or

if any θij ∈ θY is set differently then the corresponding transition probability would

be different so X and Y would not be stochastically equivalent.

Another way to see the relationship between these two parameterizations is by

considering the transitions made between two consecutive different states, ignoring

the time spent at each state. Specifically, we can define the embedded Markov chain

E which is formed by ignoring the amount of time X spends in its states and noting

only the sequence of transitions it makes from state to state. We can write out the

N × N transition probability matrix P E for this chain, by putting zeros along the

main diagonal and θij in the (i, j) entry. We can also consider the distribution over

the amount of time X spends in a state before leaving again, ignoring the particular

transitions X makes. We can write out the N ×N state duration matrix M (which

is often called the completion rate matrix or holding rate matrix ), by putting the qi

values along the main diagonal and zeros everywhere else. It is easy to see that we

can describe the original intensity matrix in terms of these two matrices:

Q = M(P E − I) .

Example 2.3.9 For our barometric pressure process B,

QB =







.21 0 0

0 .1 0

0 0 .21



















0 20
21

1
21

1
2

0 1
2

20
21

1
21

0






− I







.

Depending on the task, sometimes one parameterization is more convenient and

we will use them interchangeably.
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2.3.4 Subsystems

It is often useful to consider subsystems of a Markov process. A subsystem, S,

describes the behavior of the process over a subset of the full state space — i.e.,

Val(S) ⊂ Val(X). In such cases we can form the intensity matrix of the subsystem,

US, by using only those entries from QX that correspond to states in S.

Example 2.3.10 If we want the subsystem of the barometric pressure process, B,

corresponding to the pressure being steady or rising (S = {b2, b3}), we get

US =

[

−.1 .05

.2 −.21

]

.

Note that, for a subsystem, the sums of entries along a row are not, in general,

zeros. This is because a subsystem is not a closed system — i.e, from each state, there

can be a positive probability of entering states not in S and thus not represented in

the transition matrix for the subsystem.

Once we have formed a subsystem S of X, we can also talk about the complement

subsystem S, which is a subsystem over the other states — i.e., Val(S) = Val(X)−

Val(S). In general, when examining the behavior of a subsystem, we consider the

entrance and exit distributions for the subsystem. An entrance distribution is a

distribution over the states of S, where the probability of a state s is the probability

that s is the state to which we first transition when entering the subsystem S. An

exit distribution describes the first state not in Val(S) to which we transition when

we leave the subsystem.

2.3.5 Reasoning with Markov processes

If we have an intensity matrix, QX , for a homogeneous Markov process X(t) and an

initial distribution over the value of X at time 0, P 0
X , there are many questions about

the process which we can answer.

The conditional distribution over the value of X at time t given the value at an
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earlier time s is

P (X(t) | X(s)) = exp(QX(t− s)) , for s < t .

Thus, the distribution over the value of X(t) is given by

PX(t) = P 0
X exp(QXt) .

As t grows, PX(t) approaches the stationary distribution π for X which can be com-

puted by an eigenvalue analysis. Additionally, we can form the joint distribution over

any two time points using the above two formulas:

PX(s, t) = PX(s) exp(QX(t− s)) .

Suppose we are interested in some subsystem S of X. Given an entrance distri-

bution P 0
S into S, we can calculate the distribution over the amount of time that we

remain within the subsystem. This distribution function is called a phase distribution

(Neuts 1975; 1981), and is given by

FS(t) = 1− P 0
S exp(USt)e .

where US is (as above) the subsystem intensity matrix and e is a vector of ones. The

expected time to remain within the subsystem is given by P 0
S(−US)−1e.

Example 2.3.11 In our barometric pressure example, if we have a uniform entrance

distribution for the subsystem S in Example 2.3.10, then the distribution in time over

when the pressure begins to fall is given by

FS(t) = 1−
[

.5 .5
]

exp

([

−.1 .05

.2 −.21

]

t

)

e

≈ 1− 1.0476(0.960t) + 0.0476(0.7641t) .

Finally, given an entrance distribution, P 0
S , to a subsystem S ofX, we can calculate
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the exit distribution. To do so, we construct a new process X ′ by setting all intensities

to zero within rows corresponding to states not in S. This transformation, in effect,

makes every state which is not in the subsystem an absorbing state. (Once the

system has entered an absorbing state, it can never leave that state.) If we use our

entrance distribution over the states of S for our initial distribution to X ′ (setting the

probability of starting in other states to zero), we can see that the exit distribution is

given by the stationary distribution of X ′. This is because the only way that we can

enter the newly constructed absorbing states is by leaving S and so the probability

with which we end up in an absorbing state is the probability that we entered that

state by exiting the subsystem.



Chapter 3

Representation and Semantics

The key step in bringing the representational power of the factored state Bayesian

network to Markov process modelling is the definition of the local probability model.

We will need a way for the dynamics of a local Markov process to depend on some

limited set of other variables — not on the state of the entire system.

This chapter starts by showing how to define these local probability models and

how to compose them to create a continuous time Bayesian network. We then describe

how to understand the CTBN as a single global process defined by the set of local

models. We show that the global process is itself a homogeneous Markov process.

We examine the conditional indepencies encoded by a CTBN and clarify the class

of homogeneous Markov processes representable as CTBNs. We then show that, for

any representable process, there is a unique minimal structure to encode it.

3.1 Continuous Time Bayesian Networks

3.1.1 Conditional Markov Processes

In order to compose Markov processes in a larger network, we need to introduce the

notion of a conditional Markov process. This is a type of inhomogeneous Markov

process where the intensities vary with time, but not as a direct function of time.

Rather, the intensities are a function of the current values of a set of other variables,

24
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which also evolve as Markov processes.

Let Y be a variable whose domain is Val(Y ) = {y1, y2, . . . , ym}. Assume that

Y evolves as a Markov process Y (t) whose dynamics are conditioned on a set V of

variables, each of which also can also evolve over time. Then we have a conditional

intensity matrix (CIM) which can be written

QY |V =










−qy
1(V ) qy

12(V ) · · · qy
1m(V )

qy
21(V ) −qy

2(V ) · · · qy
2m(V )

...
...

. . .
...

qy
m1(V ) qy

m2(V ) · · · −qy
m(V )










.

Equivalently, we can view a CIM as set of intensity matrices, one for each instantiation

of values v to the variables V . The set of variables V are called the parents of Y ,

and denoted Pa(Y ). Note that, if the parent set Pa(Y ) is empty, then the CIM is

simply a standard intensity matrix. Just as a regular intensity matrix, a CIM induces

a distribution over the dynamics of Y given the behavior of Pa(Y ) = V . If V is

instantiated as v on some interval [t, t+ ǫ), ǫ > 0, then, as in Equation 2.2,

lim
∆t→0

Pr{Yt+∆t | Yt,v} = lim
∆t→0

exp(QY |v∆t)

= lim
∆t→0

I + QY |v∆t+ O(∆t2) . (3.1)

If we specify an initial distribution over Y then we have defined a Markov process

whose behavior depends on the instantiation of values to Pa(Y ).

Example 3.1.1 Consider a variable E(t) which models whether or not a person is

eating (e1 = not eating, e2 = eating) and is conditional on a variable H(t) which

models whether or not a person is hungry (h1 = not hungry, h2 = hungry). Then we

can specify the CIM for E(t) as

QE|h1
=

[

−.01 .01

10 −10

]

QE|h2
=

[

−2 2

.01 −.01

]

.

Given this model, we expect a person who is hungry and not eating to begin eating in
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half an hour. We expect a person who is not hungry and is eating to stop eating in 6

minutes (1/10 hour).

3.1.2 The CTBN Model

Conditional intensity matrices provide a way of modelling the local dependence of one

variable on a set of others. By putting these local models together, we can define a

single joint structured model. As is the case with dynamic Bayesian networks, there

are two central components to define: the initial distribution and the dynamics with

which the system evolves through time.

Definition 3.1.2 Let X be a set of local variables X1, . . . , Xn. Each Xi has a finite

domain of values Val(Xi). A continuous time Bayesian network N over X consists

of two components: The first is an initial distribution P 0
X, specified as a Bayesian

network B over X. The second is a continuous transition model, specified as

• A directed (possibly cyclic) graph G whose nodes are X1, . . . , Xn; Pa(Xi) denotes

the parents of Xi in G.

• A conditional intensity matrix, QX|Pa(X), for each variable Xi ∈X.

Unlike traditional Bayesian networks, there is no problem with cycles in the graph

G. An arc X → Y in the graph implies that the dynamics of Y ’s evolution in time

depends on the value of X. There is no reason why the dynamics of X’s evolution

cannot simultaneously depend on the value of Y . This dependency is analogous to a

DBN model where we have arcs X t → Y t+1 and Y t → X t+1.

Example 3.1.3 Figure 3.1 shows the graph structure for a sample CTBN modelling

the drug effect situation we described in Section 1.1. There are nodes for the uptake

of the drug and for the resulting concentration of the drug in the bloodstream. The

concentration is affected by the how full the patient’s stomach is. The drug is supposed

to alleviate joint pain, which may be aggravated by falling pressure. The drug may

also cause drowsiness. The model contains a cycle, indicating that whether a person

is hungry depends on how full their stomach is, which depends on whether or not they

are eating.
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Full
stomach

Concentration

Uptake

Joint
pain

Barometer

Drowsy

Eating Hungry

Figure 3.1: Drug effect network

3.2 Generative Semantics

In order to define the semantics of a CTBN, we must show how to view the entire

system as a single process.

It is important to note that we make a fundamental assumption in the construction

of the CTBN model: two variables cannot transition at the same time. This can be

viewed as a formalization of the view that variables must represent distinct aspects of

the world. We should not, therefore, model a domain in which we have two variables

that functionally and deterministically change simultaneously. For example, in the

drug effect network, we should not add a variable describing the type of food, if any,

a person is eating. We could, however, change the value space of the Eating variable

from a binary yes/no to a more descriptive set of possibilities.

In this section, we define the semantics of CTBNs by specifying a generative

process, a procedure that takes the initial distribution and the description of each
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Procedure CTBN-Sample(tend)
1. t← 0, σ ← ∅
2. For each variable X ∈X

Choose state x(0) according to θB
X|paB(X).

Loop:
3. For each variable X such that Time(X) is undefined:

Choose ∆t for next X transition from an
exponential dist. with parameter qx(t)|uX(t).

Define Time(X)← t+ ∆t
4. Let X = arg minY ∈X[Time(Y )]
5. If t ≥ tend

return σ
6. Update t← Time(X)
7. Choose x(t) the next value of X from the

multinomial with parameters θx(t)|uX(t).
Add 〈X ← x(t), t〉 to σ.
Undefine Time(X) and Time(Y ) for all

variables Y for which X ∈ UY .

Figure 3.2: Forward sampling semantics for a CTBN

local variable and randomly samples a trajectory for the system.

The procedure, shown in Fig. (3.2), takes an end time and returns a sampled

trajectory σ ending at that time. For each variable X ∈ X, it maintains x(t) — the

state of X at time t, and Time(X) — the next potential transition time for X. We

will use uX(t) to represent the instantiation to parents of X at time t. The initial

distribution is defined by the Bayesian network B. Recall from Theorem 2.3.8 that for

every X ∈X and every x ∈ Val(X), the parameters of the multinomial distribution,

θx|uX
are set such that

θxx′|uX
=

qxx′|uX
∑

x′ qxx′|uX

, x′ 6= x . (3.2)

3.3 Amalgamation Semantics

An alternative method is to construct a single, homogeneous Markov process which

describes the behavior of the CTBN. To do this, we introduce an operation called
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amalgamation on CIMs. This operation combines two CIMs to produce a single,

larger CIM. The new CIM contains the intensities for the variables in S conditioned

on those of C. As noted above, a basic assumption is that, as time is continuous,

variables cannot transition at the same instant. Thus, all intensities corresponding

to two simultaneous changes are zero.

As we will be discussing the structure of single matrix over multiple variables, we

need a function to map rows of the larger matrix to instantiations of the variables. To

do this we use an ordering of the variables which, in turn, defines a unique sequence

of instantiations to the set.

With that, we will be able to define the expansion of a CIM (defined as a set of

matrices) into a single matrix over a larger set of variables. Then we will describe

the amalgamation operation which leads to the joint intensity matrix expresses the

behavior of a CTBN as a homogeneous Markov process.

We will conclude this section by showing the equivalence of this approach to the

generative semantics given in the previous section.

3.3.1 Variable Orderings

As noted above, when discussing matrices over multiple variables, we need a mapping

between row or column numbers and instantiations of the variables. This mapping is

provided by a variable ordering.

Definition 3.3.1 Let ξS be a variable ordering for variables in the set S. Then ξS

can be viewed as a mapping from row numbers to instantiations s of S by adopting the

convention that we iterate over the all the values of the first variable in the ordering

before iterating to the second value of the second variable, and continuing in that

way to iterate over the values of all the variables in turn. We write ξS[i] for the ith

instantiation.

We also define notions of consistency between orderings and, separately, between

instantiations.
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Definition 3.3.2 For two variable ordering ξS and ξS′ over (possibly) distinct sets

of variables S and S ′, we say that the orderings are consistent if they have the same

order for the variables of the intersection S ∩ S ′.

Note that for any subset S ′ ⊆ S, the ordering ξS defines a unique, consistent

sub-ordering ξS′ by simply leaving out the extra variables, S \ S′.

Definition 3.3.3 We say the instantiations ξS[j] and ξS′[k] are consistent if they

assign the same values to the variables in the intersection S ∩ S ′ and write this

ξS[j] ∼= ξS′ [k]. We note that instantiations can be consistent even if the orderings ξS

and ξS′ are inconsistent.

Example 3.3.4 Consider the ordering ξS = 〈X, Y, Z〉, where all variables are binary.

Then the state sequence defined by ξS is

〈x1, y1, z1〉, 〈x2, y1, z1〉, 〈x1, y2, z1〉, 〈x2, y2, z1〉,

〈x1, y1, z2〉, 〈x2, y1, z2〉, 〈x1, y2, z2〉, 〈x2, y2, z2〉 .

Thus, ξS[2] = 〈x2, y1, z1〉 and ξS[7] = 〈x1, y2, z2〉. Also, note that ξS is consistent with

the ordering 〈Y,W,Z〉 but inconsistent with 〈W,Z,X〉. Finally, ξS[2] ∼= 〈y1, w2, z1〉

and ξS[7] ∼= 〈w1, z2, x1〉.

3.3.2 CIM Expansion

As noted above, before we can combine CIMs by amalgamation, we need a way to

write them as single matrices over the same set of variables. A CIM QS|C over

variables S ⊆X conditioned on C ⊂X defines the dynamics of S given C. We can

rewrite QS|C as a single block matrix over the joint space S ×C:

QS|C =










QS|c1 0 · · · 0

0 QS|c2 · · · 0
...

...
. . .

...

0 0 · · · QS|cN










.
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We call this a CIM which is expanded over the variables S ∪ C. Again, the CIM

written in this way induces a distribution over the dynamics of the variables S given

the trajectory of the variables C. Here, we have

lim
∆t→0

Pr{St+∆t | St,C} = lim
∆t→0

exp(QS|C∆t)

= lim
∆t→0

I + QS|C∆t+O(∆t2) . (3.3)

Note that, unlike Equation 3.1, we do not need to worry about the particular instan-

tiation c to variables C because when written as a single matrix, exp(QS|C) includes

a copy of exp(QS|c) for every instantiation c.

More formally, we define CIM expansion in terms of a set of expansion matrices.

Definition 3.3.5 Fix an ordering ξS,C and let ξS and ξC be the consistent sub-

orderings. Let ci = ξC[i]. Then, the expansion matrix NS|ci
is a rectangular matrix

of dimension Card(S ∪C)× Card(S) where the [j, k] entry is defined as

NS|ci
[j, k] =







1 if ξS,C[j] ∼= ξC[i] and ξS,C[j] ∼= ξS[k]

0 otherwise .

That is, NS|ci
is everywhere 0 except on the square submatrix defined by the set of

rows consistent with ci. On that square submatrix, NS|ci
is the identity matrix —

i.e., a matrix that is everywhere 0 except along the main diagonal corresponding to

entries where the row and column correspond to consistent instantiations of S.

Example 3.3.6 Suppose we have two binary variables X and Y and the ordering

〈X, Y 〉. So, the state sequence for the rows is 〈x1, y1〉, 〈x2, y1〉, 〈x1, y2〉, 〈x2, y2〉.

Then,

NX|y1
=









1 0

0 1

0 0

0 0









NX|y2
=









0 0

0 0

1 0

0 1









.
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We also have

NY |x1
=









1 0

0 0

0 1

0 0









NY |x2
=









0 0

1 0

0 0

0 1









.

Note that for NY |x2
only the second and fourth rows correspond to X = x2, so all

other rows have only zeroes. In the second row, which corresponds to 〈x2, y1〉, we have

a 1 in column one which corresponds to the matching instantiation Y = y1. Similarly,

in the fourth row we have a 1 in column two, corresponding to Y = y2.

Example 3.3.7 Suppose we have a binary variable A, a three-valued variable B and

the ordering 〈A,B〉. So, the state sequence for the rows is

〈a1, b1〉, 〈a2, b1〉, 〈a1, b2〉, 〈a2, b2〉, 〈a1, b3〉, 〈a2, b3〉.

Then,

NA|b1 =















1 0

0 1

0 0

0 0

0 0

0 0















NA|b2 =















0 0

0 0

1 0

0 1

0 0

0 0















NA|b3 =















0 0

0 0

0 0

0 0

1 0

0 1















.

We also have

NB|a1
=















1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0















NB|a2
=















0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1















.

We are now ready to define the expansion of a CIM QS|C into a single matrix
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over S ×C.

Definition 3.3.8 The expanded form of QS|C given the ordering ξS,C is a Card(S∪

C)×Card(S ∪C) matrix defined in terms of the Card(S)×Card(S) matrices QS|ci

as

QS|C =
∑

ci∈Val(C)

NS|ci
QS|ci

N′
S|ci

,

where N′
S|ci

is the transpose of NS|ci
. Essentially, we iterate over the instantiations

of the ordering ξC, expanding each matrix QS|ci
over S into a matrix over S × C

and adding them to each other.

More generally, if a CIM QS|C is originally conditioned on a limited set of vari-

ables C, it can be expanded over a larger set of conditioning variables D where

C ⊆ D. We simply use multiple copies of each QS|cj
in the following way: as

we iterate over instantiations di we use the matrix QS|cj
, where cj is consistent with

di. More formally, to expand QS|C into a matrix over S ×D, where C ⊆D we let

QS|D =
∑

di∈Val(D)

NS|di
QS|cj

N′
S|di

,where cj
∼= di .

We note that di determines a unique, consistent cj since C ⊆D.

It may seem that we have abused our notation by using QS|C for both the single

expanded matrix for S over the space S × C and for the set of intensity matrices

QS|ci
, where ci ∈ Val(c). Especially so, since the single expanded matrix is formed

by summing over the copies of the members of the set. However, we justify this dual

usage by noting, in the following theorem, that we can recover the set of QS|ci
from

the single expanded matrix.

Theorem 3.3.9 Each intensity in the fully expanded matrix QS|C corresponds to a

single intensity from QS|ci
for some ci ∈ Val(C). Moreover, by choosing an appro-

priate submatrix from QS|C, we can recover QS|ci
for each ci ∈ Val(C).

Proof: The key insight to the proof of this theorem is to show that each matrix QS|ci

is mapped into a unique submatrix of the expanded form. That means that when
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adding the individually expanded matrices, it never happens that an intensity from

QS|ci
is added to an intensity from QS|cj

for any pair ci, cj ∈ Val(C). Moreover,

none of the intensities within a single QS|ci
are added to each other.

We begin by noting that for each ci ∈ Val(C), the individual expanded matrix

is computed as NS|ci
QS|ci

N′
S|ci

. By Definition 3.3.5 (the definition of the expansion

matrix), NS|ci
has a Card(S)×Card(S) identity matrix as the submatrix correspond-

ing to rows consistent with ci (and is, otherwise, 0). Thus, multiplying NS|ci
QS|ci

yields a Card(S∪C)×Card(S) matrix that is everywhere 0 except on the submatrix

corresponding to rows consistent with C = ci. That submatrix is an exact copy

of QS|ci
. When, in turn, we right-multiply by the transpose, N′

S|ci
, the result is a

Card(S ∪ C) × Card(S ∪ C) matrix that is everywhere zero except on the square

submatrix corresponding to rows and columns consistent with C = ci. Again, that

submatrix is an exact copy of QS|ci
.

Any other intensity matrix QS|cj
for cj 6= ci, is mapped to a non-overlapping

submatrix — namely, the one constructed by choosing the rows and columns of QS|C

consistent with C = cj .

Henceforth, we will generally use QS|C to refer to the single, expanded matrix.

Corollary 3.3.10 Each positive intensity of the fully expanded matrix QS|C corre-

sponds to a single transition of a single variable of S and the negative intensities of

QS|C all fall on the main diagonal and make the row sum to zero.

Proof: By Theorem 3.3.9, each positive intensity of QS|C comes directly from a

positive intensity in a single QS|ci
for some instantiation ci. But each CIM over S

for a fixed ci only has positive intensities for single transitions of single variables of

S. Therefore, each positive intensity of the fully expanded matrix QS|C corresponds

to a single transition of a single variable of S.

Also, the submatrix of QS|C corresponding to QS|ci
uses the set of rows and

columns whose corresponding instantiations are consistent with C = ci. Because the

rows and columns use the same ordering ξS∪C, it follows that entries of the main

diagonal of QS|ci
fall on the main diagonal of QS|C. Since all negative intensities of
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QS|ci
are on its main diagonal, they will be on the main diagonal of the expanded

form, QS|C, as well.

To further ground the notion of matrix expansion, we provide a few examples.

Example 3.3.11 Consider our variables A and B with ordering 〈A,B〉 from Exam-

ple 3.3.7. Let us define the CIMs for these as

QA QB|a1
QB|a2

[

−1 1

2 −2

]







−5 2 3

2 −6 4

2 5 −7













−7 3 4

3 −8 5

3 6 −9






.

The first step in expanding QA as a matrix over A× B is















1 0

0 1

0 0

0 0

0 0

0 0















[

−1 1

2 −2

]















1 0

0 1

0 0

0 0

0 0

0 0















′

=















−1 1 0 0 0 0

2 −2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0















.

When we finish the expansion, we get

QA =















−1 1 0 0 0 0

2 −2 0 0 0 0

0 0 −1 1 0 0

0 0 2 −2 0 0

0 0 0 0 −1 1

0 0 0 0 2 −2















.
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The first step in expanding QB|A is















1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0





















−5 2 3

2 −6 4

2 5 −7





















1 0 0

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0















′

=















−5 0 2 0 3 0

0 0 0 0 0 0

2 0 −6 0 4 0

0 0 0 0 0 0

2 0 5 0 −7 0

0 0 0 0 0 0















.

Finishing this expansion yields

QB|A =















−5 0 2 0 3 0

0 −7 0 3 0 4

2 0 −6 0 4 0

0 3 0 −8 0 5

2 0 5 0 −7 0

0 3 0 6 0 −9















.

3.3.3 CIM Amalgamation

We can now define the amalgamation operation in terms of the expanded form for

CIMs that we have just defined.

Definition 3.3.12 Amalgamation is an operation which takes two CIMs QS1|C1
,

QS2|C2
, and forms the new CIM QS|C where S = S1 ∪ S2 and C = (C1 ∪C2) \ S.

Given a fixed ordering ξS,C, we expand QS1|C1
and QS2|C2

into single matrices over

S×C and then define the amalgamated matrix as the sum QS|C = QS1|C1
+QS2|C2

.

Definition 3.3.13 The inverse of amalgamation is computed by matrix subtraction.
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Lemma 3.3.14 The amalgamation operation satisfies the following properties:

QS1|C1
+ QS2|C2

= QS2|C2
+ QS1|C1

(commutativity)

(QS1|C1
+ QS2|C2

) + QS3|C3
= QS1|C1

+ (QS2|C2
+ QS3|C3

) (associativity)

Proof: This follows directly from the commutativity and associativity of matrix ad-

dition.

Example 3.3.15 Consider a CTBN A→ B over the variables from Example 3.3.11.

In that example, we expanded both QA and QB|A into a single matrices over the space

A× B using the variable ordering 〈A,B〉.

The amalgamation of these two CIMs is given by the matrix addition QA + QB|A

(computed using the expanded forms), producing the matrix

QAB =















−6 1 2 0 3 0

2 −9 0 3 0 4

2 0 −7 1 4 0

0 3 2 −10 0 5

2 0 5 0 −8 1

0 3 0 6 2 −11















.

The use of addition for amalgamation of CIMs is very natural when we consider

the following theorem which relates the sum of the intensity matrices to the product

of the induced distributions.

Theorem 3.3.16 Consider two CIMs, QS′|C′ and QS′′|C′′. The instantaneous prob-

ability over the trajectory of the joint system induced by the amalgamated matrix

QS|C = QS′|C′ + QS′′|C′′ is equal to the product of the instantaneous probability in-

duced by QS′|C′ and the instantaneous probability induced by QS′′|C′′. Formally,

lim
∆t→0

Pr{St+∆t | St,C} = lim
∆t→0

Pr{S′
t+∆t | S

′
t,C

′} · Pr{S ′′
t+∆t | S

′′
t ,C

′′} .
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Proof: Using Equation 3.3, one can see that it suffices to show that

lim
∆t→0

I + QS|C∆t+O(∆t2)

= lim
∆t→0

(
I + QS′|C′∆t+O(∆t2)

) (
I + QS′′|C′′∆t+O(∆t2)

)

= lim
∆t→0

I + QS′|C′∆t+ QS′′|C′′∆t+O(∆t2)

= lim
∆t→0

I + (QS′|C′ + QS′′|C′′)∆t+O(∆t2)

But, by definition of amalgamation, QS|C = QS′|C′ + QS′′|C′′ so the left- and right-

hand sides of the equation are equal.

3.3.4 Joint Intensity Matrix

We can use the amalgamation operation to define a single homogeneous Markov

process that defines the dynamics of the entire system.

Definition 3.3.17 Consider a CTBN N over variables X. Fix an ordering ξX of

the entire set of variables. The joint intensity matrix, QN is a homogeneous Markov

process intensity matrix defined as

QN =
∑

X∈X

QX|UX
, (3.4)

that is, the amalgamation of all the CIMs of the CTBN.

With the initial distribution, the joint intensity matrix defines N as a homoge-

neous Markov process. We can briefly characterize the matrix as follows. QN is a

square matrix over the entire joint state space — i.e., it has Card(X) =
∏

i Card(Xi)

rows and columns. In general, many of the entries on each row are 0. Consider the

following theorem.

Theorem 3.3.18 Each positive intensity (off-diagonal) in the fully amalgamated ma-

trix QN corresponds to a transition of a single variable and comes from exactly one

of the CIMs QX|u for some instantiation u to UX , the parents of X. Each diagonal

entry makes the row sum to zero.
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Proof: By definition of the joint intensity matrix (Definition 3.3.17), we have a fixed

ordering ξX of the variables X of N . Note that we can construct the joint intensity

matrix by expanding each CIM QX|U into a single intensity matrix over the entire

state space, QX|X and setting

QN =
∑

X∈X

QX|UX

=
∑

X∈X

∑

ci∈Val(X\UX)

NX|ci
QX|uj

N′
X|ci

,where uj
∼= ci = ξX[i] . (3.5)

Now, consider an entry [m,n], m 6= n of QN that has a positive intensity qm,n. This

corresponds to a transition from the instantiation ξX[m] to the instantiation ξX[n].

We know, from Theorem 3.3.9, that no intensities get added together in the inner

sum of Eq. (3.5). So every positive intensity in the expanded form of QX|UX
comes

from a single QX|uj
for some uj ∈ Val(UX). Moreover, we know that each of these

correspond to a single transition of the variable X. Since qm,n is positive and came

from the sum in Eq. (3.5), it follows that there is at least one matrix of the form

NX|ci
QX|uj

N′
X|ci

that contributed to qm,n. But that implies, by Corollary 3.3.10,

that ξX[m] differs from ξX[n] by only a single value of a single variable X ∈ X .

Furthermore, no other CIM QX′|UX′ can contribute to qm,n because all of its positive

intensities correspond to single transitions of the variable X ′.

By Corollary 3.3.10, all the expanded matrices have the property that the diagonal

entry makes the row sum to zero. This property is preserved under matrix addition

since the negative intensities that are added to the main diagonal entry of each row

exactly balance the sum of the additional positive intensities.

Each row and column corresponds to some instantiation 〈x1, . . . , xn〉, so using the

above theorem we have a simple consequence.

Corollary 3.3.19 Each row of QN over variables X has one and only one positive

intensity for every possible transition of the system and a negative intensity on the

diagonal. Each row has at most 1 +
∑

i(Card(Xi)− 1) non-zero entries.

Proof: Consider the row corresponding to some arbitrary instantiation 〈x1, . . . , xn〉.

According to Theorem 3.3.18, the only positive values in QN and, hence, on the row



CHAPTER 3. REPRESENTATION AND SEMANTICS 40

correspond to single transitions of single variables. For each variable Xi there are at

most Card(Xi)−1 possible values to which it can transition. (Some of the Card(Xi)−1

potential transitions of Xi may happen to have a 0 intensity.) Considering all the

variables and adding one for the non-zero diagonal (which is negative) leads to the

above formula.

3.3.5 Equivalence to Generative Semantics

In this section, we show that the two approaches we have defined for the semantics

of a CTBN coincide.

Theorem 3.3.20 The Markov process determined by the generative semantics is

stochastically equivalent to the Markov process determined by the joint intensity ma-

trix.

Before proving this theorem, it is helpful to recall a couple of basic properties about

the exponential distribution (Karlin & Taylor, 1998). Namely,

1. If T1 and T2 are distributed exponentially with parameters q1 and q2 then (a)

Pr{T1 < T2} = T1

T1+T2
and Pr{T1 > T2} = T2

T1+T2
. Moreover, (b) if we define Tc =

min{T1, T2}, then Tc is distributed exponentially with parameter q∗ = q1 + q2.

2. For T1 and T2 as above, define Td = |T1 − T2|. Conditioned on T1 > T2, Td is

distributed exponentially with parameter q1 and conditioned on T2 > T1, Td is

distributed exponentiall with parameter q2.

With these, we can prove Theorem 3.3.20.

Proof: Suppose we have a CTBN N over variables X = {X1, . . . , Xn} with initial

distribution P 0
X. Let G be the Markov process defined by the generative semantics

and let A be the Markov process defined by the amalgamation semantics (i.e., by

QN ). By Definition 2.3.5 it suffices to show that G and A have the same state space

and transition probabilities. Clearly they have the same state space because

Val(G) = Val(X) = Val(A) .
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They also have the same initial distribution, P 0
X. It remains only to show that the

transition probabilities are equal.

Suppose, without loss of generality, that we start in state x = 〈x1, x2, . . . , xn〉 ∈

Val(X). According to G we sample a time Ti for the next transition of each variable

Xi ∈X, according the local parameter qxi|ui
associated with the instantiation Xi = xi

and parent set Ui = ui. We then select the earliest next transition time Tc, where

c = arg mini{Ti}. This process is equivalent (by Property 1(b) above) to drawing Tc

from an exponential distribution with parameter

q∗ =
∑

Xi

qxi|ui
.

Now, for process A, we must look at the row of QN corresponding to state X = x.

Given that we have some fixed ordering ξX, there is a row j such that x = ξX[j]. We

draw the next transition time from an exponential distribution parametrized by the

diagonal element of the row j. The diagonal element of that row is −qj,j where qj,j is

the sum of all other intensities on that row. By Theorem 3.3.18 and Corollary 3.3.19,

the diagonal element of that row is the sum of the main diagonal entry of row j

for each CIM QXi|Ui
expanded over all variables X. For variable Xi ∈ X, row j

of its expanded CIM corresponds to the instantiation of parent set UX consistent

with the current full instantiation ξX[j] = x. Without loss of generality, we denoted

this ui above — i.e., for all Xi, we denoted ui as the parent instantiation such that

ui
∼= ξX[j]. Similarly, the instantiation of Xi consistent with x = ξX[j] is denoted

xi. So, we can write the [j, j] entry of the expanded CIM for Xi as qxi|ui
and we have

qj,j =
∑

Xi

qxi|ui

= q∗ .

Thus, the transition time in A is drawn from an exponential distribution with pa-

rameter q∗ and the distribution over the transition time in G is identical.
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We must now show that the distributions over where the system goes are equiv-

alent. In G, once we have determined the transition time Tc as the minimum of

the potential transition times Ti for each Xi, we select Xc to transition next. In G,

according to Property 1(a) above, Xc is selected with probability qxc|uc
/q∗ and we

transition from Xc = xc to Xc = x′c with probability θxcx′
c|uc

which, by Equation 3.2

equals qxcx′
c|uc

/qxc|uc
. So the probability of the transition is

qxc|uc

q∗
·
qxcx′

c|uc

qxc|uc

=
qxcx′

c|uc

q∗
.

But this is exactly the probability of the transition from Xc = xc to Xc = x′c in A.

There is one further subtlety. After transitioning in G, we resample the variable

Xc which transitioned and all its children but we leave the sampled times for other

variables unchanged. Since the sampled times are absolute (not relative) times, it

would seem that the effective sampled times of these transitions are reduced. But,

according to Property 2, each non-resampled time is distributed exponentially with

the parameter originally used to sample the time which yields a transition time dis-

tribution identical to A. Thus G and A are stochastically equivalent.

3.4 Conditional Independence

As in a Bayesian network, the graph structure of a CTBN can be viewed in two

different yet closely related ways. The first is as a data structure with which we can

associate parameters to define a joint distribution. The second is as a qualitative

description of the independence properties of the distribution.

Definition 2.3.6, for independence between Markov processes, implies that inde-

pendencies specified by the CTBN graph are between distributions over entire tra-

jectories of its variables. For example, in our drug effect network, the joint pain is

independent of taking the drug given the moment by moment concentration of the

drug in the bloodstream.

To investigate these independencies, we consider a way in which we can separate

groups of variables in the CTBN graph. We start by noting that variables are bound
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together by CIMs. The CIM QX|PaG(X) contains or connects the variables {X} ∪

PaG(X).

Recall from Definition 2.2.5, that the Markov blanket of of a set of nodes Y is:

BY =

(
⋃

Y ∈Y

PaG(Y ) ∪CdG(Y ) ∪CoPaG(Y )

)

\ Y .

The idea is that the Markov blanket BY separates the variables Y from the from

the remaining variables of N in the moralized graph (see Definition 2.2.4). It turns

out that the characterization of conditional independencies encoded by the graph of

the CTBN are similar because we still have that separation in the moralized graph

implies conditional independence.

Theorem 3.4.1 For a CTBN N with graph G over variables X, consider three

groups of disjoint variables Y , V , and W . Now, suppose that V separates Y from W

in the moralized graph GM . Then (Y ⊥W | V ), i.e., Y is conditionally independent

of W given V .

Proof: Suppose we are given the entire trajectory for each variable V ∈ V and that

we have a fixed ordering ξX over all variables X of N . Consider the separately

amalgamated CIMs

QY |PaG(Y ) =
∑

Y ∈Y

QY |PaG(Y ) ,

QV |PaG(V ) =
∑

V ∈V

QB|PaG(V ) ,

QW |PaG(W) =
∑

W∈W

QW |PaG(W ) ,

and note that because V separates Y and W in GM there is no variable contained in

QW |PaG(W) that is contained in QY |PaG(Y ). In other words, according to QY |PaG(Y ),

no change in the instantiation of W affects the dynamics of Y and, according to

QW |PaG(W), no change in the instantiation of Y affects the dynamics of W .

Now, consider the probability density over the trajectory of the joint process

p(Y ,V ,W ). From the analysis above, we can see that it factors into two pieces.
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Hence, we can write

p(Y ,W ,V ) =
1

Z
pY V (Y ,V ) · pV W(V ,W ) .

where Z is the normalization factor. But, if we are given full information about the

trajectory of variables V , then at every moment in time, we have an instantiation v

of V . But this means we can write the density over the trajectory of the joint process

as

p(Y ,W ,v) =
1

Z ′
pY V (Y ,v) · pV W (v,W )

=
1

Z ′
pY v(Y ) · pWv(W ) .

But that means that, under the assumption we are given V , the trajectory over Y

and the trajectory over W are independent.

3.5 Representational Ability

We begin by considering the scope of the CTBN representation: Which underlying

distributions can we represent using a CTBN? Recall (from Definition 2.3.5) that

two Markov processes are stochastically equivalent if they have the same state space

and transition probabilities. Note that we need the initial distribution for a com-

plete description of the process, but we are here interested in the distribution over

the evolution of the process as governed by the intensity matrix. Since any initial

distribution can be represented by a CTBN, we can always assume that the CTBN

exists where P 0
N = P 0

X. So the initial distribution will not put any limitations on the

set of Markov processes we can represent. As a result, we allow ourselves to refer to

an intensity matrix as if it were a Markov process.

Now, consider a homogeneous stochastic process over Val(X), defined with an

intensity matrix QX. We would like to determine when there is a CTBN which is

stochastically equivalent to QX.

In section 3.3, we provided a semantics for a CTBN in terms of an amalgamation
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operation, which takes a CTBN and converts it into a single intensity matrix that

specifies a homogeneous stochastic process. For a CTBN N , let QN be the induced

joint intensity matrix. We can now define

Definition 3.5.1 A CTBN structure G is an S-map for a homogeneous Markov pro-

cess QX if there exists a CTBN N over the graph G such that QN is stochastically

equivalent to QX.

As discussed in section 3.3, a basic assumption in the semantics of CTBNs is that,

as time is continuous, variables cannot transition at the same instant. Thus, in the

joint intensity matrix, all intensities that correspond to two simultaneous changes are

zero. More precisely:

Definition 3.5.2 A homogeneous Markov process whose intensity matrix is QX with

entries qxx′ is said to be variable-based if, for any two assignments x and x′ to X

that differ on more than one variable, qxx′ = 0.

It turns out that this condition is the only restriction on the CTBN expressive

power. Let G⊤ be the fully connected directed graph. Then we can show that

Theorem 3.5.3 The graph G⊤ is an S-map for any variable-based homogeneous

Markov process with intensity matrix QX.

Proof: Fix any arbitrary variable-based homogeneous Markov process with intensity

matrix QX over variables X. It is sufficient to construct a CTBN N over G⊤ such

that QN = QX. Consider variable X ∈ X and let QX∈X be the result of setting

intensities for transitions of all variables other than X to zero and increasing the

diagonal entry of each row by the total of the zeroed intensities on that row (thus

decreasing the magnitude of the diagonal and preserving the row sums). Since QX is

variable-based, we do not need to set to zero any intensities corresponding to multiple

transitions. Thus

QX =
∑

X∈X

QX∈X .

Now we define a CTBN N with parent sets UX = X \ {X} so that it has the graph

G⊤. Next we set each parameter qxx′|ux
as intensity from QX∈X corresponding to
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the transition from X = x to X = x′ with the rest of the variables instantiated

UX = uX . Then, by construction, we have that the expanded CIM QX|UX
= QX∈X

which means that

QX =
∑

X∈X

QX|UX
= QN

and our construction is complete.

Thus, we can represent every variable-based homogeneous process as some param-

eterization over the graph G⊤. In fact, this parameterization is unique:

Theorem 3.5.4 Let N and N ′ be two CTBNs over variables X with graph G⊤. Then

QN and QN ′ are stochastically equivalent if and only if their conditional intensity

matrices are identical.

Proof: Suppose N and N ′ have identical CIMs so QX|UX
= Q′

X|UX
for all X ∈ X .

It is sufficient to show that QN = QN ′ because then the transition probabilities must

be identical. But, we have

QN =
∑

X∈X

QX|UX
=
∑

X∈X

Q′
X|UX

= QN ′ .

Conversely, suppose QN and QN ′ are stochastically equivalent and hence have iden-

tical transition probabilities. Since each entry governs a particular transition prob-

ability, we have QN = QN ′. Suppose their conditional intensity matrices are not

identical. By Theorem 3.3.18, all CIMs have a zero intensity for multiple simultane-

ous transitions and the diagonals simply make the rows sum to zero. So there must

be some entry qxx′|uX
(where x 6= x′) in the CIM for X in N that is different than

q′xx′|uX
, the corresponding entry in the CIM for X in N ′. But the CIM over X is the

only source for the intensity (and hence probability) of the transition from X = x to

X = x′ which means that qxx′|uX
is the entry in QN corresponding to that transition

and q′xx′|uX
is the corresponding entry in QN ′. But this is a contradiction, so the

conditional intensity matrices must be identical.

Let NQX
represent the unique CTBN over G⊤ which is stochastically equivalent

to QX. Although capturing a stochastic process using a fully-connected CTBN is not

very interesting, it provides us with the tools for proving our main result.
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Theorem 3.5.5 A CTBN structure G is an S-map for a variable-based process QX

if and only if NQX
satisfies the following condition:

For every variable X, consider a partition of X into X, PaG(X) = U and remain-

ing variables W . Denote xuw as the instantiation to X that sets X = x, U = u,

W = w. Now consider four assignments to X: xuw, x′uw, xuw′, and x′uw′. Then

qxuw→x′uw = qxuw′→x′uw′.

Proof: Note that qxuw→x′uw and qxuw′→x′uw′ both represent the same transition single-

variable transition from X = x to X = x′ under a fixed parent instantiation u but

under (possibly) differet instantiations to the other variables W . They are only

guaranteed to overlap on the instantiation of the variables PaG(X). According to

the condition, this is enough to guarantee that the transition intensities are identical.

Thus the condition is equivalent to saying that in NQX
, the CIM QX|UX

over X =

{X}∪UX consists of copies of QX|PaG(X) — i.e., it is equivalent to a CIM QX|PaG(X)

expanded to be over X.

Now, if G is an S-map of QX then, by definition, there is a CTBN N with CIMs

QX|PaG(X) such that QN =
∑

X QX|PaG(X). Then clearly NQX
satisfies the condition

because QX|UX
is equal to the expanded QX|PaG(X) for every X.

Conversely, suppose NQX
satisfies the condition. Then, as noted according to the

equivalent condition above, for every X, QX|UX
is equivalent to a CIM QX|PaG(X) so

we can define a CTBN N with structure G with these CIMs and it follows that G is

an S-map of QX.

Thus, we cannot represent the same process using two fundamentally different

CTBN structures. We can only add spurious edges, corresponding to vacuous depen-

dencies.

Definition 3.5.6 In a CTBN N with graph G, an arc A→ B is spurious under the

following condition. Let PaG(B) = {A} ∪W . Then, for all a, a′ ∈ Val(A) and some

fixed instantiation w to the other parents W , QB|w,a = QB|w,a′.

Theorem 3.5.7 For any variable-based process QX, there exists an S-map G∗ such

that, for any S-map G for QX, G∗ ⊆ G.



CHAPTER 3. REPRESENTATION AND SEMANTICS 48

Proof: Consider any two structures G and G′ which are S-maps of QX. Then we

have corresponding CTBNs N and N ′ such that QN and QN ′ are stochastically

equivalent to QX. We first modify N by adding spurious edges to G until we have

a fully connected graph. We similarly modify N ′ by adding spurious edges to G′

until we have a fully connected graph. But the resulting CTBNs N and N ′ must be

identical to NQX
by Theorem 3.5.4. But that means that the CIMs of N and N ′

must be identical. Since the definition of a spurious edge (Definition 3.5.6) is in terms

of a condition on the CIMs, any spurious edges in the modified N are also spurious

in the modified N ′. That means that any spurious edges we added to G that were

already in G′ were already spurious in G′. Likewise, any spurious edges we added to

G′ that were already in G were already spurious in G.

Let us define G∩ as the graph containing all and only those edges that are in G

and in G′ — that is, the intersection of the set of edges in the two graphs. Since

G∩ can be constructed by deleting only spurious edges from G (or by deleting only

spurious edges from G′), it follows that G∩ is an S-map of QX. Furthermore G∩ ⊆ G

and G∩ ⊆ G′. Since there are only finitely many possible structures, this is enough to

guarantee the existence of a unique G∗.

Thus, we have a unique minimal S-map.

3.6 Discussion

In this chapter, we have defined the CTBN framework — showing how to construct a

continuous time Markov process over a factored state space analogous to a Bayesian

network.

We provided two alternative semantics for this process and showed their equiva-

lence. We provided a characterization of the joint intensity matrix for the CTBN in

terms of the local CIM probability models.

We explored issues of conditional independence in a CTBN, showing that the

Markov blanket of a set of variables renders them conditionally independent of the

remaining variables.

Our final result of this chapter shows that we cannot represent the same process
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using two essentially different CTBN structures — we have a unique minimal S-

map. Let us compare this result to the case of Bayesian networks. There, any

distribution has many minimal I-maps; indeed, many distributions even have several

perfect maps, each of which captures the structure of the distribution perfectly. In the

case of CTBNs, we have a unique minimal S-map. To obtain some intuition for this

difference, consider the simple example of a two-variable CTBN N with the graph

X → Y . Unless the edge between X and Y is vacuous, this graph cannot give rise

to the same transition probabilities as any CTBN N ′ with the graph X ← Y . To

see that, recall that in N , the variable Y is an inhomogeneous Markov process whose

transition probabilities vary over time as a function of the changing value of X. But,

in N ′, the variable Y is a homogeneous Markov process whose transition probabilities

never change.

Further implications of these definitions and results will be explored in depth over

the rest of this thesis.



Chapter 4

Likelihood and Sufficient Statistics

In the last chapter we defined CTBNs. As we look towards the next chapters which

will cover the task of learning CTBNs from data, we must first answer a few basic

questions. What do we mean by data? What is the probability or likelihood of some

set of data, given a CTBN model? If our data is, in some sense, incomplete how do we

calculate the expected likelihood? These are the questions explored in this chapter.

Since CTBNs are a member of the exponential family of models, the likelihood of

a data set can be expressed in terms of sufficient statistics aggregated over the data.

We will show the form these statistics have and that, just as with BNs, the likelihood

of a CTBN decomposes as an aggreggate of local likelihoods.

We also provide a method for calculating expected sufficient statistics and discuss

computational issues associated with that calculation.

4.1 Data

At its core, a CTBN models the joint trajectories of its variables.

4.1.1 Complete Data

In order to have complete data we need a set of one or more full trajectories of all the

variables of the CTBN. So, if D represents a complete data set, then D = {σ1, . . . , σh}

50
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where each σi is a complete set of state transitions and the times at which they

occurred. In other words, for each point in time of each trajectory, we know the full

instantiation to all variables.

4.1.2 Incomplete Data

Given the description of complete data, we can see that an incomplete data set is a

set of one or more partial trajectories.

Example 4.1.1 Suppose we have a process X whose state space is

Val(X) = {y1, y2} × {z1, z2} .

Consider the following example σ+ of a fully observed trajectory over the time interval

[0, 2): X starts in 〈y1, z2〉 at time 0; at time 0.5 it transitions to 〈y2, z2〉; at time 1.7

it transitions to 〈y2, z1〉.

Note we can write 〈·, zi〉 for the subsystem (see Section 2.3.4) consisting of the

states 〈y1, zi〉 and 〈y2, zi〉. An example partially observed trajectory σ over the interval

[0, 2) is: X starts in 〈·, z2〉; at time 1.7 it transitions to 〈·, z1〉. Note that σ+ is a

completion of σ. Another possible completion of σ is: X starts in 〈y2, z2〉 at time 0;

at time 1.0 it transitions to 〈y1, z2〉; at time 1.7 it transitions to 〈y1, z1〉.

We can describe a partially observed trajectory σ′ with point evidence at time 0.7

and 1.8: X starts in 〈·, ·〉; at time 0.7 we observe 〈·, z2〉; from time 0.7 to 1.8 we

observe X in 〈·, ·〉; at time 1.8 we observe X in 〈·, z1〉; from time 1.8 on, we observe

X in 〈·, ·〉. Note that σ+ is also a completion of σ′.

So, for a general Markov process, a partially observed trajectory σ is given as

a sequence of N subsystems (see Section 2.3.4) so that the state is restricted to

subsystem Si during interval [ti, ti+1) for 0 ≤ i ≤ (N − 1). Without loss of generality,

we can assume that σ begins at time 0 and ends at time τ so t0 = 0 and tN = τ .

For subsystem S, let QS be the n × n intensity matrix QX with all intensities

zeroed out except those corresponding to transitions within the subsystem S (and

associated diagonal elements). For subsystems S1, S2, let QS1S2
be the n×n intensity
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matrix QX with all intensities zeroed out except those corresponding to transitions

from S1 to S2. Note that this means all the intensities corresponding to transitions

within S1 and within S2 are also zeroed out.

Sometimes it is convenient to refer to evidence by providing an arbitrary time

interval. Let σt1:t2 denote the evidence provided by σ over the interval [t1, t2). (So,

σ0:τ is the evidence provided by all of σ.) Let σt1:t+
2

denote the evidence over the

interval [t1, t2], and σt+
1

:t2
the evidence over the interval (t1, t2).

4.2 Single Markov Process

We begin by considering the likelihood of complete, or fully observed, data. Consider a

homogeneous Markov process X(t). As all the transitions are observed, the likelihood

of D can be decomposed as a product of the likelihoods for individual transitions d.

Let d = 〈xd, td, x
′
d〉 ∈ D be the transition where X transitions to state x′d after spend-

ing the amount of time td in state xd. Using the mixed intensity parameterization, we

can write the likelihood for the single transition d as

LX(q, θ : d) = LX(q : d)LX(θ : d) (4.1)

= (qxd
exp(−qxd

td))
(
θxdx′

d

)
. (4.2)

By multiplying the likelihoods for each transition d, we see that we can summarize

our data D in terms of sufficient statistics.

Definition 4.2.1 The sufficient statistics for the transition dynamics of a single

Markov process X are

• T [x], the amount of time spent in each state x ∈ Val(X), and

• M [x, x′], the number of transitions from x to x′, where x 6= x′.
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If we write M [x] =
∑

x′ M [x, x′], the total number of transitions leaving the state

X = x then we have

LX(q, θ : D) =

(
∏

d∈D

LX(q : d)

)(
∏

d∈D

LX(θ : d)

)

=

(
∏

x

qM [x]
x exp(−qxT [x])

)(
∏

x

∏

x′ 6=x

θ
M [x,x′]
xx′

)

. (4.3)

4.3 Exponential Family

We can write the sufficient statistics of our data D as a vector vs[D] = {T [x],M [x, x′]}

consisting of the the amount of time spent in each state x followed by the number of

transitions from every state x to every other x′ where x, x′ ∈ Val(X).

Similarly, using the pure intensity parameterization, we can write a vector of the

parameters of Q, the intensity matrix, vp = {qx, ln(qxx′)} consisting of the intensity

of leaving each state x followed by the log of the intensity of transitioning from state

x to state x′.

Then the likelihood of the data can then be written as the dot product of the two

vectors

P (σ) =
1

Z
exp(〈vs[D],vp〉)

=
1

Z
exp

(
∑

x

qxT [x] +
∑

x

∑

x′ 6=x

ln qxx′M [x, x′]

)

,

where Z is the partition function.

4.4 Computing Expected Sufficient Statistics

In many situations we do not have access to continuous observation of every part of

the system. If there are gaps in our observation of the system, then we are unable to

compute the sufficient statistics — we do not know how many transitions may have

occurred, nor do we know when they occurred. So, we are unable to compute T [x]
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or M [x, x′]. But we do have a model, which gives us a distribution over trajectories.

Hence, we compute expected sufficient statistics: the expected amount of time we

spend in each state, E[T [x]], and the expected number of transitions from one state

to another, E[M [x, x′]].

So, given an n-state homogeneous Markov process Xt with intensity matrix QX ,

our task is to compute the expected sufficient statistics with respect to the posterior

probability density over completions of the data given the observations and the current

model. For simplicity, we omit the explicit dependence on the parameters qk, θk.

This computation is not straightforward. The space of trajectories is infinite in

the times at which an unknown transition may have occurred. Moreover, we do not

even know how many missing transitions there are.

4.4.1 Notation

In order to compute the expected sufficient statistics over D, we compute them for

each partially observed trajectory σ ∈ D separately and then combine the results.

Because we will be dealing with a number of matrix operations, it will be con-

venient to use row numbers when discussing states. So, assuming the Val(X) =

{x1, . . . , xn}, we will, for purposes of the discussion in this section, denote xi = ξX [i]

simply by i. Likewise, we denote xj = ξX [j] simply as j.

Let e be a (column) n-vector of ones. Let ej be an n-vector of zeros with a one

in position j. Let ∆j,k be an n × n matrix of zeros with a one in position j, k. (So

∆j,k = eje
′
k.) Note that all multiplications below are standard vector and matrix

multiplications as opposed to factor multiplications.

Define the vectors α−
t and β+

t component-wise as

α−
t [i] = p(Xt− = i, σ0:t)

β+
t [i] = p(σt+:τ | Xt+ = i),

where, if X transitions at t, Xt− is the value of X just prior to the transition, and Xt+

the value just afterward. (If there is no transition, Xt− = Xt+ .) Moreover, recall that

σ0:t represents the evidence over interval [0, t) not including t and σt+:τ represents
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evidence over interval (t, τ) not including t. Thus, neither of these vectors include

evidence of a transition at time t. We also define the vectors

αt[i] = p(Xt = i, σ0:t+)

βt[i] = p(σt:τ | Xt = i)

both of which include evidence of any transition at time t.

4.4.2 Expected Amount of Time

The sufficient statistic T [j] is the amount of time that X spends in state j over the

course of trajectory σ. We can write the expectation of T [j] according to the posterior

probability density given the evidence as

E[T [j]] =

∫ τ

0

p(Xt | σ0:τ )ejdt

=

N−1∑

i=0

∫ ti+1

ti

p(Xt | σ0:τ )ejdt

=
1

p(σ0:τ )

N−1∑

i=0

∫ ti+1

ti

p(Xt, σ0:τ )ejdt .

The constant fraction at the beginning of the last line serves to make the total ex-

pected time over all j sum to τ .

We must show how to compute the above integrals over intervals of constant

evidence. Let [v, w) be such an interval, and let S be the subsystem to which the

state is restricted on this interval. Then we have

∫ w

v

p(Xt, σ0:τ )ejdt =

∫ w

v

p(Xt, σ0:t)∆j,jp(σt:τ | Xt)dt

=

∫ w

v

αvp(Xt, σv:t | Xv)∆j,jp(Xw, σt:w | Xt)βwdt

=

∫ w

v

αv exp(QS(t− v))∆j,j exp(QS(w − t))βwdt . (4.4)
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We can calculate the total expected time, E[T [j]], by summing the above expres-

sion over all intervals of constant evidence. The numerical integration is done via the

Runge-Kutta method which is described in Section 4.4.4.

4.4.3 Expected Number of Transitions

The sufficient statistic M [j, k] (j 6= k) is the number of times X transitions from state

j to state k over the course of trajectory σ. We consider discrete time approximations

of M [j, k] and take the limit as the size of our discretization goes to zero, yielding an

exact equation. For ǫ > 0, let

Mǫ[j, k] =

τ/ǫ−1
∑

t=0

1{Xtǫ = j,X(t+1)ǫ = k} .

Note that our discrete approximation is dominated by the actual value, i.e.,

|Mǫ[j, k]| ≤M [j, k] ,

and also that as ǫ ↓ 0, Mǫ[j, k] → M [j, k]. Hence, by dominated convergence for

conditional expectations (Billingsley, 1995), we have

E[M [j, k]] = lim
ǫ↓0

E[Mǫ[j, k]] .

This last expectation can be broken down as

E[Mǫ[j, k]] =

τ/ǫ−1
∑

t=0

p(Xtǫ = j,X(t+1)ǫ = k, σ0:τ )

p(σ0:τ )
.

Note that, for ǫ small enough, we observe at most one transition per interval. Thus,

each of the intervals in the sum falls into one of two categories: either the interval

contains a (partially observed) transition, or the evidence is constant over the interval.

We treat each of these cases separately.

Let [tǫ, (t + 1)ǫ) be an interval containing a partially observed transition at time



CHAPTER 4. LIKELIHOOD AND SUFFICIENT STATISTICS 57

ti. We observe only that we are transitioning from one of the states of Si to one of

the states of Si+1. We can calculate the contribution of this interval to the expected

sufficient statistics (ignoring the constant 1/p(σ0:τ )) as

p(Xtǫ = j,X(t+1)ǫ = k, σ0:τ )

= p(Xtǫ = j, σ0:tǫ)p(X(t+1)ǫ = k, σtǫ:(t+1)ǫ | Xtǫ = j)p(σ(t+1)ǫ:τ | X(t+1)ǫ = k) .

As ǫ ↓ 0, we have the probability of the state and the evidence up to, but not including,

time ti, times the instantaneous probability of transitioning from state j to state k,

times the probability of the evidence given the state just after ti. Thus, at the limit,

this transition’s contribution is

α−
ti
ejqjke

′
kβ

+
ti

= qjkα
−
ti
∆j,kβ

+
ti
. (4.5)

Now consider the case when we are within an interval [v, w) = [ti, ti+1) of constant

evidence — i.e., it does not contain a partially observed transition and will generally

be of length much larger than ǫ. Let ∆t = w − v and let S be the subsystem to

which the state is restricted on this interval. As ǫ grows small, the contribution of

this interval to the sum (again, ignoring 1/p(σ0:τ )) is

∆t/ǫ−1
∑

T=0

p(Xv+tǫ = j,Xv+(t+1)ǫ = k, σ0:τ )

=

∆t/ǫ−1
∑

t=0

∑

Xv,Xw







p(Xv, σ0:v)p(Xv+tǫ = j, σv:v+tǫ | Xv)

p(Xv+(t+1)ǫ = k, σv+tǫ:v+(t+1)ǫ | Xv+tǫ = j)

p(Xw, σv+(t+1)ǫ:w | Xv+(t+1)ǫ = k)p(σw:τ | Xw)







=

∆t/ǫ−1
∑

t=0







αv exp(QStǫ)ej

e′
jp(Xv+(t+1)ǫ, σv+tǫ:v+(t+1)ǫ | Xv+tǫ)ek

e′
k exp(QS(w − (v + (t+ 1)ǫ)))βw






.

As in the case with observed transitions, as ǫ ↓ 0, the middle term becomes qjkdt,

the instantaneous probability of transitioning. Since exp(QSt) is continuous, we can
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express the limit as a sum of integrals of the form

qjk

∫ w

v

αv exp(QS(t− v))∆j,k exp(QS(w − t)βwdt (4.6)

We have one such term for each interval of constant evidence. Essentially we are

integrating the instantaneous probability of transitioning from state j to k over the

interval given the evidence. Note that this is very similar to the form of Eq. (4.4) —

the only difference is the matrix ∆j,k and the term qjk.

To obtain the overall sufficient statistics, we have a sum with two types of terms:

a term as in Eq. (4.5) for each observed transition, and an integral as in Eq. (4.6) for

each interval of constant evidence. The overall expression is

qjk
p(σ0:τ )

[
N−1∑

i=1

α−
ti
∆j,kβ

+
ti

+
N−1∑

i=0

∫ w

v

αv exp(QS(t− v))∆j,k exp(QS(w − t))βwdt

]

.

4.4.4 Runge-Kutta

As we can see from above, computing the expected sufficient statistics involves a set

of integrals of the form

cij =

∫ w

v

αv exp(QS(t− v))∆i,j exp(QS(w − t))βwdt .

We calculate the set of these integrals for all j and k simultaneously via the

Runge-Kutta method of fourth order with adaptive step size.

As with many methods of numerical integration, Runge-Kutta makes use of the

idea that

f(t+ ∆t) ≈ f(t) +
df

dt
∆t .

If we are computing the integral over an interval [v, w), we break it into a series of

smaller sub-intervals in which we approximate the value of the function this way.

There are two important questions to answer: (1) how do we choose a value to use

for the derivative over the sub-interval [t, t + ∆t) given that the derivative is not

generally constant over that interval; (2) how do we decide on the step-size, i.e., the
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partitioning of the interval [v, w) into sub-intervals. We look at these two issues, in

turn.

Over each sub-interval, the Runge-Kutta method of fourth order uses a weighted

average of 4 slopes for the derivative. These correspond to the slope at the beginning

and the end of the sub-interval as well as two possible slopes at the mid-point of the

interval. We can see from this that we would prefer that the derivative change as

little as possible over the course of the sub-interval. While this puts some pressure

on us to use smaller sub-intervals, that would mean more steps which would make

the computation more complex and could increase rounding errors.

Importantly, the matrix QS gives us a model of how fast the derivative is chang-

ing. The intensities represent rates of evolution for states of the system, so larger

intensities mean a faster rate of change which usually requires a smaller step size.

Suppose q∗ is the parameter in the intensity matrix with the greatest absolute value.

Then the fastest possible change of state (and hence, change of derivative) occurs,

on expectation, after time 1/q∗. So, we might consider simply choosing a step-size of

1/q∗. Note that this choice of step-size is context-sensitive — it varies across different

subsystems and different evidence.

But if many states transition more slowly or the fast transitioning states have low

probability according to the current distribution, this step-size may still be smaller

than we want. So, following Press et al. (1992), we use a standard adaptive procedure

that allows larger steps to be taken when possible based on error estimates. Since

we begin the method with 1/q∗ as our step-size, there are two ways in which the

integration uses a step size that is adaptive and not fixed — through the initial choice

of step-size based on the maximum intensity and through the standard error-estimate

based adaptive procedure.

As we calculate the expected sufficient statistics — over an interval of duration

T = w−v with an n×n intensity matrix — using Runge-Kutta, we take O(q∗T ) steps.

Each step within Runge Kutta is of complexity O(n3) (due to matrix multiplication)

so the entire call to Runge Kutta has complexity O(n3q∗T ).
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4.4.5 Computing αt and βt

One method of computing αt and βt is via a forward-backward style algorithm (Ra-

biner & Juang, 1986) over the entire trajectory to incorporate evidence and get dis-

tributions over the state of the system at every time ti.

We have already defined the forward and backward probability vectors, αt and

βt. To initialize the vectors, we simply let α0 be the initial distribution over the state

and βτ = e, a vector of ones. To update the vectors from their previously computed

values, we calculate

αti+1
= αti exp(QSi

(ti+1 − ti))QSiSi+1

βti
= QSi−1Si

exp(QSi
(ti+1 − ti))βti+1

To exclude incorporation of the evidence of the transition from either forward or

backward vector (or if the time in question is not a transition time), one can simply

remove the subsystem transition intensity matrix (QSiSi+1
) from the calculation. We

can compute

α−
ti+1

= αti exp(QSi
(ti+1 − ti))

β+
ti

= exp(QSi
(ti+1 − ti))βti+1

.

Moreover, as time 0 and τ are not transition times, we have

ατ = αtN−1
exp(QSN−1

(τ − tN−1))

β0 = exp(QS0
(t1 − 0))βt1 .

We can then write the distribution over the state of the system at time t given all

the evidence as

P (Xt = j | σ0:τ ) =
1

p(σ0:τ )
α−

t ∆j,jβt .
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4.5 CTBNs

In a CTBN N , each variable X ∈ X is conditioned on its parent set U, and each

transition of X must be considered in the context of the instantiation to U. With

complete data, we know the value of U during the entire trajectory, so we know at

each point in time precisely which homogeneous intensity matrix QX|u governed the

dynamics of X.

Thus, the likelihood decomposes by variable as

LN (q, θ : D) =
∏

Xi∈X

LXi
(qXi|Ui

, θXi|Ui
: D)

=
∏

Xi∈X

LXi
(qXi|Ui

: D)LXi
(θXi|Ui

: D) .

The term LX(θX|U : D) is the probability of the sequence of state transitions, disre-

garding the times between transitions. These state changes depend only on the value

of the parents at the instant of the transition. Therefore, with the sufficient statistic

M [x, x′|u], we have

LX(θ : D) =
∏

u

∏

x

∏

x′ 6=x

θ
M [x,x′|u]
xx′|u .

The computation of LX(qX|U : D) is more subtle. Consider a particular transition

d where a state in which X = x,U = u transitioned to another state X = x,U = u′

after time t. In other words, the duration in the state was terminated not due to

a transition of X, but due to a transition of one of its parents. Intuitively, these

transitions still depend on X’s dynamics, as they can only occur if X stayed at the

value x for at least a duration of t. The probability that X stayed at x for this

duration is 1− F (qx|u, t) = exp(−qx|ut).

More formally, we define the sufficient statistics for a CTBN as follows.

Definition 4.5.1 The sufficient statistics for the transition dynamics of a CTBN

over variables X decompose as a set for each variable X ∈ X as follows

• T [x|u], the amount of time that X = x while UX = u, and

• M [x, x′|u], the number of transitions X = x to X = x′, while UX = u.
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The sufficient statistic T [x|u], the total amount of time where X = x and U = u,

can be decomposed into two different kinds of durations: T [x|u] = Tr[x|u] + Tc[x|u],

where Tr[x|u] is the total over durations td that terminate with X remaining equal to

x (these include transitions where U changed value, as well as the end of a trajectory),

and Tc[x|u] is the total over durations td that terminate with a change in the value of

X. It is easy to see that the terms for the different transitions that comprise Tr[x|u]

combine as do Tc[x|u], so that we have

LX(qX|U : D) =

(
∏

u

∏

x

q
M [x|u]
x|u exp(−qx|uTc[x|u])

)

×

(
∏

u

∏

x

exp(−qx|uTr[x|u])

)

=
∏

u

∏

x

q
M [x|u]
x|u exp(−qx|uT [x|u]) .

Thus, we do not need to maintain the distinction between Tc[x|u] and Tr[x|u]. Instead,

we can simply use T [x|u] as the sufficient statistic.

We can now write the log likelihood as a sum of local variable likelihoods of the

form

ℓX(q, θ : D)

= ℓX(q : D) + ℓX(θ : D)

=

[
∑

u

∑

x

M [x|u] ln(qx|u)− qx|u · T [x|u]

]

+

[
∑

u

∑

x

∑

x′ 6=x

M [x, x′|u] ln(θxx′|u)

]

.

(4.7)

4.6 Discussion

In this chapter we showed how to compute the likelihood of a data given a CTBN

model. This infrastructure will be crucial to the algorithms we develop over the next

few chapters to support learning and inference tasks.



Chapter 5

Learning with Complete Data

In the last chapter, we saw how to compute the likelihood of a data set given a CTBN

model. But what if we do not have a CTBN model? The likelihood function can still

help us because there is a clear relationsip, by Bayes’ theorem, between the likelihood

(i.e., probability of a data set given a model) and the probability of a model given a

data set.

In this chapter we will show how to learn CTBN parameters and structure from

complete data. The basic methods are analogous to standard Bayesian network tech-

niques, but the formulae and derivations are substantially different. One significant

point of departure between BNs and CTBNs is model search: we will see that the

search space over CTBN structures is substantially simpler than that of BN or DBN

structures.

For now, we will assume that we have complete data. This assumption will be

relaxed in the next chapter.

5.1 Parameter Estimation

We first consider the problem of estimating the parameters of a CTBN with a fixed

structure G. As usual, this problem is not only useful on its own, but also as a key

component in the structure learning task.

63
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Theorem 5.1.1 To maximize the likelihood given in Equation 4.7, the parameters

qx|u and θxx′|u can be written as a function of the sufficient statistics as

q̂x|u =
M [x|u]

T [x|u]
,

θ̂xx′|u =
M [x, x′|u]

M [x|u]
. (5.1)

These are the the maximum-likelihood (MLE) parameters.

Proof: Taking the partial derivative of Equation 4.7 with respect to qx|u and setting

the result to 0 gives us
M [x|u]

qx|u
− T [x|u] = 0 .

Solving for qx|u leads to the formula above. Alternatively, as a member of the expo-

nential family, we can derive this formula by matching moments. According to the

data, the mean time to transition from X = x and U = u is the total time divided

by the number of transitions from that state, i.e., T [x|u]/M [x|u]. The mean of the

exponential distribution with parameter qx|u is 1/qx|u. By setting these means equal

to each other, we get the maximum likelihood formula above.

For each multinomial distribution, we must maximize the likelihood subject to the

constraint that its parameters sum to 1. Using the method of Lagrange multipliers,

we set the constraint function g to

g =
∑

x′ 6=x

θxx′|u − 1 = 0

and maximize
∑

x′ 6=x

M [x, x′|u] ln(θxx′|u) + λ · g .

Taking the partial derivative with respect to θxx′|u and setting it to 0 yields

M [x, x′|u]

θxx′|u
− λ = 0 .
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which implies that

θxx′|u =
M [x, x′|u]

λ
.

Taking the partial derivative with respect to λ and setting it to 0 yields the original

constraint function. Substitution yields

∑

x′ 6=x

M [x, x′|u]

λ
= 1 .

Solving for λ, we get λ =
∑

x′ 6=xM [x, x′|u] = M [x|u]. From this, we can conclude

θxx′|u =
M [x, x′|u]

M [x|u]
.

as desired. Note that this can also be derived by matching moments because the

mean number of transitions out of the state X = x and U = u that led to the state

X = x′ according to the data is exactly M [x, x′|u]/M [x|u].

5.1.1 Bayesian Approach

To perform Bayesian parameter estimation, and to define a Bayesian score for our

structure search, we need to define a prior distribution over the parameters of our

CTBN. As usual, for computational efficiency, we want to use a conjugate prior —

one where the posterior (after conditioning on the data) is in the same parametric

family as the prior.

Let us begin with constructing an appropriate prior for a single Markov process.

Recall that a Markov process has two sets of parameters: a multinomial distribution

parameterized by θ, and an exponential distribution parameterized by q. An ap-

propriate conjugate prior for the exponential parameter q is the Gamma distribution

P (q) = Gamma(α, τ), where

P (q) =
(τ)α+1

Γ(α+ 1)
qα exp(−qτ) .

The multinomial distribution is familiar from traditional Bayesian networks where the
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standard conjugate prior is a Dirichlet distribution (Heckerman et al., 1995; Geiger

& Heckerman, 1995).

If we assume that

P (θ) = Dir(αxx1
, . . . , αxxk

)

P (q) = Gamma(αx, τx)

P (θ, q) = P (θ)P (q),

then, after conditioning on the data, we have

P (θ | D) = Dir(αxx1
+ M [x, x1], . . . , αxxk

+ M [x, xk])

P (q | D) = Gamma(αx + M [x], τx + T [x]) .

We generalize this idea to a parameter prior for an entire CTBN by making two

standard assumptions for parameter priors in Bayesian networks (Heckerman et al.,

1995), global parameter independence:

P (q, θ) =
∏

X∈X

P (qX|Pa(X), θX|Pa(X))

and local parameter independence:

P (qX|U, θX|U) =

(
∏

x

∏

u

P (qx|u)

)(
∏

x

∏

u

P (θx|u)

)

.

If our parameter prior satisfies these assumptions, so does our posterior, as it

belongs to the same parametric family. Thus, we can maintain our parameter distri-

bution in closed form, and update it using the obvious sufficient statistics: M [x, x′|u]

for θx|u, and M [x|u], T [x|u] for qx|u.

Given a parameter distribution, we can use it to predict the next event, averag-

ing out the event probability over the possible values of the parameters. As usual,

this prediction is equivalent to using “expected” parameter values, which have the
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same form as the MLE parameters, but account for the “imaginary counts” of the

hyperparameters:

q̂x|u =
αx|u +M [x|u]

τx|u + T [x|u]
,

θ̂xx′|u =
αxx′|u +M [x, x′|u]

αx|u +M [x|u]
. (5.2)

Note that, in principle, this choice of parameters is only valid for predicting a sin-

gle transition, after which we should update our parameter distribution accordingly.

However, as is often done in other settings, we can approximate the exact Bayesian

computation by “freezing” the parameters to these expected values, and use them for

predicting an entire trajectory.

5.2 Learning Structure

We now turn to the problem of learning the structure of a CTBN. We take a score-

based approach to this task, defining a Bayesian score for evaluating different candi-

date structures, and then using a search algorithm to find a structure that has high

score.

5.2.1 Score Function

The Bayesian score over structures G is defined as

scoreB(G : D) = lnP (D | G) + lnP (G) . (5.3)

We can significantly increase the efficiency of our search algorithm if we assume that

our prior satisfies certain standard assumptions. We assume that our structure prior

P (G) satisfies structure modularity, so that P (G) =
∏

i P (Pa(Xi) = PaG(Xi)). We

also assume that our parameter prior satisfies parameter modularity : For any two

structures G and G′ such that PaG(X) = PaG′(X), we have that P (qX , θX | G) =

P (qX , θX | G
′). Combining parameter modularity and parameter independence, we
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have

P (qG, θG | G) =
∏

Xi

P (qXi|Ui
| Pa(Xi) = PaG(Xi))P (θXi|Ui

| Pa(Xi) = PaG(Xi)).

As P (G) does not grow with the amount of data, the significant term in Eq. (5.3)

is the marginal likelihood P (D | G). This term incorporates our uncertainty over the

parameters by integrating over all of their possible values:

P (D | G) =

∫

qG ,θG

P (D | qG, θG)P (qG, θG | G)dqGdθG.

As in Eq. (4.3), the likelihood decomposes as a product:

P (D | qG, θG) =
∏

Xi

LXi
(qXi|Ui

: D)LXi
(θXi|Ui

: D)

=

(
∏

Xi

LXi
(qXi|Ui

: D)

)

︸ ︷︷ ︸

L(q:D)

(
∏

Xi

LXi
(θXi|Ui

: D)

)

︸ ︷︷ ︸

L(θ:D)

.

Using this decomposition, and global parameter independence, we now have

P (D | G) =

∫

qG ,θG

L(qG : D)L(θ : D)P (θG)P (qG)dqGdθG

=

(
∫

qG

L(qG : D)P (qG)dqG

)

(5.4)

×

(∫

θG

L(θG : D)P (θG)dθG

)

. (5.5)
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Using local parameter independence, the term (5.4) can be decomposed as

∏

X∈X

∏

u

∏

x

∫ ∞

0

P (qx|u)LX(qx|u : D)dqx|u

=
∏

X∈X

∏

u

∏

x

∫ ∞

0

(τx|u)
αx|u+1

Γ(αx|u+1)
(qx|u)αx|u exp(−qx|uτx|u)

×(qx|u)M [x|u] exp(−qx|u · T [x|u])dqx|u

=
∏

X∈X

∏

u

∏

x

∫ ∞

0





(τx|u)
αx|u+1

Γ(αx|u+1)
(qx|u)αx|u+M [x|u]

× exp(−qx|u(τx|u + T [x|u]))



dqx|u

=
∏

X∈X

∏

u

∏

x

Γ(αx|u +M [x|u] + 1)(τx|u)αx|u+1

Γ(αx|u + 1)(τx|u + T [x|u])αx|u+M [x|u]+1
(5.6)

=
∏

X∈X

MargLq(X,PaG(X) : D) .

As the distributions over the parameters θ are Dirichlet, the analysis of the term

Eq. (5.5) is analogous to traditional Bayesian networks, simplifying to

∏

X∈X

∏

u

∏

x

Γ(αx|u)

Γ(αx|u +M [x|u])
×
∏

x′ 6=x

Γ(αxx′|u +M [x, x′|u])

Γ(αxx′|u)

=
∏

X∈X

MargLθ(X,PaG(X) : D) .

Using this decomposition, and the assumption of structure modularity, the Bayesian

score in Eq. (5.3) can now be decomposed as a sum of family scores — individually

denoted FamScore(X,PaG(X) : D) — that each measure the quality of PaG(X) as

a parent set for X given data D:

scoreB(G : D) =
∑

Xi∈X

FamScore(Xi,PaG(Xi) : D)

=
∑

Xi∈X

lnP (Pa(X)

= PaG(Xi)) + lnMargLq(Xi,Ui : D) + lnMargLθ(Xi,Ui : D) .
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5.2.2 Model Search

Given the score function, it remains to find a structure G that maximizes the score.

This task is an optimization problem over possible CTBN network structures. Inter-

estingly, the search space over CTBN structures is significantly simpler than that of

BNs or DBNs.

Chickering et al. (1994) show that the problem of learning a optimal Bayesian

network structure is NP-hard. Specifically, they define the problem k-Learn: Find-

ing the highest scoring Bayesian network structure, when each variable is restricted

to have at most k parents. The problem k-Learn is NP-hard even for k = 2. Intu-

itively, the reason is that we cannot determine the optimal parent set for each node

individually; due to the acyclicity constraint, the choice of parent set for one node

restricts our choices for other nodes. The same NP-hardness result clearly carries

over to DBNs, if we allow edges within a time slice.

However, this problem does not arise in the context of CTBN learning. Here, all

edges are across time — representing the effect of the current value of one variable

on the next value of the other. Thus, we have no acyclicity constraints, and we can

optimize the parent set for each variable independently. Specifically, if we restrict

the maximum number of parents to k, we can simply exhaustively enumerate each

of the possible parent sets U for |U| ≤ k and compute FamScore(X | U : D). We

then choose as Pa(X) the set U which maximizes the family score. For fixed k, this

algorithm is polynomial in n. Therefore,

Theorem 5.2.1 The problem k-Learn for CTBNs, for fixed k, can be solved in

polynomial time in the number of variables n and the size of the data set D.

In practice, we do not wish to exhaustively enumerate the possible parent sets for

each variable X. We can therefore use a greedy hill-climbing search with operators

that add and delete edges in the CTBN graph. However, due to the lack of interac-

tions between the families of different variables, we can perform this greedy search

separately for each variable X, selecting a locally optimal family for it. Thus, this

heuristic search can be performed much more efficiently than for BNs or DBNs.
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5.3 Structure Identifiability

So far, we have focused on the problem of learning a CTBN that provides a good fit to

some training data D. As shown in section 3.5 any variable-based stochastic process

has a unique minimal CTBN representation, so an important question is whether

we can identify this CTBN from data. More precisely, assume that our data D is

generated from some process QX, and let G∗ be the minimal S-map for QX. We

would like our learning algorithm to return a network whose structure is G∗. Our

learning algorithm searches for the network structure that maximizes the Bayesian

score. Thus, the key property (ignoring possible limitations of our search procedure)

is the following.

Definition 5.3.1 A scoring function is said to be consistent if, as the amount of

data |D| → ∞, the following holds with probability that approaches 1: The structure

G∗ will maximize the score, and the score of all structures G 6= G∗ will have a strictly

lower score.

Once again, compare this situation to that of Bayesian networks. There, the best

we can hope for is that all and only structures that are I-equivalent to the “true”

network will maximize the score.

To prove that our score is consistent, it helps to consider its behavior as the

amount of data increases.

Theorem 5.3.2 As the amount of data |D| → ∞,

scoreB(G : D) = ℓ(q̂G, θ̂G : D)−
ln |D|

2
Dim[G] +O(1) (5.7)

where Dim[G] is the number of independent parameters in G, and q̂G and θ̂G are the

MLE parameters of Eq. (5.1).

Eq. (5.7) is simply the standard BIC approximation to the Bayesian score (Lam &

Bacchus, 1994), which carries over to CTBNs. It shows that, asymptotically, the

CTBN Bayesian score trades off fit to data and model complexity. We are more likely

to add an arc if it represents a strong connection between the variables. Moreover,
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as the amount of data grows, we obtain more support for weak connections, and are

more likely to introduce additional arcs.

Proof: Both scoreB(G : D) and ℓ(q̂G, θ̂G : D) decompose into two components

— one for the parameters θ which are exactly analogous to the standard Bayesian

network formulae, and one for the parameters q. We will only show the argument for

the latter, though both make similar use of Stirling’s Approximation,

ln Γ(x) =
1

2
ln(2π) + (x−

1

2
) lnx− x+O(1) .

As the score function decomposes by variable and parent instantiation, fix any arbi-

trary instantiation of X = x with parents U = u and simply write α, τ , M , and T

instead of including all the subscripts. Then, it suffices to show that, as |D| → ∞,

the log of the expression in Eq. (5.6) approaches M ln q̂ − T q̂ − 1
2
lnT +O(1) where

q̂ =
M

T
.

So, we have

lnΓ(α +M + 1)− ln Γ(α + 1) + (α + 1) ln(τ)− (α +M + 1) ln(τ + T )

≈ (M + α +
1

2
) ln(M + α)−M − (α +M + 1) ln(τ + T ) +O(1)

= (M + α +
1

2
) ln(M + α)−M − (α +M) ln(τ + T )− ln(τ + T ) +O(1)

→M lnM + (α +
1

2
) lnM −M −M lnT − α lnT − lnT +O(1)

= M lnM −M lnT −M + (α +
1

2
) ln(T q̂)− α lnT +O(1)

= M ln
M

T
− T

M

T
−

1

2
lnT +O(1)

= M ln q̂ − T q̂ −
1

2
lnT +O(1) .

We combine the results of each local computation, we get the desired result.

Theorem 5.3.3 scoreB(G : D) is consistent.
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Figure 5.1: Log-likelihoods of test data for CTBN with learned parameters and struc-
ture and CTBN with learned parameters. The CTBNs were learned from varying
amounts of data generated from the drug effect network. Each trajectory corresponds
to 6 units of time, and about 18 transitions. The thin line shows the likelihood for
the true network.

Proof: The proof shows that the BIC score is consistent; as consistency is an asymp-

totic property, it suffices to show the consistency of the Bayesian score. The argument

for the consistency of the BIC score is a standard one: If G is a superset of G∗, it

can represent QX exactly; thus, with enough data, the difference between the log-

likelihood components of the score of G and G∗ will go to zero. But, G has more

parameters, leading to a higher penalty and thus a lower score. If G is not a superset

of G∗, it follows from Theorem 3.5.7 that it is not capable of representing QX. In this

case, as the amount of data grows, the likelihood portion of the score will dominate

and G∗ will have the higher score.
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Figure 5.2: Hamming distance between the true structure and the highest scoring
structure for randomly generated 10-node CTBNs, for varying amounts of data. Each
trajectory corresponds to 150 units of time, and about 1000 transitions.

5.4 Results

We first tested our ability to recover complex structures with our learning algorithm.

We generated different amounts of data from the drug effect network of Figure 3.1,

and used it to learn two models: one where we learned both the CTBN structure and

the parameters, and the other where we simply estimated parameters for the correct

network structure. We then computed the log-likelihood of test data for all networks,

including the generating network. In all cases where we used a learned network, we

used the expected parameters of Eq. (5.2) throughout the entire test trajectory. The

results are shown in Figure 5.3. Even for fairly small amounts of data, our results

with unknown structure are essentially identical to those with the correct structure.

To further test the ability of our algorithm to recover structure, we generated 100
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Figure 5.3: Hamming distance between the highest scoring structure and the structure
learned by greedy search for random CTBNs for randomly generated 10-node CTBNs,
for varying amounts of data. Each trajectory corresponds to 150 units of time, and
about 1000 transitions.

random networks of 10 binary processes. We fixed a maximum parent set size of 4

and generated a random graph structure obeying this constraint. We then drew the

multinomial parameters of the network from Dirichlet distributions (with parameters

all 1) and the exponential parameters from a Gamma distribution (with both pa-

rameters equal to 1). In Figure 5.3 we compared the maximum-score structure (with

the same constraint on parent sets) to the true structure. The Hamming distance

measured is the number of arcs present in only one of the graphs. As predicted by

Theorem 5.3.3, as the amount of data grows, the correct structure has the highest

score. Indeed, this happens even for very reasonable amounts of data. More inter-

estingly, in a very large fraction of the cases, the simple greedy search algorithm

recovers the highest scoring network very reliably. Figure 5.3 shows the difference
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between the maximum-score structure and the one As we can see, the local minima

in the search space are less frequent as the amount of data grows, and in general the

difference between the exhaustive and greedy search techniques is small (roughly one

edge difference for reasonable amounts of data).

5.5 Discussion

We have presented maximum likelihood and Bayesian approaches to parameter es-

timation for CTBNs and a Bayesian structure learning algorithm. As we showed,

learning temporal processes as a CTBN has several important advantages. As we

are not discretizing time, we do not need to choose some single time granularity in

which to model the process. The model for each variable can reflect its own time

granularity, better representing its evolution. Additionally, structure search under

the contraint of a fixed limit to the number of parents per node can find the highest

scoring structure in polynomial time.

We continue the discussion of these algorithms in the next chapter where we will

use these algorithms to compare the CTBN framework with the DBN framework.



Chapter 6

CTBNs vs DBNs

Now that we have defined the basic representation and delved into some basic ques-

tions of learning CTBNs from data, a natural question is: how do CTBNs compare

to the established DBN framework?

As we will see, there is an even more basic question to address first — namely, how

can we compare them. We begin with a discussion of differences between CTBNs and

DBNs, explain why they are difficult to compare, and then provide some experiments

comparing them. Some additional experimental results comparing CTBNs and DBNs

are given in Section 9.5.

6.1 Comparison of the Frameworks

To compare the CTBN and DBN frameworks, suppose we start with a non-trivial

CTBN — that is, one with at least one arc in the graph. For any finite amount of

time, probabilistic influence can flow between any variables connected by a path in

the CTBN graph. Thus, if we want to construct an “equivalent” DBN, the 2-TBN

must be fully connected regardless of the ∆t we choose for each time slice. We can

construct a DBN that approximates the CTBN by picking a subset of the connections

— e.g., those which have the strongest influence.

Once we have an approximate DBN, we still have the standard problem of ex-

ponential blowup in performing inference over time (Boyen & Koller, 1998). So we

77
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would be led to perform approximate DBN inference in an approximate DBN. While

this could form the basis of an approximation algorithm for CTBNs, we chose to work

directly with continuous time, making a direct approximation.

It is also interesting to consider the mapping from a DBN to an “equivalent”

CTBN. If we start with a DBN defined by a 2-TBN and try to construct a CTBN, we

have two sorts of arcs to consider. Intra-time-slice arcs in the DBN have a temporally

immediate effect. In some sense, this is faster than any arc in a CTBN, but we could

attempt to model it with a high-intensity arc. On the other hand, inter-time-slice

arcs are more complex. These have an influence that jumps over a time interval of

length ∆t with no clear description of what happens during the interval. Such arcs

can describe any arbitrary probabilistic relationship between the state at time t and

the state at time t+∆t. Potentially, that can include probabilistic relationships that

could not have arisen through a continuously Markovian process such as a CTBN. The

Markov assumption for DBNs holds only at the level of the granularity of the model

— it has the capability of modelling non-Markovian behavior between time-slices.

There is another way of looking at this same issue. Consider the data that is used

to learn DBNs. The core datum is the observed state. Complete data for a DBN

is a sequence of state observations. This means that when we learn a DBN, we are

learning a probabilistic model that accounts for a series of snapshots of system.

Now, compare the data that is used to learn a CTBN. The core datum is the

observed transition. Complete data for a CTBN is a sequence of transitions. This

means that when we learn a CTBN, we are learning a model of the way the system

transitions from state to state. This is a direct probabilistic model of the structure

of the process.

A DBN can be interpreted as a model of a process, but it is, more naturally, a

model of an observation sequence. It should not, then, be surprising to find that the

learned model can be quite sensitive to the granularity that is chosen. When one

learns an arc from data in a DBN, there is a question of whether that arc is a feature

of the process or a product of the granularity of the observation sequence.

By contrast, a CTBN is a natural model of the process. Because the nature

of the CTBN and DBN models are so different, it is challenging to evaluate their
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Figure 6.1: Log-likelihoods of test data for learned CTBN model and DBN models
with differing time granularity. The networks were learned from varying amounts of
data generated from the drug effect network. Each trajectory corresponds to 6 units
of time, and about 18 transitions. The thin line shows the likelihood for the true
network.

relative performance. We can interpret the DBN as a process model — but to do

so and compare to the CTBN process model, we must add some framework to the

DBN to make explicit what happens between time slices. This has the side effect of

making the DBN more expressive than a CTBN in its ability to model non-Markovian

processes. It also has more free parameters because of the possible intra-time-slice

arcs. For example, if there are 2 binary variables, a fully-connected DBN has 12 free

parameters and a fully-connected CTBN has only 8. Thus, the DBN can represent

certain transition models that do not arise from a purely Markovian continuous-time

process.

Alternatively, we can use a CTBN to model a sequence of state observations. But

this does not make use of a CTBN to its full potential, because it explicitly ignores
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Figure 6.2: For a 4-node chain network, the number of parameters of the learned
structures as a function of the amount of time the data was collected, for CTBNs and
DBNs with varying time granularity.

the direct process model.

In the first set of results below, we interpret the DBN as a process model. We

also use comparison of parameter counts as a way of gaining insight into the relative

complexity of learned models

6.2 Results

First, we wanted to compare the generalization performance of learned CTBNs with

those of learned DBNs. To do so, we extended the DBN model to include distributions

over when, within a time slice, a given transition occurred. We assumed a uniform

distribution within the time slice, augmenting it with a parameter for each variable

that determines the probability that the value of the variable transitions more than
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once within a time slice. The value of this parameter was also learned from data.

Figure 6.1 compares the generalization ability of learned CTBNs and learned DBNs

with varying time granularity. As expected, the correct DBN structure exhibits en-

tanglement due to the temporal discretization, and therefore requires more edges to

approximate the distribution well. Even for small ∆t, the amount of data required to

estimate the much larger number of parameters is significantly greater. As ∆t grows

large, the performance of the DBN decreases rapidly. Interestingly, for large values

of ∆t, the DBNs simply cannot capture the transition dynamics accurately enough

to converge to competitive performance.

We further tested our CTBN learning framework on various synthetic data sets,

generated from CTBNs. We used a simple greedy hill-climbing algorithm over the

space of structures, optimizing the family for each variable separately. For com-

parison, we also learned DBNs using different time granularities. To allow a fair

comparison, we used the same greedy hill-climbing algorithm there.

We tested the ability of CTBNs and DBNs to capture very simple dependencies.

We constructed a CTBN model with four binary variables arranged in a chain. The

first variable randomly switches between its states with an expected transition rate of

once per 1 time unit and each of the other variables follows its predecessor on the same

time scale. In total, there are 14 parameters in this network. We learned a CTBN

structure with increasing amounts of data, and DBNs with varying time granularities.

The number of parameters learned can be seen in Figure 6.2. The CTBN learning

converges very quickly to the correct number of parameters, and, indeed, to the correct

structure. Moreover, as we can see from the error bars, there is very low variance

in the structures produced. By contrast, the DBN learning algorithm fluctuates

significantly, and does not converge to the right number of parameters even with a

large amount of data.

To understand what is happening, we examine some typical structures as shown in

Figure 6.3. As we can see, a DBN with time slices much shorter than the average rate

of change of the system does converge to a reasonable structure; however, for large

amounts of data, the structure still becomes more complex than the corresponding

CTBN due to entanglement. For a time granularity on the same order as the time
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scale of the system, things become more difficult for the DBN, as it must model

multiple transitions in a single time step, leading to entanglement which increases

with the amount of available data. Finally, if the time-slicing is too coarse, the DBN

learns a model of the steady-state distribution without any model of the transition

probabilities.

The problem is that the “right” number of parameters is being determined by

our understanding of the structure of the process. But with enough data the DBN

will attempt to learn an “equivalent” distribution and the only way it can do that

is to eventually learn a fully connected model. Eventually, with enough data, even

the ∆t = 5 granularity DBN should be able to support the arcs necessary for a fully

connected graph.

6.3 Discussion

In this chapter we have examined the differences between the CTBN and DBN frame-

works. While a CTBN is a fully Markovian, direct model of a process transitioning

over time, a DBN is more accurately characterized as model of a sequence of state ob-

servations. This allows the DBN (with more free parameters) to represent processes

that have a non-Markovian character in their evolution between time slices.

DBNs are a good choice for domains where the data is naturally time-sliced and

where questions about events occuring between time points are not relevant. However,

there are domains where the data has no natural time-slices — e.g., computer system

monitoring, life history data analysis, the study of evolution. Such domains are more

naturally modelled as CTBNs than DBNs and the estimation of fewer parameters

make CTBNs simpler to learn.

It is also worth noting that as CTBNs do not aggregate multiple transitions over

the course of a time slice, they avoid entanglement due to aggregation. Thus, they

allow us to learn a model that more directly reflects the dependencies in the process.

Finally, as we discussed above, the difference between the nature of the CTBN

and DBN frameworks creates a difficulty in evaluating their relative performance. We

explored the possibility of interpreting the DBN as a process model in some of our
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experiments above.

We will return to the topic of CTBN and DBN comparison briefly in Section 8.7

where we discuss inference and, more deeply in Chapter 9 after we have extended

the CTBN representation in Chapter 9. We provide results (in Section 9.5) of an

experiment where we compare CTBNs and DBNs by using the CTBN to model a

sequence of state observations.
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Figure 6.3: Example learned structures for the 4-node chain network.



Chapter 7

Learning with Incomplete Data

As we have seen, there are stringent requirements for having a complete dataset for a

CTBN. We must know the value of every variable continuously through time. There

are many applications in which we do not have so much information. So, we would

like to be able to handle situations where we have incomplete data. As we will see

later (in Chapter 9), being able to learn from incomplete data will enable us to learn

richer models even in situations where we have complete data.

In BNs, the standard algorithms for dealing with incomplete data are expectation

maximization (EM) for learning parameters and structural expectation maximization

(SEM) for learning structures. In this chapter, we show how to extend these algo-

rithms to CTBNs. As we will see, the mathematical core of this work is computing

expected sufficient statistics, which was described previously in Section 4.4.

7.1 EM for Markov Processes

Though we discussed incomplete data in Section 4.1.2, it will be useful to begin the

discussion with the notion of dataset completion.

85
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7.1.1 Completions of Data

For any partial trajectory σ[i] we can consider a space H [i] of possible completions

of that trajectory. Each completion h[i] ∈ H [i] specifies, for each transition of σ[i],

which underlying transition of X occurred and also specifies all the entirely unob-

served transitions of X. Combining σ[i] and h[i] gives us a complete trajectory σ+[i]

over X. Note that, in a partially observed trajectory, the number of possible unob-

served transitions is unknown. Moreover, there are uncountably many times at which

each transition can take place. Thus, the set of possible completions of a partial

trajectory σ is, in general, the union of a countably infinite number of spaces, which

are real-valued spaces of unbounded dimension. Nevertheless, the notion of all pos-

sible completions is well-defined. We can define the set D+ = {σ+[1], . . . , σ+[w]} of

completions of all of the partial trajectories in D.

7.1.2 Expected Sufficient Statistics and Likelihood

Recall from Chapter 4 that the sufficient statistics of a set of complete trajectories D+

for a Markov process are T [x] — the total amount of time that X = x, and M [x, x′]

— the number of times X transitions from x to x′. If we let M [x] =
∑

x′ M [x, x′] we

can write the log-likelihood for X:

ℓX(q, θ : D+) = ℓX(q : D+) + ℓX(θ : D+)

=
∑

x

(
M [x] ln(qx)− qxT [x]+

∑

x′ 6=x

M [x, x′] ln(θxx′)
)
.

Let r be a probability density over each completion H [i] which, in turn, yields a

density over possible completions of the dataD+. We can write the expectations of the

sufficient statistics with respect to the probability density over possible completions

of the data: T̄ [x], M̄ [x, x′], and M̄ [x]. These expected sufficient statistics allow us to
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write the expected log-likelihood for X as

Er[ℓX(q, θ : D+)] = Er[ℓX(q : D+)] + Er[ℓX(θ : D+)]

=
∑

x

(
M̄ [x] ln(qx)− qxT̄ [x]+

∑

x′ 6=x

M̄ [x, x′] ln(θxx′)
)
.

7.1.3 The EM Algorithm

We use the expectation maximization (EM) algorithm (Dempster et al., 1977) to

find maximum likelihood parameters q, θ of X. The EM algorithm begins with an

arbitrary initial parameter assignment, q0, θ0. It then repeats the two steps below,

updating the parameter set, until convergence. After the kth iteration we start with

parameters qk, θk:

Expectation Step. Using the current set of parameters, we define for each σ[i] ∈ D,

the probability density

rk(h[i]) = p(h[i] | σ[i], qk, θk) (7.1)

We then compute expected sufficient statistics T̄ [x], M̄ [x, x′], and M̄ [x] according to

this posterior density over completions of the data given the data and the model.

Maximization Step. Using the expected sufficient statistics we just computed as

if they came from a complete data set, we set qk+1, θk+1 to be the new maximum

likelihood parameters for our model as follows

qk+1
x =

M̄ [x]

T̄ [x]
,

θk+1
xx′ =

M̄ [x, x′]

M̄ [x]
. (7.2)

The difficult part in this algorithm is the Expectation Step. As we discussed, the

space over which we are integrating is highly complex, and it is not clear how we

can compute the expected sufficient statistics in a tractable way. This problem is the

focus of the next section.
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7.2 CTBNs

We can now extend the EM algorithm to continuous time Bayesian networks which

are a factored representation for homogeneous Markov processes.

7.2.1 Expected Log-likelihood

Extending the EM algorithm to CTBNs involves making it sensitive to a factored state

space. Our incomplete data, D, are now partially observed trajectories describing the

behavior of a dynamic system factored into a set of state variables X.

As shown in Section 4.5, the log-likelihood decomposes as a sum of local log-

likelihoods for each variable. Specifically, given variable X, let U be its parent set in

N . Then the sufficient statistics of D+ for our model are T [x|u], the total amount

of time that X = x while U = u, and M [x, x′|u], the number of times X transitions

from x to x′ while U = u. If we let M [x|u] =
∑

x′ M [x, x′|u] the likelihood for each

variable X further decomposes as

ℓX(q, θ : D+) = ℓX(q : D+) + ℓX(θ : D+)

=

[
∑

u

∑

x

M [x|u] ln(qx|u)− qx|u · T [x|u]

]

+

[
∑

u

∑

x

∑

x′ 6=x

M [x, x′|u] ln(θxx′|u)

]

. (7.3)

By linearity of expectation, the expected log-likelihood function also decomposes

in the say way, and we can write the expected log-likelihood Er[ℓ(q, θ : D+)] as a

sum of terms (one for each variable X) in the same form as Eq. (7.3), except using

the expected sufficient statistics T̄ [x|u], M̄ [x, x′|u], and M̄ [x|u].

7.2.2 EM for CTBNs

The EM algorithm for CTBNs is essentially the same as for homogeneous Markov

processes. We need only specify how evidence in the CTBN induces evidence on the
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induced Markov process, and how expected sufficient statistics in the Markov process

give us the necessary sufficient statistics for the CTBN.

A CTBN is a homogeneous Markov process over the joint state space of its con-

stituent variables. Any assignment of values to a subset of the variables forms a

subsystem of the CTBN — it restricts us to a subset of the joint state space (as

shown with binary “variables” Y and Z in Example 4.1.1). Just as before, our ev-

idence can be described as a sequence of subsystems Si, each with an associated

duration.

Recall that, in a CTBN, the expected sufficient statistics have the form T̄ [x|u]

and M̄ [x, x′|u]. We can thus replace Eq. (7.2) in the maximization step of EM with:

qk+1
x|u =

M̄ [x|u]

T̄ [x|u]
,

θk+1
xx′|u =

M̄ [x, x′|u]

M̄ [x|u]
. (7.4)

The expectation step of EM can, in principle, be done by flattening the CTBN into

a single homogeneous Markov process with a state space exponential in the number

of variables and following the method described above. In this case, we can compute

T̄ [x|u] by summing up all of the expected sufficient statistics T̄ [j] for any state j

consistent with X = x,U = u. Similarly, M̄ [x|u] can be computed by summing

up all of M̄ [j, k] for state j consistent with X = x,U = u and k consistent with

X = x′,U = u.

However, as the number of variables in the CTBN grows, that process becomes

intractable, so we are forced to use approximate inference. The approximate inference

algorithm must be able to compute approximate versions of the forward and backward

messages αt,βw. It must also be able to extract the relevant sufficient statistics —

themselves a sum over an exponentially large space — from the approximate messages

efficiently.

In the next chapter, we provide a cluster graph inference algorithm which can

be used to perform this type of approximate inference. For each segment [ti, ti+1) of

continuous fixed evidence, we construct a cluster graph data structure, whose nodes
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correspond to clusters of variables Ck, each encoding a distribution over the trajecto-

ries of the variables Ck for the duration [ti, ti+1). A message-passing process calibrates

the clusters. We can then extract from the cluster Ck both beliefs about the momen-

tary state of the variables Ck at time ti and ti+1, as well as a distribution over the

trajectories of Ck during the interval. The former provide a factored representation

of our forward message αti+1
and backward message βti , and are incorporated into

the cluster graphs for the adjoining cluster in a forward-backward message passing

process. The cluster distributions are represented as local intensity matrices, from

which we can compute the expected sufficient statistics over families Xi,Ui, as above.

This, this algorithm allows us to perform the steps required for the E-step, and the

M-step can be performed easily as described above.

7.2.3 Structural EM for CTBNs

We can also learn structure from incomplete data by applying the structural EM

(SEM) algorithm of Friedman (1997) to our setting. We start with some initial graph

structure G0, initial parameters q0, θ0, and dataset D.

As with SEM for Bayesian networks, there are three steps and we can iteratively

alternate among them in any order. They are:

Inference Step. Run an inference algorithm to compute the expected sufficient

statistics.

Parameter Update Step. Update the parameters as in Eq. (7.4) according to

the currently computed expected sufficient statistics.

Structure Modification Step. Using the current parameterization and expected

sufficient statistics, choose a structure modification that increases the score. SEM is

used with a variety of scores, most commonly the BIC score or the Bayesian score

with expected sufficient statistics as if real. In both cases, the score can be written in

terms of expected sufficient statistics, allowing SEM to be used with our algorithm

above.

SEM leaves unspecified the issue of how many greedy search steps one takes before

recomputing the expected sufficient statistics and parameters. Secction 5.2.2 showed
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Figure 7.1: Simplified drug effect network.

that, for CTBNs, structure search for a fixed number of parents per node can be done

in polynomial time. Thus, it is possible, in this setting, to find the globally optimal

structure given the current parametrization in the structure modification step. If one

does this, SEM for CTBNs becomes an iterated optimization algorithm with a full

maximization step for both structure and parameters.

7.3 Results

We implemented the EM and SEM algorithms described above. We used exact infer-

ence by constructing the flattened state space. While this prevents us from solving

large problems, it also keeps the analysis of EM separate from that of approximate

inference. To verify our algorithms’ correctness, we used the a simplified version of

the drug effect network as shown in Figure 7.2.3, where all of the variables were

binary-valued, for tractability. We sampled increasing numbers of trajectories of 5
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Figure 7.2: Learning results for drug effect net.

time lengths. We ran both EM and SEM, giving the former the true network struc-

ture and hiding the structure from the latter. For each data example, we hid parts

of the trajectory by selecting time windows of length 0.25 uniformly at random and

hiding the value of one variable during the window. We kept dropping data in this

fashion until all variables had lost either 1/4 or 1/2 of their total trajectory, depend-

ing on the experiment. The results of these experiments are shown in Figure 7.2.3. In

some cases SEM outperforms EM because the true structure with learned parameters

yields a lower log-likelihood given the amount of data at those points. Note that the

horizontal axis represents the amount of data prior to dropping any of it.

The SEM algorithm worked well in this setting. As noted, removing the restric-

tion on acyclicity allows CTBN structure search to decompose. Therefore, at each

iteration, we performed a full structure search, which provided marked improvement

over a greedy one-step optimization.
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7.4 Discussion

In this chapter, we provided algorithms for learning parameters and structure of

CTBNs from partially observed data. Given the stringent requirements on fully

observed data for CTBNs, this is should significantly increase the range of possible

applications for the CTBN framework.

Even in cases where we have fully observed data, the algorithms of this chapter

will prove crucial to the wider applicability of CTBNs. But the details must wait

until Chapter 9 where we explore the role of adding hidden state to CTBNs in order

to greatly increase their expressive power.



Chapter 8

Inference

We have now defined the CTBN framework and shown how to learn models from

data. This chapter covers the key remaining task we have yet to explore: inference.

We begin with a discussion of the types of queries we might wish to answer and the

difficulties of exact inference.

This discussion leads us to approximate inference which can take computational

advantage of the independencies encoded in our factored CTBN representation. We

present a cluster-graph based message-passing algorithm which is a variant of expec-

tation propagation (Minka, 2001a).

8.1 Queries over a CTBN

In Chapter 3, we showed that we can view a CTBN as a compact representation

of a joint intensity matrix for a homogeneous Markov process. Thus, at least in

principle, we can use a CTBN to answer any query that we can answer using an

explicit representation of a Markov process: We can form the joint intensity matrix

and then answer queries just as we do for any homogeneous Markov process, as

described in Section 2.3.5.

For example, in the drug effect network, we can set the initial distribution such

that the drug was administered at t = 0 hours, compute the joint distribution over

the state of the system at t = 5, and then marginalize it to obtain a distribution over

94
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joint pain at t = 5. Additionally, because we have the full joint distribution at this

point in time, we can calculate for t = 5 the distribution over drowsiness given that

the concentration of the drug is high.

Now, assume that we have a series of observations. We can compute the joint

distribution over the system state for any point in time at or after the time of the

last observation. We calculate the new joint distribution at the time of the first

observation, condition on the observation, and use that as the initial distribution from

which to compute the joint distribution at the next observation time. This process

can be executed for an entire series of observations. For example, assume that our

patient took the drug at t = 0, ate after an hour (t = 1) and felt drowsy three hours

after eating (t = 4). We can compute the distribution over joint pain six hours after

taking the drug (t = 6) by computing the joint distribution at time 1, conditioning

that distribution on the observation of eating, and using that as an initial distribution

with which to compute the joint distribution 3 hours later. After conditioning on the

observation of drowsiness, we use the result as an initial distribution with which to

calculate the joint distribution 2 hours after that. That joint distribution can be

marginalized to give the distribution over joint pain given the sequence of evidence.

The key is that, unlike in DBNs, we need only do one propagation for each observation

time, even if the observations are irregularly spaced.

As noted in section 2.3.5 we can compute the joint distribution between any

two points in time. By conditioning on evidence at the later time point, we can

propagate evidence backwards in time. Even more interestingly, we can calculate the

distribution over the first time a variable X takes on a particular value x: X taking

the value x is simply a subsystem of the joint intensity matrix, and we can compute

the distribution over the entrance time into the subsystem. For example, we could

set our initial distribution to one where the patient takes the drug and has joint pain.

We could then directly compute the distribution over the time at which the joint pain

goes away. Note that this type of query could also be computed for the time after

some sequence of evidence.
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8.2 Difficulties with Exact Inference

The obvious flaw in our discussion above is that our approach for answering these

queries requires that we generate the full joint intensity matrix for the system as a

whole, which is exponential in the number of variables. The graphical structure of the

CTBN immediately suggests that we perform the inference in a decomposed way, as

in Bayesian networks. Unfortunately, as we now show, the problems are significantly

more complex in this setting.

Consider a simple chain X → Y → Z. It might appear that, at any point in

time, Z is independent of X given Y . Unfortunately, this is not the case. Even

though the transition intensity for Z depends only on the value of Y at any instant in

time, as soon as we consider temporal evolution, their states become correlated. This

problem is completely analogous to the entanglement problem in DBNs (Boyen &

Koller, 1998), where all variables in the DBN typically become correlated over some

number of time slices. The primary difference is that, in continuous time, even the

smallest time increment ∆t results in the same level of entanglement as we would

gain from an arbitrary number of time slices in a DBN.

In fact, as discussed in Section 3.4, the only conclusion we can make about a

structure X → Y → Z is that Z is independent of X given the full trajectory of Y .

As a consequence, we can fully reconstruct the distribution over trajectories of Z,

ignoring X, if we are given the full distribution over trajectories for Y . Of course,

a full distribution over continuous time processes is a fairly complex structure. One

might hope that we can represent it compactly, e.g., using an intensity matrix. Un-

fortunately, even when the distribution over the joint X, Y process is a homogeneous

Markov process, its projection over Y is not a homogeneous Markov process — clearly

the transition model for Y changes over time as X changes, hence it can not be ho-

mogeneous.

A second potential avenue is the fairly natural conjecture that we do not always

need the full distribution over trajectories. Perhaps, if our goal is only to answer

certain types of queries, we can make do with some summary over Y . Most obviously,

suppose we want to compute the stationary distribution over Z. It seems reasonable
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to assume that Z’s stationary behavior might depend only on the stationary behavior

of Y . After all, the transitions for Z are governed by two matrices QZ|y1
and QZ|y2

.

As long as we know the stationary distribution for Y , we know which fraction of the

time Z uses each of its transition matrices. So, we should be able to compute the

stationary distribution for Z from this information. Unfortunately, this assumption

turns out to be unfounded.

Example 8.2.1 Consider the following intensity matrices.

QY =

[

−1 1

2 −2

]

QY ′ =

[

−10 10

20 −20

]

QZ|y1
=

[

−3 3

15 −15

]

QZ|y2
=

[

−5 5

4 −4

]

Note that Y and Y ′ both have the same stationary distribution,
[

.667 .333
]

. If

we look at the CTBN with the graph Y → Z we get a stationary distribution for

Z of
[

.7150 .2850
]

. But, if we look at the CTBN with graph Y ′ → Z, we get a

stationary distribution for Z of
[

.7418 .2582
]

.

Thus, even the stationary behavior of Z depends on the specific trajectory of Y and

not merely the fraction of time it spends in each of its states. We can gain intuition for

this phenomenon by thinking about the intensity matrix as an infinitesimal transition

matrix. To determine the behavior of Z, we can imagine that for each infinitesimal

moment of time we multiply it to get to the next time instance.

At each instant, we check the value of Y and select which matrix we multiply

for that instant. The argument that we can restrict attention to the stationary

distribution of Y implicitly assumes that we care only about “how many” times we

use each matrix. Unfortunately, matrix multiplication does not commute. If we are

rapidly switching back and forth between different values of Y we get a different

product at the end than if we switch between the values more slowly. The product is

different because the order in which we multiplied was different — even if the total

number of times we used one matrix or the other were same in both cases. The
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product integral can be used to make this argument mathematically precise (Gill &

Johansen, 1990).

Thus, there seems to be no easy way in which we can summarize enough informa-

tion about the distribution over Y ’s trajectories in order to allow us to reason about

Z while ignoring X. More generally, the exact marginal distributions that would

form the messages to describe the true joint distribution can be arbitrarily complex,

requiring a number of parameters which grows exponentially with the size of the net-

work. Thus, we cannot pass messages exactly without giving up the computational

efficiency of the algorithm. We address this issue using the expectation propagation

(EP) approach (Minka, 2001a; Minka, 2001b; Heskes & Zoeter, 2002), which performs

approximate message passing in cluster graphs.

8.3 Algorithm Overview

In the previous section, we argued that we can not generally use exact inference in

CTBNs. So, in the remainder of this chapter, we focus on approximate inference.

We restrict our attention to task of filtering only because complications arise when

attempting to run a version of this algorithm for smoothing.

Our algorithm uses message passing in cluster graphs, of which clique tree algo-

rithms are a special case.

In our algorithm, the clusters do not represent factors over values of random

variables. Rather, cluster potentials and messages both encode measures over entire

trajectories of the variables in their scope.

EP addresses the problem where messages can be too complex to represent and

manipulate by using approximate messages, projecting each message δi→j into a com-

pactly representable space so as to minimize the KL-divergence between δi→j and its

approximation δ̂i→j . In a prototypical example (Minka, 2001a), the cluster potentials

and therefore the sepset marginals are mixtures of Gaussians, which are projected into

the space of Gaussian distributions in the message approximation step. For messages

in the exponential family, arg minδ̂i→j
D(δi→j||δ̂i→j) can be obtained by matching mo-

ments of the distribution. EP can be applied to clique trees or to general cluster
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graphs. Note that, even in clique trees, the algorithm does not generally converge

after two passes of message passing (as it does in exact inference), so that multiple

iterations are generally required, and convergence is not guaranteed.

In our application of EP, we use conditional intensity matrices (CIMs), reduced

to match the evidence, to encode the cluster potentials; we approximate the mes-

sages in the cluster graph as homogeneous Markov processes, using a KL-divergence

projection.

We note that EP is based on multiply-marginalize-divide scheme of Lauritzen and

Spiegelhalter (1988). Since our algorithm performs approximate marginalization so

as to minimize KL-divergence, we can use the iterative EP algorithm for message

propagation, improving the quality of approximation. As an instance of EP, our

algorithm has the property that it converges to fixed points of the approximate free

energy function, subject to calibration constraints on the approximate messages.

8.4 Basic Operations

To apply the EP algorithm to clusters whose potentials are encoded as CIMs, we need

to define basic operations over CIMs. Recall, from Section 2.2.3 that the basic oper-

ations are: multiplication, division, incorporation of evidence, and marginalization.

As described above, we will need to rely on approximate marginalization.

The first two of these CIM product and division are amalgamation and its inverse

— see Definitions 3.3.12 and 3.3.13. But we have not yet discussed incorporation of

evidence and approximate marginalization.

8.4.1 Incorporating Evidence into CIMs

Point observations about the system state affect our distribution over the state at a

single point in time, which in turn, affects the distribution over the behavior of the

system. But they do not affect our distribution over the dynamics as parameterized

by the CIMs. By contrast, consider continuous evidence, as in Example 3.3.15. If

we condition on the continuous evidence that A = a1 for all t ∈ [0, 1], then the
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dynamics of Z during that interval is described solely by QB|a1
rather than a mixture

of QB|a1
and QB|a2

. An observation over an interval restricts our transition dynamics

to remain within a subset of the full state space for the duration of the interval.

To account for such evidence, we reduce the CIM — eliminate the rows and

columns of the CIM that correspond to states inconsistent with the evidence. In the

special case where we are conditioning QS|C on evidence e over some variable(s) in

the conditioning set C, the result is a CIM QS|C,e that represents the conditional

distribution φ(S|C, e). More generally, when we have evidence e1 within S and

e2 within C, the reduced CIM represents the unnormalized conditional distribution

φ(S, e1|C, e2). In this case, the reduced intensity matrix QS,e1|C,e2
will have rows that

sum to negative numbers. These negative numbers represent “extra” intensity with

which we would normally leave the subsystem (if not for the evidence), and represent

the probability flowing out of the subsystem. Note that a reduced intensity matrix

φ(S, e) cannot, in general, be normalized and represented as an intensity matrix.

Example 8.4.1 Consider the system over A and B with graph A→ B described in

Example 3.3.15. Recall that the joint intensity matrix using the ordering 〈A,B〉 for

the process is

QAB =















−6 1 2 0 3 0

2 −9 0 3 0 4

2 0 −7 1 4 0

0 3 2 −10 0 5

2 0 5 0 −8 1

0 3 0 6 2 −11















.

If we want to incorporate the continuous evidence that B = b1 for time t ∈ [0, 1], we

must consider the submatrix corresponding to instantiations consistent with B = b1.

Given the variable ordering, that means we must use the first two rows and columns.

So the reduced intensity matrix is

QA,b1 =

[

−6 1

2 −9

]

.
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As described above, the rows sum to negative numbers, whose magnitude corresponds

to the intensity with which we would normally leave the subsystem when B = b1.

8.4.2 Marginalizing CIMs

Clusters in our cluster tree are associated with unnormalized CIMs, perhaps reduced

by the incorporation of continuous evidence. In most cases, the marginal dynamics

of such a CIM over a subset of variables cannot be described using an unconditional

intensity matrix. Indeed, in general, the marginal distribution over a single variable

X can only be correctly described by constructing the entire joint intensity matrix,

and considering its marginal distribution over X. However, we can approximately

marginalize factors — products of (reduced) CIMs — by projecting them into the

space of distributions represented as unconditional intensity matrices.

More precisely, suppose we have an unnormalized intensity matrix over S and we

are trying to find the projection over the subset of variables V . Now, consider the dis-

tribution φ(S) ∝ P 0
S exp(QSt) described by a (possibly reduced) intensity matrix QS.

This distribution induces a marginal distribution φ(V ) over the dynamics of V for any

subset V ⊂ S. We would like to project φ(V ) onto the space of distributions repre-

sentable by the intensity matrix Q̂V , by minimizing the Küllback-Leibler divergence;

specifically, we want to compute arg minP̂V
D(PV ||P̂V ) where P̂V (t) = P 0

V exp(Q̂V t).

As the set of distributions representable by an intensity matrix is in the exponential

family, we can minimize the KL-divergence over an interval [t1, t2) by choosing P̂V (t)

to match the moments of PV (t) over [t1, t2).

Importantly, even an unreduced intensity matrix does not define a distribution

over trajectories. To define a distribution and the requisite moments, we need

an initial state distribution P 0
V at time t1 and the duration of the interval [t1, t2).

Given a reduced CIM φ(V , e) over the interval [t1, t2], we can obtain the conditional

distribution over the system behavior by normalizing the distribution: φ(V |e) =
1
Z

exp(QV ,e · (t2− t1)), where Z is the partition function representing the probability

of the evidence: Z =
∫ t2

t1
P 0

V exp(QV ,e · t)dt. Note that Z is a function of the amount

of time the evidence persists and of the distribution P 0
V over the state at the beginning
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of the evidence. Unlike the case with Gaussians, the integral is always finite.

To match moments, we must compute the expected sufficient statistics over the

interval [t1, t2) for the variables in S. These expected sufficient statistics are E[T [j]],

the expected amount of time in each state j, and E[M [j, k]], the expected number

of transitions from j to k. For simplicity, assume that the evidence is constant

throughout the interval. We can compute sufficient statistics for the more general

case using a forward-backward algorithm (see chapter 7 for details and derivations —

though it is based on the discussion in Section 4.4).

Given the expected sufficient statistics over S, we can calculate E[T [v]], the ex-

pected amount of time in each instantiation v of V , and E[M [v,v′]], the expected

number of transitions from v to v′. We also compute the total number of expected

transitions from v, E[M [v]] =
∑

v′ M [v,v′]. We can now match moments, setting

the parameters of Q̂V to be the maximum likelihood parameters (as in equation 5.1),

qv =
E[M [v]]

E[T [v]]
,

θvv′ =
E[M [v,v′]]

E[M [v]]
. (8.1)

We write φ̂(V ) = marg
P 0,T
S\V (φ(S)) for the distribution parameterized by Q̂V .

Example 8.4.2 Consider the system over A and B described in Example 3.3.15. If

we assume a uniform initial distribution and that we want to use this approximation

for unit time (T = 1), then the matrix of expected sufficient statistics

M̄ [(a, b), (a′, b′)] =















− .18 .36 0 .54 0

.24 − 0 .35 0 .47

.45 0 − .23 .91 0

0 .42 .28 − 0 .70

.41 0 1.03 0 − .21

0 .39 0 .78 .26 −















,

and T̄ [(a, b)] =
[

.18 .12 .23 .14 .21 .13
]

. Combining sufficient statistics for b1
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(rows 1,2), b2 (rows 3,4), and b3 (rows 5,6) we get the following matrix of expected

sufficient statistics over B

M̄ [b, b′] =







− .71 1.01

.87 − 1.61

.80 1.81 −






.

and T̄ [b] =
[

.30 .37 .33
]

. With the expected sufficient statistics over B, we can

compute the parameters of φ̂(B) = marg
P 0,1
A (φ(A,B)),

Q̂B =







−5.73 2.37 3.36

2.35 −6.70 4.35

2.42 5.49 −7.91






.

There is an additional subtlety to the computation if QS is conditioned on contin-

uous evidence and has negative row sums (representing the probability of the evidence

as discussed in Section 8.4.1). In this case, we must account for the extra intensity of

leaving the subsystem entirely when computing the expected number of transitions

out of each state E[M [v]]. To do so, we add an extra state ι to QS before computing

the expected sufficient statistics. For each instantiation s of S, the intensity of en-

tering the extra state — qvι — makes the row sum to zero. Then, when we compute

E[M [v]], we also include E[M [v, ι]] the expected number of transitions to the extra

state, and use Eq. (8.1).

Note that, as ι does not correspond to any instantiation v, we have that
∑

v′ θvv′ <

1, and therefore the row sums in the resulting intensity matrix will also be negative.

This corresponds to the fact that our marginalized intensity matrix approximates

the marginal of P (e,S | C) in this case. As a result, after computing the expected

sufficient statistics, we find that the sum t∗ over the time spent in actual states —

i.e., not including ι — is less than the total time we are supposed to account for —

namely, t2 − t1. So, we set our normalization c to (t2 − t1)/t∗.

Example 8.4.3 Continuing Example 8.4.1, we add a new state ι, resulting in a new
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CIM:

QA,b1 =







−6 1 5

2 −9 7

0 0 0






,

where the last row/column correspond to the absorbing state ι. Assume a uniform

initial distribution over the states of A and that we are in this subsystem for total

time T = 1. Then, calculating the integrals by Runge-Kutta without normalizing

yields the unnormalized matrix over transitions of A including the additional state ι,







− .105 .526

0.134 − .470

0 0 −






,

and the unnormalized vector
[

.105 .067 .828
]

representing the amount of time in

each state. The normalization constant c = 1/(.105 + .067) = 5.81. So the expected

sufficient statistics (given that we spend no time in ι) are

M̄ [a, a′] =







− 0.61 3.05

0.78 − 2.73

0 0 −






,

and T̄ [a] =
[

.61 .39 0
]

. When we compute parameters with these statistics, we

find that we get back the same QA,b1 as above because we have not incorporated any

additional evidence. Incorporating evidence will generally lead to a different intensity

matrix, as in Example 8.5.1.

8.5 Expectation Propagation

Based on these operations, we can describe a message propagation algorithm for

CTBNs. As discussed above, when using approximate projection, we can apply the

algorithm iteratively, as in expectation propagation, with the goal of improving our
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estimates.

8.5.1 EP for Segments

We first consider the message propagation algorithm for one segment of our trajectory,

with constant continuous evidence. The generalization to multiple segments follows.

We first construct the cluster tree for the graph G. This procedure is exactly

the same as in Bayesian networks — cycles do not introduce new issues. We simply

moralize the graph, connecting all parents of a node with undirected edges, and then

make all the remaining edges undirected. If we have a cycle, it simply turns into a

loop in the resulting undirected graph. We then select a set of clusters Ci. These

clusters can be selected so as to produce a clique tree for the graph, using any standard

method for constructing such trees. Or, we can construct a loopy cluster graph, and

use generalized belief propagation. The message passing scheme is the same in both

cases.

Let Ai ⊆ C i be the set of variables whose factors we associate with cluster Ci.

Let Ni be the set of neighboring clusters for Ci and let Si,j be the set of variables

in Ci ∩Cj. We also compute, for each cluster C i, the initial distribution P 0
Ci

using

standard BN inference on the network B. After initialization, the algorithm is

Procedure CTBN-Segment-EP(P 0, T, e,G)

1. For each cluster Ci

πi ←
∏

X∈Ai
φ(X,UX , e)

2. For each edge Ci—Cj

µi,j ← 1

Loop until convergence:

3. Choose Ci—Cj

4. Send-Message(i, j, P 0
Ci
, T )

Procedure Send-Message(i, j, P 0, T )

1. δi→j ← marg
P 0,T
Ci\Si,j

(πi)

2. πj ← πj ·
δi→j

µi,j

3. µi,j ← δi→j
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It takes the initial distributions over the clusters P 0, an amount of time T , and

possibly some continuous evidence e which holds for the total time T . We use φ(·, e)

to denote the CIM reduced by continuous evidence e if applicable. The algorithm

iteratively selects an edge (i, j) in the cluster graph, and passes a message from C i to

Cj . In clique tree propagation, we might select edges so as to iteratively perform an

upward and downward pass. In generalized belief propagation, we might use a variety

of message passing schemes. Convergence occurs when messages cease to affect the

potentials which means that neighboring clusters Ci and Cj agree on the approximate

marginals over the variables Si,j.

The basic factor operations are performed as described in Section 8.4. Specifically,

let ρ(·) be a function taking factors to their CIM parameterization. For the initial

potentials, ρ(πi) is computed by adding the intensity matrices QX|UX
reduced by

evidence e for X ∈ Ai. Also, ρ(1) is an intensity matrix of zeros. Factor product

is implemented as addition of intensity matrices, and factor division as subtraction,

so that ρ(πj ·
δi→j

µi,j
) = ρ(πj) + ρ(δi→j) − ρ(µi,j). Marginalization is implemented by

computing the expected sufficient statistics, using the evidence e, the time period T ,

and the initial distribution P 0, as described in Section 8.4.2.

Example 8.5.1 Assume we have a CTBN with 4 binary variables and graph

A→ B → C → D

with CIMs
QA QB|a1

QB|a2[

−1 1

1 −1

] [

−1 1

10 −10

] [

−10 10

1 −1

]

,

where QC|B and QD|C have the same parameterization as QB|A. So A switches

randomly between states a1 and a2, and each child tries to match the behavior of its

parent. Suppose we have a uniform initial distribution over all variables except D

which starts in state d1 and remains in that state for unit time (T=1). Our cluster
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tree is AB—BC—CD and our initial potentials are:

ρ(π1) = QAB =









−2 1 1 0

1 −11 0 10

10 0 −11 1

0 1 1 −2









,

ρ(π2) = QBC =









−1 0 1 0

0 −10 0 10

10 0 −10 0

0 1 0 −1









,

ρ(π3) = QCd1
=

[

−1 0

0 −10

]

.

Our initial messages are

ρ(δ1→2) =

[

−2.62 2.62

2.62 −2.62

]

ρ(δ3→2) =

[

−1 0

0 −10

]

These messages leave π1, π3 unchanged and give us:

ρ(π2) =









−4.62 2.62 1 0

2.62 −13.62 0 10

10 0 −22.62 2.62

0 1 2.62 −13.62









.

Our next messages are:

ρ(δ2→1) =

[

−5.02 2.62

2.62 −8.57

]

ρ(δ2→3) =

[

−4.42 3.42

3.62 −13.62

]

.
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These leave π2 unchanged and give us

ρ(π1) =









−4.40 1 1 0

1 −13.40 0 10

10 0 −16.94 1

0 1 1 −7.94









,

ρ(π3) =

[

−4.42 3.42

3.62 −13.62

]

.

Now δ3→2 would have no effect on π2, however,

ρ(δ1→2) =

[

−5.34 2.95

3.31 −9.26

]

which changes π2 so that

ρ(π2) =









−4.95 2.95 1 0

3.31 −14.31 0 10

10 0 −22.95 2.95

0 1 3.31 −14.31









.

Our next messages are

ρ(δ2→1) =

[

−5.39 2.95

3.31 −9.16

]

ρ(δ2→3) =

[

−4.43 3.43

3.76 −13.76

]

.
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This gives us

ρ(π1) =









−4.45 1 1 0

1 −13.45 0 10

10 0 −16.85 1

0 1 1 −7.85









,

ρ(π3) =

[

−4.43 3.43

3.76 −13.76

]

.

At this point we have converged. If we use π1 to compute the distribution over A

at time 1, we get
[

.703 .297
]

. If we do exact inference by amalgamating all the

factors and exponentiating, we get
[

.738 .262
]

.

Theoretically, we should be able to generalize this algorithm to do smoothing over

trajectories, however there are a number of complications that arise. For example,

message passing can lead to a potential with a negative intensity in an off-diagonal

entry. When that happens, it is not clear how to proceed. This issue is addressed in

later work — see Saria et al. (2007).

8.5.2 Energy Functional

As for any EP algorithm over the exponential family, we can show that the conver-

gence points of the EP algorithm in Section 8.5.1 are fixed points of the constrained

optimization of the Kikuchi free energy functional, subject to calibration constraints

on the projected marginals.

The Kikuchi free energy function for a cluster graph G satisfying the running

intersection property is

F̂ [PN , P̂ ] = (8.2)
∑

φ∈N

Eπφ
[lnφ] +

∑

Ci∈G

Hπi
(Ci)−

∑

Ci—Cj∈G

Hµi,j
(Si,j)
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subject to the constraints:

µi,j = marg
P 0,T
Ci\Si,j

(πi) . (8.3)

Theorem 8.5.2 A set of potentials πi, µi,j is a stationary point of the maximization

of Eq. (8.2) subject to Eq. (8.3) if and only if, for every edge Ci—Cj there are

potentials of the form δi→j(Si,j) such that

δi→j ∝ marg
P 0,T
Ci\Si,j



π0
i ×

∏

k∈Ni−{j}

δk→i





πi ∝ π0
i ×

∏

j∈Ni

δj→i

µi,j = δj→i × δi→j

Corollary 8.5.3 Convergence points of the procedure CTBN-Segment-EP are sta-

tionary points of maximizing Eq. (8.2) subject to Eq. (8.3).

The proof of these results is a special case of the general result on convergence of

EP, which applies to any class of distributions in the exponential family.

8.6 Results

In our experiments, we used the drug effect network shown in Figure 3.1 allowing us

to compare to the previous inference algorithm. We ran the expectation propagation

filtering algorithm and we compared the results of our implementation of expectation

propagation with exact inference. We chose an example small enough to allow us to

perform exact inference for comparison.

We ran three scenarios. In each one, at t = 0, the person modelled by the

system experiences joint pain due to falling barometric pressure and takes the drug

to alleviate the pain, is not eating, has an empty stomach, is not hungry, and is not

drowsy. The drug is uptaking and the current concentration is 0. All scenarios ended
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Avg KL-div from Exact
EP

No Evidence
1 segment 0.0629
6 segments 0.0077
Point Evidence
3 segments 0.0086
6 segments 0.0076

Table 8.1: Average KL-div. between the exact joint distribution and EP, our inference
algorithm. The average is computed over 60 time points.

at t = 6 (after 6 hours). We compare to exact inference by computing the average

KL-divergence as discussed below.

In the first scenario, there was no evidence after the given initial distribution. We

ran the algorithms viewing the entire trajectory as a single segment. We tried using

one approximation to describe the dynamics over the system and also broke it down

into 6 evenly spaced segments. In the second second scenario, we observe at t = 1

that the person is not hungry and at t = 3, that he is drowsy. We ran the algorithms

with 3 segments and again with 6 segments.

Table 8.1 shows the average KL-divergence between exact joint distribution and

the approximate joint distribution averaged over 60 evenly spaced time points between

t = 0 and t = 6 for the experiments described above. From the table, one can see the

expectation propagation does a reasonable job. We note that there is a significant

advantage to breaking the trajectory down into multiple segments.

In the third scenario, we have continuous observations over the variables repre-

senting hunger, eating, and drowsiness. After the initial distribution given above,

these three variables persisted in their initial state until t = 0.5, (half an hour later),

after which the person became hungry. At t = 1 the person begins to eat. At t = 1.5

the hunger is gone and at t = 2 the person stops eating. At t = 2.5 the person

becomes drowsy and these three variables maintain their final value to the end of

the trajectory at t = 6. We ran the EP forward filter with one segment for each

interval of continuous evidence — a total of 6 segments (not evenly spaced). We



CHAPTER 8. INFERENCE 112

again measured the average KL-divergence between the actual and approximate joint

distributions as above, measuring at 60 evenly spaced time points between t = 0

and t = 6. The average KL-divergence was 0.00122. Allowing EP to run for only

a single pass instead of going until convergence had a negligible effect — worsening

the average KL-divergence by 6.7× 10−7. This is not surprising, as we found EP to

converge rapidly: of the 6 segments we ran for the continuous evidence, all but one

converged within a single pass.

8.7 Discussion

In this chapter we have discussed inference for CTBNs. Exact inference is intractable

and compactly summarizing the distributions over trajectories appears infeasible.

However, we have presented a well-founded, approximate inference algorithm for

CTBNs that allows us to answer a full range of queries including the ability to han-

dle continuous observations. Furthermore, we showed how we can compute a KL-

divergence minimizing approximate marginalization of the distribution parametrized

by the CIM.

These results enabled us to provide an expectation propagation algorithm for

CTBNs which, subject to our approximate marginalizations, converges to stationary

points of the approximate free energy function.

One of the most appealing properties of this inference algorithm is that it adap-

tively selects the time granularity used for reasoning about a cluster based on the

rate at which the cluster evolves. Different clusters will be discretized at different

granularities, automatically selected by the integration algorithm. The same cluster

may be discretized at one granularity in one interval of continuous evidence, and

differently in another. By contrast, in DBNs, all variables in the system must be

modeled at the time granularity of the variable that evolves most quickly.

Finally, we note that we chose to use one cluster graph for each segment of fixed

continuous evidence. As a consequence, each cluster will approximate the trajectory

of the variables it contains as a homogeneous Markov process, for the duration of

the segment. We can modify the quality of the approximation by either refining or
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coarsening our choice of segments. In particular, if a set of variables is changing

rapidly, we might want to partition a segment into subsegments, even if the evidence

remains constant. Alternatively, we can reduce computational cost by collapsing

several intervals of continuous evidence, approximating the trajectory distribution

over the entire interval as a homogeneous Markov process. This step requires a

more complex computation of sufficient statistics over the combined interval, but is

not substantially different. The decision of how to partition time into intervals is

analogous to a situation where we are approximating a distribution over continuous

variables as a set of Gaussians, each defined over a subset of the space. The choice of

how to partition the space into subsets determines the quality of our approximation.

One of the main limitations of this algorithm, aside from the restriction to filtering,

is that while time segments can be of different length, all the clusters of variables are

broken up over the same segment boundaries. Thus, if one cluster evolves more

rapidly than others, requiring a finer-grained approximation, inference in the entire

system will have to be approximated with the same segmentation. Moreover, a person

must choose how many segments to use in advance.

These issues are explored and handled in later work beyond the scope of this thesis

— see Saria et al. (2007).



Chapter 9

Complex Duration Distributions

Accurate modelling of many data sets requires an extension of the work presented thus

far. The Markovian assumption restricts the expressive power of CTBNs to modelling

exponential distributions over time. The constitutes a significant limitation to the

expressive power of our framework since the distribution between state transitions

for even a single variable are often more complex than the exponential distribution.

However, with the extension of the EM to CTBNs, we can now address this limitation.

9.1 Phase-type Distributions

Phase-type distributions are a rich, semi-parametric class of distributions over dura-

tions that use the exponential distribution as a building block. A phase-type distri-

bution is modeled as a set of phases, through which a process evolves. Each of these

phases is associated with an exponential distribution, which encodes the duration for

the process to remain in that phase. That is, we enter a phase k, and then leave in

time t exponentially distributed with the parameter qk associated with that phase.

We can view the process as moving over a directed, possibly cyclic graph of nodes

each of which represents a phase. Thus, we can create combinations of chains, mix-

tures, and loops of such exponentially distributed phases linked together in a variety

of ways. We spend some amount of time going from one phase to another, but even-

tually we leave the set of phases altogether. The distribution over when we leave such

114
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Figure 9.1: Phase transition diagrams for (i) a single exponential phase, (ii) an Erlang
(chain), (iii) a mixture, and (iv) a loop.

a system of phases is called a phase-type distribution.

As shown by Johnson and Taaffe (1988), phase-type distributions are dense in the

set of continuous distributions meaning that, if allowed any number of phases, one can

use a phase-type distribution to approximate any continuous distribution arbitrarily

closely.

Example 9.1.1 Consider a 4-state homogeneous Markov process PHt with intensity

matrix

QPH =









−q1 q12 q13 q14

q21 −q2 q23 q24

q31 q32 −q3 q34

0 0 0 0









.

If the intensities of states 1, 2, and 3 are non-zero, then regardless of the initial



CHAPTER 9. COMPLEX DURATION DISTRIBUTIONS 116

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

P
ro

b.
 o

f L
ea

vi
ng

 S
ta

te
 1

Time

Exponential
Erlang
Mixture
Loop

Figure 9.2: The probability density of the first time to leave state 1 (the phase-type
distribution), for three example binary variable with 3 phases for both states. All
examples have an expected time of 1 to leave state 1.

phase, PHt will end up in state 4 and remain there. Thus, state 4 is called an absorb-

ing state and the others are called transient states. We call the transient states phases

and the distribution over when PHt reaches state 4 is called a phase distribution. In

this particular case it has 3 phases. If we wanted to encode a chain 1 → 2 → 3,

we would have all off-diagonal entries equal to 0, except q12, q23, q34. If we wanted to

encode a loop, we would also allow q31 6= 0. Figure 9 shows some different possible

phase transition diagrams and Figure 9 shows some simple distribution shapes that

can be formed with 3 phases. Note that, while a chain distribution always begin in

phase 1 and ends in some final phase p, general phase-type distributions might start

and end in any phase (e.g., the mixture distribution shown).

Definition 9.1.2 A phase-type distribution of p phases is defined as the distribution

over time when a homogeneous Markov process with a single absorbing state and p
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transient phases reaches absorption (Neuts 1975; 1981).

We can specify a p-phase distribution with a p × p matrix, QP , by including

only the subsystem of transient phases without losing any information. The rows of

the new intensity matrix will have a (possibly) negative row sum, where the missing

intensity corresponds exactly to the intensity with which we leave the entire system —

i.e., the intensity with which we enter the absorbing state. Phase-type distributions

with a single phase are simply exponential distributions.

Definition 9.1.3 The Erlangian-p is a commonly used subclass of phase-type distri-

butions that can be constructed with a chain of p phases, where each phase is visited

exactly once — in order — and all phases have the same exit intensity. It thus has

a single parameter q. The mean of the Erlangian-p with parameter q is p/q and the

variance is p/q2. (Lipsky, 1992).

Example 9.1.4 In an Erlangian-3 distribution with the parameter q = 2, there are

3 phases and each phase is visited exactly once, in order. Each phase is exponentially

distributed with intensity 2, so the intensity matrix for this distribution is

QE3
=







−2 2 0

0 −2 2

0 0 −2






.

To ensure this intensity matrix will yield an Erlangian-3 distribution we must set

the initial distribution to
[

1 0 0
]

. Otherwise, we may not go through all 3 phases.

9.2 CTBN Durations as Phase-type Distributions

One can directly model the distribution in state x of variable X in CTBN N as any

phase-type distribution instead of an exponential distribution.

When using this phase modelling method, the structure of the intensity matrix

must be altered by adding phases as additional rows (and columns). We use the term

phases to distinguish additional hidden state in the intensity matrix from states of
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the variable. Thus, a subsystem of several phases is used to implement a single state

of a variable. In this context there is no absorption and the “final” transition of the

phase-type distribution is the transition of the variable to its the next state.

Example 9.2.1 To make a binary variable W have the duration in each of its 2

states be Erlangian-3 distributions (this first with intensity 1 for exiting each of its 3

phases and the second with intensity 2 for exiting each of its 3 phases), we write its

intensity matrix as

QW =















−1 1 0 0 0 0

0 −1 1 0 0 0

0 0 −1 1 0 0

0 0 0 −2 2 0

0 0 0 0 −2 2

2 0 0 0 0 −2















.

The top three rows correspond to state w1 and the bottom three to state w2. Note that

when restricted to modelling with Erlang distributions for a fixed number of phases,

the number of free parameters is the same as a regular (exponentially distributed)

CTBN.

Using phase modelling greatly extends the expressive power of CTBNs and fits

naturally within the existing CTBN framework. The basic structure of existing algo-

rithms for CTBNs remains unaltered.

The child of a variable with complex durations sees only the state of its parent and

so does not, in general, depend on the current phase of a parent. There are a number

of design choices to make in implementing phase-type distributions for durations in

CTBNs. Different choices may be appropriate for different applications. One can

add phases in a uniform way to each state of each variable — as in example 9.2.1

where each state gets three phases. Alternatively, one might allow some states of

some variables to be modelled with more phases than others.

When the parent instantiation changes, one might allow the child in its current

state to stay in the same phase or to reset. But there are subtleties with either option.
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Suppose we have a phase modelled variable Z with binary parent Y . Suppose we have

Y = y1 and Z = z1, and the behavior of Z is controlled by the intensity matrix QZ|y1
.

When the value of Y changes to y2, the relevant intensity matrix for Z is QZ|y2
.

Now, suppose Z = z1 has 3 phases. If we allow Z to stay in the same phase when

Y transitions, we must be able to map the row of the current phase of Z = z1 in QZ|y1

to the corresponding row for Z = z1 in QZ|y2
. The clearest way to ensure that there

are “corresponding” rows is to force consistency in the number of phases allowed for

each state across all parent instantiations.

On the other hand, if we want to “reset” the phase for Z’s state when Y transi-

tions, we must handle the question about which phase of Z = z2 we start in when

transitioning from Z = z1. In particular, there might be a fixed distribution over

phases with which one always enters a particular state or that distribution might

depend upon the previous state or the current parent instantiation.

In general, we need a function that tells us how the CIM for Z should handle the

transition from Y = y1 to Y = y2. The choice of this function can be selected by

hand or automatically by EM.

9.3 Using Hidden Variables

An alternate method of allowing complex duration distributions for the states of a

variable X in CTBN N is to introduce a special hidden variable HX as a parent

of X. This has the advantage of being a very clean way to add expressive power to

CTBNs. Without this technique, the parents of X must be other variables that we are

modelling in our domain which means that the intensities which control the evolution

of X can only change when a regular modelled variable changes. The addition of

a hidden parent allows us to describe more complex distributions over trajectories

of X by allowing the intensities which control the evolution of X to change more

frequently.

There are different ways to add a hidden variable HX as a parent of X. We might

force HX to have no parents, or allow it to have parents in addition to X having

parents. However, while adding an explicit hidden variable with clear semantics
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might be useful, it is important to realize that all complex duration distributions

expressible through use of hidden variables are expressible by direct phase modelling

of the state. For example, suppose HX has 3 states and X has 2 states. Using direct

phases, we can rewrite a 6×6 intensity matrix for X having 3 phases for each of its 2

states corresponding to the hidden state of HX . More generally, we can amalgamate

a set of hidden parents HX and X into a single cluster node S, whose parents are

X’s parents other than HX along with the parents of HX . Each state of X now

corresponds to a set of instantiations to S. We can reinterpret the amalgamated

CIM for S (given its parents) as a phase-type distribution for X, with |Val(HX)|

phases per state of X.

Conversely, many complex duration distributions expressible by direct phase mod-

elling cannot be expressed using hidden variables. In particular, the joint behavior

of HX and X is restricted in that X and HX cannot transition simultaneously. This

corresponds to the constraint that QS must have zeros in locations that correspond

to a simultaneous shift in the state of X and HX . No such constraint holds in di-

rect phase modelling which means that we have more free parameters to describe the

distribution.

Thus, we have shown:

Theorem 9.3.1 For a fixed number of phases p, a CTBN variable X with direct

phase modelling for durations, i.e., using |X| · p rows for QX, is strictly more expres-

sive than a variable with complex durations modelled by using a hidden parent HX

with p states.

9.4 Parameter Estimation

We have now described the representational issues involved in modelling complex

duration distributions within a CTBN. In general, using a more complex duration

distribution involves adding extra parameters to our model. This leads naturally to

the question of how we can estimate these parameters.

Our observations of a phase-distributed variable are always partial in that we

might observe the current state of a variable but never its associated phase.
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If we restrict our attention to the Erlangian-p distribution for a fixed p, then we

have the same number of parameters and we can derive a closed-form equation for

the maximum likelihood parameters. (Recall that an Erlangian-p has only only one

intensity parameter.)

Theorem 9.4.1 If we model the duration in the state X = x with parent instantiation

U = u as an Erlangian-p distribution (for a fixed value of p), Then the maximum

likelihood (MLE) parameters can be written as a function of the sufficient statistics

as

q̂x|u =
M [x|u]

p · T [x|u]
,

θ̂xx′|u =
M [x, x′|u]

M [x|u]
. (9.1)

where q̂x|u is the intensity with which we identically exit each of the p phases.

Proof: As a member of the exponential family, we can derive the formula for the

maximum likelihood intensity parameter by matching moments. According to the

data, the mean time to transition from X = x given U = u is the total time divided

by the number of transitions from that state, i.e., T [x|u]/M [x|u]. The mean of the

Erlangian-p distribution with parameter qx|u is p/qx|u. By setting these means equal

to each other, we get the maximum likelihood formula above. Note that this proof is

wholly analogous to the alternative derivation given in the proof of Theorem 5.1.1.

Moreover, the use of the Erlangian distribution to model the duration does not affect

the multinomial distribution over the state to which we transition. Thus, for the

multinomial, the formula (and the proof) for the maximum likelihood estimation is

identical to the one given earlier.

For more general phase-type distributions, we use EM for parameter estimation.

This algorithm has been discussed in Chapter 7. However, we can sometimes get away

with using a simpler variant of the full EM algorithm. In particular, there are many

situations where the system we want to learn is actually fully observed. However,

exponential duration distributions may not be a good fit, and so we may want to use

general purpose phase modelling. In such instances we can use local-EM.
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Figure 9.3: Learning results for British Household Panel Survey.

Local-EM is a computationally lightweight variant of EM in which we do not need

to run inference over the whole network for the E-step — we can just look at each

variable along with its parents. Essentially, if we have N variables we run EM over

N small, independent networks. Each separate network includes one variable with its

parents.

If our observations of the system are not complete, then we must use the regular

version of the EM algorithm, viewing it as a regular partially observed process.

9.5 Results

We ran SEM on the British Household Panel Survey (Economic and Social Research

Council (ESRC) Research Centre on Micro-social Change, 2003). This data is col-

lected by the British government by yearly asking thousands of residents of Britain

about important events in their lives. They track when these events occurred and

provide this data anonymously and separately for each member of the survey. Over
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Figure 9.4: Learned BHPS network (200 training points).

8000 people are currently in the dataset. We randomly divided this set into 4000

training examples and 4000 testing examples (each example is a trajectory of a differ-

ent person). Because we are employing exact inference, we had to keep the variable

set small and chose 4 variables: employ (ternary: student, employed, unemployed),

married (binary: not married, married), children (ternary: 0, 1, 2+), and smoking

(binary: non-smoker, smoker). The average number of events per person is 5.6.

We learned structures and parameters for a time-sliced DBN with a time-slice

width of 1 year, a standard CTBN, and a CTBN with 2 phases for every state of

every variable. No restrictions were placed on the structure of these 2 phases (so,

in general, they form a loop) and the phase for a variable resets when the parent

changes.

In order to compare CTBNs to DBNs, (a model that cannot predict the exact

timing of events), we sampled the testing data at the same yearly rate and calculated

the probability of these sampled trajectories, a value both CTBNs and DBNs can
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predict. The results are shown in Figure 9.4. The DBN and plain CTBN models

are comparable, with the DBN doing better with more data due to its increased

flexibility (due to intra-time slice arcs, DBNs have more potential parameters). How-

ever, the phase-type distributions increase the performance of the CTBN model; the

trajectories are approximately twice as likely as with the other two models.

Figure 9.4 shows a learned exponential CTBN network. The parameters are in-

teresting. For example, the rate (intensity) with which a person stops smoking given

that they have two or more children is three times the rate at which a childless person

quits smoking. The rate at which a person begins smoking given that they have no

children is 300 times the rate of a person with two or more children. The rate at which

a person becomes unemployed (after having been employed) tends to decrease with

more children. But that “job security” is most apparent in people who are married.

The rate of becoming unemployed also tends to be less if one smokes.

9.6 Discussion

This chapter addresses one of the primary limitations of the CTBN model. Although

reasonable in some cases, an exponential model is a poor fit for many real-life domains

(such as the interval between getting married and having children). Indeed, our

experimental results show that CTBNs parameterized with the richer class of phase-

type distributions significantly outperform both CTBNs and DBNs on a real-world

domain.

Although one can learn discrete-time models that use the finest level of granularity,

the geometric duration distribution of such models (which is particularly marked

in fine-grained time models) can be a poor fit to the true duration distribution.

Conversely, as we showed in Chapter 6, using an overly coarse granularity can also

lead to artifacts in the learned model.

We have shown that it is possible to learn, in closed form, the parameters for the

class of Erlangian-p distributions. We have described local-EM which is powerful and

computationally lightweight method for learning fully general phase distributions in

the context of complete data.
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Full EM as described in Chapter 7 allows us to learn general phase distributions

even when we have only partial information about a system.



Chapter 10

Related Work

In this chapter, we discuss work related to this thesis. This presentation is organized

into three sections. We begin with other work on modelling time with Bayesian

networks. We continue with work on event history analysis and Markov process

models. The chapter concludes with a discussion of related work that bears directly

on the CTBN framework.

Some of the related work arguably belongs in more than one section. In such

cases, we have listed the work only once.

10.1 Bayesian Networks and Time

A number of methodologies have been developed to handle temporal reasoning using

the general BN framework. Chief among these is the DBN framework (Dean &

Kanazawa, 1989) which we have discussed and compared with CTBNs in Chapter 6

and Section 9.5.

Hanks et al. (1995) present another discrete time approach to temporal reason-

ing — related to DBNs — which they extend with a rule-based formalism to model

endogenous changes to variables that occur between exogenous events. These endoge-

nous changes add a flavor of continuous time to the framework since the number of

endogenous changes that can occur between the discrete time exogenous events is not

fixed. However, there is no unified graphical model and there is no direct method for
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calculating state transition probabilities. The only approach to inference discussed is

stochastic simulation that explicitly focuses on likely scenarios.

Arroyo-Figueroa and Sucar (1999) present Temporal Nodes Bayesian Networks

(TNBNs), which are specifically designed for fault diagnosis and prediction in specific

domains and are not presented as a general temporal model. The approach is based on

time intervals — where events can only happen in one of a small number intervals. A

TNBN is made up of a set of nodes, each representing an event that can happen only

once. Each event has a “normal” or default state and a (small) set of relative time

intervals in which the event may occur. Arcs represent causal temporal relationships;

so, nodes without parents represent possible trigger events which can cause other

events associated with a fault or some “disturbance”. A child event in the network has

different distributions over its values (i.e., over the possible time intervals in which it

might occur) depending on which cause activated it. Inference is done by instantiating

known events within known time intervals (where the timing of a trigger event gives

a basis for determining the actual times for the relative intervals) and propagating

the evidence to generate a posterior distribution. However, if an event were to occur

at a time outside any of intervals specified for it, the corresponding node would have

to be instantiated as simply not occuring in the required time frame. Each TNBN is

engineered by domain experts for a particular problem.

Tawfik and Neufeld (1994) present Temporal Bayesian Networks which allow time

to be modelled as discrete or continuous. Probabilities are represented as functions

of time. However, this framework only allows the calculation of distributions over

the state at a given time — not distributions over time. Inference is simplified by

making the assumption that the different instants in time are independent. That is,

observations at time t do not affect the distribution at t′ for t 6= t′. Possible methods

of relaxing this assumption are only described at a high level. Also, the problem of

learning probabilities as functions over time is not addressed.

Colbry et al. (2002) present Quantitative Temporal Bayesian Networks (QTBNs).

This framework augments standard DBNs with a methodology based on Time Nets

(Kanazawa, 1991) to allow for the representation of qualitative time interval con-

straints on the occurence of events. These do not constrain what happens, only what
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is supposed to happen as we monitor the behavior of a system. Regular DBN inference

is used to propagate the distribution forward in time and there is some additional

computational overhead to check whether the system is behaving according to the

desired constraints once one has the distribution over a new instant in time. The

problem of learning these models is not addressed.

Finally, Tawfik and Neufeld (2000) provide an overview of techniques used for

modelling time with Bayesian networks. They focus on questions of representation.

Inference is discussed in terms of patterns of reasoning with a few small examples

but no general algorithms. The most notable exception is in the case where one as-

sumes that distinct time points are independent. Learning tasks are not discussed.

Significantly, they include mention of continuous time survival analysis as a method

of modelling the time to occurrence of significant events in causal models. How-

ever, temporal distributions generated by these survival functions are not used for

modelling state durations of local variables. The resulting models are analogous to

standard event history analysis.

10.2 Event History Analysis and Markov Process

Models

There are many different methodologies used for continuous time modelling. We have

discussed (finite state) continuous time Markov proceses extensively as the basis of

the CTBN framework.

There is a broad class of related methods we refer to as event history analysis

(Blossfeld et al., 1988; Blossfeld & Rohwer, 1995; Andersen et al., 1993) though other

terms — e.g., survival analysis, hazard models, failure analysis, duration analysis,

etc. — are used in the literature as well. Such models are used to examine and

model the distribution over time between two significant events. For example, these

events might be the birth and death of a person or the manufacture and failure of a

part. While external factors (e.g., does the person smoke) may be included for more
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accurate analysis, the focus is modelling some particular duration. Note that phase-

type duration distributions have been used extensively with these methods (Aalen,

1995).

A general theme with these models is that there is some distinguished event that

is of central interest as opposed to CTBNs where we are modelling the transient (i.e.,

moment-to-moment) dynamics of a structured stochastic system.

In counting process models (Aalen, 1975; Andersen et al., 1993), the distinguished

event is repeatable and we are interested in the distribution over how many times it

has occurred. There are multivariate versions of these models where we are interested

in the distribution over how many times a set of events has occurred (Andersen & Bor-

gan, 1985). Bayesian statistical methods have been used for inference in these models

(Hjort, 1986; Aven, 1986) but, crucially, they have not used a factored representation

which would allow modelling of conditional independencies.

In queueing theory (Gross & Harris, 1998; Lipsky, 1992), there are two distin-

guished, repeatable events: arrivals to and departures from a queue. The amount of

time between an arrival and the corresponding departure from the queue is the ser-

vice time. Queues are often characterized by the distribution over the occurrence of

arrival events and the distribution over the service time. Individual queues or service

centers can be combined into a queueing network (Gross & Harris, 1998) that has

structure — i.e., some service centers lead only to certain other service centers. But

this is not a dependency structure. In particular, the behavior of each service center

does not depend on the current state of any other service center.

10.3 CTBNs

We now turn to works that are more directly related to the contributions of this

thesis.

Our definition of a conditional Markov process (in Section 3.1.1) is similar to a

model introduced and used by Lando (1998), but the conditioning variables there

were static — they were not viewed as Markov processes, nor were they built into

any larger structured model, as in our framework.
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The method we present in Section 4.4 for computing expected sufficient statistics is

a generalization the work of Asmussen et al. (1996) who utilize numerical integration

via the Runge-Kutta method. However, their work is limited to the case of a stand-

alone phase-type distribution with an absorbing state. Holmes and Rubin (2002)

provide an alternative approach to computing expected sufficient statistics using the

eigenvalue decomposition of the intensity matrix.

Gopalratnam et al. (2005) extend the basic CTBN representation by allowing

durations to be modelled as Erlang-Coxian distributions, which is a limited subclass

of general phase distributions. In particular, it does not allow for the exponential

phases to be looped. Restriction to subclasses makes learning from data easier; in

particular, EM is not required necessary to learn distributions of this class (as we

saw in Section 9.4 for the Erlangian subclass of phase distributions). However, these

subclasses have several drawbacks, including reduced expressivity, especially with

small numbers of phases (Asmussen et al., 1996). Since our general method from

Chapter 9 is based on the EM algorithm, it allows the use of general phase-type

distributions in CTBNs without restriction.

In DBNs and HMMs, the general idea of representing complex state durations

by the use of multiple (geometrically distributed) phases leads to a form of semi-

Markov models as described by Durbin et al. (1998) and Murphy (2002). These

techniques have not typically allowed the phases to be looped back on each other

and such feedback loops are an important part of the expressive power of phase-type

distributions (Asmussen et al., 1996).

More generally, semi-Markov models (Lévy, 1954; Howard, 1971; Blossfeld et al.,

1988) can include arbitrary distributions over the time until some variable changes

state. These types of models are compelling because, in many domains, simple distri-

butions over durations do not provide a good fit to data. If we are only interested in

modelling one variable, choosing an arbitrary distribution over when it will transition

is less of a problem. We can even allow the arbitrary distribution to be a function

of other factors — if they are, themselves, fixed. The difficulty is how to define a

globally coherent probabilistic semantics over a process where we have different vari-

ables transitioning with arbitrary distributions. It is unclear how to determine which
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variable in the global system will transition next and when that transition will occur.

Ng et al. (2005) extend the CTBN representation to allow for a hybrid state

model — i.e., one that includes nodes with finite state spaces and nodes with con-

tinuous state spaces. They use the hybrid CTBN to model a remote rover which

they use as a testbed for a continuous time particle filtering algorithm which they

introduce. The computational advantages of the continuous time model over discrete

time are discussed — in particular, the way that computation is only necessary when

observations arrive instead of being required on a fixed schedule.

Boudali and Dugan (2006) use CTBNs to develop a framework for analysis of

reliability. They develop a closed-form solution for the reliability of a sample system

and compare it favorably as a generalization of earlier work using a discrete time

model.

Friedman and Kupferman (2006) consider CTBNs over systems with components

that evolve over widely differing time scales — i.e., some components evolve very

quickly compared to others. They show a theoretically useful method for reducing

the size of such CTBNs for purposes of approximate inference.

Finally, El-Hay et al. (2006) develop a new framework of continuous time Markov

nets (CTMNs) based on CTBNs. The CTMN framework factors a continuous time

Markov process over an undirected graph. Two nodes, X and Y , that are connected

by an undirected arc mutually depend upon one another, so X—Y in the CTMN

can be viewed as the cycle X ⇆ Y in a corresponding CTBN. Thus, CTMNs rep-

resent a subclass of the processes representable by CTBNs. But, through a clever

parametrization, they guarantee that the stationary distribution is representable as a

factored state — unlike the situation in standard CTBNs (where the stationary dis-

tribution is generally entangled). They also provide a reduction of CTMNs to CTBNs

in order to make use of CTBN algorithms for inference, allowing them to focus on

presenting learning algorithms for the new framework.



Chapter 11

Conclusion

11.1 Brief Summary

This thesis has introduced CTBNs, a new framework for modelling continuous time

over a factored state. It allows us to model processes without needing to choose an

arbitrary temporal granularity. It allows us to use cyclic graphs which are a natural

way to model mutual influence and can make knowledge engineering easier.

We have developed principled learning algorithms that learn CTBN models from

both fully and partially observed data. We also have a polynomial time structure

search algorithm (when limited to some fixed maximum number of parents per node).

We have explored the difficulties of exact inference and provided a inference algo-

rithm which leverages our factored state to gain computational advantage. It takes

additional advantage of the fact that each node has a model of how fast it expects

to change. This enables us to focus computational resources on parts of the system

that need it most.

We have shown how to model state durations for individual CTBN variables as

phase-type distributions — an extraordinarily expressive class. Finally, we have com-

pared our framework with DBNs, noting that there are complex issues involved in

evaluating them comparatively.
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11.2 Future Work

The introduction of a new continuous time framework for BN reasoning opens up a

substantial amount of potential future work. There are many open questions that

can be fruitfully explored to expand upon the work of this thesis.

Over the years the basic BN representation has been augmented with hierarchical

structure, objects and relations, actions and rewards. These extensions could and

should eventually be incorporated into CTBNs. Continuous state CTBNs and hybrid

continuous state / discrete state CTBNs, pose an interesting potentially useful line

of future work. Many other inference algorithms can be explored, including sampling

based methods.

There is more work to be done investigating the ways that phase-type distributions

can be used to model complex durations. That includes more work examining the

impact of phase distributions on learning and inference.

In the current CTBN model, every event is simply the transition of a state variable

from one value to another. But in many systems of interest, there would seem to be

a useful, somewhat broader, notion of events. On the one hand, these may be one-

time or “single-shot” events that have far reaching consequences on the behavior of

a system. We could conceivably model these as binary variables but they would have

many children and that does not seem to capture the intent of such variables. This

might include the more direct incorporation of survival analysis, counting processes,

or even queueing theory models with the CTBN framework.

Another approach might be to allow the CTBN to be a factored inhomogeneous

Markov process instead. Here the local intensity might be expressed as functions of

time instead of constant. This adds significant complexity to the model and much

work would likely be needed to make design choices — e.g., limiting the set of available

functions over time — in order to construct a usable model. However, such work would

open the door to periodic CTBNs as well. Periodicity would be useful in capturing

recurring events that have significant impact on timing of events, such as rush hour

traffic.

Another useful direction would be working to develop a better framework for
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understanding the relationships between different models of temporal reasoning and

allowing for clearer evaluation metrics to assess the circumstances under which differ-

ent types of models are best used. As we discussed in Chapter 6, this is particularly

difficult when attempting to compare the accuracy of inference or quality of a learned

model between a continuous time and discrete time methodology.

A clearer theory of evaluation might allow us to develop a single framework which

would allow the use of continuous time nodes, discrete time nodes (of varying gran-

ularities), periodic nodes, one time event nodes, and static nodes — any of which

with discrete or continuous state. Such a framework would be even more powerful if

supported by learning algorithms capable of selecting the appropriate type for each

node.

Ultimately, such a framework might allow us to get meaningful answers to ques-

tions about temporal processes directly from data without the need to choose a spe-

cific flavor of model. That would, in turn, put these tools into the hands of far more

people.
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