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Abstract

Research in motion planning has been striving to de-
velop faster and faster planning algorithms in order to
be able to address a wider range of applications. In
this paper a novel real-time motion planning frame-
work, called decomposition-based motion planning, is
proposed. It is particularly well suited for planning
problems that arise in service and field robotics. It
decomposes the original planning problem into sim-
pler subproblems, whose successive solution results in
a large reduction of the overall complexity. A partic-
ular implementation of decomposition-based planning
is proposed. Ezxperiments with an eleven degree-of-
freedom mobile manipulator are presented.

1 Introduction

Recent advances in the area of robot motion planning
have resulted in the successful application of these
techniques to diverse domains, such as assembly plan-
ning, virtual prototyping, drug design, and computer
animation. Much of the progress can be attributed to
the introduction of probabilistic roadmap techniques
[8] and their various extentions [1, 2, 6, 7, 11, 13].

Despite these advances, however, some areas of ap-
plication have still remained out of reach for auto-
mated planning algorithms. Applications requiring
robots with many degrees of freedom to operate in
highly dynamic and unpredictably changing environ-
ments fall into that category. To operate robustly and
safely in dynamic environments the ability to modify
the planned motion in real time is necessary. The
planning techniques for high-dimensional configura-
tion spaces described in the literature, however, do
not generate plans in real time.

In this paper a new planning paradigm is pre-
sented addressing these issues by decomposing the
planning problem and applying appropriate planning
algorithms to the respective subproblems. This results
in a real-time planning algorithm in high-dimensional

configuration spaces [3]. The planning paradigm is
well suited for planning problems of average difficulty,
in which a certain amount of clearance to obstacles
along a solution path can be assumed. Such plan-
ning problems occur frequently in the areas of field
and service robotics. The proposed algorithm differs
significanlty from another approach to real-time path
planning found in the literature [14].

2 Decomposition-based Motion
Planning

Decomposition-based planning is a motion planning
framework addressing motion planning problems of
average complexity, as can be encountered in field and
service robotics. In those application areas a minimum
clearance to obstacles can be assumed.

2.1 Motivation

Most of the motion planning approaches represent
the connectivity of the free space in high-dimensional
configuration spaces. The underlying assumption of
decomposition-based motion planning is that connec-
tivity information can be computed and represented
more easily in a low-dimensional space, while the
motion of the robot must be generated in a high-
dimensional space, namely the configuration space as-
sociated with the robot. This naturally leads to a de-
composition of the overall planning task into a global
and a local problem. The global problem is to cap-
ture the connectivity of the free space and the local
problem is to find a motion for the robot, given that
connectivity information. The solution to the local
problem must be represented in the high-dimensional
configuration space of the robot, as it must represent
a valid path.

Underlying any decomposition in this planning
paradigm is the realization that for most planning
problems the dimensionality of the solution space is



larger than the dimensionality of the problem space.
The planning problem is defined by constraints in the
workspace W of dimension d; < 3; the solution on the
other hand is represented in the configuration space
C of much higher dimension d» > 3. The additional
dimensions arise due to the kinematic constraints of
the robot. The high-dimensional solution in C is con-
nected to the low-dimensional problem space W via
the workspace volume V' swept by the robot along
its trajectory defined in C. In other words, a path
or trajectory in a high-dimensional space can be rep-
resented as volume in the low-dimensional workspace.
Decomposition-based planning uses this as the link be-
tween the two spaces to divide the planning task.

2.2 Framework

Consider a planning problem P for a robot R in a
configuration space C of dimension d, with an initial
configuration q;n;; and a final configuration qgqq;. As-
sume there exists a path 7 from qinit t0 qgoa entirely
in the free space F C C. Then let V, denote the
workspace volume swept by the robot R along the
path 7. For now we consider the workspace W to
be the Euclidean space R®. Furthermore, let H(7) de-
note the set of all paths homotopic to the path 7. The
workspace volume Vi, is then defined as

Vi) = U Voo
o€H(T)

representing the combined workspace volume swept
along all paths homotopic to 7.

Let us assume that there are n homotopically dis-
tinct solution paths 7;,1 < ¢ < n to the planning
problem P. The set of all solution paths S(P) to P is
then given by

S(py= |J H).

1<i<n

For any given solution path 7 the relation V. C
Vi) € Vs(p) must hold.

We define V° = V, @ b(§), where @ denotes the
Minkowski sum and b(d§) denotes a ball of radius &
centered around the origin, to represent the volume
swept by the robot along the path 7 grown by 4. The
planning problem P is said to be §-hard if there ex-
ists a path 7 € H(r;) such that V° C Vi(r)- This
means that at every point along the path 7 the robot
has at minimum a clearance of ¢ from the closest ob-
stacle. The decomposition-based planning approach
presented here addresses planning problems that are
d-hard.

We want to decompose the planning problem P into
two subproblems, P; and P,. The planning problem
P, can be defined as determining a workspace volume
T, called tunnel, such that V, C T for at least one
solution path 7. Since 7 and therefore V, are not
known, however, a simplified criterion has to be used
to ensure the tunnel 7" is computed in a manner that
Vr CT. Such a criterion is called complete if for every
solution path 7 € H(r;) C S(P) the relation V., C T
holds. Note that T might also represent paths o that
are not solution paths, o ¢ S(P). This means that
a connected component in 7" might actually not be
connected in the free configuration space F C C.

Alternatively, an incomplete criterion can be used,
meaning that there are solution paths 7 such that
Vr € T'. Such a criterion can be computed much more
efficiently, but introduces incompleteness. In choosing
an incomplete criterion the tradeoff between complete-
ness and efficiency needs to be considered carefully.
In the remainder of this paper we will be concerned
with methods that find a solution path 7 € H(r;) if
V2 C Vi), for a given value of 6. These methods are
called d-complete. There are many such methods and
the optimal choice depends on the problem at hand.
Section 3 introduces one such method, addressing the
planning problem for mobile manipulators.

Once we have obtained a workspace volume T', we
define the second planning problem P, to consist of
finding a path 7 € S(P) such that V, C T. Again,
various planning methods can be employed to accom-
plish this task; a particular one is presented in Section
3 in the context of motion planning for mobile manip-
ulators.

So far the workspace W was assumed to be the
Euclidean space R2. It is worth mentioning that the
framework can directly be applied to R*, R%, and R? x
t, where t denotes time.

2.3 Discussion

Decomposition-based planning is motivated by the
fact that solution paths for most planning problems
encountered in service and field robotics, and even
many problems in manufacturing, have a relatively
large clearance to obstacles along almost the entire
path. This lead to the definition of é-hardness. The
novel planning paradigm presented here attempts to
solve such problem in real-time by trading complete-
ness, as justified by the notion of §-hardness, for effi-
ciency.

The tradeoff of completeness for efficiency is a result
of two assumptions made during the decomposition of
the original planning problem. Let 7 € H(7;) repre-



sents a solution path to the original planning prob-
lem. The approximation of Vp(,,) by T relies on the
assumption that there exists a path 7 € H(7;) C S(P)
such that V. C T C Vg(p). For most practical algo-
rithms the volume of T is going to be a proper subset
of Vg(py, i.e. T C Vg(p)- This approximation is ad-
dressed by the notion of d-completeness.

Some planning approaches presented in the
literature exhibit ideas that are reminiscent of
decomposition-based planning. A particular instance
of decomposition-based planning was applied to the
problem of planning for a robot moving in the plane
[5]. The idea of decomposing the planning task into
capturing a volume in space and imposing a naviga-
tion function onto that space can also be found in an
approach to planning feedback motion strategies [16].
Here, the volume of free space is computed in config-
uration space, resulting in larger computational com-
plexity. Other planning approaches use projection to
reduce the complexity of the planning problem; these
approaches assume that a solution to P; of the de-
composition automatically is a solution to P [10, 15].
Finally, the idea of dimensionality reduction of the
planning problem can be traced back to the silhouette
method [4], where the planning problem is recursively
projected into lower dimension. This particular ap-
proach, however, differs significantly in the way the
subproblems are treated.

3 A Decomposition-based Mo-
tion Planning Method

This section presents a decomposition-based planning
algorithm [3] . The goal is the development of a real-
time planning algorithm for mobile manipulators with
many degrees of freedom. As described in Section 2,
the planning problem is decomposed into two subprob-
lems. The first subproblem P; of identifying a tunnel
T will be addressed by a wavefront expansion algo-
rithm for free space computation. The second sub-
problem P» of determining a solution path in the con-
figuration space will be solved using potential field
techniques and a navigation function, resulting from
the solution of the first subproblem P;.

3.1 Solving P;: Wavefront Expansion

The subproblem P; consists of determining the
workspace volume T, called tunnel, such that the vol-
ume V. swept by the robot along a solution path 7
is contained within T', i.e. V; C T C Vp(;). In this

particular instantiation of decomposition-based plan-
ning, the tunnel 7' will be determined by a wavefront
expansion algorithm [12] described in this section.

The algorithm proceeds as follows: We compute
the radius r of sphere B, centered at the start con-
figuration s of the wavefront expansion. This sphere
is inserted into a priority queue, prioritized by the
minimum distance between the sphere and the goal
location g. With its center p and radius r we store the
parent B, of the sphere, which in this case is the empty
set (). If the goal location is designated by g, the pri-
ority value according to which the sphere is inserted
into the priority queue is given by ||p — g|| — r. This
represents a best-first planning approach: the sphere
nearest to the goal configuration has the highest pri-
ority.

The algorithm now iterates until either a termina-
tion criterion is met, indicating that a path has been
found, or the priority queue is empty. Each iteration
begins by removing the sphere B with the highest pri-
ority from the queue and inserting into the tree V as
a child of its parent. The tree represents the currently
explored free space. The surface of B is randomly sam-
pled; if the sample is not contained in other spheres
in the previously explored free space, the spheres cen-
tered at those samples are computed. Those spheres
are inserted into the priority queue and the process is
repeated.

The computational complexity of the wavefront ex-
pansion algorithm described above can empirically be
determined to be roughly proportional to the com-
plexity of the environment. This is explained by the
adaptive nature of the algorithm. Large areas of free
space are rapidly explored by large spheres. Narrow
areas in the workspace require an increasing number
of spheres.

The minimum size of the sphere contributing to T’
and the amount of overlap between adjacent spheres
needs to be chosen appropriately for a given é-hard
problem. We assume the existence of a solution path 7
such that Vf C Vs(py- This means in order to capture
V: in T we cannot underestimate Vg(py by more than
§. The particular choice of § and the parameters that
influence it depend on the planning problem.

3.2 Solving P,: Potential Fields

Using the tunnel T' computed by solving P;, we now
determine a path 7 for the robot. This will be ac-
complished by imposing a local-minima free potential
function on the free space representation determined
by the wavefront expansion algorithm. This potential



function will result in forces on the robot, causing it
to move to its goal location, while avoiding obstacles.

For a robot to react to obstacles in the environment,
proximity information needs to be translated into joint
motion. Such proximity information can be easily ob-
tained by distance computation in the workspace. As
a result, a virtual force F can be computed, indicat-
ing a direction and a magnitude of force acting on the
robot caused by a nearby obstacle. This force F can
then be translated into joint torque I' using the Jaco-
bian J at configuration q of the robot: T' = J(q)F.
This effectively maps the low-dimensional force vector
F from the workspace into the high-dimensional joint
space of the manipulator. Using this mapping reactive
obstacle avoidance can be achieved.

During the execution of a task by a robot, it is de-
sirable to link reactive obstacle avoidance with task
execution. This is particularly relevant in situations
where the task to be accomplished requires fewer de-
grees of freedom than the robot has. The framework
for combining task behavior and obstacle avoidance
behavior relies on the general structure for redundant
robot control. In this structure the torques I" that are
applied to the robot are computed as follows:

T =J"(@F + [I- 7" @7 @] To (1)

[9], where J is the Jacobian of the manipulator, J
designates its dynamically consistent pseudo inverse,
F describes the forces defined by the task, and T'g
denotes the torques to implement obstacle avoidance.
Equation 1 provides a decomposition of of the joint
torques into those caused by forces at the end effector
(JTF) or operational point and those that only affect

internal motion of the robot ([I -J T(q)jT(q)] 1"0).

This decomposition can be exploited to use task-
independent degrees of freedom of the robot for ob-
stacle avoidance in the nullspace. Simple obstacle
avoidance without the incorporation of task behavior
can be achieved by mapping attractive and repulsive
forces to joint torques using equation T' = JT(q)F.
Here, the forces F are the combination of forces to
accomplish the task Fi,s and forces F,p5 to avoid
obstacles: F = Figer + Fopst - Since there is no de-
coupling, obstacle avoidance behavior can affect task
execution behavior.

A distance-based, local-minima free potential func-
tion can be imposed on the free space representation
computed as described in Section 3.1 [3]. The gradi-
ent of this navigation function can be used to derive
Fias1, when the task consists of the end-effector of the
robot reaching a certain position in the workspace:

Fios = —VN, where N is the adaptive numerical
navigation imposed on the tunnel 7', which is a subset
of the tree V. The gradient of A/ defines the task to be
executed by the robot. Combining the forces result-
ing from N with repulsive forces F .45 derived from
proximity information to obstacles, allows the real-
time computation of a solution to subproblem P;. To
compute the solution to P, efficiently, the solution to
subproblem P; as represented by T after augmenta-
tion with the navigation function N is exploited.

In certain situations following the gradient of A
might not lead to a solution for the planning problem
P,. This problem arises for structural local minima
of the robot and is a result of the conscious tradeoff
of completeness for efficiency. Methods allowing to
minimize the impact of structural minima need to be
developed.

Note that this particular implementation of
decomposition-based planning not only determines a
solution path to the given planning problem, but im-
plicitly defines a trajectory in real-time. This is a
significant advantage over other planning approaches,
where subsequent to the path planning process a time-
parameterization has to be imposed onto the resulting
solution path.

4 Experimental Results

The real-time motion planning algorithm described
above was implemented on a 175MHz SGI 02. It
was applied to an eleven degree-of-freedom manipu-
lator, consisting of a free-floating base with four de-
grees of freedom and a Mitsubishi PA-10 manipulator
arm with seven degrees of freedom. The experimental
setup can be seen in Figure 1.

Depending on the complexity of the environment
and the size of its local minima, the computation of
the wavefront expansion algorithm (problem P;) was
performed at rates between 3 and 100 Hz. The compu-
tation of the tunnel T" and the numerical navigation
function can be performed in parallel with the con-
trol loop for reactive motion generation of the robot
(problem P»). Each time a new solution to P; be-
comes available, the control loop for P, uses the new
navigation function to determine the motion of the
robot.

Figure 1 shows a series of snapshots from a pre-
liminary implementation of the algorithms described
above. Figure 1 a) shows the environment, the robot
in its initial position, and the initial result of the
adaptive wavefront expansion algorithm, shown as a
branching tree-like graph in space, with its root at the



Figure 1: Real-time planning in a dynamic environment.




goal configuration for the end-effector. In part b) of
the figure an obstacle is blocking the original path for
the end-effector and a new free space representation
and navigation function are computed, as can be seen
in ¢). Figures 1 d) and f) show the result of subse-
quent real-time computations of the navigation func-
tion, following invalidation by an unforeseen obstacle.
Note that repulsive forces originating from obstacles
in the environment cause the robot to avoid collisions
in a reactive manner, as can be seen in Figures 1 d)
and e), where the robot passes a narrow region of free
space. All degrees of freedom of the robot are used to
avoid the obstacles.

5 Conclusion

To achieve real-time motion planning for robots with
many degrees of freedom, a motion planning paradigm
based on problem decomposition was proposed. The
paradigm addresses planning problems in which a min-
imum clearance to obstacles can be guaranteed along
the solution path. The overall planning problem is
decomposed into two planning subtasks: capturing
the connectivity of the free space in a low-dimensional
space and planning for the degrees of freedom of the
robot in its high-dimensional configuration space. The
solution to the lower-dimensional problem is computed
in such a manner that it can be used as a guide to
efficiently solve the original planning problem. This
allows decomposition-based planning to achieve real-
time performance for robots with many degrees of free-
dom.

This paper also presented a particular implementa-
tion of the decomposition-based planning framework,
using an adaptive wavefront expansion algorithm to
efficiently capture a volume of free space, which is in
turn used to guide reactive motion control to find a
trajectory for the robot, solving the original planning
problem. Preliminary experimental results with an
eleven degree-of-freedom robot were presented, verify-
ing the real-time performance of the planner.
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