
Decomposition-based Motion Planning:

Towards Real-time Planning for Robots

with Many Degrees of Freedom

Oliver Brock Lydia E. Kavraki

Department of Computer Science

Rice University, Houston, Texas 77005

email: {oli, kavraki}@cs.rice.edu

Abstract

Research in motion planning has been striving to develop faster and faster

planning algorithms in order to be able to address a wider range of applica-

tions. In this paper a novel real-time motion planning framework, called

decomposition-based motion planning, is proposed. It is particularly well

suited for planning problems that arise in service and field robotics. It decom-

poses the original planning problem into simpler subproblems, whose succes-

sive solution results in a large reduction of the overall complexity. A partic-

ular implementation of decomposition-based planning is proposed. It is based

on an adaptive wavefront expansion algorithm and reactive motion execu-

tion. Using this implementation of decomposition-based planning, real-time

motion planning performance for an eleven degree-of-freedom mobile manip-

ulator can be achieved. Some fundamental and preliminary analysis of the

decomposition-based motion planning approach is provided.

1



1 Introduction

Recent advances in the area of robot motion planning have resulted in the

successful application of these techniques to diverse domains, such as as-

sembly planning, virtual prototyping, drug design, and computer animation.

Despite these advances, however, some areas of application have still re-

mained out of reach for automated planning algorithms. Applications re-

quiring robots with many degrees of freedom to operate in highly dynamic

and unpredictably changing environments fall into that category. In these

domains a change in the environment can invalidate the previously planned

path. To operate robustly and safely in dynamic environments the ability

to modify the planned motion in real-time is necessary. The planning tech-

niques for high-dimensional configuration spaces described in the literature,

however, do not generate plans in real-time. In this paper a new planning

paradigm is presented addressing these issues by decomposing the planning

problem and applying appropriate planning algorithms to the respective sub-

problems. This results in a real-time planning algorithm in high-dimensional

configuration spaces. The planning paradigm is well suited for planning

problems of average difficulty, in which a certain amount of clearance to ob-

stacles along a solution path can be assumed. Such planning problems occur

frequently in the areas of field and service robotics.

Path planning techniques generally proceed in two phases: in the first

phase a representation of the connectivity of the free space is computed; this

representation is then used in the second phase to determine a solution to

the given path planning problem. Table 1 presents an overview of how var-

ious planning methods address these two phases. It is noteworthy that all

approaches reduce the second phase to a computationally simple problem:

either gradient descent or graph search. This implies that most of the com-

plexity of the path planning problem is addressed in the first phase. Indeed,

the potential field approach [15] uses a rather simple and incomplete approach

to representing the connectivity and therefore extends well to higher dimen-

sions. The other methods – navigation functions, cell decomposition, and

roadmaps – are based on a more sophisticated description of the free space;

this is reflected in a computational complexity exponential in the dimensions

2



of the search space [9, 20]. As a consequence, the real-time results achieved

with these techniques in low-dimensional configurations spaces [2, 6, 10, 24]

do not extend to higher-dimensional planning problems.

Planning Method Connectivity Computation Path Generation

Potential Field Combine attractive and Gradient descent

[15] repulsive potential functions

Navigation Function Compute local-minima free Gradient descent

[2, 17] potential function

Cell Decomposition Determine connected cells Graph search

[20] representing the free space

Roadmap Determine connected set of Graph search

[14, 20] low-dimensional curves

representing the free space

Table 1: Overview of path planning techniques

Much of the recent progress in addressing the problem of real-time per-

formance for path planning in high-dimensional spaces can be attributed to

the introduction of probabilistic roadmap techniques [14]. These techniques

capture the free space connectivity by randomly sampling the configuration

space to find configurations of the robot which are not in collision with the

environment. These configurations can be connected to form a probabilistic

roadmap. Such a roadmap captures the connectivity of the free space implic-

itly, significantly reducing the computational complexity of its computation

compared to explicit methods [20]. By representing the free space implicitly,

however, the notion of completeness is lost and can only be replaced with

probabilistic completeness [14]. The gain in efficiency observed with proba-

bilistic planners is hence due to a conscious tradeoff between completeness

and efficiency.

In what follows we will survey recent accomplishments towards achieving

near real-time performance using probabilistic methods. These accomplish-

ments can be divided into three categories:

1. Methods that attempt to reduce the amount of configuration free space

that has to be explored, we refer to those as demand-driven;

3



2. Algorithms that address the narrow passage problem using specialized

sampling techniques;

3. Precomputation of possible paths with real-time elimination of invalid

ones.

We will elaborate on all of these briefly and then contrast with our approach.

To further reduce the complexity of free space computation in the proba-

bilistic planning paradigm, demand-driven approaches have been developed

[3, 19, 22, 29]. Rather than computing the free space connectivity for the

entire configuration space before answering a planning query, these methods

use heuristics to compute the connectivity in regions of interest, given a spe-

cific query. Once the query can be answered, the computation of the free

space representation can be aborted.

Randomized techniques have difficulties in finding valid paths in narrow

areas of the configuration space [14], because the probability of sampling

configurations in free space is low in those areas. Various extensions to prob-

abilistic path planners exploit information derived from workspace geometry

to select samples in configuration space to address this problem. Using these

extensions, sampling can be performed more efficiently in areas of high or

low complexity. In areas of high complexity knowledge about the workspace

obstacles can be used to guide the sampling process [1, 12, 13, 25]. The

computation of such knowledge, however, tends to be costly. In areas of low

complexity the amount of computation can be reduced by discarding redun-

dant samples [21, 28]. Latter approaches require a mapping of workspace

information into the configuration space. In high-dimensional configuration

spaces such a mapping is either computationally costly or overly conservative

[4].

To address planning in dynamic environments an algorithm has been de-

veloped that computes a roadmap of a large number of possible paths in

configuration space, ignoring all obstacles. The method is influenced by the

concepts underlying probabilistic roadmaps. To generate a path, nodes and

edges in the roadmap are deleted if they are in collision with the environ-

ment [23]. This corresponds to precomputing all possible trajectories in a

space without obstacles and eliminating those that are not feasible, given the

4



current environment. This is the first path planning method to address the

problem of real-time path planning.

The planning framework presented in the remainder of this paper takes

a fundamentally different approach from the planning methods described

above. Decomposition-based planning addresses planning problems of av-

erage difficulty with robots of many degrees of freedom. Average difficulty

refers to planning problems for which the robot moving along a solution

path can be assumed to have a certain clearance to obstacles. Such planning

problems occur frequently in field and service robotics. Decomposition-based

planning is not well suited for more difficult problems like the alpha puzzle

[1], where a solution path leads through very narrow passages in configuration

space, or even motion in contact with the environment. Decomposition-based

planning decomposes the planning task into subproblems of non-trivial com-

plexity, as opposed to one difficult and one trivial problem, as discussed in

Section 1 and laid out in Table 1. Real-time motion planning for robots

with many degrees of freedom can be achieved by using the solution of one

sub-problem as a seed to solving the overall planning problem. The planning

process accomplishes a tight integration of planning and control algorithms,

similarly to previous work in high-dimensional [7, 28] and low-dimensional

configuration spaces [6].

2 Decomposition-based Motion Planning

This section introduces decomposition-based planning. As mentioned before,

decomposition-based planning is a motion planning framework addressing

motion planning problems of average complexity, like those encountered in

field and service robotics. In the application areas certain assumptions about

the amount of the free space around the robot at a given configuration can

be made. Decomposition-based planning is best suited for planning problems

in which a minimum clearance to obstacles can be assumed.

Rather than presenting a particular implementation of decomposition-

based planning, this section introduces a framework. Each part of the frame-

work can be performed with a wide range of methods and algorithms that

depend on the particular planning problem at hand. In what follows we dis-

5



cuss the underlying principles of the framework. In Section 3 the framework

is then applied to a concrete planning problem and the particular implemen-

tation choices are laid out in detail.

2.1 Motivation

The discussion of recent path planning methods aiming at real-time perfor-

mance in Section 1 reveals the focus on finding more efficient ways of com-

puting free space connectivity. Connectivity is represented in such a manner

that determining a path becomes a simple graph search problem. This im-

plies that connectivity is computed and represented in the same space as the

motion of the robot – in the configuration space.

The underlying assumption of decomposition-based motion planning is

that connectivity information about the free space can be computed and

represented more easily in a low-dimensional space, while the motion of the

robot must be generated in a high-dimensional space, namely the configura-

tion space associated with the robot. This naturally leads to a decomposition

of the overall planning task into a global and a local problem. The global

problem is to capture as much of the connectivity of the free space as is

needed to solve the original planning problem; the local problem is to find a

motion for the robot, given that connectivity information. The solution to

the local problem must be represented in the high-dimensional configuration

space of the robot, as it must represent a valid motion.

As was noted in Section 1, probabilistic methods have successfully traded

completeness for efficiency, by replacing the notion of completeness with

probabilistic completeness. As a result, the narrow passage problem arose

[11, 13], referring to the difficulty of probabilistic methods to find solution

paths through narrow passages of the configuration space. Decomposition-

based planning performs a tradeoff similar to probabilistic methods, giving

up completeness for efficiency by decomposing the planning problem into

two subproblems. As a result, this method exhibits a problem similar to the

narrow passage problem, discussed in more detail in Sections 2.2 and 2.3.

Given a planning problem P of dimension d, decomposition-based plan-

ning decomposes P into planning problems P1 and P2 of dimensionality

6



0 < d1 < d2 = d, such that the solution to P1 can be used as an aid for

efficiently finding a solution to P2. The goal of the decomposition of P is to

find subproblems for which a solution can be obtained very efficiently. Note

that P1 needs to capture as much of the relevant global connectivity of the

free space as possible, whereas the solution to P2 has to represent a valid

solution to the original planning problem P .

Underlying any decomposition in this planning paradigm is the realiza-

tion that the dimensionality of the solution space is larger than the dimen-

sionality of the problem space. The planning problem is defined by con-

straints in the workspace W of dimension d1 ≤ 3; the solution on the other

hand is represented in the configuration space C of much higher dimension

d2 > 3. The additional dimensions arise due to the kinematic constraints

of the robot. The high-dimensional solution in C is connected to the low-

dimensional problem spaceW via the workspace volume V swept by the robot

along its trajectory defined in C. In other words, a path or trajectory in a

high-dimensional space can be represented as volume in the low-dimensional

workspace. Decomposition-based planning uses this connection between the

two spaces to divide the planning task, as will be explained in detail below.

2.2 Framework

Consider a planning problem P for a robot R in a configuration space C

of dimension d, with an initial configuration qinit and a final configuration

qgoal . Assume there exists a path τ from qinit to qgoal entirely in the free space

F ⊆ C. Then let Vτ denote the workspace volume swept by the robot R along

the path τ . For now we consider the workspace W to be the Euclidean space

R
3. Furthermore, let H(τ) denote the set of all paths homotopic to the path

τ . The workspace volume VH(τ) is then defined as

VH(τ) =
⋃

σ∈H(τ)

Vσ,

representing the combined workspace volume swept along all paths homo-

topic to τ .

Let us assume that there are n homotopically distinct solution paths

τi, 1 ≤ i ≤ n to the planning problem P . The set of all solution paths S(P )

7



to P is then given by

S(P ) =
⋃

1≤i≤n

H(τi).

For any given solution path τ the relation Vτ ⊆ VH(τ) ⊆ VS(P ) must hold.

We define V δτ = Vτ ⊕ b(δ), where ⊕ denotes the Minkowski sum and b(δ)

denotes a ball of radius δ, to represent the volume swept by the robot along

the path τ grown by δ. The planning problem P is said to be δ-hard if there

exists a path τ ∈ H(τi) such that V δτ ⊆ VH(τi) ⊆ S(P ). This means that at

every point along the path τ the robot has at minimum a clearance of δ from

the closest obstacle. The decomposition-based planning approach presented

here addresses planning problems that are δ-hard.

We want to decompose the planning problem P into two subproblems, P1
and P2. The planning problem P1 can be defined as determining a workspace

volume T , called tunnel, such that Vτ ⊆ T for at least one solution path τ .

Since τ and therefore Vτ are not known, however, a simplified criterion has to

be used to ensure the tunnel T is computed in a manner that Vτ ⊆ T . Such

a criterion is called complete if for every solution path τ ∈ H(τi) ⊆ S(P ) the

relation Vτ ⊆ T holds. Note that T might also represent paths σ that are

not solution paths, σ 6∈ S(P ). This means that a connected component in T

might actually not be connected in the free configuration space F ⊂ C. In

other words, we give up the notion of soundness of the criterion with respect

to the the original planning task. It is easy to regain that soundness by

making conservative assumptions about P1. Whether such a complete crite-

rion can be computed efficiently depends on the planning problem at hand.

Alternatively, an incomplete criterion can be used, meaning that there are

solution paths τ such that Vτ 6⊆ T . Such a criterion can be computed much

more efficiently, but introduces incompleteness. In choosing an incomplete

criterion the tradeoff between completeness and efficiency needs to be con-

sidered carefully. In the remainder of this paper we will be concerned with

methods that find a solution path τ ∈ H(τi) if V δτ ⊆ VH(τi) ⊆ S(P ), for a

given value of δ. These methods are called δ-complete. There are many such

methods and the optimal choice depends on the problem at hand. Section

3.1 introduces one such method, addressing the planning problem for mobile

manipulators.

8



Once we have obtained a workspace volume T , we define the second

planning problem P2 to consist of finding a path τ ∈ S(P ) such that Vτ ⊆ T .

Again, various planning methods can be employed to accomplish this task; a

particular one is presented in Section 3.2 in the context of motion planning

for mobile manipulators.

b)a)

Figure 1: Two different paths for an L-shaped object in the plane occupying

the same free space.

In finding a path τ , using the workspace volume T as a guide in the search

space, however, a difficulty is encountered. Let τ be the solution path to a

planning problem P , and let H(τ) = S(P ), i.e., there exists only one set of

homotopically equivalent solution paths. Given a volume T , we are trying

to determine a path σ ∈ H(τ). However, a path σ might exist such that

Vσ ⊆ T ⊆ VS(P ) without σ representing a solution to P : σ 6∈ H(τ) = S(P ).

This situation arises due to distinct configuration space paths sweeping an

overlapping volume of workspace. An example of such a situation is shown

in Figure 1. Part a) of that figure shows how an L-shaped object passes a

narrow passage in the workspace along a path τ . The area VH(τ) consists

of the shown free space. Part b) of this figure shows a path σ, which is

not a solution path as it fails to pass the narrow passage. However, for the

initial part of τ and σ the volume swept by their respective homotopic equiv-

alence classes are overlapping. During the search for a solution path given

the workspace volume T , this property makes it impossible to distinguish

between τ and σ until the narrow passage is reached. Depending on the

particular planning problem at hand the method chosen to solve P2 needs to

9



address this difficulty.

So far the workspace W was assumed to be the Euclidean space R3. It is

worth mentioning that the framework can directly be applied to R1,R2, and

R
3 × t, where t denotes the time axis.

In this section the framework for decomposition-based planning was in-

troduced. A planning problem P is divided into subproblems P1 and P2. The

subproblems are connected to each other via the workspace volume swept by

a set of solution paths in the workspace. Specific properties and problems of

P1 and P2 were discussed. Section 3 uses the proposed framework to solve

planning problems in the domain of mobile manipulators.

2.3 Discussion

Decomposition-based planning is motivated by the fact that solution paths

for most planning problems encountered in service and field robotics, and

even many problems in manufacturing, have a relatively large clearance to

obstacles along almost the entire path. This lead to the definition of δ-

hardness. The novel planning paradigm presented here attempts to solve

such problems in real-time by trading completeness, as understood by the

notion of δ-hardness, for efficiency.

The tradeoff of completeness for efficiency is a result of two assump-

tions made during the decomposition of the original planning problem. Let

τ ∈ H(τi) represent a solution path to the original planning problem. The

approximation of VH(τi) by T relies on the assumption that there exists a path

τ ∈ H(τi) ⊆ S(P ) such that Vτ ⊆ T ⊆ VS(P ). For most practical algorithms

the volume of T is going to be a proper subset of VS(P ), i.e. T ⊂ VS(P ). This

approximation is addressed by the notion of δ-completeness.

The more significant loss of completeness is incurred by the fact that a

solution path τ and a non-solution path σ might be indistinguishable ac-

cording to the volume swept along the paths in their homotopic equivalence

classes, VH(τ) and VH(σ). There are classes of robots for which this problem

does not arise, like convex, symmetric robots, for example. If the problem

does arise, it can either by addressed by specific local planning methods or

by assuming a large δ for the δ-hardness of the problem. In either case it

10



needs to be noted that the incompleteness of decomposition-based planning

is a conscious choice in the pursuit of real-time performance for planning

algorithms in high-dimensional configuration spaces.

Some planning approaches presented in the literature exhibit ideas that

are reminiscent of decomposition-based planning. A particular low-dimensional

instance of decomposition-based planning was applied to the problem of plan-

ning for a robot moving in the plane [10]. The idea of decomposing the

planning task into capturing a volume in space and imposing a navigation

function onto that space can also be found in an approach to planning feed-

back motion strategies [28]. Here, the volume of free space is computed

in configuration space, resulting in larger computational complexity. Other

planning approaches use projection to reduce the complexity of the planning

problem; these approaches assume that a solution to P1 of the decomposition

automatically is a solution to P2 [18, 24]. Finally, the idea of dimensional-

ity reduction of the planning problem can be traced back to the silhouette

method [8], where the planning problem is recursively projected into lower

dimension. This particular approach, however, differs significantly in the way

the subproblems are treated.

In the next section we will demonstrate that decomposition-based plan-

ning accomplishes real-time planning in a relatively wide range of realistic

problems for robot with many degrees of freedom.

3 A Decomposition-based Planning Algorithm

This section presents a decomposition-based planning algorithm. The goal is

the development of a real-time planning algorithm for mobile manipulators

with many degrees of freedom. As described in Section 2, the planning

problem is decomposed into two subproblems. The first subproblem P1 of

identifying a tunnel T will be addressed by a wavefront expansion algorithm

for free space computation. The second subproblem P2 of determining a

solution path in the configuration space will be solved using potential field

techniques and a navigation function, resulting from the solution of the first

subproblem P1.

11



3.1 Solving P1: Wavefront Expansion

As outlined in Section 2 the subproblem P1 consists of determining the

workspace volume T , called tunnel, such that the volume Vτ swept by the

robot along a solution path τ is contained within T , i.e. Vτ ⊆ T ⊆ VH(τ).

In this particular instantiation of decomposition-based planning, the tunnel

T will be determined by a wavefront expansion algorithm described in this

section.

Wavefront expansion algorithms proceed by expanding a virtual, omni-

directional wave starting from the goal configuration of the robot. In ex-

panding, the constraints imposed by obstacles are observed. During the

expansion, every cell is labeled with the time value for when it was reached

by the virtual wave. Cells close to the goal will have small time values as-

sociated with them, cells further away will have larger values. The labels of

the individual cells form a discrete, local minima free potential function.

Wavefront expansion algorithms presented in the literature [2, 20] divide

the space into a uniform grid. By choosing a uniform discretization, the

granularity required to accurately sample the most difficult region of the

space is imposed on the entire space. The adaptive wavefront expansion

algorithm presented here operates in the workspace and adjusts the size of

the cells to the local geometry. Each cell is a spherical workspace region of

free space centered around a point p; this region is called bubble [27] and

contains all points q that are closer to p than the closest obstacle. A bubble

is defined as B(p) = { q : ‖p−q‖ < ρ(p)}, where ρ(p) computes the minimum

distance from p to any obstacle.

The goal is to compute an expanding wavefront consisting of bubbles.

The wavefront is maintained in a tree structure with the root being the

bubble around the goal configuration. Immediate children of a node represent

neighboring cells as bubbles of free space. As the wave propagates from the

initial bubble, children are inserted into the tree. The levels of the tree

can intuitively be viewed as instances of the wavefront at different points in

time. This is not exactly accurate, as the cell size and therefore the speed of

expansion will depend upon the geometry of the workspace. The wavefront is

starting from a starting point s in the workspace; its computation terminates

once a goal location g is reached. This procedure has to be slightly adapted to

12



the shape of the robot to guarantee that the initial and the final configuration

of the robot are contained within the volume of free space computed by this

procedure.

The algorithm proceeds as follows: We compute the radius r of bubble

Bs centered at the start configuration s for the wavefront expansion. This

bubble is inserted into a priority queue, prioritized by the minimum distance

between the bubble and the goal location g. With its center p and radius r

we store parent Bp of the bubble, which in this case is the empty set ∅. If

the goal location is designated by g, the priority value according to which

the bubble is inserted into the priority queue is given by ‖p− g‖ − r. This

represents a best-first planning approach: the bubble nearest to the goal

configuration has the highest priority.

The algorithm now iterates until either a termination criterion is met,

indicating that a path has been found, or the priority queue is empty. Each

iteration begins by removing the bubble B with the highest priority from the

queue and inserting into the tree V as a child of its parent, representing the

currently explored free space. The surface of B is randomly sampled; if the

sample is not contained in other bubbles in the previously explored free space,

the bubbles centered at those samples are computed. Those bubbles are

inserted into the priority queue and the process is repeated. This algorithm

is laid out in Figure 2. The parameters of this algorithm, such as the number

n of samples can be varied; the algorithm is not very sensitive to those

parameters.

Figure 3 shows a sequence of four pictures, each consisting of three images,

documenting the incremental computation of the free space representation,

using the algorithm described above. The images represent two different

views of the same scene. The two leftmost images show in white the tree

structure by connecting the centers of a parent and its children by lines. The

rightmost images show the bubbles representing the approximated free space.

If Figure 3 a) the initial configuration of the robot can be seen. The robot

is a free-flying Mitsubishi PA-10 with eleven degrees of freedom. The goal

configuration for the robot is indicated by a single white line and a single

sphere. This configuration is the starting configuration s for the wavefront

algorithm; the goal configuration g is the current position of the end-effector.

13



procedure wavefront expansion(s, g, n)

initialize priority queue Q

initialize tree V

compute B = (s, r, ∅)

insert B into Q with priority ‖s− g‖ − r

while Q not empty and g not reached

pop Q into Bp = (p, r,Bparent )

insert Bp = (p, r,Bparent) into v with parent Bparent
determine n points pi on surface of B by random sampling

discard pi ⊂ Bi ∈ Q

compute Bpi = (pi, r,B)

insert Bpi = into Q with priority ‖pi − g‖ − r

end while

if s and g are connected then

return V

end if

return failure

end procedure

Figure 2: Pseudo-code for the wavefront expansion algorithm.

14



a)

b)

c)

d)

Figure 3: Wave-front expansion to determine a tunnel T .

15



Figure 3 b) shows the computed free space after the first local minimum

has been explored. Due to the adaptive nature of the wavefront expansion,

however, this can be done very efficiently. The next image shows the free

space representation after the local minimum on the lower floor has been

explored. The final image in Figure 3 d) shows the completed free space

representation. It is clearly visible how the adaptive nature of the exploration

results in large bubbles in those parts of the workspace containing large,

continuous regions of free space. The heuristic of expanding the bubble

containing the closest point to the current position to the end-effector first

results in an efficient, demand-driven exploration.

The computational complexity of the wavefront expansion algorithm de-

scribed above can empirically be determined to be roughly proportional to

the complexity of the environment. This is explained by the adaptive nature

of the algorithm. Large areas of free space are rapidly explored by large

bubbles. Narrow areas in the workspace require an increasing number of

bubbles.

The minimum size of the bubble contributing to T and the amount of

overlap between adjacent bubbles needs to be chosen appropriately for a

given δ-hard problem. We assume the existence of a solution path τ such that

V δτ ⊆ VS(P ). This means in order to capture Vτ in T we cannot underestimate

VS(P ) by more than δ. The particular choice of δ and the parameters that

influence it depend on the planning problem.

The wavefront expansion algorithm in most cases computes a workspace

volume much larger than the desired tunnel T . As significant portions of the

free space have to be explored to determine its connectivity, areas not con-

tributing to T are also added to the tree, as described above. The algorithm

used to solve planning problem P2, presented in Section 3.2 will address this

issue.

Other algorithms could be used to represent a free space volume in the

workspace. One natural choice would be a trapezoidal decomposition, which

can be easily obtained from a geometric model of the environment using

standard algorithms from computational geometry. The adaptive wavefront

algorithm presented above was chosen, however, because it integrates nicely

with changing environments perceived via sensors and abstracts from sur-

16



face complexity of objects in the environment. If sensors are used to derive

a model of the environment, its representation is subject to degeneracies,

complicating a standard trapezoidal decomposition, or might not even be

in the form of topological information, but rather in the form of a point

cloud. Furthermore, the adaptive wavefront algorithm allows the demand-

driven exploration of the workspace. The framework of decomposition-based

planning, however, in not restricted to the use of either algorithm.

3.2 Solving P2: Artificial Potential Fields

Using the tunnel T computed by solving P1, we now determine a path τ

for the robot. This will be accomplished by imposing a local-minima free

potential function on the free space representation determined by the wave-

front expansion algorithm. Artificial potential field methods will be applied

to determine a valid path in the configuration space C of the robot.

3.2.1 Navigation Function

Artificial potential fields [15] are an efficient approach to motion generation

in dynamic environments. They suffer from local minima, which may pre-

vent the robot from reaching its desired goal configuration. To address this

problem, the notion of navigation function was introduced [17]. Navigation

functions are local minima-free potential functions. In general, these func-

tions are difficult to compute analytically. By discretizing the space in which

these functions are computed, their computation can performed numerically,

leading to numerical navigation functions, such as the wavefront expansion

algorithm [2, 20].

Section 3.1 introduced an adaptive wavefront expansion algorithm for the

incremental computation of a volume in three-dimensional workspace. The

history of this wavefront expansion is represented as a tree and can be easily

used to impose a local minima free navigation function. Such a navigation

function N consists of a whole family of local minima-free potential functions

N1, . . . ,Nk, one for each path from a leaf node of the tree to its root. The

navigation function for a given path within the tree between a leave node

and the root node, given by a sequence of bubbles Bl, . . . ,Bi, . . . ,B1, can

17



be defined in terms of the distance to the goal. The distance from a center

of a bubble to the goal is measured along the line segments connecting the

centers of consecutive bubbles along the path and is designated by ρ(Bi).

The navigation function Nj for the sequence of bubbles Bl, . . . ,Bi, . . . ,B1 at

point p is then given by:

Nj(p) =















‖p− c1‖ if p ∈ B1

‖p− ci‖+ ρ(Bi) if p ∈ (Bi+1 − Bi)

∞ otherwise

,

where ci designates the center of bubble Bi.

a) b)

GoalGoal

Figure 4: Defining the numerical navigation function.

Figure 4 illustrates the definition of the navigation function, given a tree

of bubbles. In part a) and b) of that figure the gray regions indicate the

set of points for which the navigation function is shown, the dashed lines

indicated the direction of the gradient of the navigation function, and the

arrows show the parent relationship between bubbles. A point contained in

the gray region of Figure 4 a) will follow the gradient of N until it enters the

shaded area in part b) of that figure. Figure 4 b) shows the potential a point

would be exposed to after entering the gray region. This traversal continues

until the bubble containing the goal location is reached.

Classical numerical navigation [2, 20] functions were computed starting

from the goal. This allowed a navigation function to remain valid for all

points in the space as long as the environment did not change. Since we as-

sume the environment to be dynamic, we recompute the navigation function

18



for each motion command. Therefore, the computation of the navigation

function presented here could equally well start from the current configura-

tion of the robot. This would allow the robot to move before a valid path to

the goal has been computed.

Imposing a navigation function as described above, effectively allows the

selection of a tunnel T from the overall free space representation obtained by

the wavefront expansion algorithm described in Section 3.1. Let Bs and Bg
designate the bubbles connecting the starting and goal configuration of the

wavefront. For the sake of simplicity we will assume that the robot is entirely

contained within those bubbles. Furthermore, let the set Bs,g designate all

bubbles along the path in the tree connecting Bs to Bg. The tunnel T is then

defined as

T =
⋃

Bi∈Bs,g

Bi.

By following the gradient of the navigation function imposed on this tunnel

T as described above, a point robot will be guided through the tunnel T .

To extend this concept to an articulated robot arm, we need to resort to the

notion of control points [15]. The next section will detail how this can be

accomplished in an efficient manner.

3.2.2 Reactive Motion Execution

Reactive motion planning was first introduced in the artificial potential field

approach [15]. This approach has been integrated with motion planning to

result in the elastic strip framework [5, 7]. In this approach, real-time path

modification is achieved by reactively updating a path, previously generated

by a planner. The original path is modified by combining task behavior and

obstacle avoidance, allowing continuous execution of a task, while reactively

avoiding obstacles. Here, we are concerned with the more difficult problem of

determining the path or trajectory, rather than just executing a precomputed

one.

For a robot to react to obstacles in the environment, proximity informa-

tion needs to be translated into joint motion. Such proximity information can

be easily obtained by distance computation in the workspace. As a result,

a virtual force F can be computed, indicating a direction and a magnitude

19



of force acting on the robot caused by a nearby obstacle. This force F can

then be translated into joint torque Γ using the Jacobian J at configuration

q of the robot: Γ = JT (q)F. This effectively maps the low-dimensional

force vector F from the workspace into the high-dimensional joint space of

the manipulator. Using this mapping reactive obstacle avoidance can be

achieved.

During the execution of a task by a robot, it is desirable to link reac-

tive obstacle avoidance with task execution. This is particularly relevant in

situations where the task to be accomplished requires fewer degrees of free-

dom than the robot has. For example, an eleven degree-of-freedom robot

positioning an object in space only requires three degrees of freedom to ac-

complish this task; the remaining degrees of freedom can be used for obstacle

avoidance during execution of the task.

The framework for combining task behavior and obstacle avoidance be-

havior relies on the general structure for redundant robot control. In this

structure the torques Γ that are applied to the robot are computed as fol-

lows:

Γ = JT (q)F +
[

I − JT (q)J
T
(q)
]

Γ0 (1)

[16], where J is the Jacobian of the manipulator, J designates its dynamically

consistent pseudo inverse, F describes the forces defined by the task, and Γ0
denotes the torques to implement obstacle avoidance. Equation 1 provides a

decomposition of of the joint torques into those caused by forces at the end

effector (JTF) or operational point and those that only affect internal motion

of the robot
([

I − JT (q)J
T
(q)
]

Γ0

)

. This decomposition can be exploited to

use task-independent degrees of freedom of the robot for obstacle avoidance

in the nullspace. Simple obstacle avoidance without the incorporation of task

behavior can be achieved by mapping attractive and repulsive forces to joint

torques using equation

Γ = JT (q)F. (2)

Here, the forces F are the combination of forces to accomplish the task Ftask
and forces Fobst to avoid obstacles: F = Ftask + Fobst . Since there is no

decoupling, obstacle avoidance behavior can affect task execution behavior.

In Section 3.2.1 a numerical navigation function was imposed on the tun-

20



nel T of workspace computed using the algorithms described in Sections 3.1

and 3.2.1. We can define the gradient of this navigation function as the

basis for deriving Ftask , when the task is to reach a certain position in the

workspace with the end-effector of the robot:

Ftask = −∇N ,

where N is the adaptive numerical navigation imposed on the tunnel T . The

gradient of N defines the task to be executed by the robot. Combining the

forces resulting from N with repulsive forces Fobst derived from proximity

information to obstacles allows the real-time computation of a solution to

subproblem P2. To compute the solution to P2 efficiently, the solution to

subproblem P1 as represented by T after augmentation with the navigation

function N is exploited.

In certain situations following the gradient of N might not lead to a

solution for the planning problem P2. This problem arises for structural

local minima of the robot, such as the one shown in Figure 1, and is a result

of the conscious tradeoff of completeness for efficiency. Methods allowing to

minimize the impact of structural minima need to be developed.

Note that this particular implementation of decomposition-based plan-

ning not only determines a solution path to the given planning problem, but

implicitly defines a trajectory in real-time. This is a significant advantage

over other planning approaches, where subsequent to the path planning pro-

cess a time-parameterization has to be imposed onto the resulting solution

path.

4 Experimental Results

The real-time motion planning algorithm described above was implemented

on a 175MHz SGI O2. It was applied to an eleven degree-of-freedom ma-

nipulator, consisting of a free-floating base with four degrees of freedom and

a Mitsubishi PA-10 manipulator arm with seven degrees of freedom. The

experimental setup can be seen in Figure 5.

Depending on the complexity of the environment and the size of its lo-

cal minima, the computation of the wavefront expansion algorithm was per-

21



formed at rates between 3 and 100 Hz. The computational complexity of this

procedure is governed by the distance computations necessary to determine

the size of the free space bubbles. These distance computations can be per-

formed efficiently, using hierarchical bounding spheres [26] to represent the

environment. It is interesting to note that the number of bubbles necessary

to cover a rectangular parallelepiped of free space with a given precision is

dependent upon the aspect ratio of the volume [4]. The computation of the

tunnel T and the numerical navigation function can be performed in parallel

with the control loop for reactive motion generation of the robot, resulting

in a very tight integration of planning and control. Each time a new solu-

tion to P1 becomes available, the control loop for P2 uses the new navigation

function to determine the motion of the robot.

Figure 5 shows a series of snapshots from a preliminary implementation

of the algorithms described above. The motion execution depicted required

four planning operations. Figure 5 a) shows the environment, the robot in

its initial position, and the initial result of the adaptive wavefront expansion

algorithm, shown as a branching tree-like graph in space, with its root at

the goal configuration for the end-effector. For these preliminary results

the path was not smoothened. A real-time smoothing operation could be

performed using the elastic strip framework [5]. In part b) of the figure an

obstacle is blocking the original path for the end-effector and a new free space

representation and navigation function are computed, as can be seen in c).

Figures 5 d) and f) show the result of subsequent real-time computations

of the navigation function, following invalidation by an unforeseen obstacle.

Note that repulsive forces originating from obstacles in the environment cause

the robot to avoid collisions in a reactive manner, as can be seen in Figures 5

d) and e), where the robot passes a narrow region of free space. All degrees

of freedom of the robot are used to avoid the obstacles.

Using the decomposition-based planning approach presented in this pa-

per, real-time planning was implemented for an eleven degree-of-freedom

manipulator. Except for the mapping given in equation 2 no part of the com-

putation is dependent upon the degrees of freedom of the robot, but rather

on its geometric properties and the properties of the workspace. Therefore

these results are expected to scale to very high number of degrees of freedom.

22



a)

b)

c)

d)

e)

f)

g)

h)

Figure 5: Real-time planning in a dynamic environment.

23



5 Future Work

This paper presented decomposition-based motion planning as a general

framework for addressing a certain class of planning problems in real time.

The experimental application of this framework to a particular planning task

was also presented. Quite naturally, the introduction of a new framework

leaves a lot of room for future investigation of various aspects associated

with that framework.

Decomposition-based planning can be applied to planning problems dif-

ferent from the one presented here. In the context of a different planning

problem the relevance of choosing the right link between the two subprob-

lems becomes apparent. The work presented in this paper uses a volume

in Euclidean space; other planning problems might require an area in the

plane or a four-dimensional volume in space-time (R3 × t). The algorithms

used to solve the subproblems P1 and P2 would vary depending on the link

between them and the particular planning problem at hand. A “cookbook”

for choosing the linking space between the subproblems P1 and P2 and for

choosing algorithms to solve the subproblems depending the given planning

problem would be very valuable.

A more detailed characterization of planning problems lending themselves

to the application of decomposition-based planning needs to be given. The

notion of δ-hardness was introduced for the subproblem P1. A similar clas-

sification for the problem of overlapping volumes for different homotopic

equivalence classes arising in P2 would be valuable.

The notion of δ-completeness attempts to characterize the tradeoff of

completeness for efficiency in subproblem P1. Similar results for P2 would be

interesting extensions of the theoretical foundation of decomposition-based

planning. Since the loss of completeness is a deliberate choice, a quantifi-

cation of this loss as a function of parameters of the planning problem and

the chosen algorithms could extend the applicability of this framework. A

quantification can then lead to provably more complete algorithms, in par-

ticular for the subproblem P2. Here, algorithms to overcome structural local

minima can be used as a starting point for further investigation.

If a decomposition-based planning approach fails to find a solution path to

24



a given planning problem, other more complete (and less efficient) planning

approaches might still be able to determine a solution. To fully exploit the

advantages of decomposition-based planning, it would be very interesting

to integrate planners following this framework with other planners. The

information gained during the failed planning process of the decomposition-

based planner could be exploited by a probabilistic roadmap planner, for

example.

There are a number of planning tasks requiring contact with the environ-

ment. Most of these tasks involve moving an obstacle, with operations like

picking the object up and putting it down. It is conceivable that a planning

problem can be partitioned into those parts that require contact with the

environment, like picking up an object, and those where the robot moves in

free space. The latter part could be solved by decomposition-based planning,

while the motion in contact could be planned using different techniques. So

rather than applying the decomposition-based paradigm in sequence with

other paradigms, as mentioned in the previous paragraph, they could by

used in conjunction.

Finally, when execution motion in contact with the environment, only one

specific part of the robot makes contact. The decomposition-based planning

paradigm could be extended to allow this part to move outside the tunnel

T . Instead of avoiding collisions by ensuring that the robot is contained

within the tunnel, such an extension can accomplish collision avoidance by

maintaining the constraints imposed by a contact force with the environment

directly using the dynamically decoupled control scheme presented in Sec-

tion 3.2.2. Such an extension would significantly extend the applicability of

decomposition-based motion planning.

6 Conclusion

To achieve real-time motion planning for robots with many degrees of free-

dom, a motion planning paradigm based on problem decomposition was pro-

posed. The paradigm addresses planning problems in which a minimum

clearance to obstacles can be guaranteed along the solution path. The over-

all planning problem is decomposed into two planning subtasks: capturing

25



the connectivity of the free space in a low-dimensional space and planning

for the degrees of freedom of the robot in its high-dimensional configuration

space. The solution to the lower-dimensional problem is computed in such a

manner that it can be used as a guide to efficiently solve the original plan-

ning problem. This allows decomposition-based planning to achieve real-time

performance for robots with many degrees of freedom.

The key to real-time performance is the trading of completeness for ef-

ficiency. Using the solution to the low-dimensional problem to guide the

solution of the original planning problem allows motion generation without

the exhaustive search of a high-dimensional configuration space. In very

tight and complicated workspaces, however, it is possible that no path will

be found using this framework, even if one exists. In such cases a configu-

ration space planner can be used to determine a path through the difficult

section of the workspace. Since the generation of a plan in the proposed

planning method only takes a fraction of a second, such a planner could be

evoked after the proposed planner reports failure.

To characterize the kind of motion planning problem to which decom-

position-based planning can be applied, the notion of δ-hardness was intro-

duced. This can be seen as the theoretical foundation to develop a more

thorough theory of completeness for decomposition-based planning.

This paper also presented a particular implementation of the decompo-

sition-based planning framework, using an adaptive wavefront expansion al-

gorithm to efficiently capture a volume of free space, which is in turn used to

guide reactive motion control to find a trajectory for the robot, solving the

original planning problem. Preliminary experimental results with an eleven

degree-of-freedom robot were presented, verifying the real-time performance

of the planner.

Acknowledgments

The authors would like to thank Attawith Sudsang and Christopher Holleman

for their helpful insights and discussion in preparing this paper. Work on this

paper has been supported in part by NSF IRI-970228, NSF CISE SA1728-

21122N and by a Sloan Fellowship to Lydia Kavraki.

26



References

[1] Nancy Amato, B. Bayazid, L. Dale, C. Jones, and D. Vallejo. OBPRM:

An obstacle-based PRM for 3D workspaces. In Robotics: The Algorith-

mic Perspective. AK Peters, 1998.

[2] Jérôme Barraquand and Jean-Claude Latombe. Robot motion plan-

ning: A distributed representation approach. International Journal of

Robotics Research, 10(6):628–649, 1991.

[3] Robert Bohlin and Lydia E. Kavraki. Path planning using lazy PRM.

In Proceedings of the International Conference on Robotics and Automa-

tion, volume 1, pages 521–528, San Francisco, USA, 2000.

[4] Oliver Brock. Generating Robot Motion: The Integration of Planning

and Execution. PhD thesis, Stanford University, Stanford University,

USA, 2000.

[5] Oliver Brock and Oussama Khatib. Executing motion plans for robots

with many degrees of freedom in dynamic environments. In Proceedings

of the International Conference on Robotics and Automation, volume 1,

pages 1–6, Leuven, Belgium, 1998.

[6] Oliver Brock and Oussama Khatib. High-speed navigation using the

global dynamic window approach. In Proceedings of the International

Conference on Robotics and Automation, volume 1, pages 341–346, De-

troit, USA, 1999.

[7] Oliver Brock and Oussama Khatib. Real-time replanning in high-

dimensional configuration spaces using sets of homotopic paths. In Pro-

ceedings of the International Conference on Robotics and Automation,

volume 1, pages 550–555, San Francisco, USA, 2000.

[8] John F. Canny. The Complexity of Robot Motion Planning. MIT Press,

1988.

27



[9] John F. Canny and J. Reif. New lower bound techniques for robot

motion planning problems. In Proceedings of the Symposium on Foun-

dations of Computer Science, pages 49–60, 1987.

[10] Wonyun Choi and Jean-Claude Latombe. A reactive architecture for

planning and executing robot motions with incomplete knowledge. In

Proceedings of the International Conference on Intelligent Robots and

Systems, volume 1, pages 24–29, 1991.

[11] Leonidas J. Guibas, Christopher Holleman, and Lydia E. Kavraki. A

probabilistic roadmap planner for flexible objects with a workspace

medial-axis-based sampling approach. In Proceedings of the Interna-

tional Conference on Intelligent Robots and Systems, 1999.

[12] Christopher Holleman and Lydia E. Kavraki. A framework for using

the workspace medial axis in PRM planners. In Proceedings of the In-

ternational Conference on Robotics and Automation, volume 2, pages

1408–1413, San Francisco, USA, 2000.

[13] David Hsu, Lydia E. Kavraki, Jean-Claude Latombe, Rajeev Motwani,

and Stephen Sorkin. On finding narrow passages with probabilistic

roadmap planners. In Proceedings of the Workshop on the Algorithmic

Foundations of Robotics, pages 141–154. A K Peters, 1998.

[14] Lydia E. Kavraki, Peter Švestka, Jean-Claude Latombe, and Mark H.

Overmars. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Transactions on Robotics and Automation,

12(4):566–580, 1996.

[15] Oussama Khatib. Real-time obstacle avoidance for manipulators and

mobile robots. International Journal of Robotics Research, 5(1):90–98,

1986.

[16] Oussama Khatib. A unified approach to motion and force control of

robot manipulators: The operational space formulation. International

Journal of Robotics and Automation, 3(1):43–53, 1987.

28



[17] D. E. Koditschek. Exact robot navigation by means of potential func-

tions: Some topological considerations. In Proceedings of the Interna-

tional Conference on Robotics and Automation, pages 1–6, 1987.

[18] James J. Kuffner. Goal-directed navigation for animated characters us-

ing real-time path planning and control. In Proceedings of Captech’98,

1998.

[19] James J. Kuffner and Steven M. LaValle. RRT-connect: An efficient ap-

proach to single-query path planning. In Proceedings of the International

Conference on Robotics and Automation, volume 2, pages 995–1001, San

Francisco, USA, 2000.

[20] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Pub-

lishers, Boston, 1991.

[21] Jean-Paul Laumond and T. Siméon. Notes on visibility roadmaps and

path planning. In Proceedings of the Workshop on the Algorithmic Foun-

dations of Robotics, 2000.

[22] Steven M. LaValle. Rapidly-exploring random trees: A new tool for

path planning. Technical Report TR 98-11, Iowa State University, 1998.

[23] Peter Leven and Seth Hutchinson. Toward real-time path planning in

changing environments. In Proceedings of the Workshop on the Algo-

rithmic Foundations of Robotics, 2000.

[24] Tsai-Yen Li and Jean-Claude Latombe. On-line manipulation planning

for two robot arms in a dynamic environment. International Journal of

Robotics Research, 16(2):144–167, 1997.

[25] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning

for a rigid body based on hardware accelerated voronoi sampling. In Pro-

ceedings of the Workshop on the Algorithmic Foundations of Robotics,

2000.

[26] Sean Quinlan. Efficient distance computation between non-convex ob-

jects. In Proceedings of the International Conference on Robotics and

Automation, volume 4, pages 3324–3329, 1994.

29



[27] Sean Quinlan and Oussama Khatib. Elastic bands: Connecting path

planning and control. In Proceedings of the International Conference on

Robotics and Automation, volume 2, pages 802–807, 1993.

[28] Libo Yang and Steven M. LaValle. A framework for planning feedback

motion strategies based on a random neighborhood graph. In Proceed-

ings of the International Conference on Robotics and Automation, vol-

ume 1, pages 544–549, San Francisco, USA, 2000.

[29] Yong Yu and Kamal Gupta. An information theoretic approach to view-

point planning for motion planning of eye-in-hand systems. In Proceed-

ings of the International Symposium on Industrial Robotics, 2000.

30


