Research Note on Decision Lists

RON KOHAVI
SCOTT BENSON
Computer Science Dept., Stanford University, Stanford, CA 94305
Editor: David Haussler

RONNYK@CS.STANFORD.EDU
sBENson@cs.STANFORD.EDU

Abstract. In his article "Learning Decision Lists," Rivest proves that (k-DNF $\cup k$-CNF) is a proper subset of k-DL. The proof is based on the following incorrect claim:
\ldots if a function f has a prime implicant of size t, then f has no k-DNF representation if $k<t$.
In this note, we show a counterexample to the claim and then prove a stronger theorem, from which Rivest's theorem follows as a corollary.

1. A counterexample

In the article "Learning Decision Lists" (Rivest, 1987) Rivest proves that (k-DNF $\cup k$-CNF) is a proper subset of k-DL. The proof is based on the following incorrect claim:
\ldots if a function f has a prime implicant of size t, then f has no k-DNF representation if $k<t$.

The following counterexample shows that it is possible for a function f with a prime implicant of size four to have a 3-DNF representation. The function f shown below is in 3-DNF, yet the term $w \bar{x} y \bar{z}$ is a prime implicant of the function.

$$
f(v, w, x, y, z)=v w \bar{x} \vee \bar{v} y \bar{z}
$$

Figure 1 shows the function using a Karnaugh map of five variables with the prime implicant containing four literals shaded. (For a description of Karnaugh maps, see, for example, Kohavi (1978) or Friedman (1986), although readers not familiar with them may easily check that the given term is indeed a prime implicant.)

2. The expressive power of decision lists

Let n be the number of variables in our language.
Definition 1 (Prime implicant). A prime implicant for a function f is a product term α that implies f, but that does not imply f if any literal in α is deleted.

$\mathrm{vw}_{\mathrm{vw}}^{\mathrm{Xy}}$	000	001	011	010	110	111	101	100
00	0	0	0	1	1	0	0	0
01	0	0	0	\%"\#	1.	0	0	0
11	1	1	1	\%	0	0	0	0
10	0	0	0	0	0	0	0	0

Figure 1. A Karnaugh map that refutes the claim.
Definition 2 (Essential prime implicant). An essential prime implicant α of f is a prime implicant such that there exists an $x \in\{0,1\}^{n}$ with $\alpha(x)=1$, yet for no prime implicant $\beta \neq \alpha$ does $\beta(x)=1$.

Lemma 1. If a function fhas an essential prime implicant of size t, then f has no $k-\operatorname{DNF}(n)$ representation if $k<t$.

Proof: The essential prime implicant must appear in any $\operatorname{DNF}(n)$ representation that uses only prime implicants. Any $k-\operatorname{DNF}(n)$ representation has an equivalent $k-\operatorname{DNF}(n)$ representation using only prime implicants; therefore, there cannot exist a $k-\operatorname{DNF}(n)$ representation of f with $k<t$.

Note that this lemma only defines a sufficient condition for not having a k-DNF (n) representation. There are functions that have no essential prime implicants at all.

Lemma 2. A prime implicant α of size n is an essential prime implicant.
Proof: Let $x \in\{0,1\}^{n}$ be the unique vector such that $\alpha(x)=1$. If there exists a prime implicant $\beta \neq \alpha$ for which $\beta(x)=1$, then α and β cannot disagree on any literal (or else $\beta(x) \neq 1)$. Since all variables appear in α, the prime implicant β must contain only a subset of the literals in α, contradicting the fact that α is a prime implicant.

Theorem 3. For $1<k<n$ and $n>2$, there are functions representable in k-DL(n) but not in ($j-C N F(n) \cup j-D N F(n))$ for any $j<n$.

Proof: We prove a stronger result, namely, that 2-DL(n) contains functions not representable in $(j-\operatorname{CNF}(n) \cup j-\operatorname{DNF}(n))$ for any $j<n$, and $n>2$.
Let f be the function represented by the following 2-DL(n):
$\left(\overline{x_{1}} \overline{x_{2}}, 0\right),\left(\overline{x_{1}} \overline{x_{3}}, 0\right), \ldots,\left(\overline{x_{1}} \overline{x_{n}}, 0\right),\left(\overline{x_{1}}, 1\right),\left(x_{1} \overline{x_{2}}, 1\right),\left(x_{1} \overline{x_{3}}, 1\right), \ldots,\left(x_{1} \overline{x_{n}}, 1\right),($ true, 0$)$

| $x_{1} x_{2} x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{4} x_{5}$ | $0_{0} 00001$

Figure 2. A Karnaugh map showing the funciton in $2-\mathrm{DL}(n)$ for $n=5$.
Note that the last term could be replaced by $\left(x_{1}, 0\right)$, but the definition of a decision list requires the last term to contain the constant function true. Figure 2 shows a Karnaugh map of the function for $n=5$.
Let α be the term $\overline{x_{1}} x_{2} x_{3} \ldots x_{n}$ and let α^{\prime} be a term derived from α with one literal l_{i} deleted. α^{\prime} implies $\alpha^{\prime} \bar{l}_{i}$, but for any $\vec{x} \in\{0,1\}^{n}$ such that $\alpha \tau_{i}$ is true, $f(\vec{x})$ is 0 , and thus α is a prime implicant of f. By lemma $2, \alpha$ is an essential prime implicant, and by lemma 1 , f has no $j-\operatorname{DNF}(n)$ representation for $j<n$.

Similarly, the term $x_{1} x_{2} x_{3} \ldots x_{n}$ is an essential prime implicant of \bar{f}, and thus the function \bar{f} cannot be represented in $j-\operatorname{DNF}(n)$ for $j<n$. Since the complement of every $j-\operatorname{CNF}(n)$ formula is a $j-\operatorname{DNF}(n)$ formula, there is no $j-\operatorname{DNF}(n)$ representation for f, and hence f cannot be represented in $j-\operatorname{DNF}(n) \cup j-\operatorname{CNF}(n)$ for $j<n$.

Corollary 4 (Rivest). For $0<k<n$ and $n>2,(k-C N F(n) \cup k-D N F(n))$ is a proper subset of k-DL(n).

Proof: The original article (Rivest, 1987) correctly proved that any k - $\operatorname{CNF}(n)$ formula and any $k-\operatorname{DNF}(n)$ formula can be written in $k-\operatorname{DL}(n)$. By theorem 3 , there are functions in $k-\operatorname{DL}(n)$ not in $(k-\operatorname{CNF}(n) \cup k-\operatorname{DNF}(n))$ for $k>1$, so only the case $k=1$ remains to be proved.

If $k=1$, then the following decision list from 1-DL (n) represents a function f that is not in $1-\operatorname{CNF}(n) \cup 1-\operatorname{DNF}(n)$:

$$
\left(x_{1}, 0\right),\left(x_{2}, 1\right),\left(x_{3}, 1\right),(\text { true }, 0)
$$

The only prime implicants of the function f are $\overline{x_{1}} x_{2}$ and $\overline{x_{1}} x_{3}$. Both are essential, so f does not have a 1-DNF (n) representation. Similarly, the function \bar{f} has x_{1} and $\overline{x_{2}} \overline{x_{3}}$ as the only prime implicants and again both are essential, so f does not have a $1-\mathrm{DNF}(n) \cup$ $1-\mathrm{CNF}(n)$ representation.

Acknowledgments

We thank the anonymous referee for comments on making the proof shorter. We thank Nils Nilsson, Ron Rivest, and George John for their comments on a previous version of this article, and Shai Halevi for coming up with the counterexample, which is smaller than our original one.

References

Friedman, Arthur D. (1986). Fundamentals of logic design and switching. Computer Science Press. Kohavi, Zvi. (1978). Switching and finite automata theory, 2nd edition. New York: McGraw-Hill.
Rivest, Ronald L. (1987). Learning decision lists. Machine Learning, 2, 229\#246.
Received July 30, 1992
Accepted October 7, 1992
Final Manuscript February 18, 1993

