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Abstract. In his article "Learning Decision Lists," Rivest proves that (k-DNF U k-CNF) is a proper subset
of k-DL. The proof is based on the following incorrect claim:

... if a function f has a prime implicant of size t, then f has no k-DNF representation if k < t.

In this note, we show a counterexample to the claim and then prove a stronger theorem, from which Rivest's
theorem follows as a corollary.

1. A counterexample

In the article "Learning Decision Lists" (Rivest, 1987) Rivest proves that (k-DNF U k-CNF)
is a proper subset of k-DL. The proof is based on the following incorrect claim:

... if a function/has a prime implicant of size t, then/has no k-DNF representation
if k < t.

The following counterexample shows that it is possible for a function/with a prime impli-
cant of size four to have a 3-DNF representation. The function/shown below is in 3-DNF,
yet the term wxyz is a prime implicant of the function.

Figure 1 shows the function using a Karnaugh map of five variables with the prime impli-
cant containing four literals shaded. (For a description of Karnaugh maps, see, for exam-
ple, Kohavi (1978) or Friedman (1986), although readers not familiar with them may easily
check that the given term is indeed a prime implicant.)

2. The expressive power of decision lists

Let « be the number of variables in our language.

Definition 1 (Prime implicant). A prime implicant for a Junction f is a product term a
that implies f, but that does not imply f if any literal in a is deleted.
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Figure 1. A Karnaugh map that refutes the claim.

Definition 2 (Essential prime implicant). An essential prime implicant a off is a prime
implicant such that there exists an x € (0, 1}n with t(x) = 1, yet for no prime implicant
(3 t a does 3(x) = 1.

Lemma 1. If a function f has an essential prime implicant of size t, then f has no k-DNF(n)
representation if k < t.

Proof. The essential prime implicant must appear in any DNF(n) representation that uses
only prime implicants. Any k-DNF(n) representation has an equivalent k-DNF(n) represen-
tation using only prime implicants; therefore, there cannot exist a k-DNF(n) representation
of f with k < t, D

Note that this lemma only defines a sufficient condition for not having a k-DNF(n) repre-
sentation. There are functions that have no essential prime implicants at all.

Lemma 2. A prime implicant a of size n is an essential prime implicant.

Proof: Let x 6 {0, 1}n be the unique vector such that t(x) — 1. If there exists a prime
implicant 0 ^ a for which @(x) = 1, then a and 0 cannot disagree on any literal (or else
@(x) ^ 1). Since all variables appear in a, the prime implicant 0 must contain only a subset
of the literals in a, contradicting the fact that a is a prime implicant. D

Theorem 3. For 1 < k < n and n > 2, there are Junctions representable in k-DL(n) but
not in ( j -CNF(n) U j -DNF(n) ) for any j < n.

Proof. We prove a stronger result, namely, that 2-DL(n) contains functions not represen-
table in (j-CNF(n) U j-DNF(n)) for any j < n, and n > 2.

Let f be the function represented by the following 2-DL(n):
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Figure 2. A Karnaugh map showing the funciton in 2-DL(n) for n = 5.

Note that the last term could be replaced by (x1, 0), but the definition of a decision list
requires the last term to contain the constant function true. Figure 2 shows a Karnaugh
map of the function for n = 5.

Let a be the term x1x2x3 • • • xn and let a' be a term derived from a with one literal lj

deleted, a' implies a'Tj, but for any f € {0, 1}n such that a Ti is true, f(x) is 0, and thus
a is a prune implicant of f. By lemma 2, a is an essential prime implicant, and by lemma 1,
f has no j-DNF(n) representation for j < n.

Similarly, the term x1x2x3 ... xn is an essential prime implicant of f, and thus the func-
tion f cannot be represented in j-DNF(n) for j < n. Since the complement of every
j-CNF(n) formula is a j-DNF(n) formula, there is no j-DNF(n) representation for f, and
hence f cannot be represented in j-DNF(n) U j-CNF(n) for < n.

Corollary 4 (Rivest). For 0 < k < n and n > 2, (k-CNF(n) U k-DNF(n)) is a proper
subset of k-DL(n).

Proof. The original article (Rivest, 1987) correctly proved that any k-CNF(n) formula and
any k-DNF(n) formula can be written in k-DL(n). By theorem 3, there are functions in
k-DL(n) not in (k-CNF(n) U k-DNF(n)) for k > 1, so only the case k = 1 remains to
be proved.

If k = 1, then the following decision list from l-DL(n) represents a function / that is
not in l-CNF(n) U l-DNF(n):

(x1, 0), (x2, 1), (x3, 1), (true, 0)

The only prime implicants of the function f are x1x2 and x1x3. Both are essential, so f
does not have a 1-DNF(«) representation. Similarly, the function/has x1 and x2 x3 as the
only prune implicants and again both are essential, so / does not have a l-DNF(n) U
l-CNF(n) representation.
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