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We introduce a new distance between two distributions
that we call the Earth Mover’s Distance (EMD), which re-
flects the minimal amount of work that must be performed
to transform one distribution into the other by moving “dis-
tribution mass” around. This is a special case of the trans-
portation problem from linear optimization, for which effi-
cient algorithms are available. The EMD also allows for
partial matching. When used to compare distributions that
have the same overall mass, the EMD is a true metric, and
has easy-to-compute lower bounds. In this paper we fo-
cus on applications to image databases, especially color
and texture. We use the EMD to exhibit the structure of
color-distribution and texture spaces by means of Multi-
Dimensional Scaling displays. We also propose a novel
approach to the problem of navigating through a collection
of color images, which leads to a new paradigm for image
database search.

1 Introduction
Feature distributions are often used in computer vision

to summarize the content of an image. Examples in im-
age retrieval are the one-dimensional distribution of image
intensities and the three-dimensional distribution of image
colors. At another level, a single texture can itself be con-
sidered a distribution. In fact, texture can be envisioned as
a distribution of signal energy over the domain of spatial
frequencies. Consequently, in image retrieval, as well as in
the study of texture discrimination and color perception, it
becomes important to define a distance between two distri-
butions. This requires in turn a notion of distance between
the basic elements that appear in the distribution. For in-
stance, in the case of color, a metric is needed for individual
colors. For texture, one needs a measure of the dissimilarity
between two periodic signals, that is, between two points in
the frequency domain. Fortunately, these ground distances
have been studied in psychophysics, and have led to the
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CIE-Lab space [19] for color perception and to quantitative
models [17], [6] of spatial frequency discrimination.

In this paper, we define a consistent measure of dis-
tance, or dissimilarity, between two distributions of points
in a space for which a ground distance is given. This new
measure is itself a metric. For color, supplying a ground
distance means defining distances between color distribu-
tions. For spatial frequency, it means defining distances
between textures. Mathematically, it would be convenient
if these distribution distances were true metrics. Practically,
it is crucial that they correlate with human perception. In
this paper we strive to achieve both goals. For the first
we have proof, for the second we show experiments and
some ties with psychophysical findings for the examples of
color and texture. For image retrieval it is important that
these distances allow for partial matches in cases when one
distribution is similar to a subset of the other. For partial
matches, our distances are not metric. This is consistent
with Tversky [16] who shows that perceptual distances can
be non-metric.

An image yields a distribution in color space by map-
ping each pixel of the image to its color. It is often advanta-
geous to ‘compress’ or otherwise approximate the original
distribution by another distribution with a more compact
description. This yields important savings in storage and
processing time, as well as a certain perceptual robustness
to the result. Now multidimensional distributions are usu-
ally compressed by partitioning the underlying space into
fixed-size bins: the resulting quantized structure is a his-
togram. However, often only a small fraction of the bins in
a histogram contain significant information. For instance, a
picture of a desert landscape contains mostly blue pixels in
the sky region and yellow-brown pixels in the rest. A finely
quantized histogram in this case is highly inefficient. On the
other hand, multitude of colors is a characterizing feature
for a picture of a carnival in Rio, and a coarsely quan-
tized histogram would be inadequate. In brief, because
histograms are fixed-size structures, they cannot achieve
balance between expressiveness and efficiency.



In contrast, we propose variable-size descriptions of
distributions, which we call signatures. Only the dom-
inant clusters are extracted from the original distribution
and are used to form its signature. Each cluster is repre-
sented by a single point in the underlying space (the cluster
center), together with a weight that denotes the size of that
cluster. Simple images have short signatures, complex im-
ages have long ones. Note that signatures are themselves
distributions. Of course, in some applications, fixed-size
histograms may still be adequate, and can be considered as
special cases of signatures.

We introduce a new distance between two signatures that
we call the Earth Mover’s Distance (EMD). This reflects the
minimal cost that must be paid to transform one signature
into the other, in a sense that will be made precise in section
3. The EMD is based on a solution to a special case of the
old transportation problem [1] from linear optimization,
for which efficient algorithms are available. The EMD has
many desirable properties. It is more robust in comparison
to other histogram matching techniques, in that it suffers
from no arbitrary quantization problems due to the fixed
binning of the latter. It allows for partial matching, and
it can be applied to signatures with different sizes. When
used to compare distributions that have the same overall
mass, the EMD is a true metric.

Although the EMD is a general method for matching
multidimensional distributions, in this paper we focus on
applications to color and texture. In the next section, we in-
troduce histograms and signatures, and briefly survey some
of the existing measures of dissimilarity. Then, in section
3, we introduce the Earth Mover’s Distance (EMD), which
we apply to color and texture in section 4. In particular, we
use the tool of Multi-Dimensional Scaling (MDS, [5]) to
display collections of images in a two-dimensional space
in a way that preserves EMDs as much as possible. Section
5 addresses computational issues, and section 6 concludes
with a summary and plans for future work.

2 Histograms vs. Signatures
A histogram fhig is a mapping from a set of d-

dimensional integer vectors i to the set of nonnegative
integers. These vectors typically represent bins (or their
centers) in a fixed-size partitioning of the relevant region
of the underlying space, and the associated integers are a
measure of the mass of the distribution that falls into the
corresponding bin. For instance, in a grey-level histogram,
d is equal to one, the set of possible grey values is split into
N intervals, and hi is the number of pixels in an image that
have a grey value in the interval indexed by i (a scalar in
this case).

A signature fsj = (mj ; wj)g, on the other hand, rep-
resents a set of clusters. Each cluster is represented by its
d-dimensional mean (or mode) mj , and by the number wj

of pixels that belong to that cluster. The integer subscript
j ranges from one to a value that varies with the signature.
As a special case, a histogram fhig can be viewed as a
signature fsj = (mj; wj)g in which the vectors i index a
set of clusters defined by a fixed a priori partitioning of the
underlying space. If vector i maps to cluster j, the point
mj is the central value in bin i of the histogram, and wj is
equal to hi.

Several distance measures have been defined for his-
tograms. If H = fhig and K = fkig are two histograms,
the L1-distance is used for color [14] as

d(H;K) =
X
i

jhi � kij : (1)

Related distances have been defined by replacing the L1
metric with L2 or L1 [13].

A weighted version of the L2 norm was used, also for
color, in [8]:

d2(H;K) = (h� k)tA(h� k) ; (2)

where h and k are vectors that list all the entries in H and
K, and where A is a matrix of the ground dissimilarities
for every pair of color bins.

Both distances (1) and (2) transform a ground distance
between the constituent elements (colors) into a distance be-
tween distributions of those elements. For (1), the ground
distance between two colors is zero if they fall in the same
bin, and two otherwise, and this ground distance is made
into a distribution distance by simple addition. For (2),
the ground distances are the entries of A, derived from
psychophysics in [8], and the corresponding distribution
distance is their quadratic mean (assuming proper normal-
ization).

The metric (1) overestimates distances because neigh-
boring bins are not considered when there is no match
between the exact corresponding bins in the two his-
tograms [13]. The metric (2) underestimates distances
because it tends to accentuate the similarity of color distri-
butions without a pronounced mode [13].

Cumulative histograms were proposed [13] to overcome
these limitations:

ĥi =
X
j�i

hj :

Although measuring distances between cumulative his-
tograms cures the problems mentioned above in one di-
mension, the relation j � i is not a total ordering in more
dimensions, and the resulting arbitrariness is likely to cause
problems. Another method proposed by [13] is to com-
pute the distance between distributions as the sum of the
weighted distance of the distributions’ first three moments.
However, it is unclear how to tune the weights of the dif-
ferent moments, and the resulting measure is not a metric
distance.



In [11], the histogram unfolding method is introduced
for grey-level images and is extended to more dimensions
in [18]. An “unfolded histogram” is simply the image itself
reshaped to a vector and with its pixels sorted in increas-
ing order of value. The distance between two unfolded
histograms is then defined as the L1 norm of their vec-
tor difference. However, the computational complexity of
this method is very high, because unfolded histograms are
as large as the original pictures they come from. Even
more importantly, unfolded histograms, as the other meth-
ods described above, cannot be used for partial matching,
an essential requirement for image retrieval.

3 The Earth Mover’s Distance
In this section we propose the Earth Mover’s Distance

(EMD) between distributions in order to address the diffi-
culties discussed above. Intuitively,given two distributions,
one can be seen as a mass of earth properly spread in space,
the other as a collection of holes in that same space. We
can always assume that there is at least as much earth as
needed to fill all the holes to capacity by switching what
we call earth and what we call holes if necessary. Then,
the EMD measures the least amount of work needed to fill
the holes with earth. Here, a unit of work corresponds to
transporting a unit of earth by a unit of (ground) distance.

Computing the EMD is based on a solution to the old
transportationproblem [1]. This is a bipartite network flow
problem which can be formalized as the following linear
programming problem: Let I be a set of suppliers, J a
set of consumers, and cij the cost to ship a unit of supply
from i 2 I to j 2 J . Figure 1 shows an example with
three suppliers and two consumers. We want to find a set
of flows fij that minimize the overall costX

i2I

X
j2J

cijfij ; (3)

subject to the following constraints:

fij � 0 i 2 I; j 2 J (4)X
i2I

fij = yj j 2 J (5)

X
j2J

fij � xi i 2 I ; (6)

where xi is the total supply of supplier i and yj is the total
capacity of consumer j. Constraint 4 allows shipping of
supplies from a supplier to a consumer and not vice versa.
Constraint 5 forces the consumers to fill up all of their
capacities and constraint 6 limits the supply that a supplier
can send to its total amount. A feasibility condition is that
the total demand does not exceed the total supplyX

j2J

yj �
X
i2I

xi :

suppliers consumers

I J
Cij

Figure 1: An example of a transportation problem with
three suppliers and two consumers.

The transportation problem can be naturally used for
signature matching by defining one signature as the sup-
plier and the other as the consumer, and solving the trans-
portation problem where the cost cij is the ground distance
between element i in the first signature and element j in the
second. When the total weights of the signatures are not
equal (partial matches), the smaller signature will be the
consumer in order to satisfy the feasibility condition. Once
the transportation problem is solved, and we have found the
optimal flow F , the earth mover’s distance is defined as

EMD(x;y) =

P
i2I

P
j2J cijfijP

i2I

P
j2J fij

=

P
i2I

P
j2J cijfijP

j2J yj

where the denominator is a normalization factor that avoids
favoring signatures with smaller total weights. In general,
the ground distance cij can be any distance and it will be
chosen according to the problem at hand. Examples are
given in section 4.

Thus, the EMD naturally extends the notion of distance
between single elements to distance between sets of ele-
ments, or distributions. The advantages of the EMD over
previous definitions of distributiondistances should now be
apparent. First, the EMD applies to signatures, which sub-
sume histograms. The greater compactness and flexibility
of signatures is in itself an advantage, and having a distance
measure that can handle these variable-size structures is
important. Second, the costs of moving “earth” reflect the
notion of nearness properly, without the quantization prob-
lems of most current measures. Even for histograms, in
fact, items from neighboring bins contribute similar costs.
Third, the EMD allows for partial matches in a natural way.
This is important in order to deal with occlusions and clut-
ter in image retrieval. Fourth, if the ground distance is a
metric and the total weights of two signatures are equal,
the EMD is a true metric. Computational advantages are
discussed in section 5.

4 Applications to Image Databases
In this section we show a few examples of application of

the earth mover’s distance in the areas of color and texture



analysis. Because of how the human vision system is built,
color lives naturally in a three dimensional space. Color
distributions, then, can describe the color contents of entire
images.

Textures, on the other hand can be seen as mixtures of
sinusoidal signals. If phase information is ignored, a single
texture can be seen as a distribution of signal energy in
the frequency domain. Thus, we compute EMDs between
single textures, rather than between images with many tex-
tures. This may be expanded to EMDs between images
with many textures by considering the EMD between sin-
gle textures as the ground distance in a space of textures.
We do not pursue this idea in this paper.

In order to evaluate the meaningfulness of our new met-
ric when applied to color and texture, we use Multidimen-
sional Scaling (MDS) [12, 5] in order to embed the images
in a two-dimensional Euclidean space so that distances in
the embedding are as close as possible to the true EMDs
between the images.

The MDS is introduced in the next section and examples
for color are given in section 4.2. MDS layouts also lead
to a new method for navigating in a database of images, as
shown in section 4.3. Section 4.4 applies both EMD and
MDS to textures.

4.1 Multidimensional Scaling as a Perceptual
Evaluation Tool

Given a set of n objects together with the distances
�ij between them, the Multi-Dimensional Scaling (MDS)
technique [12, 5] computes a configuration of pointsfpig in
a low-dimensional Euclidean spaceRd, (in our experiments
we use d = 2) so that the Euclidean distances

dij = kpi � pjk

between the points in Rd match as well as possible the
original distances �ij between the corresponding objects.
Kruskal’s [5] formulation of this problem requires mini-
mizing the following quantity

STRESS =

"P
i;j(dij � �ij)2P

i;j �
2

ij

#1=2

with the additional constraint that the dijs are in the same
rank ordering as the corresponding �ijs. STRESS is a non-
negative number that indicates how well distances are pre-
served in the embedding. Zero STRESS indicates a perfect
fit. Rigid transformations and reflections can be applied to
the MDS result without changing the STRESS. Embedding
methods such as SVD and principal components analysis
are not appropriate here because our signatures do not form
a linear space, and we do not have points in any space, but
only non-Euclidean distances between points.

As we show in sections 4.2 and 4.4, performing MDS
on a set of images using the proper EMD automatically
reveals important perceptual features of color and texture
without the need for an explicit definition of the features
themselves.

4.2 Color Distributions
For the computation of the earth mover’s distance be-

tween color images, we use Euclidean distance in the CIE-
Lab color space [19] as the underlying ground distance
between individual colors. In this color space, short Eu-
clidean distances correlate strongly with human color dis-
crimination performance [19].

In order to produce figure 2 (in the color plates), colors
in each of 1,000 color images from a rather diverse set were
first clustered with an algorithm based onk-d-trees [9]. As a
result, the color distributionof each image was summarized
by a handful of clusters, eight on the average. Clusters
were collected into signatures, as described in section 2,
and the

�
1000

2

�
earth mover’s distances between every pair

of signatures were computed. The corresponding distances
for a two-dimensional embedding were then computed by
the MDS algorithm (section 4.1), with a STRESS value of
0.146, to produce figure 2. Loosely speaking, images end
up being arranged according to their dominant lightness
and chroma values, as suggested by the arrows in figure
2, but a trend from more saturated colors at the periphery
of the display to less saturated and more complex color
distributions close to the center can also be noticed. Images
with similar color distributions are near one another, while
dissimilar images are far apart.

When images are closely related to each other, the MDS
display exposes more subtle similarities and differences
between images. This can be seen in figure 4 (c) (in the
color plates), which displays 20 images with large expanses
of blue. Here the interpretation of the axes of the MDS
map (STRESS = 0.2) is different. One axis distinguishes
between images with or without plants (green vs. yel-
low/brown), and the other axis corresponds to the amount
of saturation of the (blue) sky.

4.3 Navigation
In image retrieval, we can use the MDS of the image

thumbnails as a new display technique. This display makes
it easy for the user to grasp a large set of returned images
at a glance, and decide where to go next. When the user
clicks the mouse on a location of the displayed MDS, a new,
more specific query is automatically generated, and returns
a smaller set of images. These are again displayed by a
new MDS, which now reflects the new dominant axes of
variation. Thus, the embeddings are adaptive, in the sense
that they use the screen’s real estate to emphasize whatever
happen to be the main differences and similarities among
the particular images at hand. By iterating this process, the



user is able to quickly navigate to the portion of the image
space of interest. Rather than following a thin path of
images from query to query, as in the traditional approach,
the user now zooms in to the images of interest. Precision is
added incrementally in subsequent query refinements, and
fewer and fewer images are displayed as the desired images
are approached.

An example of navigation using the color signatures
described in section 4.2 is given in figure 4 (in the color
plates). We are looking for images of deserts. Since we
don’t know which colors can describe the desert ground
(yellow? brown?) we only specify 20 percent blue for
the sky and the rest 80 percent as “don’t care”, and ask
the system to return 500 images. The MDS embedding
of the returned images is shown in part (a) of the figure.
By glancing at the results, we see that images are sorted
from right to left by the amount of blue they contain, and
from bottom to top by the amount of illumination. We see
immediately that images of deserts will probably be located
in the upper-center part of the map so we click there (the
location of the mouse click is indicated by a black blob
in the figure) and ask for 100 images. In the new MDS
map (b), images at the bottom have more desert ground,
images at the top have more plants (green), images at the
top-right have more sky. Clicking again and asking for only
20 images results in a new MDS display, shown in (c).

The MDS can be computed quite efficiently. On a SGI
Indigo 2, MDS of 100 images, including the computation
of the full distance matrix (4950 EMD’s), takes about four
seconds on average.

4.4 Texture
While color is a point-wise property of images, texture

involves a notion of spatial extent: a single point has no
texture. The Fourier spectrum of an image filled with a
single texture can be seen as the distribution of signal energy
over the two-dimensional domain of spatial frequencies.
Because Gabor filters are localized on the spatial frequency
plane, the energies of their outputs can be seen as samples
of the Fourier spectrum of the given texture. In this section,
we use Gabor filters [3, 2, 7] to compute texture signatures.
More details about the derivation of the Gabor wavelets
and the choice of parameters can be found in [6]. We use
a log-polar coordinates with M = 5 scales, and L = 8
orientations. Since our images are homogeneous textures,
we take as our texture features the spatial mean of the
energies of the Gabor responses, which we call Elm, where
l is the orientation and m is the scale.

We can now use the EMD as the distance measure be-
tween textures. To this end, we define our ground distance
in the frequency domain to be the Euclidean distance in
log-polar space, with cyclic permutation being allowed on
the orientation axis. In order to have rotation-invariant

representations of texture, we use the fact that rotation in-
variance reduces to cyclic shifts along the orientation axis
in the log-polar space, to perform an exhaustive search for
the minimal distance over all shifts in orientation. For-
mally, let t1 and t2 be two texture-signatures. An EMD
that is invariant to texture rotation is

EMD(t1; t2) = min
ls=0;:::;L�1

EMD(t1; t2; ls) ;

where EMD(t1; t2; ls) is the EMD with orientation shift
ls. The ground distance is

kEl1;m1
�El2;m2

k2 = (�l)2 + (�m)2 ; (7)

where

�l = min
�
jl1 � l2 + ls (mod L)j;

L� jl1 � l2 + ls (mod L)j
�
;

�m = m1 �m2 :

A 2D MDS (with a STRESS value of 0.077) using the
rotation-invariant EMD on the texture-signatures is shown
in figure 3 (in the color plates). One axis emphasizes the
directionality of the texture, where textures with one dom-
inant orientation (any orientation) are at the bottom-right,
and textures without a dominant orientation are at the top-
left. The other axis is the texture coarseness, from coarse
textures at the bottom-left to fine textures at the top-right.
It is interesting to notice that coarseness and directionality
were found by psychophysical experiments by Tamura et
al. [15] to be the two most significant perceived texture
features.

5 Efficiency considerations
It is important that the EMD be computed efficiently, es-

pecially for image retrieval systems, where a large number
of distances is computed for every query. There are two
ways to achieve this. The first is to have efficient algorithms
for the transportation problem. The second is to have easy
to compute lower bounds which can significantly reduce
the number of EMD’s that actually need to be computed
for an image retrieval query by ignoring “unpromising”
signatures.

Fortunately, efficient algorithms exist. We implemented
the transportation-simplex method which is a streamlined
algorithm based on the simplex method [4]. For the initial
basic feasible solution we used Russell’s approximation
method [10]. On a SGI Indigo 2, for random pairs of color
images, each represented by a color-signature with eight
clusters on average, as described in section 4.2, slightly
more than 1000 EMD’s were computed per second. When
a user defined color signature with only three clusters was
matched against color signatures of real images, more that
5000 EMD’s were computed per second.



An easy-to-compute lower bound between two signa-
tures with the same total weight is the distance between
their centroids. Let pi and qj be the coordinates of cluster
i in the first signature, and cluster j in the second signature
respectively. Then, using the notations of Eq. 3,X
i2I

X
j2J

cijfij =
X
i2I

X
j2J

kpi � qjkfij

=
X
i2I

X
j2J

kfij(pi � qj)k (fij � 0)

�
X

i2I

X
j2J

fij(pi � qj)


=
X

i2I

�X
j2J

fij

�
pi �

X
j2J

�X
i2I

fij

�
qj


=

X
i2I

xipi �
X
j2J

yjqj

 :
Using this lower bound in our color-based, 20,000-image
database retrieval system reduces the number of EMD com-
putations on average by a factor of six.

6 Conclusions and Future Work
The earth mover’s distance is a general and flexible met-

ric, and does not suffer from the binning problems of most
extant definitions of distributiondistance. It allows for par-
tial matches, and it can be applied to variable-length repre-
sentations of distributions. It can be computed efficiently,
and lower bounds are readily available for it. Because of
these advantages, we believe that the EMD can be of use
both for understanding distributions related to vision prob-
lems, as exemplified by our case studies with color and
texture, and as a fundamental element of image retrieval
systems.

More general definitions of a signature are possible, and
can lead to more general EMD’s. For example, including
positional and geometric information to record the spatial
location and extent in the image of the cluster pixels.

Our analysis of texture similarity in particular has
brought forth a number of interesting open problems. For
instance, how can the shortest distance between two signa-
tures be computed if either of them is allowed to undergo
a transformation from a predefined group at no cost? An
answer to this question would lead to a more direct ap-
proach to the issue of invariance when comparing textures
or other features. Also, can distances between images with
many textures be computed efficiently by using the earth
mover’s metric itself as a ground distance for a higher level
comparisons between distributions of textures? We plan to
pursue these issues in our future research.

Finally, it wouldbe interesting to apply the earth mover’s
distance to other vision problems such as classification and
recognition based on other types of visual cues. In fact,

we surmise that the EMD may be a useful metric also for
problems outside the realm of computer vision.
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Figure 2: 2D MDS of 1000 random color images using EMD between color signatures.

directionality
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Figure 3: 2D MDS of 20 textures with rotation invariance.



(a)
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Figure 4: Looking for a desert landscape. (a) 500 images. (b) 100 images. (c) 20 images. The black dots show where the
user clicked for the subsequent queries.


