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Abstract. The method of Block Cyclic Reduction (BCR) is described in the context of
solving Poisson's equation with Dirichlet boundary conditions. The numerical instability of
the original BCR algorithm is shown. A stable variant to BCR, credited to Oscar Buneman,
is described and a proof of stabilty is given. Finally, the Sweet device for parallelization is
presented.

1 Introduction

Di�erential equations are in the realm of continuous mathematics. Solution functions are
de�ned on continuous sets such as an interval or a rectangle. In order to use a computer
to help \solve" a di�erential equation, we must �rst discretize the problem. The idea is to
program a computer to compute approximations to the solution function on some discrete,
�nite subset of the original domain. Such a subset is called a mesh. Once a mesh has
been chosen, we can discretize the di�erential equation by replacing derivatives at mesh
points by approximations involving nearby mesh points. This \�nite di�erence" method
of discretization results in a linear system whose unknowns are the approximations to the
solution function on the mesh.

One way to solve a linear system is to use Gaussian elimination. The basic idea behind
Gaussian elimination is to transform the system

0
BBBB@
a1;1 a1;2 � � � a1;n
a2;1 a2;2 � � � a2;n
...

...
. . .

...
an;1 an;2 � � � an;n

1
CCCCA

0
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x1
x2
...
xn

1
CCCA =

0
BBB@
b1
b2
...
bn

1
CCCA

into an equivalent upper triangular system
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a02;2 � � � a02;n
. . .

...
a0n;n

1
CCCCA
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x1
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1
CCCA =

0
BBBB@
b01
b02
...
b0n

1
CCCCA
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which can be easily solved. This transformation is iterative in the sense that the rth step
clears the subdiagonal entries in the rth column of the coe�cient matrix. Each step brings
the system one column closer to the equivalent upper triangular system.

The coe�cientmatrix of a discretized problem is usually very sparse and well-structured
(e.g. symmetric and tridiagonal). This is because a �nite di�erence derivative approxi-
mation at a given point involves only a regular pattern of a few neighboring mesh points.
Cyclic reduction is a recursive, as opposed to iterative, algorithm which takes advantage
of the structure of such a coe�cient matrix. The �rst step of cyclic reduction (sometimes
called \odd-even" reduction) is to reduce the original linear system to one of the same
form, but approximately half the size as the original. This strategy is possible because of
some special form of the coe�cient matrix. The solution to the reduced system allows one
to solve the original system. We can repeatedly reduce the system size until we arrive at a
1 � 1 system (i.e. a single equation). The solution to the simplest system is used to solve
the previously generated system, whose solution is used to solve the previously generated
system, and so on, until all the unknowns in the original system have been found.

2 The Model Problem

Consider Poisson's equation on a rectangle, R, with Dirichlet boundary conditions

@2u
@x2

(x; y) + @2u
@y2

(x; y) = f(x; y) for (x; y) 2 R,

u(x; y) = g(x; y) for (x; y) 2 @R,
(1)

where f and g are given, R = f(x; y) : a < x < b; c < y < dg, and @R denotes the
boundary of R. Introduce a grid (xi; yj) on �R = R[ @R with equal horizontal and vertical
step length h = b�a

m+1 =
d�c
n+1 so that

xi = a+ ih i = 0; . . . ;m+ 1;

yj = c+ jh j = 0; . . . ; n+ 1:

(For simplicity, we assume that is possible to divide �R into squares of side h.) Using the
central di�erence approximations

@2u

@x2
(xi; yj) �

u(xi�1; yj)� 2u(xi; yj) + u(xi+1; yj)

h2
;

@2u

@y2
(xi; yj) �

u(xi; yj�1)� 2u(xi; yj) + u(xi; yj+1)

h2

the discretized form of (1) is

ui;j�1 + (ui�1;j � 4ui;j + ui+1;j) + ui;j+1 = h2fi;j
i = 1; . . . ;m;
j = 1; . . . ; n

ui;j = gi;j (xi; yj) 2 @R
(2)

where ui;j � u(xi; yj), fi;j = f(xi; yj), and gi;j = g(xi; yj). We can rewrite (2) as

uj�1 +Auj + uj+1 = h2f j j = 1; . . . ; n;
uj = gj j = 0; n+ 1

(3)
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where A is the m�m tridiagonal, symmetric matrix

A =

0
BBBBBB@

�4 1
1 �4 1

. . . . . . . . .

1 �4 1
1 �4

1
CCCCCCA

(4)

and

uj =

0
BBBBBB@

u1;j
u2;j
...

um�1;j

um;j

1
CCCCCCA
; f j =

0
BBBBBB@

f1;j
f2;j
...

fm�1;j

fm;j

1
CCCCCCA
; gj =

0
BBBBBB@

g1;j
g2;j
...

gm�1;j

gm;j

1
CCCCCCA
:

Finally, (3) can be written as an n� n symmetric, tridiagonal block system

2
6666664

A I
I A I

. . . . . . . . .

I A I
I A

3
7777775

2
6666664

u1

u2
...

un�1

un

3
7777775
=

2
6666664

b1
b2
...

bn�1
bn

3
7777775

(5)

where 2
6666664

b1
b2
...

bn�1
bn

3
7777775
=

2
6666664

h2f 1 � g0
h2f2
...

h2fn�1

h2fn � gn+1

3
7777775
:

The goal is to solve (5) for u1; . . . ;un; i.e., we want to solve for the m � n unknown
approximations ui;j, i = 1; . . . ;m, j = 1; . . . ; n to the solution u of (1). The method of
block cyclic reduction was originally developed by Gene Golub and R. W. Hockney in
the mid 1960's to numerically solve Poisson's equation with periodic boundary conditions
(see [6]). The system that arose in Hockney's analysis of the "48 � 48 Plasma Problem"is
the same as (5), except that the block coe�cient matrix also has I in the (1;m) and (m; 1)
entries.

3 Some Preliminary Results

Before we describe the method of Block Cyclic Reduction, let us study the matrix A in
(4) that arises in the discretization of our model problem. In particular, we shall �nd
the eigenvalues of A. More generally, we seek the eigenvalues of the m � m tridiagonal,
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symmetric matrix T ,

T =

0
BBBBBB@

a b
b a b

. . . . . . . . .

b a b
b a

1
CCCCCCA
:(6)

We will use the following Lemmas.

Lemma 1 The m�m matrix

B =

0
BBBBBB@

2 �1
�1 2 �1

. . .
. . .

. . .

�1 2 �1
�1 2

1
CCCCCCA
;(7)

has eigenvectors

vj = (sin jh; sin 2jh; . . . ; sinmkh)T ;(8)

wtih corresponding eigenvalues

�j = 2 � 2 cos jh;(9)

where j = 1; . . . ;m and h = �=(m+ 1).

Proof. We need to check that Bvj = �jvj. This can be done using the trigonometric
formulae sin(x� y) = sinx cos y � cos x sin y. The kth entry of Bvj is simply

(Bvj)
k = � sin(k � 1)jh + 2 sin kjh� sin(k + 1)jh:

But the sum and di�erence identities for sin imply that

sin(k � 1)jh = sin kjh cos jh� cos kjh sin jh;
sin(k + 1)jh = sin kjh cos jh+ cos kjh sin jh:

Some simple alebgraic manipulation yields

(Bvj)
k = (2 � 2 cos jh) sin kjh = (�jvj)

k:

Q.E.D.

Lemma 2 Suppose the m � m matrix M has eigenvectors v1; . . . ;vm; with correspond-

ing eigenvalues �1; . . . ; �m: Then for any constants � and �; the matrix �M + �I has

eigenvalues ��j + � with corresponding eigenvectors vj.

Proof. The proof is straightforward:

(�M + �I)vj = �Mvj + �Ivj
= �(�jvj) + �vj

(�M + �I)vj = (��j + �)vj:

Q.E.D.
Our main result of the section follows from the previous lemmas.
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Theorem 1 The m�m tridiagonal, symmetric matrix

T =

0
BBBBBB@

a b
b a b

. . .
. . .

. . .

b a b
b a

1
CCCCCCA
;

has eigenvalues �j = a+ 2b cos(j�=(m+ 1)); for j = 1; . . . ;m:

Proof. Write T = �bB + (a+ 2b)I, with B as in lemma 1. By the previous two lemmas,
the eigenvalues of T are (with � = �b, � = a+ 2b)

�j = �b[2� 2 cos(j�=(m+ 1))] + (a+ 2b)
�j = a+ 2b cos(j�=(m+ 1));

Q.E.D.
Applying the previous theorem with a = �4 and b = 1, we see that the eigenvalues of

the matrix A are
�j = �2(2 + cos(j�=m+ 1)); j = 1; . . . ;m:(10)

From (10) we see that �j < 0. This implies that the matrixA is negative de�nite (vTAv < 0
8v 6= 0). Since A has m distinct eigenvalues �1; . . . ; �m, it must have m linearly indepen-
dent eigenvectors. It follows that A is invertible. Since the invertible matrix A is both
symmetric and negative de�nite, any linear system Av = w may be solved numerically
using Gaussian elimination without partial pivoting (cf [3], pp. 207-208). A somewhat
easier way to arrive at this same conclusion is to notice that A is diagonally dominant
(The absolute value of each diagonal element of A is greater than or equal to the sum of
the absolute values of the other entries in its row, with strict inequality for at least one
row.) Alternatively, a linear system Av = w may be solved using scalar cyclic reduction
as described by Bondeli and Gander in [1]. Equation (10) also shows that 2 < j�j j < 6 8j.
This fact will be used later during our discussion of the accuracy of the basic Block Cyclic
Reduction algorithm which we now describe.

4 Block Cyclic Reduction

We shall illustrate the method of Block Cyclic Reduction (BCR) in the context of (5).
The method proceeds in two stages: reduction and backsubstitution. During each step of
the reduction stage, we eliminate approximately half the unknowns in the system. After
O(log2 n) reductions we are left with a 1 � 1 block system. After solving this system, the
previously eliminated unknowns are computed by backsubstitution.

4.1 The Reduction Stage of BCR

Assume for simplicity that the system size n is of the form n = 2k+1 � 1: (The case for
general n is described by Roland Sweet in [8].) Organize the n block equations of (5) into
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groups of the three:

uj�2 + Auj�1 + uj = bj�1
uj�1 + Auj + uj+1 = bj

uj + Auj+1 + uj+2 = bj+1

(11)

for each j = 2; 4; . . . ; n � 3; n � 1 (where we set u0 = un+1 = 0). If we multiply the
middle equation of (11) by �A and then add the three equations, we get

uj�2 + (2I �A2)uj + uj+1 = b
(1)
j j = 2; 4; . . . ; n � 3; n� 1;(12)

where b(1)j = bj�1�Abj + bj+1. Note that (12) only involves uj's with an even index. The
\reduced" linear system correspronding to (5) is approximately half the size of (5) and is
given by 2

6666664

A(1) I
I A(1) I

. . . . . . . . .

I A(1) I
I A(1)

3
7777775

2
6666664

u2

u4
...

un�3

un�1

3
7777775
=

2
66666664

b
(1)
2

b
(1)
4
...

b
(1)
n�3

b
(1)
n�1

3
77777775
;(13)

where A(1) = 2I �A2. Note that (13) is an n�1
2 � n�1

2 = (2k�1)� (2k �1) linear system of
exactly the same form as (5). Therefore, we can apply the same reduction process to (13).
Since the reduction step preserves the block symmetric tridiagonal form, we can apply the
reduction step repeatedly. After k reductions (n = 2k+1 � 1) we will be left with a 1 � 1
block system

A(k)u2k = b
(k)
2k :(14)

In general, during the rth reduction step we

� eliminate u1�2r�1; u3�2r�1; u5�2r�1; . . . ; u(2k+2�r�1)�2r�1

� retain u1�2r; u2�2r ; u3�2r ; . . . ; u(2k+1�r�1)�2r

The operator and RHS of the (2k+1�r � 1) � (2k+1�r � 1) reduced system created by the
rth reduction step are

2
6666664

A(r) I
I A(r) I

. . . . . . . . .

I A(r) I
I A(r)

3
7777775

and

2
666666664

b
(r)
1�2r

b
(r)
2�2r

...
b
(r)
(2k+1�r�2)�2r

b
(r)
(2k+1�r�1)�2r

3
777777775
;

respectively, where the A(r)'s and b
(r)
j 's are de�ned by the recurrence relations

A(0) = A; A(r+1) = 2I � (A(r))
2

(15)

b
(0)
j = bj; b

(r+1)
j = b

(r)
j�2r �A(r)b

(r)
j + b

(r)
j+2r(16)

Solving (14) is discussed later. Once (14) has been solved, the reduction phase of BCR is
complete and the backsubstitution phase begins.
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4.2 The Backsubstitution Stage of BCR

The system (5) is equivalent to the reduced system (13) along with the \eliminated" system2
6666664

A
A

. . .

A
A

3
7777775

2
6666664

u1

u3
...

un�2

un

3
7777775

2
6666664

b1 � u2

b3 �u2 � u4
...

bn�2 � un�3 �un�1

bn � un�1

3
7777775

(17)

The diagonal block system (17) follows by simply moving all even indexed ui's from the
LHS to the RHS of the odd-indexed block matrix equations (3). Each reduction step
produces both a reduced system and a corresponding eliminated system to be solved during
backsubstitution. In general, the rth reduction step produces the eliminated system which
has the diagonal block coe�cient matrix with A(r�1) on the diagonal and RHS2

666666664

b
(r�1)
1�2r�1 � u1�2r

b
(r�1)
3�2r�1 � u1�2r � u2�2r

...
b
(r�1)
(2k+2�r�3)�2r�1 � u(2k+1�r�2)�2r � u(2k+1�r�1)�2r

b
(r�1)
(2k+2�r�1)�2r�1 � u(2k+1�r�1)�2r

3
777777775
:(18)

After computing u2k from (14), backsubstitution begins (step 1) by solving the eliminated
system produced by the kth reduction step�

A(k�1)

A(k�1)

� �
u2k�2k�1

u2k+2k�1

�
=

"
b
(k�1)
2k�2k�1 � u2k

b
(k�1)
2k+2k�1 � u2k

#
:

The vectors u2k�2k�1; u2k ; and u2k+2k�1 can then be used to solve the eliminated system
produced by the (k � 1)st reduction step. Continuing in this way, all the ui can be
computed in k backsubstitution steps. The last step performed is to solve (17). During
the rth backsubstitution step we solve for the unknowns uj with

j = 2k�r + l � 2k�r+1 l = 0; 1; 2; . . . ; 2r � 1:

The backsubstitution stage requires the solution of systems of the form A(r)v = w, where
the RHS w involves the b

(r)
j 's (see (18)). In fact, (14) is also of this form.

4.2.1 Solving the Linear Systems in BCR

We shall prove the following factor decomposition for A(r):

Theorem 2 For r = 1; 2; . . . ; k,

A(r) = �
2rY
l=1

(A+ 2 cos(�
(r)
l )I);

where

�
(r)
l =

2l � 1

2r+1
�:
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Proof. From (15) we see that A(r) is a polynomial of degree 2r in A. So for each r =
0; 1; . . . ; k; 9 a polynomial p2r (a) of degree 2r such that

A(r) = p2r(A);

where the polynomials p2r (a) must satisfy

p20(a) � a
p2r+1(a) = 2 � (p2r (a))2:

(19)

We will use the following lemma.

Lemma 3 For r = 0; 1; 2; . . . ; k,

p2r (�2 cos �) = �2 cos(2r�):

Proof of Lemma. The proof proceeds by induction on r. The formula is true for r = 0
since p20(�2 cos �) = �2 cos � = �2cos(20�). Now suppose p2r(�2 cos �) = �2 cos(2r�) for
some r such that 0 � r � k � 1. Then

p2r+1 (�2 cos �) = 2� (p2r(�2 cos �))
2

= 2� (�2 cos(2r�))2

= 2(1� 2 cos2(2r�))

= �2 cos(2 � 2r�)

p2r+1 (�2 cos �) = �2 cos(2r+1�):

This completes the proof of the lemma.
By the lemma, p2r (a) has 2

r distinct real zeros at

al = �2 cos(
2l � 1

2r+1
�) = �2 cos �

(r)
l ; l = 1; 2; 3; . . . ; 2r:

In the non-trival cases r � 1, the coe�cient of A2r in p2r(A) is clearly �1. Therefore,
for r = 1; 2; . . . ; k, we have

p2r (a) = �
2rY
l=1

(a+ 2 cos �(r)l )

and

A(r) = p2r (A) = �
2rY
l=1

(A+ 2 cos(�
(r)
l )I):

Q.E.D.
Now de�ne A

(r)
l � A+ 2 cos(�

(r)
l )I so that

A(r) = �
2rY
l=1

A
(r)
l :(20)
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To solve A(r)v = w, we solve

A
(r)
1 v1 = �w =) v1;

A
(r)
2 v2 = v1 =) v2;

...

A
(r)
2r v2r = v2r�1 =) v2r � v:

The m �m invertible matrices A(r)
l are all diagonally dominant, so each of the 2r above

linear systems can be solved by Gaussian elimination without pivoting. Alternatively, these
linear systems may be solved using scalar cyclic reduction because each A

(r)
l is symmetric

and tridiagonal.

4.2.2 Performing the Matrix-Vector Multiplications in BCR

To compute A(r)v, we could perform the 2r matrix multiplications

�A
(r)
1 v = y1 =) y1;

A
(r)
2 y1 = y2 =) y2;

...

A
(r)
2r y2r�1 = y2r =) y2r � A(r)v:

It is also possible to take advantage of the recursive nature of the polynomials p2r(a) in
the proof of theorem 2.

Theorem 3 Let f�sg
2r
s=0 be de�ned by the recurrence relation

�0 = �2v; �1 = Av;
�s = �A�s�1 � �s�2; s = 2; 3; . . . ; 2r:

(21)

Then �2r = A(r)v.

Proof. We shall use some elementary trigonometric results.

Lemma 4 The following identities for cos(s�) and cosh(s�) hold:

cos(s�) = 2 cos � cos((s� 1)�)� cos((s� 2)�)
cosh(s�) = 2 cosh � cosh((s� 1)�) � cosh((s� 2)�)

(22)

Proof of Lemma. Using the sum and product formulae

cos(x+ y) = cos x cos y � sinx sin y;

cosh(x+ y) = cosh x cosh y + sinh x sinh y;

sin x sin y = (cos(x� y)� cos(x+ y))=2;

sinhx sinh y = (cosh(x+ y)� cosh(x� y))=2;

9



we have

cos s� = cos(� + (s� 1)�)

= cos � cos((s� 1)�) � sin((s� 1)�) sin �

cos s� = cos � cos((s� 1)�) � (
cos((s� 2)�)� cos s�

2
)

Solving the last equation for cos s� gives the desired result. The result for cosh is proven
similarly.

For s = 0; 1; . . . ; 2r let

~ps(a) =
�
�2 cos s� if jaj � 2, a = �2 cos �
�2 cosh s� if jaj > 2, a = �2 cosh �

:

Then using lemma 4 we can quickly verify that for s � 2,

~ps(a) = �a~ps�1(a)� ~ps�2(a) 8a:

It's also easy to check that ~p0(a) � �2 and ~p1(a) � a: Since ~ps(a) = ps(a) 8s =
1; 2; 4; . . . ; 2r, it follows that

Arv = p2r (A)v = ~p2r(A)v:

We can therefore compute A(r)v via the sequence (21).
Q.E.D.

4.3 The Accuracy of BCR

Suppose we write a computer program to compute A(r)v using the sequence (21) as sug-
gested in Section 4.2.2. In the computation of each �s; there will be some roundo� error
�s�1: The actual sequence computed is thus given by

~�0 = �2v; ~�1 = Av + �0
~�s = �A~�s�1 � ~�s�2 + �s�1 s = 2; 3; . . . 2r:

(23)

De�ne the error sequence f"sg2
r

s=0 by "s = ~�s � �s, so that we have the error recurrence

"0 = 0; "1 = �0
"s = �A"s�1 � "s�2 + �s�1; s = 2; . . . ; 2r:

(24)

Since A is real and symmetric, 9 a real, orthogonal matrix Q such that

QTAQ = � = diag(�i)
m
i=1;

where �1; �2; . . . ; �m are the eigenvalues of the matrix A. Multiplying each equation in
(24) by QT , we get

�0 = 0; �1 = � 0

�s = ���s�1 � �s�2 + � s�1; s = 2; . . . ; 2r;
(25)
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where �l = QT"l and � l = QT�l. If we denote the ith component of a vector w by (w)i,
then for each j = 1; . . . ;m, we can rewrite (25) as a scalar recurrence

(�0)
j = 0; (�1)

j = (� 0)j

(�s)
j = ��j(�s�1)

j � (�s�2)
j + (� s�1)j; s = 2; . . . ; 2r;

(26)

In order to avoid subscript and superscript confusion, let us work with the scalar recurrence

�0 = 0; �1 = �0
�s = ���s�1 � �s�2 + �s�1:

(27)

Now de�ne the recurrence relation

0 = 0; 1 = 1
s = ��s�1 � s�2:

(28)

Then a simple induction shows that the solution to (27) is given by

�s =
s�1X
i=0

s�i�i:(29)

We now seek a closed form for s.
Case 1. j�j < 2:
Let � = �2 cos �. Then the characteristic equation

x2 � 2(cos �)x+ 1 = 0

has distinct roots
x� = e�i�:

The closed form is thus given by

s = Ceis� +De�is�;

where C and D are constants determinined by the initial conditions 0 and 1. Using these
initial conditions, we �nd that D = �C and C = 1=(ei� � e�i�): Therefore,

s =
eis� � e�is�

ei� � e�i�

s =
sin(s�)

sin�
(30)

Case 2. j�j > 2:
Let � = �2 cosh �: Then characteristic equation

x2 � 2(cosh �)x+ 1 = 0

has distinct roots
x� = cosh�� sinh�:

11



Using the formulae

cosh � = e�+e��

2 ;

sinh � = e��e��

2
;

(31)

we have
x� = e��:

Using these initial conditions 0 and 1 along with the hyperbolic trigonometry formulae
(31), we �nd that the closed form solution to (28) is

s =
sinh(s�)

sin�
:(32)

Case 3. � = �2.
The characteristic equation

x2 � 2x+ 1 = 0

has a double root at x = 1. The closed form is thus given by

s = C(1)s +Ds(1)s = C +Ds:

From the initial conditions, it follows easily that

s � s:

Case 4. � = 2.
The characteristic equation

x2 + 2x+ 1 = 0

has a double root at x = �1. The closed form is thus given by

s = C(�1)s +Ds(�1)s:

From the initial conditions, we �nd that

s = s(�1)s+1:

To summarize, the closed form solution to (28) is given by

s =

8>>>><
>>>>:

sin(s�)
sin� ; if j�j < 2; � = �2 cos �

sinh(s�)
sinh� ; if j�j > 2; � = �2 cosh �
s if � = �2
s(�1)s+1 if � = 2

:

Putting all the preceeding results in this section together,

(�s)
j =

s�1X
i=0

(s�i)
j(� i)

j;(33)

12



where

(s)
j =

8>>>>><
>>>>>:

sin(s�j)
sin�j

; if j�j j < 2; �j = �2 cos �j
sinh(s�j)
sinh�j

; if j�j j > 2; �j = �2 cosh �j
s if �j = �2
s(�1)s+1 if �j = 2

:(34)

Note that for j�j j < 2, the sequence f(s)jgs remains bounded as s " 1:

j(s)
jj =

�����sin s�jsin�j

����� � 1

j sin�jj
;

where �j = �2 cos �j. For j�jj = 2, the sequence f(s)jgs is clearly unbounded as s " 1.
This is also true when j�jj > 2. In this case, f(s)jgs is a positive, strictly increasing
sequence growing exponentially in s at the rate

d(s)j

ds
=

�j
e�j � e��j

�
es�j + e�s�j

�
:

Thus for j�jj � 2, the error component ("2r)j = (Q�2r)
j may be unacceptably large

with respect to the desired value (�2r)
j � (A(r)v)j . As we saw in section 3, each of the

eigenvalues �j, j = 1; . . . ;m of A obtained in discretizing our model problem satis�es
j�j j > 2. So computing A(r)v via the recurrence relation (21) is a numerically unstable
method for our model problem. The underlying di�culty in computing A(r)v is that the
matrix A(r) becomes very ill-conditioned as r increases. A more precise statement of this
di�culty may be found in the landmark paper by Buzbee, Golub, and Nielson ([2], p. 648).

5 Buneman's Algorithm - A Stable Variant of BCR

5.1 Description of the Algorithm

Consider the jth equation of the �rst reduced system:

uj�2 + (2I �A2)uj + uj+2 = b
(1)
j :

The RHS is given by

b
(1)
j = bj�1 + bj+1 �Abj

= A(1)A�1bj + bj�1 + bj+1 � 2A�1bj:

The last equality follows from the fact that

A(1)A�1 = (2I �A2)A�1 = 2A�1 �A:

If we let p(1)
j = A�1bj and q

(1)
j = bj�1 + bj+1 � 2A�1bj; then we can write

b
(1)
j = A(1)p

(1)
j + q

(1)
j :

13



In general, we have

b
(r+1)
j = b

(r)
j�2r + b

(r)
j+2r �A(r)b

(r)
j(35)

= A(r+1)(A(r))�1b(r)j + b
(r)
j�2r + b

(r)
j+2r � 2(A(r))�1b(r)j

b
(r+1)
j = A(r+1)p

(r+1)
j + q

(r+1)
j ;

where
p
(r+1)
j = (A(r))�1b

(r)
j

q
(r+1)
j = b

(r)
j�2r + b

(r)
j+2r � 2(A(r))�1b(r)j :

(36)

The reorganization of the computation of the b
(r)
j 's is due to Oscar Buneman (cf [2]). We

can get a recurrence relation for the p(r)
j 's and q

(r)
j 's by substituting (36) into (35) and

using the identity (A(r))2 = 2I �A(r+1):

b
(r+1)
j = b

(r)
j�2r + b

(r)
j+2r �A(r)b

(r)
j

= A(r)p
(r)
j�2r + q

(r)
j�2r +A(r)p

(r)
j+2r + q

(r)
j+2r �

A(r)(A(r)p
(r)
j + q

(r)
j )

A(r+1)p
(r+1)
j + q

(r+1)
j = A(r+1)(p

(r)
j � (A(r))�1(p

(r)
j�2r + p

(r)
j+2r � q

(r)
j )) +

q
(r)
j�2r + q

(r)
j+2r �

2(p(r)
j � (A(r))�1(p(r)

j�2r + p
(r)
j+2r � q

(r)
j )):

Comparing terms, we get

p
(r+1)
j = p

(r)
j � (A(r))�1(p

(r)
j�2r + p

(r)
j+2r � q

(r)
j );(37)

q
(r+1)
j = q

(r)
j�2r + q

(r)
j+2r � 2p(r+1)

j :(38)

We compute the p
(r)
j 's and q

(r)
j 's as follows:

1. For j = 1; 2; . . . ; 2k+1 � 1; initialize p
(0)
j = 0; q

(0)
j = bj :

2. For r = 1; 2; . . . ; k (reduction step r)
For j = 1 � 2r; 2 � 2r; . . . ; 2k+1�r � 2r � 2k+1

� Solve A(r�1)v = p
(r�1)
j�2r�1 + p

(r�1)
j+2r�1 � q

(r�1)
j for v using the method of section

4.2.1.

� Compute p
(r)
j = p

(r�1)
j � v:

� Compute q(r)j = q
(r�1)
j�2r�1 + q

(r�1)
j+2r�1 � 2p(r)

j :

To do the backsubstitution steps, note that

uj�2r +A(r)uj + uj+2r = A(r)p
(r)
j + q

(r)
j

A(r)(uj � p
(r)
j ) = q

(r)
j � uj�2r � uj+2r :

14



So to compute uj from uj�2r and uj+2r , �rst solve

A(r)v = q
(r)
j � uj�2r � uj+2r

for v; and then compute
uj = p

(r)
j + v:

5.2 Proof of Stability

Our �rst step in showing the stability of the Buneman algorithm is to write out the p
(r)
j 's

and q
(r)
j 's in terms of the unknown approximations uj .

Theorem 4 For the Buneman algorithm, the following relations hold:

p
(r)
j = uj + z

(r)
j ;

q
(r)
j = uj�2r + uj+2r �A(r)z

(r)
j ;

where

z
(r)
j = (�1)r+1S(r)

0
@2r�1X

k=1

�
uj�(2k�1) + uj+(2k�1)

�1A(40)

and

S(r) = (A(r�1)A(r�2) . . .A(0))�1:(41)

Proof. The proof is by induction on r. First let us check the base case r = 1.

p
(1)
j = p

(0)
j � (A(0))�1(p

(0)
j�1 + p

(0)
j+1 � q

(0)
j )

= A�1q
(0)
j = A�1bj

= A�1(uj�1 +Auj + uj+1)
= uj +A�1(uj�1 + uj+1)

p
(1)
j = uj + z

(1)
j

We also have

q
(1)
j = q

(0)
j�1 + q

(0)
j+1 � 2p(1)

j

= bj�1 + bj+1 � 2(uj + z
(1)
j )

= (uj�2 +Auj�1 + uj) + (uj +Auj+1 + uj+2)

�2(uj + z
(1)
j )

= uj�2 + uj+2 +A2A�1(uj�1 + uj+1)

�2z(1)
j

= uj�2 + uj+2 + (A2 � 2I)z(1)
j

q
(1)
j = uj�2 + uj+2 �A(1)z

(1)
j

15



Now we perform the inductive step and show that the theorem statement holds for the
r+1 case assuming the r case as the inductive hypothesis. Again, �rst we do the p(r)

j case

followed by the q
(r)
j case. We start in both cases with the basic recursive de�nitions for

p
(r+1)
j and q

(r+1)
j :

p
(r+1)
j = p

(r)
j � (A(r))�1(p

(r)
j�2r + p

(r)
j+2r � q

(r)
j );

= (uj + z
(r)
j )� (A(r))�1(uj�2r + z

(r)
j�2r

+uj+2r + z
(r)
j+2r

�(uj�2r + uj+2r �A(r)z
(r)
j ))

= uj � (A(r))�1(z(r)
j�2r + z

(r)
j+2r)

p
(r+1)
j = uj + z

(r+1)
j :

The last step follows from the fact that

z
(r+1)
j = �(A(r))�1(z(r)

j�2r + z
(r)
j+2r ):(42)

Equation (42) from the de�nitions of z
(r)
j and S(r) given in equations (40) and (41), re-

spectively.
For the q(r)j case, we have

q
(r+1)
j = q

(r)
j�2r + q

(r)
j+2r � 2p(r+1)

j

= (uj�2r�2r + uj�2r+2r �A(r)z
(r)
j�2r )

+(uj+2r�2r + uj+2r+2r �A(r)z
(r)
j+2r )

�2(uj + z
(r+1)
j )

= uj�2r+1 + uj+2r+1

(A(r))2(A(r))�1(z(r)
j�2r + z

(r)
j+2r)� 2z(r+1)

j

= uj�2r+1 + uj+2r+1 � (2I � (A(r))2))z
(r+1)
j

q
(r+1)
j = uj�2r+1 + uj+2r+1 �A(r+1)z

(r+1)
j

Q.E.D.
The next two theorems will allow us to estimate the two quantities

�
p(r)

j � uj


2

�
q(r)j � (uj�2r + uj+2r)


2
.

Theorem 5
S(r)


2
< e(�2

r�1)�1 , where

�i = cosh�1(��i=2)

and f�igmi=1 are the eigenvalues of A.
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Proof. Working from the de�nition of S(r),

S(r)

2

=


r�1Y
j=0

(A(j))�1


2

�
r�1Y
j=0

(A(j))�1

2

�
r�1Y
j=0

max
f�ig

 
1

jp2j(�i)j

!
;

where the p2j are as de�ned in section 4.2.1. Using a proof similar to the proof of Lemma
3, we can show that

p2j(�i) = �2 cosh(2j�i):

It follows that S(r)

2
�

1

2r

r�1Y
j=0

max
f�ig

 
1

cosh(2j�i)

!
:(43)

But we know that �i = �2(2� cos(i�=m+ 1)): So

�i = cosh�1(2 � cos(i�=m+ 1))

and
1 < �1 < �2 < � � � < �m:

Therefore,

max
f�ig

 
1

cosh(2j�i)

!
=

1

cosh(2j�1)
:

Substituting the previous result into (43), we get

S(r)

2
�

1

2r

r�1Y
j=0

 
1

cosh(2j�1)

!
:

Writing out cosh(2j�1) in terms of exponentials we �nd that

S(r)

2
�

r�1Y
j=0

1

e2j�1 + e�2j�1

�
r�1Y
j=0

e�2
j�1

1 + e�2j+1�1

<
r�1Y
j=0

e�2
j�1

S(r)

2

< e�(2
r�1)�1

Q.E.D.
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Theorem 6
A(r)S(r)


2
< 2e�m .

Proof. Using essentially the same reasoning as in the proof of theorem 5 we can boundA(r)S(r)

2
by

A(r)S(r)

2
�

1

2r�1
max
f�ig

8<
:
0
@r�1Y

j=0

1

cosh(2j�i)

1
A � cosh(2r�i)

9=
;(44)

Now we want to show that the maximum in (44) occurs at �m. De�ne the functions 	l(�)
by

	l(�) =

0
@l�1Y

j=0

1

cosh(2j�)

1
A � cosh(2l�):

We claim that 	l is an increasing function on � 2 (0;1) for each l � 1. This can be shown
by induction on l. For the base case l = 1, we have

	1(�) =
cosh 2�

cosh �

=
e2� + e�2�

e� + e��

Then some simple calculus and algebraic manipulation yields

	0
1(�) =

(e3� � e�3�) + 3(e� � e��)

(e� + e��)2
:

Hence,
	0

1(�) > 0 8� > 0:

So 	1 is increasing on � 2 (0;1). Given the induction hypothesis that 	l is increasing on
� 2 (0;1) for a �xed l � 1, we must show that 	l+1 is also increasing on this interval.
Using the trigonometric identity for cosh(2x),

cosh(2l+1�) = cosh(2 � 2l�) = cosh2(2l�) + sinh2(2l�):

Thus we can write

	l+1(�) =

 
1 +

sinh2(2r�)

cosh2(2r�)

!
	l(�):(45)

It's an easy matter to check that

d

dx

sinh2 x

cosh2 x
=

2 cosh x sinhx

cosh4 x
> 0 8x > 0:

This means that the �rst factor in the RHS of (45) is increasing on � 2 (0;1). By the
inductive hypothesis, the second factor is also increasing on this interval. Therefore 	l+1

is increasing on � 2 (0;1) and the inductive proof is complete. Since

1 < �1 < �2 < � � � < �m;
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we can conclude that

max
f�ig

8<
:
0
@r�1Y
j=0

1

cosh(2j�i)

1
A � cosh(2r�i)

9=
; =

0
@r�1Y

j=0

1

cosh(2j�m)

1
A � cosh(2r�m)(46)

Substituting (46) into (44):

A(r)S(r)

2
�

1

2r�1

0
@r�1Y

j=0

1

cosh(2j�m)

1
A � cosh(2r�m)

�

0
@r�1Y
j=0

1

e2j�m + e�2j�m

1
A�e2r�m + e�2

r�m
�

< e�(2
r�1)�m

�
e2

r�m + e�2
r�m
�

< e�m(1 + e�2
r+1�m)A(r)S(r)


2

< 2e�m

Q.E.D.
Using theorems 4 and 5, and the triangle inequality, we see thatp(r)

j � uj


2
� �e�(2

r�1)�1 ;(47)

where

� =
nX

j=1

kujk2 :

Therefore p(r)
j is a good approximation to uj for large values of r. Using theorems 4 and

6, we also see that q(r)j � (uj�2r + uj+2r )

2
< 2�e�m :(48)

So
q(r)j


2
remains bounded during calculation. Therefore, Buneman's algorithm gives

numerically stable results when used to solve our model problem.

6 Identifying Parallelism in Buneman's Algorithm

The discussion in this section closely follows Sweet's discussion ([9], pp.763-764). We want
to determine the computations in the Buneman variant of BCR that may be performed
in parallel. During the rth reduction step we compute the vector pairs (p(r)

j ;q
(r)
j ) for

j = 1 ��; 2 ��; . . . ; (2k+1�r� 1) ��; where � = 2r: These computations are done according

to the instructions given in the section 5.1. Note that p(r)
j depends only on p(r�1)

j , p(r�1)
j�2r�1 ,

p
(r�1)
j+2r�1 , and q

(r�1)
j which were computed during the (r�1)st reduction step. Similarly, q(r)j

depends only on p(r)
j and the vectors q(r�1)

j�2r�1 , q
(r�1)
j+2r�1 which were also computed during the

previous reduction step. Thus, during the rth reduction step we can compute each of the
2k+1�r � 1 vector pairs (p

(r)
j ;q

(r)
j ) in parallel. Since the number of vector pairs to compute
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is roughly halved with each successive reduction, the reduction stage bene�ts less and less
from parallelization as the reduction stage proceeds. Furthermore, at reduction step r we
must solve 2r�1 tridiagonal linear systems as outlined in section 4.2.1 in order to compute
each pair (p

(r)
j ;q

(r)
j ). Thus, in addition to the collapse in parallelism, the amount of work

to done to compute a vector pair doubles with each successive reduction step.
In contrast, the backsubstitution phase begins very serial and becomes more and more

parallel as backsubstitution proceeds. During the rth backsubstitution step, we solve
2k�r tridiagonal systems in order to compute each of the unknowns u2k�r+l�2k�r+1 for
l = 0; 1; . . . ; 2r � 1. Since all eliminated systems are block diagonal, we can compute
these uj's in parallel using 2r processors. Thus the parallelism of the backsubstitution
phase doubles, while the work to compute a particular uj is halved with each successive
backsubstitution step.

7 The Sweet Device for Parallelization

The collapse of parallelism during the reduction stage could be avoided if we could solve a
system such as A(r)v = w in a parallel manner instead of the serial manner suggested in
section 4.2.1. We want to compute

v = (A(r))�1w:

We know that A(r) is a polynomial of degree 2r in A and that it is factored as in (20).
The brilliant idea of Roland Sweet in [9] to obtain parallelism is to use the partial fraction
expansion of (A(r))�1. We need the following lemma from complex analysis:

Lemma 5 Let p(x) and q(x) be relatively prime polynomials with deg q < deg p = n.
Suppose the roots, �1; �2; . . . ; �n of p(x) are distinct. Then

q(x)

p(x)
=

nX
l=1

cl
x� �l

;

where

cl =
q(�l)

p0(�l)
:

Applying the lemma with q(x) � 1 and p(x) = p2r (x), the solution of A(r)v = w can be
written as

v =
2rX
l=1

c
(r)
l (A+ 2�(r)l I)�1w;

where

c
(r)
l =

1

p02r (�2�
(r)
l )

:

If we let v
(r)
l = c

(r)
l (A+ 2�

(r)
l )�1w, then

v =
2rX
l=1

v
(r)
l :
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The vectors v
(r)
l , l = 1; . . . ; 2r may be computed in parallel using 2r processors, where the

lth processor solves the tridiagonal linear system

(A+ 2�(r)l I)v(r)
l = w:

We recover v by summing the output of the 2r processors. During step r of the reduction
phase in Buneman's algorithm, there are 2k+1�r�1 independent systems to solve involving
A(r�1). We can thus perform the rth reduction step using

(2k+1�r � 1)(2r�1) = 2k � 2r�1

parallel processes. During step r of the backsubstitution phase, we must solve 2r inde-
pendent systems involving A(k�r). Thus we can perform the rth backsubstitution step of
Buneman's algorithm using

2r � 2k�r = 2k

parallel processes.

8 Conclusion

The method of cyclic reduction can be applied to Poisson's equation with boundary con-
ditions other than Dirichlet. For example, we may specify the normal derivative @u=@�
on @R. This is called Neumann boundary conditions. We may also have periodic bound-
ary conditions u(a; y) = u(b; y); u(x; c) = u(x; d). When Poisson's equation with these
two types of boundary conditions is discretized, we get coe�cient matrices (MN for the
Neumann case and MP for the periodic case):

MN =

2
6666664

AN 2I
I AN I

. . . . . . . . .

I AN I
2I AN

3
7777775

and

MP =

2
6666664

AP I I
I AP I

. . . . . . . . .

I AP I
I I AP

3
7777775
;

where

AN =

0
BBBBBB@

�4 2
1 �4 1

. . . . . . . . .

1 �4 1
2 �4

1
CCCCCCA
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and

AP =

0
BBBBBB@

�4 1 1
1 �4 1

. . . . . . . . .

1 �4 1
1 1 �4

1
CCCCCCA
:

Systems with coe�cient matrix MN or MP may be reduced to systems half the original
size using the same ideas as in section 4.1. An excellent source for the details of solving
Poisson's equation with Dirichlet, Neumann, or periodic boundary conditions is [2].

The Poisson problem (i.e., �nding a function whose laplacian is equal to a given function
in the interior of a region with certain boundary conditions) is not the only problem for
which cyclic reduction may be applied. The method also applies when we discretize (using
�nite di�erence approximations for the derivatives) elliptic partial di�erential equations of
the form

a(x)
@2u

@x2
+ b(x)

@u

@x
+ c(x)u+

@2u

@y2
= f:(49)

For example, with Dirichlet boundary conditions, the discretization of (49) using central
di�erence approximations for the derivatives produces a linear system with coe�cient ma-
trix of the form 2

6666664

A �I
�I A �I

. . . . . . . . .

�I A �I
�I A

3
7777775
:(50)

If we multiply this system with coe�cient matrix (50) by �1, then we are get an equivalent
system of exactly the same form as (5) with �A in place of A. Thus, with Dirichlet
boundary conditions, the underlying linear system for the problems (5) and (49) are the
same. This is also true when Neumann or periodic boundary conditions have been speci�ed.

In this paper we dealt only with the case when the size of the coe�cient matrix is of
the form n = 2k+1 � 1. In [8], Roland Sweet provides extensions to the Buneman variant
of BCR for equations of the form (49) with Dirichlet, Neumann, or periodic boundary
conditions. For each of these boundary conditions, the extended algorithm presented by
Sweet reduces to the Buneman algorithm in the case n = 2k+1 � 1.
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