
CVODE User Guide

Scott D. Cohen Alan C. Hindmarsh

October 5, 1994





CONTENTS iii

Contents

1 Introduction 1

1.1 Historical Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.2 Mathematical Setting : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1

1.3 Reading This User Guide : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

2 Usage of CVODE 4

2.1 Overview : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4

2.2 Usage Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3 Dense Solver Sample Program 9

4 Band Solver Sample Program 15

5 Krylov Solver Sample Program 22

6 CVODE Linear Solvers 33

6.1 Direct Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

6.1.1 CVDENSE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

6.1.2 CVBAND : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 35

6.1.3 CVDIAG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

6.2 Iterative Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

6.2.1 CVSPGMR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

7 Types real and integer 39

7.1 Description : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

7.2 Changing Type real : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39

7.3 Changing Type integer : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 40

8 Demonstration Programs 41

8.1 Direct Demonstration Program, cvdemd.c : : : : : : : : : : : : : : : : : : : : : : : : : 41

8.2 Krylov Demonstration Program, cvdemk.c : : : : : : : : : : : : : : : : : : : : : : : : : 41

9 Overall Structure 42



iv CONTENTS

10 Reference Guide 47

10.1 Main CVODE Integrator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

10.1.1 Options : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

10.1.2 The Right Hand Side Function, Type RhsFn : : : : : : : : : : : : : : : : : : : 48

10.1.3 CVodeMalloc : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

10.1.4 CVode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

10.1.5 CVodeDky : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51

10.1.6 CVodeFree : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

10.1.7 Optional Inputs and Outputs : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

10.2 CVODE Linear Solvers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.2.1 CVDENSE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.2.1.1 CVDense : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.2.1.2 Type CVDenseJacFn : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

10.2.1.3 Statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

10.2.2 CVBAND : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

10.2.2.1 CVBand : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56

10.2.2.2 Type CVBandJacFn : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

10.2.2.3 Statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

10.2.3 CVDIAG : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

10.2.3.1 CVDiag : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

10.2.3.2 Statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59

10.2.4 CVSPGMR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

10.2.4.1 CVSpgmr : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

10.2.4.2 Type CVSpgmrPrecondFn : : : : : : : : : : : : : : : : : : : : : : : : 61

10.2.4.3 Type CVSpgmrPSolveFn : : : : : : : : : : : : : : : : : : : : : : : : : 63

10.2.4.4 Statistics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

10.3 Generic Packages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 64

10.3.1 VECTOR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 65

10.3.1.1 Type N Vector : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66

10.3.1.2 N Vector Accessor Macros : : : : : : : : : : : : : : : : : : : : : : : : 66

10.3.1.3 N Vector Kernels : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67



LIST OF FIGURES v

10.3.1.3.1 Memory Allocation and Deallocation : : : : : : : : : : : : : 67

10.3.1.3.2 Arithmetic : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

10.3.1.3.3 Measures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

10.3.1.3.4 Miscellaneous : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

10.3.1.3.5 Debugging Tools : : : : : : : : : : : : : : : : : : : : : : : : : 71

10.3.2 DENSE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72

10.3.2.1 Type DenseMat : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

10.3.2.2 DenseMat Accessor Macros : : : : : : : : : : : : : : : : : : : : : : : : 73

10.3.2.3 DenseMat Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

10.3.2.4 Small Dense Matrix Functions : : : : : : : : : : : : : : : : : : : : : : 75

10.3.3 BAND : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78

10.3.3.1 Type BandMat : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

10.3.3.2 BandMat Accessor Macros : : : : : : : : : : : : : : : : : : : : : : : : 80

10.3.3.3 BandMat Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

10.3.3.4 Small Band Matrix Functions : : : : : : : : : : : : : : : : : : : : : : : 82

10.3.4 SPGMR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

References 87

Index 88

List of Figures

1 Diagram of the user program and CVODE package : : : : : : : : : : : : : : : : : : : : 5

2 Overall structure diagram of the CVODE package : : : : : : : : : : : : : : : : : : : : 43

3 Diagram of the storage for a band matrix of type BandMat : : : : : : : : : : : : : : : 81

List of Tables

1 List of �les in CVODE package : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 45

2 List of vector kernels and usage by CVODE code modules : : : : : : : : : : : : : : : : 46





1

1 Introduction

1.1 Historical Background

CVODE is a solver for sti� and nonsti� initial value problems for systems of ordinary di�erential
equation (ODEs). It is written in C, and based on two older ODE solvers written in Fortran.

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that
have been written at LLNL in recent years are VODE [1] and VODPK [3]. VODE is a general purpose
solver that includes methods for sti� and nonsti� systems, and in the sti� case uses direct methods
(full or banded) for the solution of the linear systems that arise at each implicit step. Externally,
VODE is very similar to the well known solver LSODE [4]. VODPK is a variant of VODE that uses a
preconditioned Krylov (iterative) method for the solution of the linear systems. VODPK is a powerful
tool for large sti� systems because it combines established methods for sti� integration, nonlinear
iteration, and Krylov (linear) iteration with a problem-speci�c treatment of the dominant source of
sti�ness, in the form of the user-supplied preconditioner matrix [2]. The capabilities of both VODE
and VODPK have been combined in the C-language package CVODE.

In addition to translating the VODE and VODPK algorithms into C, we have reorganized the
overall algorithm considerably. One key feature of the CVODE organization is that the linear system
solvers comprise a layer of code modules that is separated from the integration algorithm, allowing for
easy modi�cation and expansion of the linear solver array. A second key feature is a separate module
devoted to vector operations; this will facilitate the planned extension of CVODE to multiprocessor
environments with minimal impacts on the rest of the solver.

There are several motivations for choosing the C language for CVODE. First, a general movement
away from Fortran and toward C in scienti�c computing is apparent. Second, the pointer, structure,
and dynamic memory allocation features in C are extremely useful in software of this complexity, with
the great variety of method options o�ered. Finally, we prefer C over C++ for CVODE because of
the wider availability of C compilers, the potentially greater e�ciency of C, and the greater ease of
interfacing the solver to applications written in extended Fortran.

1.2 Mathematical Setting

An ODE initial value problem can be written as

_y = f(t; y); y(t0) = y0; y 2 RN ; (1)

where _y denotes the derivative dy=dt. This problem is sti� if it contains one or more strongly damped
modes (i.e. the Jacobian matrix J = @f=@y has an eigenvalue with large negative real part). The
underlying integration methods used in CVODE are variable-coe�cient forms of the Adams and BDF
(Backward Di�erentiation Formula) methods. The numerical solution to (1) is generated as discrete



2 1 INTRODUCTION

values yn at time points tn. The computed values yn obey a linear multistep formula

K1X
i=0

�n;iyn�i + hn

K2X
i=0

�n;i _yn�i = 0: (2)

Here the _yn are computed approximations to _y(tn), hn = tn� tn�1 is the stepsize, and �n;0 = �1. For
use on nonsti� problems, the Adams-Moulton formula is characterized by K1 = 1 and K2 = q, and
the order q varies between 1 and 12. For sti� problems, the BDF formula has K1 = q and K2 = 0,
and the order q varies between 1 and 5. In either case, the nonlinear system

G(yn) � yn � hn�n;0f(tn; yn)� an = 0 , where an �
X
i>0

(�n;iyn�i + hn�n;i _yn�i); (3)

must be solved (approximately) at each time step. In the nonsti� case, this is usually done with simple
functional (or �xed point) iteration. In the sti� case, the solution of (3) is usually done with some
variant of Newton iteration. This requires the solution of linear systems of the form

M [yn(m+1) � yn(m)] = �G(yn(m)); (4)

where M is an approximation to the Newton matrix I � h�n;0J and J = @f=@y is the ODE system
Jacobian. The linear systems arising in the Newton iteration are solved by either a direct or an
iterative method. The direct solvers currently available in CVODE include dense (full) and banded
methods, and a diagonal approximate Jacobian method. The iterative method is the Generalized

Minimal Residual method [5], or GMRES. With scaling and preconditioning included, we refer to this
method as SPGMR.

The estimation and control of errors is an extremely important feature of any ODE solver. In
CVODE, local trunctation errors in the computed values of y are estimated, and the solver will
control the vector e of estimated local errors in accordance with a combination of input relative and
absolute tolerances. Speci�cally, the vector e is made to satisfy an inequality of the form

kekWRMS;ewt � 1; (5)

where the weighted root-mean-square norm kvkWRMS;w with weight vector w is de�ned as

kvkWRMS;w =

sPN
i=1(viwi)

2

N
:

The CVODE error weight vector ewt has components

ewti =
1

RTOL � jyij+ATOLi
;

where the non-negative relative and absolute tolerances RTOL and ATOL are speci�ed by the user.
Here RTOL is a scalar, but ATOL can be either a scalar or a vector. The local error test (5)
controls the estimated local error ei in component yi in such a way that, roughly, jeij will be less than
ewt�1i = RTOL � jyij + ATOLi. The local error test passes if in each component the absolute error
jeij is less than or equal to ATOLi, or the relative error jeij=jyij is less than or equal to RTOL. Use
RTOL = 0 for pure absolute error control, and ATOLi = 0 for pure relative error control. Actual
(global) errors, being an accumulation of local errors, may well exceed these local tolerances, so choose
RTOL and ATOL conservatively.



1.3 Reading This User Guide 3

1.3 Reading This User Guide

This user guide is a combination of general usage instructions and speci�c example programs. We
expect that some readers will want to concentrate on the general instructions, while others will refer
mostly to the examples, and the organization is intended to accommodate both styles.

In Section 2, we begin with a short overview of the usage of CVODE. Readers can then either read
the more detailed usage description that follows, or skip to the example programs.

The subsequent sections contain three sample programs that illustrate the usage of CVODE with
di�erent choices of the linear system solvers. The examples include the use of the dense solver, the
band solver, and the SPGMR solver, in Sections 3, 4, and 5, respectively. Each of these sections is
self-contained. In each case, we give the program source, a step-by-step explanation of the program,
and the output. Our intention is that these programs will enable the user to learn CVODE by example,
and each can serve as a template for user programs.

Section 6 describes in more detail the call that the user must make to select a linear system solver,
and gives a brief summary of the CVODE linear solvers currently available. Section 7 describes the
integer and real data types used in CVODE, and how those can be altered to accomodate di�erent
precisions.

Section 8 describes a pair of \demonstration programs" that are also provided with the package.
These can be viewed as illustrations of the use of CVODE, but, more importantly, provide a means
of checking the validity of the installed package.

In Section 9 we give a brief description of the overall organization of the CVODE package, together
with short descriptions of the �les in it.

Most of this user guide is taken up with the reference guide given in Section 10. It contains full
documentation for all functions, macros, types, enumerations, etc. that the user needs to use CVODE.
Keep the reference guide handy when writing or modifying your code, so that you can easily look up
things like exact function names, and the meaning and ordering of parameters. Throughout the user
guide, the reader is referred to sections in the reference guide for \full details" on the usage of CVODE.

Finally, the reader should be aware of a couple of notational issues in this user guide. Program
listings and identi�ers (such as CVodeMalloc) within textual explanations appear in typewriter type
style, and packages or modules, such as CVDENSE, are written in all capitals. The one exception is
the CVode main integrator module (CVODE is reserved for the name of the entire software package).
Thus, for example, we write the identi�er CVode for the function that is part of the CVode integrator
module within the CVODE software package.



4 2 USAGE OF CVODE

2 Usage of CVODE

In this section we describe the usage of CVODE at two levels. First we give a brief overview. This
overview is su�cient for an understanding of the sample programs given in the following sections,
and therefore the reader may want to skip to those sections. The remainder of this section is a more
detailed summary of usage. Even that description omits some of the usage details. However, both
in this section and in the descriptions of the sample programs, we refer to later sections for complete
information on CVODE usage.

2.1 Overview

A high-level view of the combined user program and CVODE package is shown in Figure 1. It shows
the user's program and the various CVODE modules. The user's program has the following essential
parts:

� #include lines to access CVODE header �les;

� allocation and loading of CVODE inputs, including the input y of type N Vector (allocated with
N VNew);

� a call to CVodeMalloc to allocate memory for CVODE;

� if Newton iteration is selected, a call to one of CVDense, CVBand, CVDiag, or CVSpgmr, to specify
which linear system module is to be used;

� a loop of calls to CVode for integration to prescribed output points;

� a call to CVodeFree to free all CVODE memory;

� freeing of user-allocated memory when the integration is done, e.g. freeing y with N VFree;

� the user-supplied function f de�ning f(t; y); and

� either an optional user-supplied function Jac for a Jacobian approximation or a pair of user-
supplied routines, Precond and PSolve, for preconditioning of the Krylov method.

This list includes the user-supplied functions that de�ne the ODE problem and its Jacobian (or
approximation, as needed), and it includes calls to certain CVODE functions to carry out the solution.
The list also includes items that deal with two other aspects of the CVODE user interface: One is the
selection of a linear system solver for use in the sti� case. The other deals with CVODE vector; all
vectors of length N , such as y, are communicated as objects of type N Vector, a type de�ned with
the CVODE package.

With this overview, the reader may �nd it more instructive at this point to skip to the sample
programs in the following three sections. There most of the necessary usage details not shown above are
covered in the programs and the accompanying explanations. However, for the sake of completeness,
we give also the following summary of the general usage instructions.



2.1 Overview 5

   CVDENSE                                   CVBAND                                     CVDIAG                                   CVSPGMR

Main    CVODE   Integrator

CVodeFree(...){...}

CVode(...){...}

CVodeMalloc(...){...}

User’s Program

VECTOR

main() {
  y = N_VNew(...)

  CVDense or CVBand or CVDiag or CVSpgmr(...)

  CVodeFree(...)

  N_VFree(y)

}

f(...){...}

Jac(...){...} or

Precond(...){...} and PSolve(...){...}

CVDenseDQJac(...){...}              CVBandDQJac(...){...} 

cvode.h, cvode.c

CVODE Linear Solvers

vector.h, vector.c

N_VNew(...){...} ,  N_VFree(...){...},  N_VIth(...){...},  N_VDATA(...){...}

CVDense(...){...} CVBand(...){...} CVDiag(...){...} CVSpgmr(...){...}

cvdense.h, cvdense.c                     cvband.h, cvband.c                       cvdiag.h, cvdiag.c                      cvspgmr.h, cvspgmr.c

  CVodeMalloc(N, f, ...)

  for (...) { CVode(..., y, ...) }

Figure 1: Diagram of the user program and CVODE package



6 2 USAGE OF CVODE

2.2 Usage Summary

A program which uses CVODE must include certain CVODE header �les, make calls to the CVODE
solver functions, and de�ne the problem through user-supplied functions. We summarize these features
in turn, below.

To begin with, the calling program should also contain the following #include lines, in order to
gain access to various constants, macros, and function prototypes:

#include "llnltyps.h" /* for types real, integer, bool; constants TRUE, FALSE */

#include "llnlmath.h" /* for power functions, MIN, MAX, ABS, SQR, RSqrt */

#include "cvode.h" /* for function prototypes and constants */

#include "vector.h" /* for definitions of N_Vector type and macros */

For details on the types real and integer, see Section 7, and for detailed contents of vector.h,
see Section 10.3.1. For documentation of the functions in the LLNLMATH module, see the �le
llnlmath.h.

In addition, the calling program should contain #include lines for one or more header �les asso-
ciated with the linear system solver selected, namely:

#include "cvdense.h" /* for the CVDENSE case */

#include "cvband.h" /* for the CVBAND case */

#include "cvdiag.h" /* for the CVDIAG case */

#include "cvspgmr.h" /* for the CVSPGMR case */

#include "dense.h" /* for use of the generic dense matrix routines */

#include "band.h" /* for use of the generic band matrix routines */

Generic solver modules called DENSE, BAND, and SPGMR may also need to be accessed by the
CVODE user. Details on these generic solvers appear in Sections 10.3.2, 10.3.3, and 10.3.4, respectively.

The calling program itself must call four di�erent functions (three if functional iteration is chosen
instead of Newton). These are summarized as follows:

� CVodeMalloc allocates memory for the main CVODE integrator, initializes certain data, and
returns a pointer to the CVODE memory structure;

� If Newton iteration is selected, a call to CV speci�es which linear system module is to be used,
where CV is one of CVDense, CVBand, CVDiag, or CVSpgmr (referring to the modules CVDENSE,
CVBAND, CVDIAG, and CVSPGMR, respectively);

� CVode is called for each point at which output is desired;

� CVodeFree frees all memory that was allocated by CVodeMalloc.

Speci�cation of inputs that are independent of the CVODE linear system solver is done through
CVodeMalloc. The call has the form



2.2 Usage Summary 7

cvode_mem = CVodeMalloc(N, f, t0, y0, lmm, iter, itol, &reltol, abstol,

f_data, errfp, optIn, iopt, ropt, NULL);

These inputs include the problem size N , the function de�ning f , the initial conditions t0 and y0,
the choices of linear multistep method (Adams or BDF) for the integration and of iteration method
(functional or Newton), and three tolerance parameters. The tolerance type itol is either SS, to
indicate scalar relative and absolute tolerances, or SV, to indicate a scalar relative tolerance and a
vector of absolute tolerances. In the call above, the abstol argument is an N Vector in the SV case,
and a pointer to a real scalar in the SS case. Following the tolerances in the call list are: a pointer
to user data (described below), an error �le pointer errfp (pass NULL to specify standard output),
an optional input ag optIn (FALSE indicates no optional inputs), and two arrays iopt and ropt

for integer and real optional inputs and outputs (discussed below). The �nal NULL argument is for
a machine environment agrument not used in the sequential version of CVODE. The arguments to
CVodeMalloc are fully described in Sections 10.1.1-10.1.3.

The second call above, to CV , selects the linear solver to be used in connection with Newton
iteration, and also supplies user inputs associated with that linear solver. The CV routine also does
memory allocation speci�c to the particular linear solver. The call takes one of the following four
forms:

CVDense(cvode_mem, Jac, jac_data);

CVBand(cvode_mem, mupper, mlower, Jac, jac_data);

CVDiag(cvode_mem);

CVSpgmr(cvode_mem, pretype, gstype, maxl, delt, Precond, PSolve, P_data);

In the direct CVDENSE and CVBAND cases, inputs in this call include the user's Jacobian function
(if present), and bandwidths in the band case. In the CVSPGMR case, they include the user's
preconditioner setup and solve functions, and a ag pretype indicating whether preconditioning is on
the left, on the right, on both sides, or absent. These CV calls are more fully described in Section 6.

The call to the CVode function itself has the form

flag = CVode(cvode_mem, tout, yout, &t, itask);

In addition to the CVODE memory pointer cvode mem, it speci�es only two inputs: (1) a ag itask

showing whether the integration is to be done in the \normal mode" or in the \one-step mode" and
(2) a value, tout, of the independent variable t at which a computed solution is desired. In the normal
mode, the integration proceeds in steps (with stepsizes determined internally) up to and past tout,
and CVode interpolates y at t =tout. In the one-step mode, CVode takes only one step in the desired
direction and returns to the calling program. In the one-step mode, tout is required on the �rst call
only, to get the direction and rough scale of the independent variable. On return, CVode returns a
vector yout and a corresponding independent variable value t =*t, such that yout is the computed
value of y(t). In the normal mode, with no failures, *t will be equal to tout. For a detailed description
of the CVode call and return values, see Section 10.1.4.

Provision is made for certain optional inputs and optional outputs. Optional inputs communicated
in the CVodeMalloc call are placed in the arrays iopt and ropt. These include the maximum order,



8 2 USAGE OF CVODE

the tentative initial stepsize, and the maximum stepsize. Each CVODE linear solver may or may not
have optional inputs, which are passed through the associated CV call list. Of the existing four linear
solvers, only CVSPGMR has optional inputs. In any case, there is a default available for every optional
input. Optional outputs from the central CVODE module are also communicated through the iopt

and ropt arrays which are passed to CVodeMalloc. They include step and function evaluation counts,
current stepsize and order, and workspace lengths. Optional outputs speci�c to each linear solver are
loaded into iopt and ropt, following those from the central integrator module. For full details on the
optional inputs and outputs, see Section 10.1.7.

In addition to a main or calling program containing the sequence of calls described above, the user
must always supply a function f that de�nes the right-hand side f(t; y). (For its detailed speci�cation,
see Section 10.1.2.) In the direct CVDENSE and CVBAND cases, an optional Jacobian function Jac

may be supplied. If it is not, a di�erence quotient approximation is used. In the CVSPGMR case, a
pair of functions, Precond and PSolve, are supplied if the GMRES iteration is to be preconditioned.
The Precond function may be absent if no setup operations are involved in the preconditioning. For
details, see Section 6.

Typically, a user application involves data that is de�ned by the user and is to be shared between
the calling program and the user-supplied functions. This is handled with pointers supplied by the
user in the various calls. A pointer to a user-de�ned space called f data is passed to CVodeMalloc,
and this pointer is then passed in all calls to the user's function f, for use there as desired. Similarly, in
the CVDENSE or CVBAND case, a pointer to user data (which can be identical to f data) associated
with the Jac routine is passed to CVDense or CVBand and then passed to Jac, and in the CVSPGMR
case a pointer for preconditioning data is passed to CVSpgmr and then to Precond and PSolve. In this
way, any data required by the user-supplied routines can be stored in a manner determined entirely
by the user and retrieved as needed, and the user's program need not have any global data.

Error conditions are reported by the CVODE package through error messages. These are sent to
standard output, or to a �le speci�ed by the user in the call to CVodeMalloc if desired. Error messages
may be issued by CVodeMalloc in the course of its checking of all input, by the linear solver function
CV in its input checking, or by CVode from illegal input or following a numerical failure (e.g. in
Newton iteration convergence or the error test).

The memory storage requirements of the CVODE package can be broken into three categories: �xed
requirements, problem-dependent storage for the central integrator CVode, and problem-dependent
storage for the linear solver. The problem-dependent storage for CVode consists of N � (maxord+ 5)
real words, where N is the size of the ODE system andmaxord is the maximum method order. For the
default value ofmaxord, i.e. 12 for the Adams method and 5 for the BDF method, this requirement is
17N or 10N real words. The problem-dependent storage requirements for the linear solvers are given
in Section 6. The actual lengths of the various problem-dependent workspaces are also provided as
optional outputs.

An optionally callable function CVodeDky is available to obtain additional output values. This
function provides interpolated values of y or its derivatives, up to the current order of the integration
method, interpolated to any value of t in the last internal step taken by CVODE. See Section 10.1.5
for details.



9

3 Dense Solver Sample Program

As an initial illustration of the use of the CVODE package, the following is a sample program provided
as part of the package. It uses the CVODE dense linear solver module CVDENSE in the solution of
a small chemical kinetics problem. Following the source, we give a rather detailed explanation of the
parts of the program and their interaction with CVODE.

/************************************************************************
* *
* File: cvdx.c *
* Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Version of 1 September 1994 *
*----------------------------------------------------------------------*
* Example problem. *
* The following is a simple example problem, with the coding *
* needed for its solution by CVODE. The problem is from chemical *
* kinetics, and consists of the following three rate equations.. *
* dy1/dt = -.04*y1 + 1.e4*y2*y3 *
* dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2 *
* dy3/dt = 3.e7*(y2)^2 *
* on the interval from t = 0.0 to t = 4.e10, with initial conditions *
* y1 = 1.0, y2 = y3 = 0. The problem is stiff. *
* This program solves the problem with the BDF method, Newton *
* iteration with the CVODE dense linear solver, and a user-supplied *
* Jacobian routine. *
* It uses a scalar relative tolerance and a vector absolute tolerance. *
* Output is printed in decades from t = .4 to t = 4.e10. *
* Run statistics (optional outputs) are printed at the end. *
************************************************************************/

#include <stdio.h>

/* CVODE header files with a description of contents used in cvdx.c */

#include "llnltyps.h" /* definitions of types real (set to double) and */
/* integer (set to int), and the constant FALSE */

#include "cvode.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */
/* constants OPT_SIZE, BDF, NEWTON, SV, SUCCESS, */
/* NST, NFE, NSETUPS, NNI, NCFN, NETF */

#include "cvdense.h" /* prototype for CVDense, constant DENSE_NJE */
#include "vector.h" /* definitions of type N_Vector and macro N_VIth, */

/* prototypes for N_VNew, N_VFree */
#include "dense.h" /* definitions of type DenseMat, macro DENSE_ELEM */

/* User-defined vector and matrix accessor macros: Ith, IJth */

/* These macros are defined in order to write code which exactly matches
the mathematical problem description given above.

Ith(v,i) references the ith component of the vector v, where i is in
the range [1..NEQ] and NEQ is defined below. The Ith macro is defined
using the N_VIth macro in vector.h. N_VIth numbers the components of
a vector starting from 0.

IJth(A,i,j) references the (i,j)th element of the dense matrix A, where
i and j are in the range [1..NEQ]. The IJth macro is defined using the
DENSE_ELEM macro in dense.h. DENSE_ELEM numbers rows and columns of a



10 3 DENSE SOLVER SAMPLE PROGRAM

dense matrix starting from 0. */

#define Ith(v,i) N_VIth(v,i-1) /* Ith numbers components 1..NEQ */
#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* IJth numbers rows,cols 1..NEQ */

/* Problem Constants */

#define NEQ 3 /* number of equations */
#define Y1 1.0 /* initial y components */
#define Y2 0.0
#define Y3 0.0
#define RTOL 1e-4 /* scalar relative tolerance */
#define ATOL1 1e-8 /* vector absolute tolerance components */
#define ATOL2 1e-14
#define ATOL3 1e-6
#define T0 0.0 /* initial time */
#define T1 0.4 /* first output time */
#define TMULT 10.0 /* output time factor */
#define NOUT 12 /* number of output times */

/* Private Helper Function */

static void PrintFinalStats(long int iopt[]);

/* Functions Called by the CVODE Solver */

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data);

static void Jac(integer N, DenseMat J, RhsFn f, void *f_data, real t,
N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround,
void *jac_data, long int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3);

/***************************** Main Program ******************************/

main()
{
real ropt[OPT_SIZE], reltol, t, tout;
long int iopt[OPT_SIZE];
N_Vector y, abstol;
void *cvode_mem;
int iout, flag;

y = N_VNew(NEQ, NULL); /* Allocate y, abstol vectors */
abstol = N_VNew(NEQ, NULL);

Ith(y,1) = Y1; /* Initialize y */
Ith(y,2) = Y2;
Ith(y,3) = Y3;

reltol = RTOL; /* Set the scalar relative tolerance */
Ith(abstol,1) = ATOL1; /* Set the vector absolute tolerance */
Ith(abstol,2) = ATOL2;
Ith(abstol,3) = ATOL3;

/* Call CVodeMalloc to initialize CVODE:

NEQ is the problem size = number of equations
f is the user's right hand side function in y'=f(t,y)



11

T0 is the initial time
y is the initial dependent variable vector
BDF specifies the Backward Differentiation Formula
NEWTON specifies a Newton iteration
SV specifies scalar relative and vector absolute tolerances
&reltol is a pointer to the scalar relative tolerance
abstol is the absolute tolerance vector
FALSE indicates there are no optional inputs in iopt and ropt
iopt is an array used to communicate optional integer input and output
ropt is an array used to communicate optional real input and output

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SV, &reltol, abstol,
NULL, NULL, FALSE, iopt, ropt, NULL);

if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }

/* Call CVDense to specify the CVODE dense linear solver with the
user-supplied Jacobian routine Jac. */

CVDense(cvode_mem, Jac, NULL);

/* In loop over output points, call CVode, print results, test for error */

printf(" \n3-species kinetics problem\n\n");
for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {
flag = CVode(cvode_mem, tout, y, &t, NORMAL);
printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n",

t, Ith(y,1), Ith(y,2), Ith(y,3));
if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }

}

N_VFree(y); /* Free the y and abstol vectors */
N_VFree(abstol);
CVodeFree(cvode_mem); /* Free the CVODE problem memory */
PrintFinalStats(iopt); /* Print some final statistics */
return(0);

}

/************************ Private Helper Function ************************/

/* Print some final statistics located in the iopt array */

static void PrintFinalStats(long int iopt[])
{
printf("\nFinal Statistics.. \n\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[DENSE_NJE]);
printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",
iopt[NNI], iopt[NCFN], iopt[NETF]);
}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Compute f(t,y). */

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data)
{
real y1, y2, y3, yd1, yd3;



12 3 DENSE SOLVER SAMPLE PROGRAM

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

yd1 = Ith(ydot,1) = -0.04*y1 + 1e4*y2*y3;
yd3 = Ith(ydot,3) = 3e7*y2*y2;

Ith(ydot,2) = -yd1 - yd3;
}

/* Jacobian routine. Compute J(t,y). */

static void Jac(integer N, DenseMat J, RhsFn f, void *f_data, real t,
N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround,
void *jac_data, long int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3)

{
real y1, y2, y3;

y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);

IJth(J,1,1) = -0.04; IJth(J,1,2) = 1e4*y3; IJth(J,1,3) = 1e4*y2;
IJth(J,2,1) = 0.04; IJth(J,2,2) = -1e4*y3-6e7*y2; IJth(J,2,3) = -1e4*y2;

IJth(J,3,2) = 6e7*y2;
}

Following the initial comment block, this program has a number of #include lines, which allow
access to useful items in CVODE header �les. The llnltyps.h �le provides the de�nitions of the
types real and integer; see Section 7 for details. For now, it su�ces to read real as double and
integer as int. The cvode.h �le provides prototypes for the three CVODE functions to be called
(excluding the linear solver selection function), and also a number of constants that are to be used in
dimensioning, setting input arguments, testing the return value of CVode, and accessing the integer
optional outputs. See Section 10.1 for details. The cvdense.h �le provides the prototype for the
CVDense function, and a constant DENSE NJE for accessing optional output speci�c to CVDENSE.
See Section 10.2.1 for details. The vector.h �le includes de�nitions of the N Vector type, a macro
to access vector components, and prototypes for the vector-related memory allocation and freeing
functions. See Section 10.3.1 for details. Finally, the dense.h �le provides the de�nition of the dense
matrix type DenseMat and a macro for accessing matrix elements. See Section 10.3.2 for details. We
have explicitly included dense.h, but this is not necessary because it is included by cvdense.h.

This program includes two user-de�ned accessor macros, Ith and IJth, that are useful in writing
the problem functions in a form closely matching the mathematical description of the ODE system,
i.e. with components numbered from 1 instead of from 0. The Ith macro is used to access components
of a vector of type N Vector. It is de�ned using the CVODE accessor macro N VIth which numbers
components starting with 0. The IJth macro is used to access elements of a dense matrix of type
DenseMat. It is de�ned using the CVODE accessor macro DENSE ELEM which numbers matrix rows and
columns starting with 0. The CVODE macros N VIth and DENSE ELEM are fully described in Sections
10.3.1.2 and 10.3.2.2, respectively.

Next, the program includes some problem-speci�c constants, which are isolated to this early loca-
tion to make it easy to change them as needed.

The program prologue ends with the prototype of a private helper function and the two user-
supplied functions that are called by CVODE.



13

The main function begins with some dimensions and type declarations. These make use of the
constant OPT SIZE and the type N Vector. The �rst two lines allocate memory for the y and abstol

vectors using N VNew with a length argument of NEQ (= 3). The next several lines load the initial
values of the dependendent variable vector into y and set the absolute tolerance vector abstol using
the Ith macro. (The NULL argument is not relevant here.) See Section 10.3.1.3.1 for details on N VNew.

The call to CVodeMalloc speci�es the BDF integration method with NEWTON iteration. The SV

argument speci�es a vector of absolute tolerances, and this is followed by the address of the relative
tolerance reltol and the absolute tolerance vector abstol. The FALSE argument indicates that no
optional inputs are present in iopt or ropt.

The three NULL actual parameters in the CVodeMalloc call are for features that are not used in
this example. The �rst one is passed for the CVodeMalloc formal parameter f data. This pointer is
passed to f every time f is called, and is intended to point to user problem data that might be needed
in f. The second NULL forces CVODE error messages to be sent to standard output; a �le pointer
(of type FILE *) may be given in this position otherwise. The last NULL parameter is passed for
the CVodeMalloc formal parameter machEnv. This is intended for use in parallel versions of CVODE
which are currently being developed. For now, the user should always pass NULL for machEnv.

The return value of CVodeMalloc is a pointer to a CVODE solver memory block for the problem
and solver options speci�ed by the inputs. In the case if failure, the return value is NULL. This pointer
must be passed in the remaining calls to CVODE functions. See Section 10.1.3 for full details of the
call to CVodeMalloc.

The call to CVDense with a non-NULL Jacobian function Jac speci�es the CVDENSE linear solver
with an analytic Jacobian supplied by the user-supplied function Jac. The NULL argument is passed
for the CVDense formal parameter jac data. In a role similar to f data, this pointer is passed to Jac
every time Jac is called, and is intended to point to user problem data that might be needed in Jac.
See Section 10.2.1.1 for full details of the call to CVDense.

The actual solution of the ODE initial value problem is accomplished in the loop over values of
tout. For each value, the program calls CVode in the NORMAL mode, meaning that the integrator takes
steps until it overshoots tout and then interpolates to t =tout, putting the computed value of y(tout)
into y. The program prints t and y, and tests for a return value other than SUCCESS by CVode. See
Section 10.1.4 for full details of the call to CVode.

Finally, the main program calls N VFree to free the vectors y and abstol, calls CVodeFree to free
the CVODE memory block, and prints all of the statistical quantities in the private helper function
PrintFinalStats. See Section 10.3.1.3.1 for details on N VFree, and Section 10.1.6 for details on
CVodeFree.

The function PrintFinalStats used here is actually suitable for general use in connection with
the use of CVODE for any problem with a dense Jacobian. It prints the cumulative number of
steps (nst), the number of f evaluations (nfe), the number of matrix factorizations (nsetups), the
number of Jac evaluations (nje), the number of nonlinear (Newton) iterations (nni), the number of
nonlinear convergence failures (ncnf), and the number of local error test failures (netf). These optional
outputs are described in Section 10.1.7, except for nje = iopt[DENSE NJE], which is described in



14 3 DENSE SOLVER SAMPLE PROGRAM

Section 10.2.1.3.

The function f is a straightforward expression of the ODEs. It uses the user-de�ned macro Ith

to extract the components of y and load the components of ydot. See Section 10.1.2 for a detailed
description of f.

The function Jac sets the nonzero elements of the Jacobian as a dense matrix. (Zero elements need
not be set because J is preset to zero.) It uses the user-de�ned macro IJth to reference the elements
of a dense matrix of type DenseMat. Here the problem size is small, so we need not worry about the
ine�ciency of using N VIth and DENSE ELEM to do N Vector and DenseMat element accesses. Note
that in this example Jac only accesses the y and J arguments. See Section 10.2.1.2 for a detailed
description of the dense Jac function.

The output generated by cvdx.c is shown below.

3-species kinetics problem

At t = 4.0000e-01 y = 9.851641e-01 3.386242e-05 1.480205e-02
At t = 4.0000e+00 y = 9.055097e-01 2.240338e-05 9.446793e-02
At t = 4.0000e+01 y = 7.158016e-01 9.185045e-06 2.841893e-01
At t = 4.0000e+02 y = 4.505207e-01 3.222813e-06 5.494761e-01
At t = 4.0000e+03 y = 1.832269e-01 8.943736e-07 8.167722e-01
At t = 4.0000e+04 y = 3.899012e-02 1.622106e-07 9.610097e-01
At t = 4.0000e+05 y = 4.940021e-03 1.985699e-08 9.950600e-01
At t = 4.0000e+06 y = 5.169551e-04 2.068877e-09 9.994830e-01
At t = 4.0000e+07 y = 5.204938e-05 2.082082e-10 9.999480e-01
At t = 4.0000e+08 y = 5.226977e-06 2.090802e-11 9.999948e-01
At t = 4.0000e+09 y = 5.152617e-07 2.061048e-12 9.999995e-01
At t = 4.0000e+10 y = 4.721229e-08 1.888492e-13 1.000000e+00

Final Statistics..

nst = 513 nfe = 693 nsetups = 100 nje = 11
nni = 690 ncfn = 0 netf = 15



15

4 Band Solver Sample Program

This section includes an example that illustrates the use of CVODE band linear solver CVBAND. The
source code is followed by a textual explanation and program output.

The cvbx.c program given below solves the semi-discretized form of the 2-D advection-di�usion
equation

@u=@t = @2u=@x2 + :5@u=@x+ @2u=@y2 (6)

on a rectangle, with zero Dirichlet boundary conditions. The PDE is discretized spatially with standard
central �nite di�erences on a (MX+2) � (MY+2) mesh, giving an ODE system of size MX*MY. The
discrete value uij approximates u at x = i�x, y = j�y. The ODEs are

duij
dt

= fij =
ui�1;j � 2uij + ui+1;j

(�x)2
+ :5

ui+1;j � ui�1;j
2�x

+
ui;j�1 � 2uij + ui;j+1

(�y)2
; (7)

where 1 � i �MX and 1 � j �MY. The boundary conditions are imposed by taking uij = 0 above
if i = 0 or MX+1, or if j = 0 or MY+1. If we set v(j�1)+(i�1)�MY = uij , then the system Jacobian
J = @f=@v is a band matrix with upper and lower bandwidths both equal to MY. In the example, we
take MX = 10 and MY = 5.

/************************************************************************
* *
* File: cvbx.c *
* Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Version of 1 September 1994 *
*----------------------------------------------------------------------*
* Example problem. *
* The following is a simple example problem with a banded Jacobian, *
* with the program for its solution by CVODE. *
* The problem is the semi-discrete form of the advection-diffusion *
* equation in 2-D: *
* du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2 *
* on the rectangle 0 <= x <= 2, 0 <= y <= 1, and the time *
* interval 0 <= t <= 1. Homogeneous Dirichlet boundary conditions *
* are posed, and the initial condition is *
* u(x,y,t=0) = x(2-x)y(1-y)exp(5xy) . *
* The PDE is discretized on a uniform MX+2 by MY+2 grid with *
* central differencing, and with boundary values eliminated, *
* leaving an ODE system of size NEQ = MX*MY. *
* This program solves the problem with the BDF method, Newton *
* iteration with the CVODE band linear solver, and a user-supplied *
* Jacobian routine. *
* It uses scalar relative and absolute tolerances. *
* Output is printed at t = .1, .2, ..., 1. *
* Run statistics (optional outputs) are printed at the end. *
************************************************************************/

#include <stdio.h>
#include <math.h>

/* CVODE header files with a description of contents used in cvbx.c */

#include "llnltyps.h" /* definitions of real, integer, FALSE */
#include "cvode.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */

/* constants OPT_SIZE, BDF, NEWTON, SS, SUCCESS, */
/* NST, NFE, NSETUPS, NNI, NCFN, NETF */



16 4 BAND SOLVER SAMPLE PROGRAM

#include "cvband.h" /* prototype for CVBand, constant BAND_NJE */
#include "vector.h" /* definitions of type N_Vector and macro N_VDATA, */

/* prototypes for N_VNew, N_VFree, N_VMaxNorm */
#include "band.h" /* definitions of type BandMat, macros */

/* Problem Constants */

#define XMAX 2.0 /* domain boundaries */
#define YMAX 1.0
#define MX 10 /* mesh dimensions */
#define MY 5
#define NEQ MX*MY /* number of equations */
#define ATOL 1.e-5 /* scalar absolute tolerance */
#define T0 0.0 /* initial time */
#define T1 0.1 /* first output time */
#define DTOUT 0.1 /* output time increment */
#define NOUT 10 /* number of output times */

/* User-defined vector access macro IJth */

/* IJth is defined in order to isolate the translation from the
mathematical 2-dimensional structure of the dependent variable vector
to the underlying 1-dimensional storage.
IJth(vdata,i,j) references the element in the vdata array for
u at mesh point (i,j), where 1 <= i <= MX, 1 <= j <= MY.
The vdata array is obtained via the macro call vdata = N_VDATA(v),
where v is an N_Vector.
The variables are ordered by the y index j, then by the x index i. */

#define IJth(vdata,i,j) (vdata[(j-1) + (i-1)*MY])

/* Type : UserData
contains grid constants */

typedef struct {
real dx, dy, hdcoef, hacoef, vdcoef;

} *UserData;

/* Private Helper Functions */

static void SetIC(N_Vector u, UserData data);

static void PrintFinalStats(long int iopt[]);

/* Functions Called by the CVODE Solver */

static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data);

static void Jac(integer N, integer mu, integer ml, BandMat J, RhsFn f,
void *f_data, real t, N_Vector u, N_Vector fu, N_Vector ewt,
real h, real uround, void *jac_data, long int *nfePtr,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

/***************************** Main Program ******************************/

main()
{
real ropt[OPT_SIZE], dx, dy, reltol, abstol, t, tout, umax;



17

long int iopt[OPT_SIZE];
N_Vector u;
UserData data;
void *cvode_mem;
int iout, flag;

u = N_VNew(NEQ, NULL); /* Allocate u vector */

reltol = 0.0; /* Set the tolerances */
abstol = ATOL;

data = (UserData) malloc(sizeof *data); /* Allocate data memory */
dx = data->dx = XMAX/(MX+1); /* Set grid coefficients in data */
dy = data->dy = YMAX/(MY+1);
data->hdcoef = 1.0/(dx*dx);
data->hacoef = 0.5/(2.0*dx);
data->vdcoef = 1.0/(dy*dy);

SetIC(u, data); /* Initialize u vector */

/* Call CVodeMalloc to initialize CVODE:

NEQ is the problem size = number of equations
f is the user's right hand side function in u'=f(t,u)
T0 is the initial time
u is the initial dependent variable vector
BDF specifies the Backward Differentiation Formula
NEWTON specifies a Newton iteration
SS specifies scalar relative and absolute tolerances
&reltol and &abstol are pointers to the scalar tolerances
data is the pointer to the user-defined block of coefficients
FALSE indicates there are no optional inputs in iopt and ropt
iopt and ropt arrays communicate optional integer and real input/output

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = CVodeMalloc(NEQ, f, T0, u, BDF, NEWTON, SS, &reltol, &abstol,
data, NULL, FALSE, iopt, ropt, NULL);

if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }

/* Call CVBand to specify the CVODE band linear solver with the
user-supplied Jacobian routine Jac, bandwidths ml = mu = MY,
and the pointer to the user-defined block data. */

CVBand(cvode_mem, MY, MY, Jac, data);

/* In loop over output points, call CVode, print results, test for error */

printf(" \n2-D advection-diffusion equation, mesh dimensions =%3d %3d\n\n",
MX,MY);

umax = N_VMaxNorm(u);
printf("At t = %4.2f max.norm(u) =%14.6e \n", T0,umax);
for (iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
flag = CVode(cvode_mem, tout, u, &t, NORMAL);
umax = N_VMaxNorm(u);
printf("At t = %4.2f max.norm(u) =%14.6e nst =%4d \n",

t,umax,iopt[NST]);
if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }

}

N_VFree(u); /* Free the u vector */
CVodeFree(cvode_mem); /* Free the CVODE problem memory */



18 4 BAND SOLVER SAMPLE PROGRAM

PrintFinalStats(iopt); /* Print some final statistics */
return(0);

}

/************************ Private Helper Functions ***********************/

/* Set initial conditions in u vector */

static void SetIC(N_Vector u, UserData data)
{
int i, j;
real x, y, dx, dy;
real *udata;

/* Extract needed constants from data */

dx = data->dx;
dy = data->dy;

/* Set pointer to data array in vector u. */

udata = N_VDATA(u);

/* Load initial profile into u vector */

for (j=1; j <= MY; j++) {
y = j*dy;
for (i=1; i <= MX; i++) {
x = i*dx;
IJth(udata,i,j) = x*(XMAX - x)*y*(YMAX - y)*exp(5.0*x*y);

}
}

}

/* Print some final statistics located in the iopt array */

static void PrintFinalStats(long int iopt[])
{
printf("\nFinal Statistics.. \n\n");
printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[BAND_NJE]);
printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",
iopt[NNI], iopt[NCFN], iopt[NETF]);
}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Compute f(t,u). */

static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data)
{
real uij, udn, uup, ult, urt, hordc, horac, verdc, hdiff, hadv, vdiff;
real *udata, *dudata;
int i, j;
UserData data;

udata = N_VDATA(u);
dudata = N_VDATA(udot);



19

/* Extract needed constants from data */

data = (UserData) f_data;
hordc = data->hdcoef;
horac = data->hacoef;
verdc = data->vdcoef;

/* Loop over all grid points. */

for (j=1; j <= MY; j++) {

for (i=1; i <= MX; i++) {

/* Extract u at x_i, y_j and four neighboring points */

uij = IJth(udata, i, j);
udn = (j == 1) ? 0.0 : IJth(udata, i, j-1);
uup = (j == MY) ? 0.0 : IJth(udata, i, j+1);
ult = (i == 1) ? 0.0 : IJth(udata, i-1, j);
urt = (i == MX) ? 0.0 : IJth(udata, i+1, j);

/* Set diffusion and advection terms and load into udot */

hdiff = hordc*(ult - 2.0*uij + urt);
hadv = horac*(urt - ult);
vdiff = verdc*(uup - 2.0*uij + udn);
IJth(dudata, i, j) = hdiff + hadv + vdiff;

}
}

}

/* Jacobian routine. Compute J(t,u). */

static void Jac(integer N, integer mu, integer ml, BandMat J, RhsFn f,
void *f_data, real t, N_Vector u, N_Vector fu, N_Vector ewt,
real h, real uround, void *jac_data, long int *nfePtr,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)
{
integer i, j, k;
real *kthCol, hordc, horac, verdc;
UserData data;

/*
The components of f = udot that depend on u(i,j) are
f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with
df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2)
df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx (if i > 1)
df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx (if i < MX)
df(i,j-1)/du(i,j) = 1/dy^2 (if j > 1)
df(i,j+1)/du(i,j) = 1/dy^2 (if j < MY)

*/

data = (UserData) jac_data;
hordc = data->hdcoef;
horac = data->hacoef;
verdc = data->vdcoef;

for (j=1; j <= MY; j++) {
for (i=1; i <= MX; i++) {
k = j-1 + (i-1)*MY;
kthCol = BAND_COL(J,k);



20 4 BAND SOLVER SAMPLE PROGRAM

/* set the kth column of J */

BAND_COL_ELEM(kthCol,k,k) = -2.0*(verdc+hordc);
if (i != 1) BAND_COL_ELEM(kthCol,k-MY,k) = hordc + horac;
if (i != MX) BAND_COL_ELEM(kthCol,k+MY,k) = hordc - horac;
if (j != 1) BAND_COL_ELEM(kthCol,k-1,k) = verdc;
if (j != MY) BAND_COL_ELEM(kthCol,k+1,k) = verdc;

}
}

}

The cvbx.c program includes the �les cvband.h and band.h in order to use the CVBAND linear
solver. The cvband.h �le contains the prototype for the CVBand routine, as well as the index constant
BAND NJE used in accessing optional output speci�c to CVBAND. See Section 10.2.2. The band.h �le
contains the de�nition for band matrix type BandMat and the BAND COL and BAND COL ELEM macros
for accessing matrix elements. See Section 10.3.3. We have explicitly included band.h, but this is not
necessary because it is included by cvband.h. The �le vector.h is included for the de�nition of the
type N Vector and the accessor macro N VDATA. This macro is fully documented in Section 10.3.1.2.

The include lines at the top of the �le are followed by de�nitions of problem constants which
include the x and y mesh dimensions, MX and MY, the number of equations NEQ, the scalar absolute
tolerance ATOL, the initial time T0, and the initial output time T1.

Spatial discretization of the partial di�erential equation naturally produces an ODE system in
which equations are numbered by mesh coordinates (i; j). The user-de�ned macro IJth isolates the
translation for the mathematical two-dimensional index to the one-dimensional N Vector index and
allows the user to write clean, readable code to access components of the dependent variable. The
N VDATA macro returns the component array for a given N Vector, and this array is passed to IJth in
order to do the actual N Vector access.

The type UserData is a pointer to a structure containing problem data that the user needs in
his/her f and Jac functions. This structure is allocated and initialized at the beginning of main. The
pointer to this structure, called data, is passed to both CVodeMalloc and CVBand. Passing data to
CVodeMalloc for the formal parameter f data means that data will be passed to the f function each
time f is called. Passing data to CVBand for the formal parameter jac data means that data will also
be passed to the Jac function each time Jac is called. The use of the data pointer eliminates the need
for global program data.

The four functions other than main in the cvbx.c �le are SetIC, PrintFinalStats, f, and Jac.
The �rst two functions are called only from within the cvbx.c �le. The SetIC function sets the
initial dependent variable vector, and PrintFinalStats prints out statistics at the end of the run.
The latter include various counters, such as the total number of steps (nst), f evaluations (nfe), LU
decompositions (nsetups), Jacobian evaluations (nje), and nonlinear iterations (nni). These optional
outputs are described in Sections 10.1.7 and 10.2.2.3.

The main function is straightforward. The CVodeMalloc call speci�es the BDF method with a
NEWTON iteration. The SS actual parameter indicates scalar relative and absolute tolerances, and
pointers &reltol and &abstol to these values are passed. The call to CVBand with a non-NULL Jacobian



21

function Jac speci�es the CVBAND linear solver with a user-supplied Jacobian. The constant MY is
passed for both the upper and lower bandwidths of the Jacobian. See Section 10.2.2.1 for full details
on CVBand. The actual solution of the problem is performed by the call to CVode within the loop over
the output times tout. The max-norm of the solution vector and the number of time steps is printed
at each output time. Finally, the calls to N VFree, CVodeFree, and PrintFinalStats free problem
memory and print statistics.

The user's f function implements the central di�erence approximation (7) with u identically zero
on the boundary.

The user's Jac function is an expression of the derivatives

@fij=@uij = �2[(�x)�2 + (�y)�2]

@fij=@ui+1;j = (�x)�2 + :5(2�x)�1; @fij=@ui�1;j = (�x)�2 � :5(2�x)�1

@fij=@ui;j+1 = (�y)�2; @fij=@ui;j�1 = (�y)�2 :

The values (�x)�2, :5(2�x)�1, and (�y)�2 are computed only once at the beginning of main, and
stored in the locations data->hdcoef, data->hacoef, and data->vdcoef, respectively. When Jac

receives the data pointer, it pulls out these values from storage in the local variables hordc, horac,
and verdc. The Jac function loads the Jacobian by columns. It loops over the mesh points (i,j).
For each such mesh point, the one-dimensional index k = j-1 + (i-1)*MY is computed and the kth
column of the Jacobian matrix J is set. The row index k0 of each component fi0;j0 that depends on
ui;j must be identi�ed in order to load the corresponding element. The elements are loaded with the
BAND COL ELEMmacro. Note that the formula for the global index k implies that decreasing (increasing)
i by 1 corresponds to decreasing (increasing) k by MY, while decreasing (increasing) j by 1 corresponds
of decreasing (increasing) k by 1. These statements are reected in the calls to BAND COL ELEM. The
�rst argument passed to the BAND COL ELEM macro is a pointer to the diagonal element in the column
to be accessed. This pointer is obtained via a call to the BAND COL macro and is stored in kthCol in
the Jac function. When setting the components of J we must be careful not to index out of bounds.
The guards (i != 1), (i != MX), (j != 1), and (j != MY) in front of the calls to BAND COL ELEM

prevent illegal indexing.

The output generated by cvbx.c is shown below.

2-D advection-diffusion equation, mesh dimensions = 10 5

At t = 0.00 max.norm(u) = 8.954716e+01
At t = 0.10 max.norm(u) = 4.132889e+00 nst = 85
At t = 0.20 max.norm(u) = 1.039294e+00 nst = 103
At t = 0.30 max.norm(u) = 2.979829e-01 nst = 113
At t = 0.40 max.norm(u) = 8.765774e-02 nst = 120
At t = 0.50 max.norm(u) = 2.625637e-02 nst = 126
At t = 0.60 max.norm(u) = 7.830425e-03 nst = 130
At t = 0.70 max.norm(u) = 2.329387e-03 nst = 134
At t = 0.80 max.norm(u) = 6.953434e-04 nst = 137
At t = 0.90 max.norm(u) = 2.115983e-04 nst = 140
At t = 1.00 max.norm(u) = 6.556853e-05 nst = 142

Final Statistics..

nst = 142 nfe = 173 nsetups = 23 nje = 3
nni = 170 ncfn = 0 netf = 3



22 5 KRYLOV SOLVER SAMPLE PROGRAM

5 Krylov Solver Sample Program

We give here an example that illustrates the use of CVODE with the Krylov method SPGMR, in the
CVSPGMR module, as the linear system solver. Following the source are explanatory comments on
the program.

The following program solves the semi-discretized form of a pair of kinetics-advection-di�usion
partial di�erential equations. The problem is de�ned on a rectangle, and discretized spatially with
standard central �nite di�erences on a 10� 10 mesh, giving an ODE system of size 200.

/************************************************************************
* *
* File: cvkx.c *
* Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Version of 1 September 1994 *
*----------------------------------------------------------------------*
* Example problem. *
* An ODE system is generated from the following 2-species diurnal *
* kinetics advection-diffusion PDE system in 2 space dimensions: *
* *
* dc(i)/dt = Kh*(d/dx)^2 c(i) + V*dc(i)/dx + (d/dz)(Kv(z)*dc(i)/dz) *
* + Ri(c1,c2,t) for i = 1,2, where *
* R1(c1,c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2 , *
* R2(c1,c2,t) = q1*c1*c3 - q2*c1*c2 - q4(t)*c2 , *
* Kv(z) = Kv0*exp(z/5) , *
* Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t) *
* vary diurnally. The problem is posed on the square *
* 0 <= x <= 20, 30 <= z <= 50 (all in km), *
* with homogeneous Neumann boundary conditions, and for time t in *
* 0 <= t <= 86400 sec (1 day). *
* The PDE system is treated by central differences on a uniform *
* 10 x 10 mesh, with simple polynomial initial profiles. *
* The problem is solved with CVODE, with the BDF/GMRES method (i.e. *
* using the CVSPGMR linear solver) and the block-diagonal part of the *
* Newton matrix as a left preconditioner. A copy of the block-diagonal *
* part of the Jacobian is saved and conditionally reused within the *
* Precond routine. *
************************************************************************/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "llnltyps.h" /* definitions of real, integer, bool, TRUE, FALSE */
#include "cvode.h" /* main CVODE header file */
#include "iterativ.h" /* contains the enum for types of preconditioning */
#include "cvspgmr.h" /* use CVSPGMR linear solver each internal step */
#include "dense.h" /* use generic DENSE solver for preconditioning */
#include "vector.h" /* definitions of type N_Vector, macro N_VDATA */
#include "llnlmath.h" /* contains SQR macro */

/* Problem Constants */

#define NUM_SPECIES 2 /* number of species */
#define KH 4.0e-6 /* horizontal diffusivity Kh */
#define VEL 0.001 /* advection velocity V */
#define KV0 1.0e-8 /* coefficient in Kv(z) */
#define Q1 1.63e-16 /* coefficients q1, q2, c3 */
#define Q2 4.66e-16



23

#define C3 3.7e16
#define A3 22.62 /* coefficient in expression for q3(t) */
#define A4 7.601 /* coefficient in expression for q4(t) */
#define C1_SCALE 1.0e6 /* coefficients in initial profiles */
#define C2_SCALE 1.0e12

#define T0 0.0 /* initial time */
#define NOUT 12 /* number of output times */
#define TWOHR 7200.0 /* number of seconds in two hours */
#define HALFDAY 4.32e4 /* number of seconds in a half day */
#define PI 3.1415926535898 /* pi */

#define XMIN 0.0 /* grid boundaries in x */
#define XMAX 20.0
#define ZMIN 30.0 /* grid boundaries in z */
#define ZMAX 50.0
#define XMID 10.0 /* grid midpoints in x,z */
#define ZMID 40.0

#define MX 10 /* MX = number of x mesh points */
#define MZ 10 /* MZ = number of z mesh points */
#define NSMX 20 /* NSMX = NUM_SPECIES*MX */
#define MM (MX*MZ) /* MM = MX*MZ */

/* CVodeMalloc Constants */

#define RTOL 1.0e-5 /* scalar relative tolerance */
#define FLOOR 100.0 /* value of C1 or C2 at which tolerances */

/* change from relative to absolute */
#define ATOL (RTOL*FLOOR) /* scalar absolute tolerance */
#define NEQ (NUM_SPECIES*MM) /* NEQ = number of equations */

/* User-defined vector and matrix accessor macros: IJKth, IJth */

/* IJKth is defined in order to isolate the translation from the
mathematical 3-dimensional structure of the dependent variable vector
to the underlying 1-dimensional storage. IJth is defined in order to
write code which indexes into small dense matrices with a (row,column)
pair, where 1 <= row, column <= NUM_SPECIES.

IJKth(vdata,i,j,k) references the element in the vdata array for
species i at mesh point (j,k), where 1 <= i <= NUM_SPECIES,
0 <= j <= MX-1, 0 <= k <= MZ-1. The vdata array is obtained via
the macro call vdata = N_VDATA(v), where v is an N_Vector.
For each mesh point (j,k), the elements for species i and i+1 are
contiguous within vdata.

IJth(a,i,j) references the (i,j)th entry of the small matrix real **a,
where 1 <= i,j <= NUM_SPECIES. The small matrix routines in dense.h
work with matrices stored by column in a 2-dimensional array. In C,
arrays are indexed starting at 0, not 1. */

#define IJKth(vdata,i,j,k) (vdata[i-1 + (j)*NUM_SPECIES + (k)*NSMX])
#define IJth(a,i,j) (a[j-1][i-1])

/* Type : UserData
contains preconditioner blocks, pivot arrays, and problem constants */

typedef struct {



24 5 KRYLOV SOLVER SAMPLE PROGRAM

real **P[MX][MZ], **Jbd[MX][MZ];
integer *pivot[MX][MZ];
real q4, om, dx, dz, hdco, haco, vdco;

} *UserData;

/* Private Helper Functions */

static UserData AllocUserData(void);
static void InitUserData(UserData data);
static void FreeUserData(UserData data);
static void SetInitialProfiles(N_Vector y, real dx, real dz);
static void PrintOutput(long int iopt[], real ropt[], N_Vector y, real t);
static void PrintFinalStats(long int iopt[]);

/* Functions Called by the CVODE Solver */

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data);

static int Precond(integer N, real tn, N_Vector y, N_Vector fy, bool jok,
bool *jcurPtr, real gamma, N_Vector ewt, real h,
real uround, long int *nfePtr, void *P_data,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

static int PSolve(integer N, real tn, N_Vector y, N_Vector fy, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector z);

/***************************** Main Program ******************************/

main()
{
real abstol, reltol, t, tout, ropt[OPT_SIZE];
long int iopt[OPT_SIZE];
N_Vector y;
UserData data;
void *cvode_mem;
int iout, flag;

/* Allocate memory, and set problem data, initial values, tolerances */

y = N_VNew(NEQ, NULL);
data = AllocUserData();
InitUserData(data);
SetInitialProfiles(y, data->dx, data->dz);
abstol=ATOL; reltol=RTOL;

/* Call CVodeMalloc to initialize CVODE:

NEQ is the problem size = number of equations
f is the user's right hand side function in y'=f(t,y)
T0 is the initial time
y is the initial dependent variable vector
BDF specifies the Backward Differentiation Formula
NEWTON specifies a Newton iteration
SS specifies scalar relative and absolute tolerances
&reltol and &abstol are pointers to the scalar tolerances
data is the pointer to the user-defined block of coefficients
FALSE indicates there are no optional inputs in iopt and ropt
iopt and ropt arrays communicate optional integer and real input/output



25

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SS, &reltol,
&abstol, data, NULL, FALSE, iopt, ropt, NULL);

if (cvode_mem == NULL) { printf("CVodeMalloc failed."); return(1); }

/* Call CVSpgmr to specify the CVODE linear solver CVSPGMR with
left preconditioning, modified Gram-Schmidt orthogonalization,
default values for the maximum Krylov dimension maxl and the tolerance
parameter delt, preconditioner setup and solve routines Precond and
PSolve, and the pointer to the user-defined block data. */

CVSpgmr(cvode_mem, LEFT, MODIFIED_GS, 0, 0.0, Precond, PSolve, data);

/* In loop over output points, call CVode, print results, test for error */

printf(" \n2-species diurnal advection-diffusion problem\n\n");
for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
flag = CVode(cvode_mem, tout, y, &t, NORMAL);
PrintOutput(iopt, ropt, y, t);
if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }

}

/* Free memory and print final statistics */

N_VFree(y);
FreeUserData(data);
CVodeFree(cvode_mem);
PrintFinalStats(iopt);
return(0);

}

/*********************** Private Helper Functions ************************/

/* Allocate memory for data structure of type UserData */

static UserData AllocUserData(void)
{
int jx, jz;
UserData data;

data = (UserData) malloc(sizeof *data);

for (jx=0; jx < MX; jx++) {
for (jz=0; jz < MZ; jz++) {
(data->P)[jx][jz] = denalloc(NUM_SPECIES);
(data->Jbd)[jx][jz] = denalloc(NUM_SPECIES);
(data->pivot)[jx][jz] = denallocpiv(NUM_SPECIES);

}
}

return(data);
}

/* Load problem constants in data */

static void InitUserData(UserData data)
{
data->om = PI/HALFDAY;
data->dx = (XMAX-XMIN)/(MX-1);
data->dz = (ZMAX-ZMIN)/(MZ-1);



26 5 KRYLOV SOLVER SAMPLE PROGRAM

data->hdco = KH/SQR(data->dx);
data->haco = VEL/(2.0*data->dx);
data->vdco = (1.0/SQR(data->dz))*KV0;

}

/* Free data memory */

static void FreeUserData(UserData data)
{
int jx, jz;

for (jx=0; jx < MX; jx++) {
for (jz=0; jz < MZ; jz++) {
denfree((data->P)[jx][jz]);
denfree((data->Jbd)[jx][jz]);
denfreepiv((data->pivot)[jx][jz]);

}
}

free(data);
}

/* Set initial conditions in y */

static void SetInitialProfiles(N_Vector y, real dx, real dz)
{
int jx, jz;
real x, z, cx, cz;
real *ydata;

/* Set pointer to data array in vector y. */

ydata = N_VDATA(y);

/* Load initial profiles of c1 and c2 into y vector */

for (jz=0; jz < MZ; jz++) {
z = ZMIN + jz*dz;
cz = SQR(0.1*(z - ZMID));
cz = 1.0 - cz + 0.5*SQR(cz);
for (jx=0; jx < MX; jx++) {
x = XMIN + jx*dx;
cx = SQR(0.1*(x - XMID));
cx = 1.0 - cx + 0.5*SQR(cx);
IJKth(ydata,1,jx,jz) = C1_SCALE*cx*cz;
IJKth(ydata,2,jx,jz) = C2_SCALE*cx*cz;

}
}

}

/* Print current t, step count, order, stepsize, and sampled c1,c2 values */

static void PrintOutput(long int iopt[], real ropt[], N_Vector y, real t)
{
real *ydata;

ydata = N_VDATA(y);

printf("t = %.2e no. steps = %d order = %d stepsize = %.2e\n",
t, iopt[NST], iopt[QU], ropt[HU]);

printf("c1 (bot.left/middle/top rt.) = %12.3e %12.3e %12.3e\n",
IJKth(ydata,1,0,0), IJKth(ydata,1,4,4), IJKth(ydata,1,9,9));



27

printf("c2 (bot.left/middle/top rt.) = %12.3e %12.3e %12.3e\n\n",
IJKth(ydata,2,0,0), IJKth(ydata,2,4,4), IJKth(ydata,2,9,9));

}

/* Print final statistics contained in iopt */

static void PrintFinalStats(long int iopt[])
{
printf("\nFinal Statistics.. \n\n");
printf("lenrw = %5ld leniw = %5ld\n", iopt[LENRW], iopt[LENIW]);
printf("llrw = %5ld lliw = %5ld\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);
printf("nst = %5ld nfe = %5ld\n", iopt[NST], iopt[NFE]);
printf("nni = %5ld nli = %5ld\n", iopt[NNI], iopt[SPGMR_NLI]);
printf("nsetups = %5ld netf = %5ld\n", iopt[NSETUPS], iopt[NETF]);
printf("npe = %5ld nps = %5ld\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);
printf("ncfn = %5ld ncfl = %5ld\n \n", iopt[NCFN], iopt[SPGMR_NCFL]);

}

/***************** Functions Called by the CVODE Solver ******************/

/* f routine. Compute f(t,y). */

static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data)
{
real q3, c1, c2, c1dn, c2dn, c1up, c2up, c1lt, c2lt;
real c1rt, c2rt, czdn, czup, hord1, hord2, horad1, horad2;
real qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, zdn, zup;
real q4coef, delz, verdco, hordco, horaco;
real *ydata, *dydata;
int jx, jz, idn, iup, ileft, iright;
UserData data;

data = (UserData) f_data;
ydata = N_VDATA(y);
dydata = N_VDATA(ydot);

/* Set diurnal rate coefficients. */

s = sin(data->om*t);
if (s > 0.0) {
q3 = exp(-A3/s);
data->q4 = exp(-A4/s);

} else {
q3 = 0.0;
data->q4 = 0.0;

}

/* Make local copies of problem variables, for efficiency. */

q4coef = data->q4;
delz = data->dz;
verdco = data->vdco;
hordco = data->hdco;
horaco = data->haco;

/* Loop over all grid points. */

for (jz=0; jz < MZ; jz++) {

/* Set vertical diffusion coefficients at jz +- 1/2 */



28 5 KRYLOV SOLVER SAMPLE PROGRAM

zdn = ZMIN + (jz - .5)*delz;
zup = zdn + delz;
czdn = verdco*exp(0.2*zdn);
czup = verdco*exp(0.2*zup);
idn = (jz == 0) ? 1 : -1;
iup = (jz == MZ-1) ? -1 : 1;
for (jx=0; jx < MX; jx++) {

/* Extract c1 and c2, and set kinetic rate terms. */

c1 = IJKth(ydata,1,jx,jz);
c2 = IJKth(ydata,2,jx,jz);
qq1 = Q1*c1*C3;
qq2 = Q2*c1*c2;
qq3 = q3*C3;
qq4 = q4coef*c2;
rkin1 = -qq1 - qq2 + 2.0*qq3 + qq4;
rkin2 = qq1 - qq2 - qq4;

/* Set vertical diffusion terms. */

c1dn = IJKth(ydata,1,jx,jz+idn);
c2dn = IJKth(ydata,2,jx,jz+idn);
c1up = IJKth(ydata,1,jx,jz+iup);
c2up = IJKth(ydata,2,jx,jz+iup);
vertd1 = czup*(c1up - c1) - czdn*(c1 - c1dn);
vertd2 = czup*(c2up - c2) - czdn*(c2 - c2dn);

/* Set horizontal diffusion and advection terms. */

ileft = (jx == 0) ? 1 : -1;
iright =(jx == MX-1) ? -1 : 1;
c1lt = IJKth(ydata,1,jx+ileft,jz);
c2lt = IJKth(ydata,2,jx+ileft,jz);
c1rt = IJKth(ydata,1,jx+iright,jz);
c2rt = IJKth(ydata,2,jx+iright,jz);
hord1 = hordco*(c1rt - 2.0*c1 + c1lt);
hord2 = hordco*(c2rt - 2.0*c2 + c2lt);
horad1 = horaco*(c1rt - c1lt);
horad2 = horaco*(c2rt - c2lt);

/* Load all terms into ydot. */

IJKth(dydata, 1, jx, jz) = vertd1 + hord1 + horad1 + rkin1;
IJKth(dydata, 2, jx, jz) = vertd2 + hord2 + horad2 + rkin2;

}
}

}

/* Preconditioner setup routine. Generate and preprocess P. */

static int Precond(integer N, real tn, N_Vector y, N_Vector fy, bool jok,
bool *jcurPtr, real gamma, N_Vector ewt, real h,
real uround, long int *nfePtr, void *P_data,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)

{
real c1, c2, czdn, czup, diag, zdn, zup, q4coef, delz, verdco, hordco;
real **(*P)[MZ], **(*Jbd)[MZ];
integer *(*pivot)[MZ], ier;
int jx, jz;
real *ydata, **a, **j;
UserData data;



29

/* Make local copies of pointers in P_data, and of pointer to y's data */

data = (UserData) P_data;
P = data->P;
Jbd = data->Jbd;
pivot = data->pivot;
ydata = N_VDATA(y);

if (jok) {

/* jok = TRUE: Copy Jbd to P */

for (jz=0; jz < MZ; jz++)
for (jx=0; jx < MX; jx++)
dencopy(Jbd[jx][jz], P[jx][jz], NUM_SPECIES);

*jcurPtr = FALSE;

}

else {
/* jok = FALSE: Generate Jbd from scratch and copy to P */

/* Make local copies of problem variables, for efficiency. */

q4coef = data->q4;
delz = data->dz;
verdco = data->vdco;
hordco = data->hdco;

/* Compute 2x2 diagonal Jacobian blocks,
(using q4 values computed on the last f call). Load into P. */

for (jz=0; jz < MZ; jz++) {
zdn = ZMIN + (jz - .5)*delz;
zup = zdn + delz;
czdn = verdco*exp(0.2*zdn);
czup = verdco*exp(0.2*zup);
diag = -(czdn + czup + 2.0*hordco);
for (jx=0; jx < MX; jx++) {
c1 = IJKth(ydata,1,jx,jz);
c2 = IJKth(ydata,2,jx,jz);
j = Jbd[jx][jz];
a = P[jx][jz];
IJth(j,1,1) = (-Q1*C3 - Q2*c2) + diag;
IJth(j,1,2) = -Q2*c1 + q4coef;
IJth(j,2,1) = Q1*C3 - Q2*c2;
IJth(j,2,2) = (-Q2*c1 - q4coef) + diag;
dencopy(j, a, NUM_SPECIES);

}
}

*jcurPtr = TRUE;

}

/* Scale by -gamma */

for (jz=0; jz < MZ; jz++)
for (jx=0; jx < MX; jx++)
denscale(-gamma, P[jx][jz], NUM_SPECIES);



30 5 KRYLOV SOLVER SAMPLE PROGRAM

/* Add identity matrix and do LU decompositions on blocks in place. */

for (jx=0; jx < MX; jx++) {
for (jz=0; jz < MZ; jz++) {
denaddI(P[jx][jz], NUM_SPECIES);
ier = gefa(P[jx][jz], NUM_SPECIES, pivot[jx][jz]);
if (ier != 0) return(1);

}
}

return(0);
}

/* Preconditioner solve routine */

static int PSolve(integer N, real tn, N_Vector y, N_Vector fy, N_Vector vtemp,
real gamma, N_Vector ewt, real delta, long int *nfePtr,
N_Vector r, int lr, void *P_data, N_Vector z)

{
real **(*P)[MZ];
integer *(*pivot)[MZ];
int jx, jz;
real *zdata, *v;
UserData data;

/* Extract the P and pivot arrays from P_data. */

data = (UserData) P_data;
P = data->P;
pivot = data->pivot;
zdata = N_VDATA(z);

N_VScale(1.0, r, z);

/* Solve the block-diagonal system Px = r using LU factors stored
in P and pivot data in pivot, and return the solution in z. */

for (jx=0; jx < MX; jx++) {
for (jz=0; jz < MZ; jz++) {
v = &(IJKth(zdata, 1, jx, jz));
gesl(P[jx][jz], NUM_SPECIES, pivot[jx][jz], v);

}
}

return(0);
}

Among the initial #include lines in this case are lines to include iterativ.h, cvspgmr.h, and
llnlmath.h. The �rst two contain constants and function prototypes associated with precondi-
tioned Krylov methods, including the values of the pretype argument to CVSpgmr. The inclusion
of llnlmath.h is done to access the SQR macro for the square of a real number.

The main function calls CVodeMalloc specifying BDF and NEWTON, with scalar tolerances. It calls
CVSpgmr specifying the CVSPGMR linear solver with left preconditioning, modi�ed Gram-Schmidt
orthogonalization, default values (indicated by zero arguments) for the optional inputs maxl and delt,
and non-NULL preconditioner setup and solve functions, Precond and PSolve. The data pointer passed



31

to CVSpgmr is passed to Precond and PSolve whenever these are called. See Section 10.2.4.1 for details
on the CVSpgmr function. The preconditioner is the block-diagonal part of the true Newton matrix.
Then for a sequence of tout values, CVode is called in the NORMAL mode, sampled output is printed,
and the return value is tested for error conditions. Finally, CVodeFree is called and �nal statistics are
printed. The latter include various counters, such as the total number of steps (nst), f evaluations
(nfe), nonlinear iterations (nni), and linear iterations (nli), among others. Also printed are the
lengths of the problem-dependent real and integer workspaces used by the main integrator CVode,
denoted lenrw and leniw, and those used by CVSPGMR, denoted llrw and lliw. These optional
outputs are described in Sections 10.1.7 and 10.2.4.4.

Mathematically, the dependent variable has three dimensions: species number, x mesh point, and
y mesh point. But in CVODE, a vector of type N Vector works with a one-dimensional contiguous
array of data components. The macro IJKth isolates the translation from three dimensions to one. Its
use results in clearer code and makes it easy to change the underlying layout of the three-dimensional
data. Here the problem size is 200, so we use the N VDATA macro for e�cient N Vector access. The
N VDATA macro gives a pointer to the �rst component of an N Vector which we pass to the IJKth

macro to do an N Vector access. The N VDATA macro is documented in Section 10.3.1.2.

The preconditioner is generated and factored in the Precond routine and backsolved in the PSolve
routine. It is a block-diagonal matrix with 2� 2 blocks that include the interaction Jacobian elements
and the diagonal contribution of the di�usion Jacobian elements. The block-diagonal part of the
Jacobian itself, Jbd, is saved in separate storage each time it is generated, on calls to Precond with
jok == FALSE. On calls with jok == TRUE, signifying that saved Jacobian data can be reused, the
preconditioner P = I � Jbd is formed from the saved matrix Jbd and factored. (A call to Precond

with jok == TRUE can only occur after a call with jok == FALSE.) In each case, we set the value of
jcur, i.e. *jcurPtr, to TRUE when Jbd is re-evaluated, and FALSE otherwise, to inform CVSPGMR of
the status of Jacobian data.

We need to take a brief detour to explain one last important point about the cvkx.c user program.
As documented in dense.h and band.h, the generic DENSE and BAND solvers each contain two sets
of routines: one for large, potentially distributed matrices, and one for small matrices which will always
reside on a single processor. The \large" dense and band routines work with the types DenseMat and
BandMat, respectively. The \small"dense and band routines work with real ** as the underlying dense
and band matrix types. The types DenseMat and BandMat, as well as their supporting functions, may
be re-implemented in order to use this generic DENSE solver in a distributed-memory environment.
The CVDENSE and CVBAND linear solvers use the types DenseMat and BandMat for the N � N

dense and band Jacobian and Newton matrices, and call the large matrix routines. The small dense
and band routines are available for CVODE user programs, and are documented in Sections 10.3.2.4
and 10.3.3.4, respectively. In cvkx.c, each of the blocks of the preconditioner is a 2� 2 dense matrix.
Thus the small dense matrix routines denalloc, dencopy, denscale, gefa, gesl, denaddI, denfree,
and denfreepiv are used. The macro IJth de�ned near the top of the �le is used to access individual
elements in each preconditioner block, numbered from 1.

The output generated by cvkx.c is shown below. Note that the number of preconditioner eval-
uations, npe, is much smaller than the number of preconditioner setups, nsetups, as a result of the
Jacobian re-use scheme.



32 5 KRYLOV SOLVER SAMPLE PROGRAM

2-species diurnal advection-diffusion problem

t = 7.20e+03 no. steps = 219 order = 5 stepsize = 1.59e+02
c1 (bot.left/middle/top rt.) = 1.047e+04 2.964e+04 1.119e+04
c2 (bot.left/middle/top rt.) = 2.527e+11 7.154e+11 2.700e+11

t = 1.44e+04 no. steps = 251 order = 5 stepsize = 3.77e+02
c1 (bot.left/middle/top rt.) = 6.659e+06 5.316e+06 7.301e+06
c2 (bot.left/middle/top rt.) = 2.582e+11 2.057e+11 2.833e+11

t = 2.16e+04 no. steps = 277 order = 5 stepsize = 2.75e+02
c1 (bot.left/middle/top rt.) = 2.665e+07 1.036e+07 2.931e+07
c2 (bot.left/middle/top rt.) = 2.993e+11 1.028e+11 3.313e+11

t = 2.88e+04 no. steps = 324 order = 3 stepsize = 1.16e+02
c1 (bot.left/middle/top rt.) = 8.702e+06 1.292e+07 9.650e+06
c2 (bot.left/middle/top rt.) = 3.380e+11 5.029e+11 3.751e+11

t = 3.60e+04 no. steps = 367 order = 4 stepsize = 6.16e+01
c1 (bot.left/middle/top rt.) = 1.404e+04 2.029e+04 1.561e+04
c2 (bot.left/middle/top rt.) = 3.387e+11 4.894e+11 3.765e+11

t = 4.32e+04 no. steps = 422 order = 4 stepsize = 5.42e+02
c1 (bot.left/middle/top rt.) = -1.487e-06 -1.085e-05 -1.756e-06
c2 (bot.left/middle/top rt.) = 3.382e+11 1.355e+11 3.804e+11

t = 5.04e+04 no. steps = 438 order = 4 stepsize = 2.55e+02
c1 (bot.left/middle/top rt.) = -4.109e-11 -2.908e-10 -4.857e-11
c2 (bot.left/middle/top rt.) = 3.358e+11 4.930e+11 3.864e+11

t = 5.76e+04 no. steps = 452 order = 5 stepsize = 3.93e+02
c1 (bot.left/middle/top rt.) = 5.077e-11 3.991e-10 5.971e-11
c2 (bot.left/middle/top rt.) = 3.320e+11 9.650e+11 3.909e+11

t = 6.48e+04 no. steps = 463 order = 5 stepsize = 6.62e+02
c1 (bot.left/middle/top rt.) = 3.436e-12 2.760e-11 4.030e-12
c2 (bot.left/middle/top rt.) = 3.313e+11 8.922e+11 3.963e+11

t = 7.20e+04 no. steps = 474 order = 5 stepsize = 6.62e+02
c1 (bot.left/middle/top rt.) = -1.191e-12 -1.056e-11 -1.367e-12
c2 (bot.left/middle/top rt.) = 3.330e+11 6.186e+11 4.039e+11

t = 7.92e+04 no. steps = 485 order = 5 stepsize = 6.62e+02
c1 (bot.left/middle/top rt.) = -5.511e-14 -4.677e-13 -6.380e-14
c2 (bot.left/middle/top rt.) = 3.334e+11 6.669e+11 4.120e+11

t = 8.64e+04 no. steps = 496 order = 5 stepsize = 6.62e+02
c1 (bot.left/middle/top rt.) = -1.789e-15 -1.548e-14 -2.068e-15
c2 (bot.left/middle/top rt.) = 3.352e+11 9.107e+11 4.163e+11

Final Statistics..

lenrw = 2000 leniw = 0
llrw = 2046 lliw = 0
nst = 496 nfe = 1269
nni = 640 nli = 626
nsetups = 90 netf = 30
npe = 9 nps = 1204
ncfn = 0 ncfl = 0



33

6 CVODE Linear Solvers

As previously explained, Newton iteration requires the solution of linear systems of the form (4). There
are four CVODE linear solvers currently available for this task: CVDENSE, CVBAND, CVDIAG, and
CVSPGMR. The �rst three are direct solvers and derive their name from the type of approximation
used for the Jacobian J = @f=@y. CVDENSE, CVBAND, and CVDIAG work with dense, banded,
and diagonal approximations to J , respectively. The fourth CVODE linear solver, CVSPGMR, is
an iterative solver. The SPGMR in the name indicates that it uses a scaled preconditioned GMRES
method.

To specify a CVODE linear solver, after the call to CVodeMalloc but before any calls to CVode,
the user's program must call one of the functions CVDense, CVBand, CVDiag, CVSpgmr, as documented
below. The �rst argument passed to these functions is the CVODE memory pointer returned by
CVodeMalloc. A call to one of these functions links the main CVODE integrator to a CVODE linear
solver and allows the user to specify parameters which are speci�c to a particular solver, such as the
bandwidths in the CVBAND case.

The use of each of the linear solvers involves certain constants (such as locations of optional outputs
in iopt), and possibly some macros, that are likely to be needed in the user code. These are available
in the corresponding header �le associated with the linear solver, as speci�ed below.

In each case except the diagonal approximation case CVDIAG, the linear solver module used
by CVODE is actually built on top of a generic linear system solver, which may be of interest in
itself. These generic solvers, denoted DENSE, BAND, and SPGMR, are described separately in
Sections 10.3.2-10.3.4.

6.1 Direct Methods

6.1.1 CVDENSE

In using the CVDENSE solver with CVODE, the calling program must include the corresponding
header �le, with the line

#include "cvdense.h"

After the call to CVodeMalloc, the user must call the following routine to select the CVDENSE
solver:

void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data);

The CVDENSE solver needs a routine to compute a dense approximation to the Jacobian matrix
J(t; y). This routine must be of type CVDenseJacFn, and is communicated through the CVDense

formal parameter djac. The user can supply his/her own dense Jacobian routine, or use the di�erence
quotient routine CVDenseDQJac that comes with the CVDENSE solver. To use CVDenseDQJac, the
user must pass NULL for the djac parameter.



34 6 CVODE LINEAR SOLVERS

The CVDense formal parameter jac data is a pointer that accommodates a user-de�ned data
structure. The CVDENSE solver passes the pointer it receives in the CVDense call to its dense Jacobian
function (the djac parameter). This allows the user to create an arbitrary structure with relevant
problem data and access it during the execution of the user-supplied Jacobian routine, without using
global data in the program. The pointer jac data may be identical to f data, if the latter is passed
to CVodeMalloc.

The type of the dense Jacobian routine CVDenseJacFn is de�ned by

typedef void (*CVDenseJacFn)(integer N, DenseMat J, RhsFn f, void *f_data,

real t, N_Vector y, N_Vector fy, N_Vector ewt,

real h, real uround, void *jac_data,

long int *nfePtr, N_Vector vtemp1,

N_Vector vtemp2, N_Vector vtemp3);

A user-supplied dense Jacobian routine must load the N by N dense matrix J with an approximation
to the Jacobian matrix J at the point (t,y). Only nonzero elements need to be loaded into J because
J is set to the zero matrix before the call to the Jacobian routine. The type of the J is DenseMat.
The accessor macros DENSE ELEM and DENSE COL allow the user to read and write dense matrix el-
ements without making explicit references to the underlying representation of the DenseMat type.
DENSE ELEM(A,i,j) references the (i,j)th element of the dense matrix A (i,j = 0..N-1). This macro
is for use in small problems in which e�ciency of access is not a major concern. Thus, in terms of
indices m and n running from 1 to N , the Jacobian element Jm;n can be loaded with the statement
DENSE ELEM(A,m-1,n-1) = Jm;n. Alternatively, DENSE COL(A,j) returns a pointer to the storage for
the jth column of A, and the elements of the jth column are then accessed via ordinary array indexing.
Thus Jm;n can be loaded with the statements col n = DENSE COL(J,n-1); col n[m-1] = Jm;n. For
large problems, it is more e�cient to use DENSE COL than to use DENSE ELEM. Note that both of these
macros number rows and columns starting from 0, not 1. The DenseMat type and the accessor macros
DENSE ELEM and DENSE COL are documented in Sections 10.3.2.1 and 10.3.2.2.

Typically, a user-supplied Jacobian function djac would be expected to access the arguments N,
t, y, J, f data, and jac data, at most. The remaining arguments would not typically be accessed,
but appear in the call list because they are needed by the function CVDenseDQJac that computes a
di�erence quotient approximation to J , when the user speci�es that option.

The CVDENSE module provides three optional outputs. One is the number of calls made to the
Jacobian routine. It is placed in iopt[DENSE NJE], where iopt is the array supplied by the user in the
CVodeMalloc call. The other two are the sizes of the real and integer workspaces used by CVDENSE,
stored in iopt[DENSE LRW] and iopt[DENSE LIW], respectively. In terms of the problem size N , the
actual sizes of these workspaces are 2N2 real words and N integer words.

See the reference guide Section 10.2.1 for documentation for the function CVDense and the type
CVDenseJacFn, and for a listing of these CVDENSE optional outputs.



6.1 Direct Methods 35

6.1.2 CVBAND

In using the CVBAND solver with CVODE, the calling program must include the corresponding
header �le, with the line

#include "cvband.h"

After the call to CVodeMalloc, the user must call the following routine to select the CVBAND
solver:

void CVBand(void *cvode_mem, integer mupper, integer mlower, CVBandJacFn bjac,

void *jac_data);

The upper and lower bandwidths of problem Jacobian (or of the approximation of it to be used in
CVODE) are speci�ed in this call through the mupper and mlower parameters.

The CVBAND solver requires a routine to compute a banded approximation to the Jacobian
matrix J(t; y). This routine must be of type CVBandJacFn, and is communicated through the CVBand
formal parameter bjac. The user can supply his/her own banded Jacobian approximation routine,
or use the di�erence quotient routine CVBandDQJac that comes with the CVBAND solver. To use the
CVBandDQJac, the user must pass NULL for bjac.

As in the CVDENSE case, the CVBand formal parameter jac data is a pointer to a user-de�ned
data structure, which the CVBAND solver passes to the Jacobian function bjac. This allows the user
to create an arbitrary structure with relevant problem data and access it during the execution of the
user-supplied Jacobian routine, without using global data in the program. The pointer jac data may
be identical to f data, if the latter is passed to CVodeMalloc.

The type of the band Jacobian routine CVBandJacFn is de�ned by

typedef void (*CVBandJacFn)(integer N, integer mupper, integer mlower,

BandMat J, RhsFn f, void *f_data, real t,

N_Vector y, N_Vector fy, N_Vector ewt, real h,

real uround, void *jac_data, long int *nfePtr,

N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

A user-supplied band Jacobian routine must load the band matrix J of type BandMat with the elements
of the Jacobian J(t; y) at the point (t,y). Only nonzero elements need to be loaded into J because J

is preset to zero before the call to the Jacobian routine. The accessor macros BAND ELEM, BAND COL,
and BAND COL ELEM allow the user to read and write band matrix elements without making speci�c
references to the underlying representation of the BandMat type. BAND ELEM(A,i,j) references the
(i,j)th element of the band matrix A. This macro is for use in small problems in which e�ciency of
access is not a major concern. Thus, in terms of indices m and n running from 1 to N with (m;n)
within the band de�ned by mupper and mlower, the Jacobian element Jm;n can be loaded with the
statement BAND ELEM(A,m-1,n-1) = Jm;n. Alternatively, BAND COL(A,j) returns a pointer to the
diagonal element of the jth column of A, and if we assign this address to real *col j, then the ith
element of the jth column is given by BAND COL ELEM(col j,i,j). Thus for (m;n) within the band,
Jm;n can be loaded by setting col n = BAND COL(J,n-1); BAND COL ELEM(col n,m-1,n-1) = Jm;n.



36 6 CVODE LINEAR SOLVERS

The elements of the jth column can also be accessed via ordinary array indexing, but this approach
requires knowledge of the underlying storage for a band matrix of type BandMat. The array col n can
be indexed from �mupper to mlower. For large problems, it is more e�cient to use the combination of
BAND COL and BAND COL ELEM than to use the BAND ELEM. As in the dense case, these macros all number
rows and columns starting from 0, not 1. The BandMat type and the accessor macros BAND ELEM,
BAND COL, and BAND COL ELEM are documented in Sections 10.3.3.1 and 10.3.3.2.

Typically, a user-supplied Jacobian function bjac would be expected to access the arguments N,
mupper, mlower, t, y, J, f data, and jac data, at most. The remaining arguments would not typically
be accessed, but appear in the call list because they are needed by the function CVBandDQJac that
computes a di�erence quotient approximation to J , when the user speci�es that option.

The CVBAND module provides three optional outputs. One is the number of calls made to the
Jacobian routine. It is placed in iopt[BAND NJE], where iopt is the array supplied by the user in the
CVodeMalloc call. The other two are the sizes of the real and integer workspaces used by CVBAND,
stored in iopt[BAND LRW] and iopt[BAND LIW], respectively. In terms of the problem size N , the
actual sizes of these workspaces are (roughly) N � (2 mupper + 3 mlower + 2) real words and N

integer words.

See the reference guide Section 10.2.2 for documentation for the function CVBand and the type
CVBandJacFn, and for a listing of these CVBAND optional outputs.

6.1.3 CVDIAG

In using the CVDIAG solver with CVODE, the calling program must include the corresponding header
�le, with the line

#include "cvdiag.h"

After the call to CVodeMalloc, the user must call the following routine to select the CVDIAG
solver.

void CVDiag(void *cvode_mem);

The CVDIAG solver is the simplest of all the current CVODE linear solvers. The CVDiag routine
receives only the CVODE memory pointer returned by CVodeMalloc. CVDIAG uses an approximate
diagonal Jacobian formed by way of a di�erence quotient. The user does not have the option to supply
a routine to compute an approximate diagonal Jacobian.

The CVDIAG module provides two optional outputs. These are the sizes of the real and integer
workspaces used by CVDIAG, stored in iopt[DIAG LRW] and iopt[DIAG LIW], respectively.

In terms of the problem size N , the actual sizes of these workspaces are 3N real words and no
integer words. The number of approximate diagonal Jacobians formed is equal to iopt[NSETUPS].

See the reference guide Section 10.2.3 for documentation of the function CVDiag and the CVDIAG
optional outputs.



6.2 Iterative Methods 37

6.2 Iterative Methods

6.2.1 CVSPGMR

The CVSPGMR solver uses a scaled preconditioned GMRES iterative method to solve the linear
system (4). With this SPGMR method, preconditioning can be done on the left only, on the right
only, on both the left and the right, or not at all. For a given preconditioner matrix, the merits of left
vs. right preconditioning are unclear in general, and the user should experiment with both choices.
Performance will di�er because the inverse of the left preconditioner is included in the linear system
residual whose norm is being tested in the SPGMR algorithm. As a rule, however, if the preconditioner
is the product of two matrices, we recommend that preconditioning be done either on the left only or
the right only, rather than using one factor on each side.

In using the CVSPGMR solver with CVODE, the calling program must include two associated
header �les, with the lines

#include "iterativ.h"

#include "cvspgmr.h"

After the call to CVodeMalloc, the user must call the following routine to select the CVSPGMR
solver.

void CVSpgmr(void *cvode_mem, int pretype, int gstype, int maxl, real delt,

CVSpgmrPrecondFn precond, CVSpgmrPSolveFn psolve, void *P_data);

The call to CVSpgmr is used to communicate the type of preconditioning (pretype), the user's precon-
ditioner setup routine (precond), the preconditioner solve routine (psolve), and the type of Gram-
Schmidt procedure (gstype). The pretype parameter can be NONE, LEFT, RIGHT, or BOTH. (These
constants are de�ned in iterativ.h.) If no preconditioning is desired (pass NONE for pretype), then
both precond and psolve are ignored. Otherwise, a preconditioner solve function psolve is required.
Regardless of the type of preconditioning, a preconditioner setup function precond is not required.
The gstype parameter can be MODIFIED GS or CLASSICAL GS (these constants are also de�ned in
iterativ.h) according to whether the user wants the CVSPGMR solver to use modi�ed or classical
Gram-Schmidt orthogonalization.

The call to CVSpgmr is also used to communicate two optional inputs to the CVSPGMR solver.
One is maxl, the maximum dimension of the Krylov subspace to be used. The other is delt, a factor
by which the GMRES convergence test constant is reduced from the Newton iteration test constant.
Both of these inputs have defaults, which can be invoked by setting the actual parameter to zero in
the call. The actual default values are 5 for the maximum Krylov dimension, and :05 for the test
constant factor.

As in the dense and band cases, CVSpgmr takes in a parameter P data, a pointer to a user-de�ned
data structure, which the CVSPGMR solver passes to the preconditioner setup and solve functions
precond and psolve. This allows the user to create an arbitrary structure with relevant problem
data and access it during the execution of the user-supplied preconditioner routines without using
global data in the program. The pointer P data may be identical to f data, if the latter is passed to



38 6 CVODE LINEAR SOLVERS

CVodeMalloc.

If any type of preconditioning is to be done within the SPGMR method, then the user must supply
a preconditioner solve routine psolve. This function has type CVSpgmrPSolveFn as de�ned by

typedef int (*CVSpgmrPSolveFn)(integer N, real t, N_Vector y, N_Vector fy,

N_Vector vtemp, real gamma, N_Vector ewt,

real delta, long int *nfePtr, N_Vector r,

int lr, void *P_data, N_Vector z);

If P1 is the left preconditioner and P2 is the right preconditioner, then the user's psolve function must
solve P1z = r if lr is LEFT or P2z = r if lr is RIGHT.

The evaluation and preprocessing of any Jacobian-related data needed by the user's preconditioner
solve routine is done in the optional user-supplied routine precond. This routine must be of type
CVSpgmrPrecondFn as de�ned by

typedef int (*CVSpgmrPrecondFn)(integer N, real t, N_Vector y, N_Vector fy,

bool jok, bool *jcurPtr, real gamma,

N_Vector ewt, real h, real uround,

long int *nfePtr, void *P_data,

N_Vector vtemp1, N_Vector vtemp2,

N_Vector vtemp3);

This routine is not called in advance of every psolve call, but rather is called only as often as needed
to achieve convergence in the Newton iteration. The jok argument provides for the re-use of Jacobian
data in psolve. When jok == FALSE, Jacobian data should be computed from scratch, but when jok

== TRUE, Jacobian data saved earlier can be retrieved and used to form the preconditioner matrices
(with the current  = gamma).

The CVSPGMR solver provides six optional outputs. The total number of calls to precond is
given in iopt[SPGMR NPE], and the number of calls to psolve is in iopt[SPGMR NPS]. The num-
ber of linear iterations is in iopt[SPGMR NLI], and the number of linear convergence failures is in
iopt[SPGMR NCFL]. The sizes of the real and integer workspaces used by CVSPGMR are stored in
iopt[SPGMR LRW] and iopt[SPGMR LIW], respectively. In terms of the problem size N and the maxi-
mum Krylov dimension `max, the actual sizes of these workspaces areN �(`max+5)+`max�(`max+4)+1
real words and no integer words.

See the reference guide Section 10.2.4 for documentation of the function CVSpgmr, the types
CVSpgmrPrecondFn and CVSpgmrPSolveFn of the user-supplied preconditioner functions, and the op-
tional outputs from CVSPGMR.

For users interested in the generic SPGMR solver used by CVSPGMR, a note of caution is in order:
The routines in SPGMR have arguments l max, delta, psolve, P data, which are not the same as
the CVSpgmr arguments maxl, delt, psolve, P data, although the names are the same or very similar.
(The arguments pretype and gstype are identical in meaning in both contexts.) For more on the
generic SPGMR solver, see Section 10.3.4.



39

7 Types real and integer

7.1 Description

The llnltyps.h �le contains the de�nitions of the types real and integer. CVODE uses the type
real for all oating point data and the type integer for all problem size-related data such as the
actual problem size, the bandwidths in the CVBAND solver, and the integers stored in the length N
pivot arrays in both the CVDENSE and CVBAND solvers. These types make it easy to have CVODE
solve problems of virtually any size using single or double precision arithmetic. The type real can be
double or float and the type integer can be int or long int. The default settings are double and
int.

7.2 Changing Type real

The user can change the precision of CVODE arithmetic from double to single by changing the typedef

typedef double real; to typedef float real;

and by changing the macro de�nitions

#define FLOAT 0 to #define FLOAT 1

#define DOUBLE 1 #define DOUBLE 0

in llnltyps.h. These macro de�nitions are used to enable llnltyps.h to branch on the setting of
real at compile time.

Changing from double precision to single precision arithmetic also requires minor changes in the
implementation �le llnlmath.c for the LLNLMATH module which CVODE uses. The RPowerR and
RSqrt functions compute a real number raised to a real power and the square root of a number,
respectively. The default implementation of these routines calls standard C math library functions
which do double precision arithmetic. These implementations should be changed to call single precision
routines which are available on the user's machine (if the user wants CVODE to perform only single
precision arithmetic).

Within CVODE, real constants are set by way of a macro called RCONST. It is this macro that
needs the ability to branch on the setting for real. In ANSI C, a oating point constant with no
su�x is stored as a double. Placing the su�x \F" at the end of a oating point constant makes it a
float. For example,

#define A 1.0

#define B 1.0F

de�nes A to be a double constant 1.0 and B to be a float constant 1:0. The macro call RCONST(1.0)
expands to 1.0 if real is double and it expands to 1.0F if real is float. CVODE uses the RCONST
macro for all its oating point constants.



40 7 TYPES REAL AND INTEGER

A user programwhich uses the type real and the RCONSTmacro to handle oating point constants is
precision-independent except for any calls to single or double precision standard math library functions.
(Our demonstration programs use real but not RCONST.) Users can, however, use the type double or
float in their code (assuming the typedef for real matches this choice). Thus, a previously existing
piece of ANSI C code can use CVODE without modifying the code to use real.

7.3 Changing Type integer

CVODE uses the type integer for all quantities related to problem size. On some machines the size
of an int and a long int are the same, but this is not always the case. The size int may be too
small on a machine for a very large problem. In this case, the user should change the typedef

typedef int integer; to typedef long int integer;

and the macro de�nitions

#define INT 1 to #define INT 0

#define LONG_INT 0 #define LONG_INT 1

in llnltyps.h. In terms of the problem size N , and the bandwidths mlower and mupper in the case
of the band module CVBAND, the largest integer that must be accommodated by the integer type
is N+ mlower + mupper in the band case, and N in all other cases. The user can use the type int or
long int in his/her code instead of integer (assuming the typedef for integer matches this choice).



41

8 Demonstration Programs

As an aid to users of the CVODE package, two demonstration programs are provided as part of the
package. These are more complex in their usage of CVODE than the sample programs given above,
and include some self-checking for accuracy. They exercise all of the major method options of CVODE,
and so provide a validation check for recipients of the package.

8.1 Direct Demonstration Program, cvdemd.c

This program solves two di�erent problems, and includes self-checking features in both cases.

The �rst problem is the Van der Pol oscillator problem, a second-order ODE converted to two
�rst-order ODEs, with a parameter that makes it mildly sti�. It is solved with eight di�erent method
choices: Adams and BDFmethods, each in combination with functional iteration, a dense user-supplied
Jacobian, a dense di�erence-quotient Jacobian, and a diagonal Jacobian approximation. Global errors
are checked by stopping at two of the zeros of the exact solution.

The second problem is the semi-discrete form of a simple advection PDE in two dimensions, giving
a linear ODE system of size 25. It has an analytic solution, and global errors are measured at each
output time. It is also solved with eight di�erent method choices: Adams and BDF methods, each in
combination with functional iteration, a banded user-supplied Jacobian, a banded di�erence-quotient
Jacobian, and a diagonal Jacobian approximation.

8.2 Krylov Demonstration Program, cvdemk.c

This program solves a 6-species predator-prey population model, based on a system of PDEs with
di�usion and nonlinear species interaction rates in two dimensions. The PDEs are semi-discretized on
a 6 � 6 mesh, giving an ODE system of size 216. This is solved with the BDF method and Newton
iteration using the CVSPGMR linear solver. The preconditioner used is the product of two matrices|
one based on a �xed number of Gauss-Seidel iterations using the di�usion coe�cients only, and the
other being a block-diagonal matrix based on the Jacobian of the interaction rates only. The latter
uses a block-grouping scheme in which the 36 spatial mesh points are grouped into 4 groups, and only
one 6� 6 Jacobian block is computed in each group. Four di�erent cases are run. The preconditioner
is applied to both the left and right sides, and in each case, both modi�ed and classical Gram-Schmidt
options are run. The program prints performance statistics at each output point, and the full solution
vector at selected output points.

The preconditioner setup routine Precond in this program is intended to be usable as a prototype
for the general case of a block-diagonal preconditioner. It generates the blocks of the preconditioner by
way of di�erence quotients, and calls to a separate routine that evaluates a block of the interaction rate
vector at a single spatial point. It makes use of block-grouping information that is also completely
general. A separate routine is used to set that information, based on a simple partitioning of the
rectangular grid.



42 9 OVERALL STRUCTURE

9 Overall Structure

The CVODE package is written in the ANSI C language. The following summarizes the basic structure
of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the CVODE package is shown in Figure 2. The basic elements of the
structure are a module for the basic integration algorithm and a set of modules for the solution of linear
systems that arise in the case of a sti� system. The central integration module CVode, implemented in
the �les cvode.h and cvode.c, deals with the evaluation of integration coe�cients, the functional or
Newton iteration process, estimation of local error, selection of stepsize and order, and interpolation
to user output points, among other issues. Although this module contains logic for the basic Newton
iteration algorithm, it has no knowledge of the method being used to solve the linear systems that
arise. For any given user problem, one of the linear system modules is speci�ed, and is then invoked
as needed during the integration.

At present, the package includes the following four CVODE linear system modules:

� CVDENSE: LU factorization and backsolving with dense matrices;

� CVBAND: LU factorization and backsolving with banded matrices;

� CVDIAG: an internally generated diagonal approximation to the Jacobian;

� CVSPGMR: scaled preconditioned GMRES method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are
developed.

In the case of the direct CVDENSE and CVBAND methods, the package includes an algorithm for
the approximation of the Jacobian by di�erence quotients, but the user also has the option of supplying
the Jacobian (or an approximation to it) directly. In the case of CVSPGMR, the preconditioning must
be supplied by the user, in two phases | setup (preprocessing of Jacobian data) and solve. While
there is no default choice of preconditioner analogous to the di�erence quotient approximation in the
direct case, the references [2]-[3], together with the example and demonstration programs included
with CVODE, o�er considerable assistance in building preconditioners.

Each CVODE linear solver module consists of four routines, devoted to (1) memory allocation
and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing
of memory. The setup and solution phases are separate because the evaluation of Jacobians and
preconditioners is done only periodically during the integration, as required to achieve convergence.
The call list within the central CVODE module to each of the four associated functions is �xed, thus
allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules CVDENSE, CVBAND,
and CVSPGMR is a set of interface routines built on top of a generic solver module, named DENSE,
BAND, and SPGMR, respectively. The interfaces deal with the use of these methods in the CVODE



43

   CVDENSE                                   CVBAND                                     CVDIAG                                   CVSPGMR

cvdense.h, cvdense.c                     cvband.h, cvband.c                       cvdiag.h, cvdiag.c                      cvspgmr.h, cvspgmr.c

DENSE

dense.h, dense.c spgmr.h, spgmr.c

    SPGMR

band.h, band.c

BAND

LLNLMATH

llnlmath.h, llnlmath.c

Main    CVODE   Integrator

cvode.h, cvode.c

iterativ.h, iterativ.c

ITERATIVE

VECTOR

vector.h, vector.c

Generic Linear Solvers

LLNLTYPS

llnltyps.h

Figure 2: Overall structure diagram of the CVODE package. Modules speci�c to CVODE are distin-
guished by rounded boxes, while generic solver and auxiliary modules are in unrounded boxes.



44 9 OVERALL STRUCTURE

context, whereas the generic solver is independent of the context. While the generic solvers here were
generated with CVODE in mind, our intention is that they be usable in other applications as general-
purpose solvers. This separation also allows for any generic solver to be replaced by an improved
version, with no necessity to revise the CVODE package elsewhere.

Variation in the types of scalar variables is handled by way of a separate header �le llnltyps.h

which contains type de�nitions for real and integer. The default settings for real and integer are
double and int, respectively. With this arrangement, the precision can be changed from double to
single with minor changes to llnltyps.h and llnlmath.c.

The vectors y, f , etc. of length N in CVODE are objects of type N Vector. This type declaration
is contained in a separate module in the CVODE package, along with a collection of vector kernels
which are used by both the central integrator module and the linear solver modules. These kernels
perform operations such as linear sums, dot products, and weighted norms. This arrangement was
made in anticipation of a multiprocessor extension of CVODE, in which the vector data would be
distributed, with the N Vector type containing a description of the data distribution. Changes in the
N Vector type would necessitate rewriting the vector kernels, and some parts of the dense and band
linear solvers (both the CVODE-speci�c and generic parts); parts of the example programs which
perform N Vector accesses might also have to be revised.

All state information used by CVODE to solve a given problem is saved in a structure, and a
pointer to that structure is returned to the user. There is no global data in the CVODE package, and
so in this respect it is reentrant. State information speci�c to the linear solver is saved in separate
structure, a pointer to which resides in the CVODE memory structure. The reentrancy of CVODE was
motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting
where two or more problems are solved by intermixed calls to the package from one user program.

Table 1 below is a complete list of �les in the CVODE package. Header and source �les are
described as a single unit.

In Table 2 below, we list the vector kernels in the VECTOR module within the CVODE package.
There are 16 such kernels, excluding the debugging tool N VPrint. All kernel names begin with \N "
to indicate that the kernels are operations on length N vectors (of type N Vector), where N is the
problem size. The table also shows, for each kernel, which of the code modules uses the kernel. The
CVode column shows kernel usage within the main CVODE integrator module, while the remaining
four columns show kernel usage within each of the four CVODE linear solvers. There is one subtlety in
the CVSPGMR column hidden by the table. The dot product kernel N VDotProd, for example, is not
called within the implementation �le cvspgmr.c for the CVSPGMR solver, yet we have marked it as
\used" by CVSPGMR. This is because N VDotProd is called within the implementation �le spgmr.c

for the generic SPGMR solver upon which the CVSPGMR solver is implemented. This issue does not
arise for the other three CVODE linear solvers because the generic DENSE and BAND solvers (used
in the implementation of CVDENSE and CVBAND) do not make calls to any vector kernels and
CVDIAG is not implemented using a generic diagonal solver. At this point, we should emphasize that
the CVODE user does not need to know anything about the usage of vector kernels by the CVODE
code modules in order to use CVODE. The information is presented as implementation details for the
interested reader, and in anticipation of parallel extensions to CVODE.



45

File(s) Description and/or Contents

llnltyps.h types real, integer, and bool; constants FALSE, TRUE

llnlmath.h, .c Math package for real precision arithmetic
MIN, MAX, ABS, SQR, UnitRoundo�, RPowerI, RPowerR, RSqrt

vector.h, .c Generic vector package
Type N Vector, N VIth, N VDATA
N Vector kernels including N VNew, N VFree

cvode.h, .c Central CVODE integrator module
CVodeMalloc, CVode, CVodeFree, CVodeDky

cvdense.h, .c CVODE dense linear solver CVDENSE
CVDense, CVDenseDQJac functions

cvband.h, .c CVODE band linear solver CVBAND
CVBand, CVBandDQJac functions

cvdiag.h, .c CVODE diagonal linear solver CVDIAG
CVDiag function

cvspgmr.h, .c CVODE GMRES linear solver CVSPGMR
CVSpgmr function

dense.h, .c Generic DENSE linear solvers: large, small dense matrices
Large: Type DenseMat, DENSE ELEM, DENSE COL
Small: denalloc, gefa, gesl, denaddI, denfree

band.h, .c Generic BAND linear solvers: large, small band matrices
Large: Type BandMat, BAND ELEM, BAND COL, BAND COL ELEM
Small: bandalloc, gbfa, gbsl, bandfree

iterativ.h, .c Items common to generic iterative linear solvers
Modi�edGS, ClassicalGS, QRfact, QRsol routines

spgmr.h, .c Generic preconditioned GMRES linear solver

Table 1: List of �les in CVODE package



46 9 OVERALL STRUCTURE

Kernel CVode CVDENSE CVBAND CVDIAG CVSPGMR

N VNew X X X

N VFree X X X

N VLinearSum X X X X

N VConst X X

N VProd X X X

N VDiv X X X

N VScale X X X X X

N VAbs X

N VInv X X

N VAddConst X X

N VDotProd X

N VMaxNorm X

N VWrmsNorm X X X X

N VMin X

N VCompare X

N VInvTest X

N VPrint

Table 2: List of vector kernels and usage by CVODE code modules



47

10 Reference Guide

10.1 Main CVODE Integrator

The following seven sections contain documentation and declarations from the header �le cvode.h. In
the �rst, the options listed are the basic solution method parameters that are input to CVodeMalloc

and CVode. Next is the speci�cation of the right-hand side function f. The remaining sections describe
the call lists for CVodeMalloc, CVode, CVodeDky, and CVodeFree, and the list of optional inputs and
outputs.

10.1.1 Options

/******************************************************************
* *
* Enumerations for input parameters to CVodeMalloc and CVode. *
*----------------------------------------------------------------*
* Symbolic constants for the lmm, iter, and itol input *
* parameters to CVodeMalloc, as well as the input parameter *
* itask to CVode, are given below. *
* *
* lmm : The user of the CVODE package specifies whether to use *
* the ADAMS or BDF (backward differentiation formula) *
* linear multistep method. The BDF method is recommended *
* for stiff problems, and the ADAMS method is recommended *
* for nonstiff problems. *
* *
* iter : At each internal time step, a nonlinear equation must *
* be solved. The user can specify either FUNCTIONAL *
* iteration, which does not require linear algebra, or a *
* NEWTON iteration, which requires the solution of linear *
* systems. In the NEWTON case, the user also specifies a *
* CVODE linear solver. NEWTON is recommended in case of *
* stiff problems. *
* *
* itol : This parameter specifies the relative and absolute *
* tolerance types to be used. The SS tolerance type means *
* a scalar relative and absolute tolerance, while the SV *
* tolerance type means a scalar relative tolerance and a *
* vector absolute tolerance (a potentially different *
* absolute tolerance for each vector component). *
* *
* itask : The itask input parameter to CVode indicates the job *
* of the solver for the next user step. The NORMAL *
* itask is to have the solver take internal steps until *
* it has reached or just passed the user specified tout *
* parameter. The solver then interpolates in order to *
* return an approximate value of y(tout). The ONE_STEP *
* option tells the solver to just take one internal step *
* and return the solution at the point reached by that *
* step. *
* *
******************************************************************/

enum { ADAMS, BDF }; /* lmm */

enum { FUNCTIONAL, NEWTON }; /* iter */



48 10 REFERENCE GUIDE

enum { SS, SV }; /* itol */

enum { NORMAL, ONE_STEP }; /* itask */

10.1.2 The Right Hand Side Function, Type RhsFn

/******************************************************************
* *
* Type : RhsFn *
*----------------------------------------------------------------*
* The f function which defines the right hand side of the ODE *
* system y'=f(t,y) must have type RhsFn. *
* f takes as input the problem size N, the independent variable *
* value t, and the dependent variable vector y. It stores the *
* result of f(t,y) in the vector ydot. The y and ydot arguments *
* are of type N_Vector. *
* (Allocation of memory for ydot is handled within CVODE.) *
* The f_data parameter is the same as the f_data *
* parameter passed by the user to the CVodeMalloc routine. This *
* user-supplied pointer is passed to the user's f function *
* every time it is called. *
* A RhsFn f does not have a return value. *
* *
******************************************************************/

typedef void (*RhsFn)(integer N, real t, N_Vector y, N_Vector ydot,
void *f_data);

10.1.3 CVodeMalloc

/******************************************************************
* *
* Function : CVodeMalloc *
*----------------------------------------------------------------*
* CVodeMalloc allocates and initializes memory for a problem to *
* to be solved by CVODE. *
* *
* N is the number of equations in the ODE system. *
* *
* f is the right hand side function in y' = f(t,y). *
* *
* t0 is the initial value of t. *
* *
* y0 is the initial condition vector y(t0). *
* *
* lmm is the type of linear multistep method to be used. *
* The legal values are ADAMS and BDF (see previous *
* description). *
* *
* iter is the type of iteration used to solve the nonlinear *
* system that arises during each internal time step. *
* The legal values are FUNCTIONAL and NEWTON. *
* *
* itol is the type of tolerances to be used. *
* The legal values are: *
* SS (scalar relative and absolute tolerances), *



10.1 Main CVODE Integrator 49

* SV (scalar relative tolerance and vector *
* absolute tolerance). *
* *
* reltol is a pointer to the relative tolerance scalar. *
* *
* abstol is a pointer to the absolute tolerance scalar or *
* an N_Vector tolerance. *
* *
* f_data is a pointer to user data that will be passed to the *
* user's f function every time f is called. *
* *
* errfp is the file pointer for an error file where all CVODE *
* warning and error messages will be written. This *
* parameter can be stdout (standard output), stderr *
* (standard error), a file pointer (corresponding to *
* a user error file opened for writing) returned by *
* fopen, or NULL. If the user passes NULL, then all *
* messages will be written to standard output. *
* *
* optIn is a flag indicating whether there are any optional *
* inputs from the user in the arrays iOpt and rOpt. *
* Pass FALSE to indicate no optional inputs and TRUE *
* to indicate that optional inputs are present. *
* *
* iopt is the user-allocated array (of size OPT_SIZE given *
* later) that will hold optional integer inputs and *
* outputs. The user can pass NULL if he/she does not *
* wish to use optional integer inputs or outputs. *
* If optIn is TRUE, the user should preset to 0 those *
* locations for which default values are to be used. *
* *
* ropt is the user-allocated array (of size OPT_SIZE given *
* later) that will hold optional real inputs and *
* outputs. The user can pass NULL if he/she does not *
* wish to use optional real inputs or outputs. *
* If optIn is TRUE, the user should preset to 0.0 the *
* locations for which default values are to be used. *
* *
* machEnv is a pointer to machine environment-specific *
* information. *
* *
* Note: The tolerance values may be changed in between calls to *
* CVode for the same problem. These values refer to *
* (*reltol) and either (*abstol), for a scalar absolute *
* tolerance, or the components of abstol, for a vector *
* absolute tolerance. *
* *
* If successful, CVodeMalloc returns a pointer to initialized *
* problem memory. This pointer should be passed to CVode. If *
* an initialization error occurs, CVodeMalloc prints an error *
* message to the file specified by errfp and returns NULL. *
* *
******************************************************************/

void *CVodeMalloc(integer N, RhsFn f, real t0, N_Vector y0, int lmm, int iter,
int itol, real *reltol, void *abstol, void *f_data,
FILE *errfp, bool optIn, long int iopt[], real ropt[],
void *machEnv);



50 10 REFERENCE GUIDE

10.1.4 CVode

/******************************************************************
* *
* Function : CVode *
*----------------------------------------------------------------*
* CVode integrates the ODE over an interval in t. *
* If itask is NORMAL, then the solver integrates from its *
* current internal t value to a point at or beyond tout, then *
* interpolates to t = tout and returns y(tout) in the user- *
* allocated vector yout. If itask is ONE_STEP, then the solver *
* takes one internal time step and returns in yout the value of *
* y at the new internal time. In this case, tout is used only *
* during the first call to CVode to determine the direction of *
* integration and the rough scale of the problem. In either *
* case, the time reached by the solver is placed in (*t). The *
* user is responsible for allocating the memory for this value. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
* tout is the next time at which a computed solution is desired *
* *
* yout is the computed solution vector. In NORMAL mode with no *
* errors, yout=y(tout). *
* *
* t is a pointer to a real location. CVode sets (*t) to the *
* time reached by the solver and returns yout=y(*t). *
* *
* itask is either NORMAL or ONE_STEP mode. These two modes have *
* described above. *
* *
* The return values for CVode are defined later in this file. *
* Here is a brief description of each return value: *
* *
* SUCCESS : CVode succeeded. *
* *
* CVODE_NO_MEM : The cvode_mem argument was NULL. *
* *
* ILL_INPUT : One of the inputs to CVode is illegal. This *
* includes the situation when a component of the *
* error weight vectors becomes < 0 during *
* internal time-stepping. The ILL_INPUT flag *
* will also be returned if the linear solver *
* routine CV--- (called by the user after *
* calling CVodeMalloc) failed to set one of the *
* linear solver-related fields in cvode_mem or *
* if the linear solver's init routine failed. In *
* any case, the user should see the printed *
* error message for more details. *
* *
* TOO_MUCH_WORK : The solver took mxstep internal steps but *
* could not reach tout. The default value for *
* mxstep is MXSTEP_DEFAULT = 500. *
* *
* TOO_MUCH_ACC : The solver could not satisfy the accuracy *
* demanded by the user for some internal step. *
* *
* ERR_FAILURE : Error test failures occurred too many times *
* (= MXNEF = 7) during one internal time step or *
* occurred with |h| = hmin. *
* *



10.1 Main CVODE Integrator 51

* CONV_FAILURE : Convergence test failures occurred too many *
* times (= MXNCF = 10) during one internal time *
* step or occurred with |h| = hmin. *
* *
* SETUP_FAILURE : The linear solver's setup routine failed in an *
* unrecoverable manner. *
* *
* SOLVE_FAILURE : The linear solver's solve routine failed in an *
* unrecoverable manner. *
* *
******************************************************************/

int CVode(void *cvode_mem, real tout, N_Vector yout, real *t, int itask);

/* CVode return values */

enum { SUCCESS=0, CVODE_NO_MEM=-1, ILL_INPUT=-2, TOO_MUCH_WORK=-3,
TOO_MUCH_ACC=-4, ERR_FAILURE=-5, CONV_FAILURE=-6,
SETUP_FAILURE=-7, SOLVE_FAILURE=-8 };

10.1.5 CVodeDky

/******************************************************************
* *
* Function : CVodeDky *
*----------------------------------------------------------------*
* CVodeDky computes the kth derivative of the y function at *
* time t, where tn-hu <= t <= tn, tn denotes the current *
* internal time reached, and hu is the last internal step size *
* successfully used by the solver. The user may request *
* k=0, 1, ..., qu, where qu is the current order. The *
* derivative vector is returned in dky. This vector must be *
* allocated by the caller. It is only legal to call this *
* function after a successful return from CVode. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
* t is the time at which the kth derivative of y is evaluated. *
* The legal range for t is [tn-hu,tn] as described above. *
* *
* k is the order of the derivative of y to be computed. The *
* legal range for k is [0,qu] as described above. *
* *
* dky is the output derivative vector [(D_k)y](t). *
* *
* The return values for CVodeDky are defined later in this file. *
* Here is a brief description of each return value: *
* *
* OKAY : CVodeDky succeeded. *
* *
* BAD_K : k is not in the range 0, 1, ..., qu. *
* *
* BAD_T : t is not in the interval [tn-hu,tn]. *
* *
* BAD_DKY : The dky argument was NULL. *
* *



52 10 REFERENCE GUIDE

* DKY_NO_MEM : The cvode_mem argument was NULL. *
* *
******************************************************************/

int CVodeDky(void *cvode_mem, real t, int k, N_Vector dky);

/* CVodeDky return values */

enum { OKAY=0, BAD_K=-1, BAD_T=-2, BAD_DKY=-3, DKY_NO_MEM=-4 };

10.1.6 CVodeFree

/******************************************************************
* *
* Function : CVodeFree *
*----------------------------------------------------------------*
* CVodeFree frees the problem memory cvode_mem allocated by *
* CVodeMalloc. Its only argument is the pointer cvode_mem *
* returned by CVodeMalloc. *
* *
******************************************************************/

void CVodeFree(void *cvode_mem);

10.1.7 Optional Inputs and Outputs

/******************************************************************
* *
* Optional Inputs and Outputs *
*----------------------------------------------------------------*
* The user should declare two arrays for optional input and *
* output, an iopt array for optional integer input and output *
* and an ropt array for optional real input and output. The *
* size of both these arrays should be OPT_SIZE. *
* So the user's declaration should look like: *
* *
* long int iopt[OPT_SIZE]; *
* real ropt[OPT_SIZE]; *
* *
* The enumerations below the OPT_SIZE definition *
* are indices into the iopt and ropt arrays. Here is a brief *
* description of the contents of these positions: *
* *
* iopt[MAXORD] : maximum lmm order to be used by the solver. *
* Optional input. (Default = 12 for ADAMS, 5 for *
* BDF). *
* *
* iopt[MXSTEP] : maximum number of internal steps to be taken by *
* the solver in its attempt to reach tout. *
* Optional input. (Default = 500). *
* *
* iopt[MXHNIL] : maximum number of warning messages issued *
* by the solver that t+h==t on the next internal *
* step. Optional input. (Default = 10). *
* *



10.1 Main CVODE Integrator 53

* iopt[NST] : cumulative number of internal steps taken by *
* the solver (total so far). Optional output. *
* *
* iopt[NFE] : number of calls to the user's f function. *
* Optional output. *
* *
* iopt[NSETUPS] : number of calls made to the linear solver's *
* setup routine. Optional output. *
* *
* iopt[NNI] : number of NEWTON iterations performed. *
* Optional output. *
* *
* iopt[NCFN] : number of nonlinear convergence failures *
* that have occurred. Optional output. *
* *
* iopt[NETF] : number of local error test failures that *
* have occurred. Optional output. *
* *
* iopt[QU] : order used during the last internal step. *
* Optional output. *
* *
* iopt[QCUR] : order to be used on the next internal step. *
* Optional output. *
* *
* iopt[LENRW] : size of required CVODE internal real work *
* space, in real words. Optional output. *
* *
* iopt[LENIW] : size of required CVODE internal integer work *
* space, in integer words. Optional output. *
* *
* ropt[H0] : initial step size. Optional input. *
* *
* ropt[HMAX] : maximum absolute value of step size allowed. *
* Optional input. (Default is infinity). *
* *
* ropt[HMIN] : minimum absolute value of step size allowed. *
* Optional input. (Default is 0.0). *
* *
* ropt[HU] : step size for the last internal step. *
* Optional output. *
* *
* ropt[HCUR] : step size to be attempted on the next internal *
* step. Optional output. *
* *
* ropt[TCUR] : current internal time reached by the solver. *
* Optional output. *
* *
* ropt[TOLSF] : a suggested factor by which the user's *
* tolerances should be scaled when too much *
* accuracy has been requested for some internal *
* step. Optional output. *
* *
******************************************************************/

/* iopt, ropt array sizes */

#define OPT_SIZE 40



54 10 REFERENCE GUIDE

10.2 CVODE Linear Solvers

Each of the linear system solvers in the CVODE package (of which there are currently four) is described
in the next sections.

10.2.1 CVDENSE

The following sections contain documentation and declarations from the header �le cvdense.h.

10.2.1.1 CVDense

/******************************************************************
* *
* Function : CVDense *
*----------------------------------------------------------------*
* A call to the CVDense function links the main CVODE integrator *
* with the CVDENSE linear solver. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
* djac is the dense Jacobian approximation routine to be used. *
* A user-supplied djac routine must be of type *
* CVDenseJacFn. Pass NULL for djac to use the default *
* difference quotient routine CVDenseDQJac supplied *
* with this solver. *
* *
* jac_data is a pointer to user data which is passed to the *
* djac routine every time it is called. *
* *
******************************************************************/

void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data);

10.2.1.2 Type CVDenseJacFn

/******************************************************************
* *
* Type : CVDenseJacFn *
*----------------------------------------------------------------*
* A dense Jacobian approximation function Jac must have the *
* prototype given below. Its parameters are: *
* *
* N is the length of all vector arguments. *
* *
* J is the dense matrix (of type DenseMat) that will be loaded *
* by a CVDenseJacFn with an approximation to the Jacobian matrix *
* J = (df_i/dy_j) at the point (t,y). *
* J is preset to zero, so only the nonzero elements need to be *
* loaded. Two efficient ways to load J are: *
* *
* (1) (with macros - no explicit data structure references) *



10.2 CVODE Linear Solvers 55

* for (j=0; j < N; j++) { *
* col_j = DENSE_COL(J,j); *
* for (i=0; i < N; i++) { *
* generate J_ij = the (i,j)th Jacobian element *
* col_j[i] = J_ij; *
* } *
* } *
* *
* (2) (without macros - explicit data structure references) *
* for (j=0; j < N; j++) { *
* col_j = (J->data)[j]; *
* for (i=0; i < N; i++) { *
* generate J_ij = the (i,j)th Jacobian element *
* col_j[i] = J_ij; *
* } *
* } *
* *
* The DENSE_ELEM(A,i,j) macro is appropriate for use in small *
* problems in which efficiency of access is NOT a major concern. *
* *
* f is the right hand side function for the ODE problem. *
* *
* f_data is a pointer to user data to be passed to f, the same *
* as the F_data parameter passed to CVodeMalloc. *
* *
* t is the current value of the independent variable. *
* *
* y is the current value of the dependent variable vector, *
* namely the predicted value of y(t). *
* *
* fy is the vector f(t,y). *
* *
* ewt is the error weight vector. *
* *
* h is a tentative step size in t. *
* *
* uround is the machine unit roundoff. *
* *
* jac_data is a pointer to user data - the same as the jac_data *
* parameter passed to CVDense. *
* *
* nfePtr is a pointer to the memory location containing the *
* CVODE problem data nfe = number of calls to f. The Jacobian *
* routine should update this counter by adding on the number *
* of f calls made in order to approximate the Jacobian, if any. *
* For example, if the routine calls f a total of N times, then *
* the update is *nfePtr += N. *
* *
* vtemp1, vtemp2, and vtemp3 are pointers to memory allocated *
* for vectors of length N which can be used by a CVDenseJacFn *
* as temporary storage or work space. *
* *
******************************************************************/

typedef void (*CVDenseJacFn)(integer N, DenseMat J, RhsFn f, void *f_data,
real t, N_Vector y, N_Vector fy, N_Vector ewt,
real h, real uround, void *jac_data,
long int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_Vector vtemp3);



56 10 REFERENCE GUIDE

10.2.1.3 Statistics

/******************************************************************
* *
* CVDENSE solver statistics indices *
*----------------------------------------------------------------*
* The following enumeration gives a symbolic name to each *
* CVDENSE statistic. The symbolic names are used as indices into *
* the iopt and ropt arrays passed to CVodeMalloc. *
* The CVDENSE statistics are: *
* *
* iopt[DENSE_NJE] : number of Jacobian evaluations, i.e. of *
* calls made to the dense Jacobian routine *
* (default or user-supplied). *
* *
* iopt[DENSE_LRW] : size (in real words) of real workspace *
* matrices and vectors used by this solver. *
* *
* iopt[DENSE_LIW] : size (in integer words) of integer *
* workspace vectors used by this solver. *
* *
******************************************************************/

10.2.2 CVBAND

The following sections contain documentation and declarations from the header �le cvband.h.

10.2.2.1 CVBand

/******************************************************************
* *
* Function : CVBand *
*----------------------------------------------------------------*
* A call to the CVBand function links the main CVODE integrator *
* with the CVBAND linear solver. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
* mupper is the upper bandwidth of the band Jacobian *
* approximation. *
* *
* mlower is the lower bandwidth of the band Jacobian *
* approximation. *
* *
* *
* bjac is the band Jacobian approximation routine to be used. *
* A user-supplied bjac routine must be of type *
* CVBandJacFn. Pass NULL for bjac to use the default *
* difference quotient routine CVBandDQJac supplied *
* with this solver. *
* *
* jac_data is a pointer to user data which is passed to the *
* bjac routine every time it is called. *
* *
******************************************************************/



10.2 CVODE Linear Solvers 57

void CVBand(void *cvode_mem, integer mupper, integer mlower, CVBandJacFn bjac,
void *jac_data);

10.2.2.2 Type CVBandJacFn

/******************************************************************
* *
* Type : CVBandJacFn *
*----------------------------------------------------------------*
* A band Jacobian approximation function Jac must have the *
* prototype given below. Its parameters are: *
* *
* N is the length of all vector arguments. *
* *
* mupper is the upper half-bandwidth of the approximate banded *
* Jacobian. This parameter is the same as the mupper parameter *
* passed by the user to the CVBand function. *
* *
* mlower is the lower half-bandwidth of the approximate banded *
* Jacobian. This parameter is the same as the mlower parameter *
* passed by the user to the CVBand function. *
* *
* J is the band matrix (of type BandMat) that will be loaded *
* by a CVBandJacFn with an approximation to the Jacobian matrix *
* J = (df_i/dy_j) at the point (t,y). *
* J is preset to zero, so only the nonzero elements need to be *
* loaded. Three efficient ways to load J are: *
* *
* (1) (with macros - no explicit data structure references) *
* for (j=0; j < N; j++) { *
* col_j = BAND_COL(J,j); *
* for (i=j-mupper; i <= j+mlower; i++) { *
* generate J_ij = the (i,j)th Jacobian element *
* BAND_COL_ELEM(col_j,i,j) = J_ij; *
* } *
* } *
* *
* (2) (with BAND_COL macro, but without BAND_COL_ELEM macro) *
* for (j=0; j < N; j++) { *
* col_j = BAND_COL(J,j); *
* for (k=-mupper; k <= mlower; k++) { *
* generate J_ij = the (i,j)th Jacobian element, i=j+k *
* col_j[k] = J_ij; *
* } *
* } *
* *
* (3) (without macros - explicit data structure references) *
* offset = J->smu; *
* for (j=0; j < N; j++) { *
* col_j = ((J->data)[j])+offset; *
* for (k=-mupper; k <= mlower; k++) { *
* generate J_ij = the (i,j)th Jacobian element, i=j+k *
* col_j[k] = J_ij; *
* } *
* } *
* Caution: J->smu is generally NOT the same as mupper. *
* *
* The BAND_ELEM(A,i,j) macro is appropriate for use in small *



58 10 REFERENCE GUIDE

* problems in which efficiency of access is NOT a major concern. *
* *
* f is the right hand side function for the ODE problem. *
* *
* f_data is a pointer to user data to be passed to f, the same *
* as the F_data parameter passed to CVodeMalloc. *
* *
* t is the current value of the independent variable. *
* *
* y is the current value of the dependent variable vector, *
* namely the predicted value of y(t). *
* *
* fy is the vector f(t,y). *
* *
* ewt is the error weight vector. *
* *
* h is a tentative step size in t. *
* *
* uround is the machine unit roundoff. *
* *
* jac_data is a pointer to user data - the same as the jac_data *
* parameter passed to CVBand. *
* *
* nfePtr is a pointer to the memory location containing the *
* CVODE problem data nfe = number of calls to f. The Jacobian *
* routine should update this counter by adding on the number *
* of f calls made in order to approximate the Jacobian, if any. *
* For example, if the routine calls f a total of N times, then *
* the update is *nfePtr += N. *
* *
* vtemp1, vtemp2, and vtemp3 are pointers to memory allocated *
* for vectors of length N which can be used by a CVBandJacFn *
* as temporary storage or work space. *
* *
******************************************************************/

typedef void (*CVBandJacFn)(integer N, integer mupper, integer mlower,
BandMat J, RhsFn f, void *f_data, real t,
N_Vector y, N_Vector fy, N_Vector ewt, real h,
real uround, void *jac_data, long int *nfePtr,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

10.2.2.3 Statistics

/******************************************************************
* *
* CVBAND solver statistics indices *
*----------------------------------------------------------------*
* The following enumeration gives a symbolic name to each *
* CVBAND statistic. The symbolic names are used as indices into *
* the iopt and ropt arrays passed to CVodeMalloc. *
* The CVBAND statistics are: *
* *
* iopt[BAND_NJE] : number of Jacobian evaluations, i.e. of *
* calls made to the band Jacobian routine *
* (default or user-supplied). *
* *
* iopt[BAND_LRW] : size (in real words) of real workspace *
* matrices and vectors used by this solver. *



10.2 CVODE Linear Solvers 59

* *
* iopt[BAND_LIW] : size (in integer words) of integer *
* workspace vectors used by this solver. *
* *
******************************************************************/

10.2.3 CVDIAG

The following sections contain documentation and declarations from the header �le cvdiag.h.

10.2.3.1 CVDiag

/******************************************************************
* *
* Function : CVDiag *
*----------------------------------------------------------------*
* A call to the CVDiag function links the main CVODE integrator *
* with the CVDIAG linear solver. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
******************************************************************/

void CVDiag(void *cvode_mem);

10.2.3.2 Statistics

/******************************************************************
* *
* CVDIAG solver statistics indices *
*----------------------------------------------------------------*
* The following enumeration gives a symbolic name to each *
* CVDIAG statistic. The symbolic names are used as indices into *
* the iopt and ropt arrays passed to CVodeMalloc. *
* The CVDIAG statistics are: *
* *
* iopt[DIAG_LRW] : size (in real words) of real workspace *
* vectors used by this solver. *
* *
* iopt[DIAG_LIW] : size (in integer words) of integer *
* workspace vectors used by this solver. *
* *
* The number of diagonal approximate Jacobians formed is equal *
* to the number of CVDiagSetup calls. This number is available *
* in cv_iopt[NSETUPS]. *
* *
******************************************************************/



60 10 REFERENCE GUIDE

10.2.4 CVSPGMR

The following sections contain documentation and declarations from the header �le cvspgmr.h.

10.2.4.1 CVSpgmr

/******************************************************************
* *
* Function : CVSpgmr *
*----------------------------------------------------------------*
* A call to the CVSpgmr function links the main CVODE integrator *
* with the CVSPGMR linear solver. *
* *
* cvode_mem is the pointer to CVODE memory returned by *
* CVodeMalloc. *
* *
* pretype is the type of user preconditioning to be done. *
* This must be one of the four enumeration constants *
* NONE, LEFT, RIGHT, or BOTH defined in iterativ.h. *
* These correspond to no preconditioning, *
* left preconditioning only, right preconditioning *
* only, and both left and right preconditioning, *
* respectively. *
* *
* gstype is the type of Gram-Schmidt orthogonalization to be *
* used. This must be one of the two enumeration *
* constants MODIFIED_GS or CLASSICAL_GS defined in *
* iterativ.h. These correspond to using modified *
* Gram-Schmidt and classical Gram-Schmidt, *
* respectively. *
* *
* maxl is the maximum Krylov dimension. This is an *
* optional input to the CVSPGMR solver. Pass 0 to *
* use the default value MIN(N, CVSPGMR_MAXL=5). *
* *
* delt is the factor by which the tolerance on the *
* nonlinear iteration is multiplied to get a *
* tolerance on the linear iteration. This is an *
* optional input to the CVSPGMR solver. Pass 0 to *
* use the default value CVSPGMR_DELT = 0.05. *
* *
* precond is the user's preconditioner routine. It is used to *
* evaluate and preprocess any Jacobian-related data *
* needed by the psolve routine. See the *
* documentation for the type CVSpgmrPrecondFn for *
* full details. Pass NULL if no such setup of *
* Jacobian data is required. A precond routine is *
* NOT required for any of the four possible values *
* of pretype. *
* *
* psolve is the user's preconditioner solve routine. It is *
* used to solve Pz=r, where P is a preconditioner *
* matrix. See the documentation for the type *
* CVSpgmrPSolveFn for full details. The only case *
* in which psolve is allowed to be NULL is when *
* pretype is NONE. A valid psolve function must be *
* supplied when any preconditioning is to be done. *
* *
* P_data is a pointer to user preconditioner data. This *



10.2 CVODE Linear Solvers 61

* pointer is passed to precond and psolve every time *
* these routines are called. *
* *
******************************************************************/

void CVSpgmr(void *cvode_mem, int pretype, int gstype, int maxl, real delt,
CVSpgmrPrecondFn precond, CVSpgmrPSolveFn psolve, void *P_data);

10.2.4.2 Type CVSpgmrPrecondFn

/******************************************************************
* *
* Type : CVSpgmrPrecondFn *
*----------------------------------------------------------------*
* The user-supplied preconditioner setup function Precond and *
* the user-supplied preconditioner solve function PSolve *
* together must define left and right preconditoner matrices *
* P1 and P2 (either of which may be trivial), such that the *
* product P1*P2 is an approximation to the Newton matrix *
* M = I - gamma*J. Here J is the system Jacobian J = df/dy, *
* and gamma is a scalar proportional to the integration step *
* size h. The solution of systems P z = r, with P = P1 or P2, *
* is to be carried out by the PSolve function, and Precond is *
* to do any necessary setup operations. *
* *
* The user-supplied preconditioner setup function Precond *
* is to evaluate and preprocess any Jacobian-related data *
* needed by the preconditioner solve function PSolve. *
* This might include forming a crude approximate Jacobian, *
* and performing an LU factorization on the resulting *
* approximation to M. This function will not be called in *
* advance of every call to PSolve, but instead will be called *
* only as often as necessary to achieve convergence within the *
* Newton iteration in CVODE. If the PSolve function needs no *
* preparation, the Precond function can be NULL. *
* *
* For greater efficiency, the Precond function may save *
* Jacobian-related data and reuse it, rather than generating it *
* from scratch. In this case, it should use the input flag jok *
* to decide whether to recompute the data, and set the output *
* flag *jcurPtr accordingly. *
* *
* The error weight vector ewt, step size h, and unit roundoff *
* uround are provided to the Precond function for possible use *
* in approximating Jacobian data, e.g. by difference quotients. *
* *
* A function Precond must have the prototype given below. *
* Its parameters are as follows: *
* *
* N is the length of all vector arguments. *
* *
* t is the current value of the independent variable. *
* *
* y is the current value of the dependent variable vector, *
* namely the predicted value of y(t). *
* *
* fy is the vector f(t,y). *
* *
* jok is an input flag indicating whether Jacobian-related *



62 10 REFERENCE GUIDE

* data needs to be recomputed, as follows: *
* jok == FALSE means recompute Jacobian-related data *
* from scratch. *
* jok == TRUE means that Jacobian data, if saved from *
* the previous Precond call, can be reused *
* (with the current value of gamma). *
* A Precond call with jok == TRUE can only occur after *
* a call with jok == FALSE. *
* *
* jcurPtr is a pointer to an output integer flag which is *
* to be set by Precond as follows: *
* Set *jcurPtr = TRUE if Jacobian data was recomputed. *
* Set *jcurPtr = FALSE if Jacobian data was not *
* recomputed, but saved data was reused. *
* *
* gamma is the scalar appearing in the Newton matrix. *
* *
* ewt is the error weight vector. *
* *
* h is a tentative step size in t. *
* *
* uround is the machine unit roundoff. *
* *
* nfePtr is a pointer to the memory location containing the *
* CVODE problem data nfe = number of calls to f. *
* The Precond routine should update this counter by *
* adding on the number of f calls made in order to *
* approximate the Jacobian, if any. For example, if *
* the routine calls f a total of W times, then the *
* update is *nfePtr += W. *
* *
* P_data is a pointer to user data - the same as the P_data *
* parameter passed to CVSpgmr. *
* *
* vtemp1, vtemp2, and vtemp3 are pointers to memory allocated *
* for vectors of length N which can be used by *
* CVSpgmrPrecondFn as temporary storage or work space. *
* *
* *
* Returned value: *
* The value to be returned by the Precond function is a flag *
* indicating whether it was successful. This value should be *
* 0 if successful, *
* > 0 for a recoverable error (step will be retried), *
* < 0 for an unrecoverable error (integration is halted). *
* *
******************************************************************/

typedef int (*CVSpgmrPrecondFn)(integer N, real t, N_Vector y, N_Vector fy,
bool jok, bool *jcurPtr, real gamma,
N_Vector ewt, real h, real uround,
long int *nfePtr, void *P_data,
N_Vector vtemp1, N_Vector vtemp2,
N_Vector vtemp3);



10.2 CVODE Linear Solvers 63

10.2.4.3 Type CVSpgmrPSolveFn

/******************************************************************
* *
* Type : CVSpgmrPSolveFn *
*----------------------------------------------------------------*
* The user-supplied preconditioner solve function PSolve *
* is to solve a linear system P z = r in which the matrix P is *
* one of the preconditioner matrices P1 or P2, depending on the *
* type of preconditioning chosen. *
* *
* A function PSolve must have the prototype given below. *
* Its parameters are as follows: *
* *
* N is the length of all vector arguments. *
* *
* t is the current value of the independent variable. *
* *
* y is the current value of the dependent variable vector. *
* *
* fy is the vector f(t,y). *
* *
* vtemp is a pointer to memory allocated for a vector of *
* length N which can be used by PSolve for work space. *
* *
* gamma is the scalar appearing in the Newton matrix. *
* *
* ewt is the error weight vector (input). See delta below. *
* *
* delta is an input tolerance for use by PSolve if it uses *
* an iterative method in its solution. In that case, *
* the residual vector Res = r - P z of the system *
* should be made less than delta in weighted L2 norm, *
* i.e., sqrt [ Sum (Res[i]*ewt[i])^2 ] < delta . *
* *
* nfePtr is a pointer to the memory location containing the *
* CVODE problem data nfe = number of calls to f. The *
* PSolve routine should update this counter by adding *
* on the number of f calls made in order to carry out *
* the solution, if any. For example, if the routine *
* calls f a total of W times, then the update is *
* *nfePtr += W. *
* *
* r is the right-hand side vector of the linear system. *
* *
* lr is an input flag indicating whether PSolve is to use *
* the left preconditioner P1 or right preconditioner *
* P2: lr = 1 means use P1, and lr = 2 means use P2. *
* *
* P_data is a pointer to user data - the same as the P_data *
* parameter passed to CVSpgmr. *
* *
* z is the output vector computed by PSolve. *
* *
* Returned value: *
* The value to be returned by the PSolve function is a flag *
* indicating whether it was successful. This value should be *
* 0 if successful, *
* positive for a recoverable error (step will be retried), *
* negative for an unrecoverable error (integration is halted). *
* *
******************************************************************/



64 10 REFERENCE GUIDE

typedef int (*CVSpgmrPSolveFn)(integer N, real t, N_Vector y, N_Vector fy,
N_Vector vtemp, real gamma, N_Vector ewt,
real delta, long int *nfePtr, N_Vector r,
int lr, void *P_data, N_Vector z);

10.2.4.4 Statistics

/******************************************************************
* *
* CVSPGMR solver statistics indices *
*----------------------------------------------------------------*
* The following enumeration gives a symbolic name to each *
* CVSPGMR statistic. The symbolic names are used as indices into *
* the iopt and ropt arrays passed to CVodeMalloc. *
* The CVSPGMR statistics are: *
* *
* iopt[SPGMR_NPE] : number of preconditioner evaluations, *
* i.e. of calls made to user's precond *
* function with jok == FALSE. *
* *
* iopt[SPGMR_NLI] : number of linear iterations. *
* *
* iopt[SPGMR_NPS] : number of calls made to user's psolve *
* function. *
* *
* iopt[SPGMR_NCFL] : number of linear convergence failures. *
* *
* iopt[SPGMR_LRW] : size (in real words) of real workspace *
* vectors and small matrices used by this *
* solver. *
* *
* iopt[SPGMR_LIW] : size (in integer words) of integer *
* workspace vectors used by this solver. *
* *
******************************************************************/

10.3 Generic Packages

In this section, we describe four code modules that are included in CVODE, but which are of potential
use as generic packages in themselves, either in conjunction with the use of CVODE or separately.
These modules are:

� The VECTOR package, which includes the N Vector type and a collection of kernels that perform
operations on N Vector vectors.

� The DENSE matrix package, which includes the matrix type DenseMat, macros and functions
for DenseMat matrices, and functions for small dense matrices treated as simple array types.

� The BAND matrix package, which includes the matrix type BandMat, macros and functions for
BandMat matrices, and functions for small band matrices treated as simple array types.



10.3 Generic Packages 65

� The SPGMR package, which includes a solver for the scaled preconditioned GMRES method.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in
SPGMR are only summarized briey, since they are less likely to be of direct use in connection with
CVODE. The functions for small dense and band matrices are fully described, because we expect that
they will be useful in the implementation of preconditioners used with the combination of CVODE
and the CVSPGMR solver.

10.3.1 VECTOR

The following sections contain documentation and declarations from the header �le vector.h.

/****************************************************************
* *
* File : vector.h *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*--------------------------------------------------------------*
* *
* This is the header file for a generic VECTOR package. It *
* exports the type N_Vector. *
* *
* Part I of this file contains declarations which are specific *
* to the particular machine environment in which this version *
* of the vector package is to be used. This includes the *
* typedef for the type N_Vector, as well as accessor macros *
* that allow the user to use efficiently the type N_Vector *
* without making explicit references to its underlying *
* representation. The underlying type of N_Vector will always *
* be some pointer type. *
* *
* Part II of this file contains the prototypes for the vector *
* kernels which operate on the type N_Vector. These prototypes *
* are fixed for all implementations of the vector package. The *
* definitions of the types real and integer are in the header *
* file llnltyps.h and these may be changed according to the *
* user's needs. The llnltyps.h file also contains the *
* definition for the type bool (short for boolean) that is the *
* return type for the routine N_VInvTest. *
* *
* Important Note: N_Vector arguments to arithmetic kernels *
* need not be distinct. Thus, for example, the call *
* *
* N_VLinearSum(a,x,b,y,y); y <- ax+by *
* *
* is legal. *
* *
* This version of vector.h is for the ordinary sequential *
* machine environment. In the documentation given below, N is *
* the length of all N_Vector parameters and x[i] denotes the *
* ith component of the N_Vector x, where 0 <= i <= N-1. *
* *
****************************************************************/



66 10 REFERENCE GUIDE

10.3.1.1 Type N Vector

/***************************************************************
* *
* Type: N_Vector *
*-------------------------------------------------------------*
* The type N_Vector is an abstract vector type. The fields of *
* its concrete representation should not be accessed *
* directly, but rather through the macros given below. *
* *
* A user may assume that the N components of an N_Vector *
* are stored contiguously. A pointer to the first component *
* can be obtained via the macro N_VDATA. *
* *
***************************************************************/

typedef struct {
integer length;
real *data;

} *N_Vector;

10.3.1.2 N Vector Accessor Macros

/***************************************************************
* *
* Macros: N_VMAKE, N_VDISPOSE, N_VDATA, N_VLENGTH, N_VIth *
*-------------------------------------------------------------*
* In the descriptions below, the following user *
* declarations are assumed: *
* *
* N_Vector v; real *v_data, r; integer v_len, i; *
* *
* (1) N_VMAKE, N_VDISPOSE *
* *
* These companion routines are used to create and *
* destroy an N_Vector with a component array v_data *
* allocated by the user. *
* *
* The call N_VMAKE(v, v_data, v_len) makes v an *
* N_Vector with component array v_data and length v_len. *
* N_VMAKE stores the pointer v_data so that changes *
* made by the user to the elements of v_data are *
* simultaneously reflected in v. There is no copying of *
* elements. *
* *
* The call N_VDISPOSE(v) frees all memory associated *
* with v except the its component array. This memory was *
* allocated by the user and, therefore, should be *
* deallocated by the user. *
* *
* (2) N_VDATA, N_VLENGTH *
* *
* These routines give individual access to the parts of *
* an N_Vector. *
* *
* The assignment v_data=N_VDATA(v) sets v_data to be *
* a pointer to the first component of v. The assignment *
* N_VDATA(v)=v_data sets the component array of v to *
* be v_data by storing the pointer v_data. *



10.3 Generic Packages 67

* *
* The assignment v_len=N_VLENGTH(v) sets v_len to be *
* the length of v. The call N_VLENGTH(v)=len_v sets *
* the length of v to be len_v. *
* *
* (3) N_VIth *
* *
* In the following description, the components of an *
* N_Vector are numbered 0..N-1, where N is the length of *
* v. *
* *
* The assignment r=N_VIth(v,i) sets r to be the value of *
* the ith component of v. The assignment N_VIth(v,i)=r *
* sets the value of the ith component of v to be r. *
* *
* Notes.. *
* *
* Users who use the macros (1) must #include<stdlib.h> *
* since these macros expand to calls to malloc and free. *
* *
* When looping over the components of an N_Vector v, it is *
* more efficient to first obtain the component array via *
* v_data=N_VDATA(v) and then access v_data[i] within the *
* loop than it is to use N_VDATA(v,i) within the loop. *
* *
* N_VMAKE and N_VDISPOSE are similar to N_VNew and N_VFree. *
* The difference is one of responsibility for component *
* memory allocation and deallocation. N_VNew allocates memory *
* for the N_Vector components and N_VFree frees the component *
* memory allocated by N_VNew. For N_VMAKE and N_VDISPOSE, the *
* component memory is allocated and freed by the user of *
* this package. *
* *
***************************************************************/

#define N_VMAKE(v, v_data, v_len) v = (N_Vector) malloc(sizeof(*v)); \
v->data = v_data; \
v->length = v_len

#define N_VDISPOSE(v) free(v)

#define N_VDATA(v) (v->data)

#define N_VLENGTH(v) (v->length)

#define N_VIth(v,i) ((v->data)[i])

10.3.1.3 N Vector Kernels

10.3.1.3.1 Memory Allocation and Deallocation

/***************************************************************
* *
* Memory Allocation and Deallocation: N_VNew, N_VFree *
* *
***************************************************************/



68 10 REFERENCE GUIDE

/***************************************************************
* *
* Function : N_VNew *
* Usage : x = N_VNew(N, machEnv); *
*-------------------------------------------------------------*
* *
* Returns a new N_Vector of length N. The parameter machEnv *
* is a pointer to machine environment-specific information. *
* It is ignored in the sequential machine environment and the *
* user in this environment should simply pass NULL for this *
* argument. If there is not enough memory for a new N_Vector, *
* then N_VNew returns NULL. *
* *
***************************************************************/

N_Vector N_VNew(integer n, void *machEnv);

/***************************************************************
* *
* Function : N_VFree *
* Usage : N_VFree(x); *
*-------------------------------------------------------------*
* *
* Frees the N_Vector x. It is illegal to use x after the call *
* N_VFree(x). *
* *
***************************************************************/

void N_VFree(N_Vector x);

10.3.1.3.2 Arithmetic

/***************************************************************
* *
* N_Vector Arithmetic: N_VLinearSum, N_VConst, N_VProd, *
* N_VDiv, N_VScale, N_VAbs, N_VInv, *
* N_VAddConst *
* *
***************************************************************/

/***************************************************************
* *
* Function : N_VLinearSum *
* Operation : z = a x + b y *
* *
***************************************************************/

void N_VLinearSum(real a, N_Vector x, real b, N_Vector y, N_Vector z);

/***************************************************************
* *
* Function : N_VConst *
* Operation : z[i] = c for i=0, 1, ..., N-1 *
* *
***************************************************************/



10.3 Generic Packages 69

void N_VConst(real c, N_Vector z);

/***************************************************************
* *
* Function : N_VProd *
* Operation : z[i] = x[i] * y[i] for i=0, 1, ..., N-1 *
* *
***************************************************************/

void N_VProd(N_Vector x, N_Vector y, N_Vector z);

/***************************************************************
* *
* Function : N_VDiv *
* Operation : z[i] = x[i] / y[i] for i=0, 1, ..., N-1 *
* *
***************************************************************/

void N_VDiv(N_Vector x, N_Vector y, N_Vector z);

/***************************************************************
* *
* Function : N_VScale *
* Operation : z = c x *
* *
***************************************************************/

void N_VScale(real c, N_Vector x, N_Vector z);

/***************************************************************
* *
* Function : N_VAbs *
* Operation : z[i] = |x[i]|, for i=0, 1, ..., N-1 *
* *
***************************************************************/

void N_VAbs(N_Vector x, N_Vector z);

/***************************************************************
* *
* Function : N_VInv *
* Operation : z[i] = 1.0 / x[i] for i = 0, 1, ..., N-1 *
*-------------------------------------------------------------*
* *
* This routine does not check for division by 0. It should be *
* called only with an N_Vector x which is guaranteed to have *
* all non-zero components. *
* *
***************************************************************/

void N_VInv(N_Vector x, N_Vector z);

/***************************************************************
* *
* Function : N_VAddConst *



70 10 REFERENCE GUIDE

* Operation : z[i] = x[i] + b for i = 0, 1, ..., N-1 *
* *
***************************************************************/

void N_VAddConst(N_Vector x, real b, N_Vector z);

10.3.1.3.3 Measures

/***************************************************************
* *
* N_Vector Measures: N_VDotProd, N_VMaxNorm, VWrmsNorm, *
* N_VMin *
* *
***************************************************************/

/***************************************************************
* *
* Function : N_VDotProd *
* Usage : dotprod = N_VDotProd(x, y); *
*-------------------------------------------------------------*
* *
* Returns the value of the ordinary dot product of x and y: *
* *
* -> sum (i=0 to N-1) {x[i] * y[i]} *
* *
* Returns 0.0 if N <= 0. *
* *
***************************************************************/

real N_VDotProd(N_Vector x, N_Vector y);

/***************************************************************
* *
* Function : N_VMaxNorm *
* Usage : maxnorm = N_VMaxNorm(x); *
*-------------------------------------------------------------*
* *
* Returns the maximum norm of x: *
* *
* -> max (i=0 to N-1) |x[i]| *
* *
* Returns 0.0 if N <= 0. *
* *
***************************************************************/

real N_VMaxNorm(N_Vector x);

/***************************************************************
* *
* Function : N_VWrmsNorm *
* Usage : wrmsnorm = N_VWrmsNorm(x, w); *
*-------------------------------------------------------------*
* *
* Returns the weighted root mean square norm of x with *
* weight vector w: *
* *
* -> sqrt [(sum (i=0 to N-1) {(x[i] * w[i])^2}) / N] *



10.3 Generic Packages 71

* *
* Returns 0.0 if N <= 0. *
* *
***************************************************************/

real N_VWrmsNorm(N_Vector x, N_Vector w);

/***************************************************************
* *
* Function : N_VMin *
* Usage : min = N_VMin(x); *
*-------------------------------------------------------------*
* *
* Returns min x[i] if N > 0 and returns 0.0 if N <= 0. *
* i *
* *
***************************************************************/

real N_VMin(N_Vector x);

10.3.1.3.4 Miscellaneous

/***************************************************************
* *
* Miscellaneous : N_VCompare, N_VInvTest *
* *
***************************************************************/

/***************************************************************
* *
* Function : N_VCompare *
* Operation : z[i] = 1.0 if |x[i]| >= c i = 0, 1, ..., N-1 *
* 0.0 otherwise *
* *
***************************************************************/

void N_VCompare(real c, N_Vector x, N_Vector z);

/***************************************************************
* *
* Function : N_VInvTest *
* Operation : z[i] = 1.0 / x[i] with a test for x[i]==0.0 *
* before inverting x[i]. *
*-------------------------------------------------------------*
* *
* This routine returns TRUE if all components of x are *
* non-zero (successful inversion) and returns FALSE *
* otherwise. *
* *
***************************************************************/

bool N_VInvTest(N_Vector x, N_Vector z);

10.3.1.3.5 Debugging Tools



72 10 REFERENCE GUIDE

/***************************************************************
* *
* Debugging Tools : N_VPrint *
* *
***************************************************************/

/***************************************************************
* *
* Function : N_VPrint *
* Usage : N_VPrint(x); *
*-------------------------------------------------------------*
* *
* Prints the N_Vector x to stdout. Each component of x is *
* printed on a separate line using the %g specification. This *
* routine is provided as an aid in debugging code which uses *
* this vector package. *
* *
***************************************************************/

void N_VPrint(N_Vector x);

10.3.2 DENSE

The following sections contain documentation and declarations from the header �le dense.h.

/******************************************************************
* *
* File : dense.h *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the header file for a generic DENSE linear solver *
* package. There are two sets of dense solver routines listed in *
* this file: one set uses type DenseMat defined below and the *
* other set uses the type real ** for dense matrix arguments. *
* The two sets of dense solver routines make it easy to work *
* with two types of dense matrices: *
* *
* (1) The DenseMat type is intended for use with large dense *
* matrices whose elements/columns may be stored in *
* non-contiguous memory locations or even distributed into *
* different processor memories. This type may be modified to *
* include such distribution information. If this is done, *
* then all the routines that use DenseMat must be modified *
* to reflect the new data structure. *
* *
* (2) The set of routines that use real ** (and NOT the DenseMat *
* type) is intended for use with small matrices which can *
* easily be allocated within a contiguous block of memory *
* on a single processor. *
* *
* Routines that work with the type DenseMat begin with "Dense". *
* The DenseAllocMat function allocates a dense matrix for use in *
* the other DenseMat routines listed in this file. Matrix *
* storage details are given in the documentation for the type *
* DenseMat. The DenseAllocPiv function allocates memory for *
* pivot information. The storage allocated by DenseAllocMat and *
* DenseAllocPiv is deallocated by the routines DenseFreeMat and *



10.3 Generic Packages 73

* DenseFreePiv, respectively. The DenseFactor and DenseBacksolve *
* routines perform the actual solution of a dense linear system. *
* Note that the DenseBacksolve routine has a parameter b of type *
* N_Vector. The current implementation makes use of a machine *
* environment specific macro (N_VDATA) which may not exist for *
* other implementations of the type N_Vector. Thus, the *
* implementation of DenseBacksolve may need to change if the *
* type N_Vector is changed. *
* *
* Routines that work with real ** begin with "den" (except for *
* the factor and solve routines which are called gefa and gesl, *
* respectively). The underlying matrix storage is described in *
* the documentation for denalloc. *
* *
******************************************************************/

10.3.2.1 Type DenseMat

/******************************************************************
* *
* Type: DenseMat *
*----------------------------------------------------------------*
* The type DenseMat is defined to be a pointer to a structure *
* with a size and a data field. The size field indicates the *
* number of columns (== number of rows) of a dense matrix, while *
* the data field is a two dimensional array used for component *
* storage. The elements of a dense matrix are stored columnwise *
* (i.e columns are stored one on top of the other in memory). If *
* A is of type DenseMat, then the (i,j)th element of A (with *
* 0 <= i,j <= size-1) is given by the expression (A->data)[j][i] *
* or by the expression (A->data)[0][j*n+i]. The macros below *
* allow a user to access efficiently individual matrix *
* elements without writing out explicit data structure *
* references and without knowing too much about the underlying *
* element storage. The only storage assumption needed is that *
* elements are stored columnwise and that a pointer to the jth *
* column of elements can be obtained via the DENSE_COL macro. *
* Users should use these macros whenever possible. *
* *
******************************************************************/

typedef struct {
integer size;
real **data;

} *DenseMat;

10.3.2.2 DenseMat Accessor Macros

/******************************************************************
* *
* Macro : DENSE_ELEM *
* Usage : DENSE_ELEM(A,i,j) = a_ij; OR *
* a_ij = DENSE_ELEM(A,i,j); *
*----------------------------------------------------------------*
* DENSE_ELEM(A,i,j) references the (i,j)th element of the N by N *
* DenseMat A, 0 <= i,j <= N-1. *
* *



74 10 REFERENCE GUIDE

******************************************************************/

#define DENSE_ELEM(A,i,j) ((A->data)[j][i])

/******************************************************************
* *
* Macro : DENSE_COL *
* Usage : col_j = DENSE_COL(A,j); *
*----------------------------------------------------------------*
* DENSE_COL(A,j) references the jth column of the N by N *
* DenseMat A, 0 <= j <= N-1. The type of the expression *
* DENSE_COL(A,j) is real *. After the assignment in the usage *
* above, col_j may be treated as an array indexed from 0 to N-1. *
* The (i,j)th element of A is referenced by col_j[i]. *
* *
******************************************************************/

#define DENSE_COL(A,j) ((A->data)[j])

10.3.2.3 DenseMat Functions

The following functions for DenseMat matrices are available in the DENSE package. For full details,
see the �le dense.h.

� DenseAllocMat: allocation of a DenseMat matrix

� DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve

� DenseFactor: LU factorization with partial pivoting

� DenseBacksolve: solution of Ax = b using LU factorization

� DenseZero: load a matrix with zeros

� DenseCopy: copy one matrix to another

� DenseScale: scale a matrix by a scalar

� DenseAddI: increment a matrix by the identity matrix

� DenseFreeMat: free memory for a DenseMat matrix

� DenseFreePiv: free memory for a pivot array

� DensePrint: print a DenseMat matrix to standard output



10.3 Generic Packages 75

10.3.2.4 Small Dense Matrix Functions

/******************************************************************
* *
* Function : denalloc *
* Usage : real **a; *
* a = denalloc(n); *
* if (a == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denalloc(n) allocates storage for an n by n dense matrix. It *
* returns a pointer to the newly allocated storage if *
* successful. If the memory request cannot be satisfied, then *
* denalloc returns NULL. The underlying type of the dense matrix *
* returned is real **. If we allocate a dense matrix real **a by *
* a = denalloc(n), then a[j][i] references the (i,j)th element *
* of the matrix a, 0 <= i,j <= n-1, and a[j] is a pointer to the *
* first element in the jth column of a. The location a[0] *
* contains a pointer to n^2 contiguous locations which contain *
* the elements of a. *
* *
******************************************************************/

real **denalloc(integer n);

/******************************************************************
* *
* Function : denallocpiv *
* Usage : integer *pivot; *
* pivot = denallocpiv(n); *
* if (pivot == NULL) ... memory request failed *
*----------------------------------------------------------------*
* denallocpiv(n) allocates an array of n integers. It returns a *
* pointer to the first element in the array if successful. It *
* returns NULL if the memory request could not be satisfied. *
* *
******************************************************************/

integer *denallocpiv(integer n);

/******************************************************************
* *
* Function : gefa *
* Usage : integer ier; *
* ier = gefa(a,n,p); *
* if (ier > 0) ... zero element encountered during *
* the factorization *
*----------------------------------------------------------------*
* gefa(a,n,p) factors the n by n dense matrix a. It overwrites *
* the elements of a with its LU factors and keeps track of the *
* pivot rows chosen in the pivot array p. *
* *
* A successful LU factorization leaves the matrix a and the *
* pivot array p with the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., n-1. *
* *
* (2) If the unique LU factorization of a is given by Pa = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *



76 10 REFERENCE GUIDE

* triangular matrix, then the upper triangular part of a *
* (including its diagonal) contains U and the strictly lower *
* triangular part of a contains the multipliers, I-L. *
* *
* gefa returns 0 if successful. Otherwise it encountered a zero *
* diagonal element during the factorization. In this case it *
* returns the column index (numbered from one) at which it *
* encountered the zero. *
* *
******************************************************************/

integer gefa(real **a, integer n, integer *p);

/******************************************************************
* *
* Function : gesl *
* Usage : real *b; *
* ier = gefa(a,n,p); *
* if (ier == 0) gesl(a,n,p,b); *
*----------------------------------------------------------------*
* gesl(a,n,p,b) solves the n by n linear system ax = b. It *
* assumes that a has been LU factored and the pivot array p has *
* been set by a successful call to gefa(a,n,p). The solution x *
* is written into the b array. *
* *
******************************************************************/

void gesl(real **a, integer n, integer *p, real *b);

/******************************************************************
* *
* Function : denzero *
* Usage : denzero(a,n); *
*----------------------------------------------------------------*
* denzero(a,n) sets all the elements of the n by n dense matrix *
* a to be 0.0. *
* *
******************************************************************/

void denzero(real **a, integer n);

/******************************************************************
* *
* Function : dencopy *
* Usage : dencopy(a,b,n); *
*----------------------------------------------------------------*
* dencopy(a,b,n) copies the n by n dense matrix a into the *
* n by n dense matrix b. *
* *
******************************************************************/

void dencopy(real **a, real **b, integer n);

/******************************************************************
* *
* Function : denscale *
* Usage : denscale(c,a,n); *
*----------------------------------------------------------------*



10.3 Generic Packages 77

* denscale(c,a,n) scales every element in the n by n dense *
* matrix a by c. *
* *
******************************************************************/

void denscale(real c, real **a, integer n);

/******************************************************************
* *
* Function : denaddI *
* Usage : denaddI(a,n); *
*----------------------------------------------------------------*
* denaddI(a,n) increments the n by n dense matrix a by the *
* identity matrix. *
* *
******************************************************************/

void denaddI(real **a, integer n);

/******************************************************************
* *
* Function : denfreepiv *
* Usage : denfreepiv(p); *
*----------------------------------------------------------------*
* denfreepiv(p) frees the pivot array p allocated by *
* denallocpiv. *
* *
******************************************************************/

void denfreepiv(integer *p);

/******************************************************************
* *
* Function : denfree *
* Usage : denfree(a); *
*----------------------------------------------------------------*
* denfree(a) frees the dense matrix a allocated by denalloc. *
* *
******************************************************************/

void denfree(real **a);

/******************************************************************
* *
* Function : denprint *
* Usage : denprint(a,n); *
*----------------------------------------------------------------*
* denprint(a,n) prints the n by n dense matrix a to standard *
* output as it would normally appear on paper. It is intended as *
* a debugging tool with small values of n. The elements are *
* printed using the %g option. A blank line is printed before *
* and after the matrix. *
* *
******************************************************************/

void denprint(real **a, integer n);



78 10 REFERENCE GUIDE

10.3.3 BAND

The following sections contain documentation and declarations from the header �le band.h.

/******************************************************************
* *
* File : band.h *
* Programmers : Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
* Last Modified : 1 September 1994 *
*----------------------------------------------------------------*
* This is the header file for a generic BAND linear solver *
* package. There are two sets of band solver routines listed in *
* this file: one set uses type BandMat defined below and the *
* other set uses the type real ** for band matrix arguments. *
* The two sets of band solver routines make it easy to work *
* with two types of band matrices: *
* *
* (1) The BandMat type is intended for use with large *
* band matrices whose elements/columns may be stored in *
* non-contiguous memory locations or even distributed into *
* different processor memories. This type may be modified to *
* include such distribution information. If this is done, *
* then all the routines that use BandMat must be modified to *
* reflect the new data structure. *
* *
* (2) The set of routines that use real ** (and NOT the BandMat *
* type) is intended for use with small matrices which can *
* easily be allocated within a contiguous block of memory *
* on a single processor. *
* *
* Routines that work with the type BandMat begin with "Band". *
* The BandAllocMat function allocates a band matrix for use in *
* the other matrix routines listed in this file. Matrix storage *
* details are given in the documentation for the type BandMat. *
* The BandAllocPiv function allocates memory for pivot *
* information. The storage allocated by BandAllocMat and *
* BandAllocPiv is deallocated by the routines BandFreeMat and *
* BandFreePiv, respectively. The BandFactor and BandBacksolve *
* routines perform the actual solution of a band linear system. *
* Note that the BandBacksolve routine has a parameter b of type *
* N_Vector. The current implementation makes use of a machine *
* environment specific macro (N_VDATA) which may not exist for *
* other implementations of the type N_Vector. Thus, the *
* implementation of BandBacksolve may need to change if the *
* type N_Vector is changed. *
* *
* Routines that work with real ** begin with "band" (except for *
* the factor and solve routines which are called gbfa and gbsl, *
* respectively). The underlying matrix storage is described in *
* the documentation for bandalloc. *
* *
******************************************************************/



10.3 Generic Packages 79

10.3.3.1 Type BandMat

See Figure 3 following the BandMat documentation for a diagram of the BandMat type.

/******************************************************************
* *
* Type: BandMat *
*----------------------------------------------------------------*
* The type BandMat is the type of a large (possibly distributed) *
* band matrix. It is defined to be a pointer to a structure *
* with the following fields: *
* *
* size is the number of columns (== number of rows) *
* *
* mu is the upper bandwidth, 0 <= mu <= size-1 *
* *
* ml is the lower bandwidth, 0 <= ml <= size-1 *
* *
* smu is the storage upper bandwidth, mu <= smu <= size-1. *
* The BandFactor routine writes the LU factors *
* into the storage for A. The upper triangular factor U, *
* however, may have an upper bandwidth as big as *
* MIN(size-1,mu+ml) because of partial pivoting. The smu *
* field holds the upper bandwidth allocated for A. *
* *
* data is a two dimensional array used for component storage. *
* The elements of a band matrix of type BandMat are *
* stored columnwise (i.e. columns are stored one on top *
* of the other in memory). Only elements within the *
* specified bandwidths are stored. *
* *
* If we number rows and columns in the band matrix starting *
* from 0, then *
* *
* data[0] is a pointer to (smu+ml+1)*size contiguous locations *
* which hold the elements within the band of A *
* *
* data[j] is a pointer to the uppermost element within the band *
* in the jth column. This pointer may be treated as *
* an array indexed from smu-mu (to access the *
* uppermost element within the band in the jth *
* column) to smu+ml (to access the lowest element *
* within the band in the jth column). (Indices from 0 *
* to smu-mu-1 give access to extra storage elements *
* required by BandFactor.) *
* *
* data[j][i-j+smu] is the (i,j)th element, j-mu <= i <= j+ml. *
* *
* The macros below allow a user to access individual matrix *
* elements without writing out explicit data structure *
* references and without knowing too much about the underlying *
* element storage. The only storage assumption needed is that *
* elements are stored columnwise and that a pointer into the jth *
* column of elements can be obtained via the BAND_COL macro. The *
* BAND_COL_ELEM macro selects an element from a column which has *
* already been isolated via BAND_COL. BAND_COL_ELEM allows the *
* user to avoid the translation from the matrix location (i,j) *
* to the index in the array returned by BAND_COL at which the *
* (i,j)th element is stored. See the documentation for BAND_COL *
* and BAND_COL_ELEM for usage details. Users should use these *
* macros whenever possible. *
* *



80 10 REFERENCE GUIDE

******************************************************************/

typedef struct {
integer size;
integer mu, ml, smu;
real **data;

} *BandMat;

10.3.3.2 BandMat Accessor Macros

/******************************************************************
* *
* Macro : BAND_ELEM *
* Usage : BAND_ELEM(A,i,j) = a_ij; OR *
* a_ij = BAND_ELEM(A,i,j); *
*----------------------------------------------------------------*
* BAND_ELEM(A,i,j) references the (i,j)th element of the *
* N by N band matrix A, where 0 <= i,j <= N-1. The location *
* (i,j) should further satisfy j-(A->mu) <= i <= j+(A->ml). *
* *
******************************************************************/

#define BAND_ELEM(A,i,j) ((A->data)[j][i-j+(A->smu)])

/******************************************************************
* *
* Macro : BAND_COL *
* Usage : col_j = BAND_COL(A,j); *
*----------------------------------------------------------------*
* BAND_COL(A,j) references the diagonal element of the jth *
* column of the N by N band matrix A, 0 <= j <= N-1. The type of *
* the expression BAND_COL(A,j) is real *. The pointer returned *
* by the call BAND_COL(A,j) can be treated as an array which is *
* indexed from -(A->mu) to (A->ml). *
* *
******************************************************************/

#define BAND_COL(A,j) (((A->data)[j])+(A->smu))

/******************************************************************
* *
* Macro : BAND_COL_ELEM *
* Usage : col_j = BAND_COL(A,j); *
* BAND_COL_ELEM(col_j,i,j) = a_ij; OR *
* a_ij = BAND_COL_ELEM(col_j,i,j); *
*----------------------------------------------------------------*
* This macro references the (i,j)th entry of the band matrix A *
* when used in conjunction with BAND_COL as shown above. The *
* index (i,j) should satisfy j-(A->mu) <= i <= j+(A->ml). *
* *
******************************************************************/

#define BAND_COL_ELEM(col_j,i,j) (col_j[i-j])



10.3 Generic Packages 81

A (type BandMat)

datasize

ml smumu

N

data[N-1]

data[j+1]

data[j]

data[0]

data[1]

mu+ml+1

smu-mu

A(j-mu-1,j)

A(j-mu,j)

A(j,j)

A(j+ml,j)

data[j][smu]

data[j][smu+ml]

data[j][smu-mu]

Figure 3: Diagram of the storage for a band matrix of type BandMat. Here A is an N � N band matrix
of type BandMat with upper and lower bandwidths mu and ml, respectively. The rows and columns
of A are numbered from 0 to N-1 and the (i,j)th element of A is denoted A(i,j). The greyed out areas
of the underlying component storage are used by the BandFactor and BandBacksolve routines.



82 10 REFERENCE GUIDE

10.3.3.3 BandMat Functions

The following functions for BandMat matrices are available in the BAND package. For full details, see
the �le band.h.

� BandAllocMat: allocation of a BandMat matrix

� BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve

� BandFactor: LU factorization with partial pivoting

� BandBacksolve: solution of Ax = b using LU factorization

� BandZero: load a matrix with zeros

� BandCopy: copy one matrix to another

� BandScale: scale a matrix by a scalar

� BandAddI: increment a matrix by the identity matrix

� BandFreeMat: free memory for a BandMat matrix

� BandFreePiv: free memory for a pivot array

� BandPrint: print a BandMat matrix to standard output

10.3.3.4 Small Band Matrix Functions

/******************************************************************
* *
* Function : bandalloc *
* Usage : real **a; *
* a = bandalloc(n, smu, ml); *
* if (a == NULL) ... memory request failed *
*----------------------------------------------------------------*
* bandalloc(n, smu, ml) allocates storage for an n by n band *
* matrix A with storage upper bandwidth smu and lower bandwidth *
* ml. It returns a pointer to the newly allocated storage if *
* successful. If the memory request cannot be satisfied, then *
* bandalloc returns NULL. If, mathematically, A has upper and *
* lower bandwidths mu and ml, respectively, then the value *
* passed to bandalloc for smu may need to be greater than mu. *
* The gbfa routine writes the LU factors into the storage (named *
* "a" in the above usage documentation) for A (thus destroying *
* the original elements of A). The upper triangular factor U, *
* however, may have a larger upper bandwidth than the upper *
* bandwidth mu of A. Thus some "extra" storage for A must be *
* allocated if A is to be factored by gbfa. Pass smu as follows: *
* *
* (1) Pass smu = mu if A will not be factored. *
* *
* (2) Pass smu = MIN(n-1,mu+ml) if A will be factored. *
* *
* The underlying type of the band matrix returned is real **. If *



10.3 Generic Packages 83

* we allocate a band matrix A in real **a by *
* a = bandalloc(n,smu,ml), then a[0] is a pointer to *
* n * (smu + ml + 1) contiguous storage locations and a[j] is a *
* pointer to the uppermost element in the storage for the jth *
* column. The expression a[j][i-j+smu] references the (i,j)th *
* element of A, where 0 <= i,j <= n-1 and j-mu <= i <= j+ml. *
* (The elements a[j][0], a[j][1], ..., a[j][smu-mu-1] are used *
* by gbfa and gbsl.) *
* *
******************************************************************/

real **bandalloc(integer n, integer smu, integer ml);

/******************************************************************
* *
* Function : bandallocpiv *
* Usage : integer *pivot; *
* pivot = bandallocpiv(n); *
* if (pivot == NULL) ... memory request failed *
*----------------------------------------------------------------*
* bandallocpiv(n) allocates an array of n integers. It returns a *
* pointer to the first element in the array if successful. It *
* returns NULL if the memory request could not be satisfied. *
* *
******************************************************************/

integer *bandallocpiv(integer n);

/******************************************************************
* *
* Function : gbfa *
* Usage : integer ier; *
* ier = gbfa(a,n,mu,ml,smu,p); *
* if (ier > 0) ... zero element encountered during *
* the factorization *
*----------------------------------------------------------------*
* gbfa(a,n,mu,ml,smu,p) factors the n by n band matrix A (upper *
* and lower bandwidths mu and ml, storage upper bandwidth smu) *
* stored in "a". It overwrites the elements of A with the LU *
* factors and it keeps track of the pivot rows chosen in the *
* pivot array p. *
* *
* A successful LU factorization leaves a and pivot array p with *
* the following information: *
* *
* (1) p[k] contains the row number of the pivot element chosen *
* at the beginning of elimination step k, k=0, 1, ..., n-1. *
* *
* (2) If the unique LU factorization of A is given by PA = LU, *
* where P is a permutation matrix, L is a lower triangular *
* matrix with all 1's on the diagonal, and U is an upper *
* triangular matrix, then the upper triangular part of A *
* (including its diagonal) contains U and the strictly lower *
* triangular part of A contains the multipliers, I-L. *
* *
* gbfa returns 0 if successful. Otherwise it encountered a zero *
* diagonal element during the factorization. In this case it *
* returns the column index (numbered from one) at which it *
* encountered the zero. *
* *



84 10 REFERENCE GUIDE

* IMPORTANT NOTE: Suppose A is a band matrix with upper *
* bandwidth mu and lower bandwidth ml, then the upper triangular *
* factor U can have upper bandwidth as big as MIN(n-1,mu+ml) *
* because of partial pivoting. The lower triangular factor L has *
* lower bandwidth ml. Thus, if A is to be factored and *
* backsolved using gbfa and gbsl, then it should be allocated *
* as a = bandalloc(n,smu,ml), where smu = MIN(n-1,mu+ml). The *
* call to gbfa is ier = gbfa(a,n,mu,ml,smu,p). The corresponding *
* call to gbsl is gbsl(a,n,smu,ml,p,b). The user does not need *
* to zero the "extra" storage allocated for the purpose of *
* factorization. This is handled by the gbfa routine. If A is *
* not going to be factored and backsolved, then it can be *
* allocated as a = bandalloc(n,smu,ml). In either case, all *
* routines in this section use the parameter name smu for a *
* parameter which must be the "storage upper bandwidth" which *
* was passed to bandalloc. *
* *
******************************************************************/

integer gbfa(real **a, integer n, integer mu, integer ml, integer smu,
integer *p);

/******************************************************************
* *
* Function : gbsl *
* Usage : real *b; *
* ier = gbfa(a,n,mu,ml,smu,p); *
* if (ier == 0) gbsl(a,n,smu,ml,p,b); *
*----------------------------------------------------------------*
* gbsl(a,n,smu,ml,p,b) solves the n by n linear system *
* Ax = b, where A is band matrix stored in "a" with storage *
* upper bandwidth smu and lower bandwidth ml. It assumes that A *
* has been LU factored and the pivot array p has been set by a *
* successful call gbfa(a,n,mu,ml,smu,p). The solution x is *
* written into the b array. *
* *
******************************************************************/

void gbsl(real **a, integer n, integer smu, integer ml, integer *p, real *b);

/******************************************************************
* *
* Function : bandzero *
* Usage : bandzero(a,n,mu,ml,smu); *
*----------------------------------------------------------------*
* a(i,j) <- 0.0, 0 <= i,j <= n-1, j-mu <= i <= j+ml. *
* *
******************************************************************/

void bandzero(real **a, integer n, integer mu, integer ml, integer smu);

/******************************************************************
* *
* Function : bandcopy *
* Usage : bandcopy(a,b,n,a_smu,b_smu,copymu,copyml); *
*----------------------------------------------------------------*
* b(i,j) <- a(i,j), 0 <= i,j <= n-1, j-copymu <= i <= j+copyml. *
* *
******************************************************************/



10.3 Generic Packages 85

void bandcopy(real **a, real **b, integer n, integer a_smu, integer b_smu,
integer copymu, integer copyml);

/******************************************************************
* *
* Function : bandscale *
* Usage : bandscale(c,a,n,mu,ml); *
*----------------------------------------------------------------*
* a(i,j) <- c*a(i,j), 0 <= i,j <= n-1, j-mu <= i <= j+ml. *
* *
******************************************************************/

void bandscale(real c, real **a, integer n, integer mu, integer ml,
integer smu);

/******************************************************************
* *
* Function : bandaddI *
* Usage : bandaddI(a,n,smu); *
*----------------------------------------------------------------*
* a(j,j) <- a(j,j)+1.0, 0 <= j <= n-1. *
* *
******************************************************************/

void bandaddI(real **a, integer n, integer smu);

/******************************************************************
* *
* Function : bandfreepiv *
* Usage : bandfreepiv(p); *
*----------------------------------------------------------------*
* bandfreepiv(p) frees the pivot array p allocated by *
* bandallocpiv. *
* *
******************************************************************/

void bandfreepiv(integer *p);

/******************************************************************
* *
* Function : bandfree *
* Usage : bandfree(a); *
*----------------------------------------------------------------*
* bandfree(a) frees the band matrix a allocated by bandalloc. *
* *
******************************************************************/

void bandfree(real **a);

/******************************************************************
* *
* Function : bandprint *
* Usage : bandprint(a,n,mu,ml,smu); *
*----------------------------------------------------------------*
* bandprint(a,n,mu,ml,smu) prints the n by n band matrix stored *
* in a (with upper bandwidth mu and lower bandwidth ml) to *



86 10 REFERENCE GUIDE

* standard output as it would normally appear on paper. It is *
* intended as a debugging tool with small values of n. The *
* elements are printed using the %g option. A blank line is *
* printed before and after the matrix. *
* *
******************************************************************/

void bandprint(real **a, integer n, integer mu, integer ml, integer smu);

10.3.4 SPGMR

The SPGMR package, in the �les spgmr.h, spgmr.c, includes an implementation of the scaled pre-
condition GMRES method. A separate code module, iterativ.h and iterativ.c, contains auxiliary
functions that support SPGMR, and also other Krylov solvers to be added later. For full details,
including usage instructions, see the �les spgmr.h and iterativ.h.

The following functions are available in the SPGMR package:

� SpgmrMalloc: allocation of memory for SpgmrSolve

� SpgmrSolve: solution of Ax = b by the SPGMR method

� SpgmrFree: free memory allocated by SpgmrMalloc

The following functions are available in the support package iterativ.h, iterativ.c:

� ModifiedGS: performs modi�ed Gram-Schmidt procedure

� ClassicalGS: performs classical Gram-Schmidt procedure

� QRfact: performs QR factorization of Hessenberg matrix

� QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact



REFERENCES 87

References

[1] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coe�cient ODE Solver,
SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038{1051.

[2] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods in Sti� ODE Systems, J.
Appl. Math. & Comp. 31 (1989), pp. 40{91.

[3] George D. Byrne, Pragmatic Experiments with Krylov Methods in the Sti� ODE Setting, in Com-

putational Ordinary Di�erential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University
Press, Oxford, 1992, pp. 323{356.

[4] Krishnan Radhakrishnan and Alan C. Hindmarsh, Discription and Use of LSODE, the Livermore

Solver for Ordinary Di�erential Equations, NASA Reference Publication 1327, 1993, and LLNL
Report UCRL-ID-113855, March 1994.

[5] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp. 7 (1986), pp. 856{869.



Index

The authors have tried to provide as useful an
index as possible. Page numbers in boldface
are in Section 10, the Reference Guide. These
entries point the reader toward the most com-
plete source of information in this user guide
for a given item. If an item with a single bold
page number citation does not appear on the
speci�ed page, please check the previous page.

abstol 7, 13, 20, 49
ADAMS 48
Adams-Moulton method 1, 2
ATOL 2, 20

BAND linear solver 31, 78 { 86
band matrix functions

large matrix 82
small matrix 82 { 86

band matrix macros 80
See also BAND ELEM, BAND COL,

BAND COL ELEM
band solver sample program

code cvbx.c 15 { 20
explanation of 20 { 21
output 21
problem solved by 15

band.h 20, 31, 78
BAND COL 20, 21, 35, 36, 80
BAND COL ELEM 20, 21, 35, 36, 80
BAND ELEM 35, 36, 80
BAND LIW 36, 59
BAND LRW 36, 59
BAND NJE 20, 36, 59
BandMat 20, 31, 35, 36, 80
BDF 13, 20, 30, 48
BDF method 1, 2
bjac 35, 36, 57
block-diagonal preconditioner 31
BOTH 37

ClassicalGS 86
CVBand 6, 7, 8, 20, 21, 33, 35, 57
CVBAND linear solver 56 { 59

integer size requirement 40

Jacobian approximation used by 35 { 36

memory requirements 36
optional outputs 36
selection of 35

cvband.h 20, 56
CVBandDQJac 35, 36

CVBandJacFn 35, 36, 58
cvbx.c 15, 20, 21
CVDense 6, 7, 8, 13, 33, 34, 54

CVDENSE linear solver 54 { 56
integer size requirement 40

Jacobian approximation used by 33 { 34
memory requirements 34
optional outputs 34

selection of 33
cvdense.h 12, 54
CVDenseDQJac 33, 34

CVDenseJacFn 33, 34, 55
CVDiag 6, 7, 33, 36, 59

CVDIAG linear solver 59
integer size requirement 40
Jacobian approximation used by 36

memory requirements 36
optional outputs 36

selection of 36
cvdiag.h 59
cvdx.c 14

cvkx.c 31
CVode 6, 7, 8, 13, 51

return values 51

CVODE
brief description of 1

linear system solved by 2
memory requirements 8
motivation for writing in C 1

nonlinear system solved by 2
ODE system solved by 1

organization di�erent from VODE,
VODPK 1

planned multiprocessor extension of 1, 44

relationship to VODE, VODPK 1
CVODE linear solvers

built on generic solvers 33

88



INDEX 89

description of 33
implementation details 42
list of 42

selecting one 33
See also CVDENSE, CVBAND, CVDIAG,

CVSPGMR linear solver
cvode.c 42
cvode.h 12, 42, 47

cvode mem 7, 51, 52, 54, 57, 59, 61
CVodeDky 8, 52

return values 52
CVodeFree 6, 13, 52
CVodeMalloc 6, 6 { 7, 8, 13, 33, 35, 36, 37, 38,

49

CVSpgmr 6, 7, 8, 30, 31, 33, 37, 38, 61
CVSPGMR linear solver 60 { 64

integer size requirement 40
memory requirements 38
optional inputs 37
optional outputs 38
preconditioner setup routine 38
preconditioner solve routine 38
selection of 37

cvspgmr.c 44
cvspgmr.h 30, 60
CVSpgmrPrecondFn 38, 62
CVSpgmrPSolveFn 38, 64

delt 30, 37, 38, 61
delta 38, 64
demonstration programs 41
DENSE linear solver 31, 72 { 77
dense matrix functions

large matrix 74
small matrix 31, 75 { 77

dense matrix macros 73 { 74

See also DENSE ELEM, DENSE COL
dense solver sample program

code cvdx.c 9 { 12
explanation of 12 { 14
output 14
problem solved by 9

dense.h 12, 31, 72
DENSE COL 34, 74
DENSE ELEM 12, 14, 34, 74

DENSE LIW 34, 56

DENSE LRW 34, 56
DENSE NJE 12, 13, 34, 56
DenseMat 12, 14, 31, 34, 73
DIAG LIW 36, 59
DIAG LRW 36, 59
di�erence quotient Jacobian

See Jacobian approximation function
direct demonstration program 41
djac 33, 34, 54
dky 52

errfp 7, 49
error control 2
error reporting 8
error tolerances

advice on setting 2
See also ATOL, RTOL

error weight vector 2
ewt 55, 58, 62, 64

f 8, 13, 14, 20, 21, 31, 49, 55, 58
f data 8, 13, 20, 48, 49, 55, 58
FUNCTIONAL 48

fy 55, 58, 62, 64

gamma 38, 62, 64
generic linear solvers 6, 64 { 65

use in CVODE 42 { 44
See also DENSE, BAND, SPGMR

linear solver
generic vector package

See VECTOR package
GMRES method 2, 33, 37
Gram-Schmidt procedure 30, 37, 41
gstype 37, 38, 61

h 55, 58, 62
H0 53
HCUR 53

header �les 6
HMAX 53

HMIN 53

HU 53

initial value problem 1
integer 6, 12, 39, 40, 44

size of 40
interpolated output 7, 8



90 INDEX

iopt 7, 8, 13, 34, 36, 38, 49
itask 7, 51
iter 7, 49
iterativ.c 86
iterativ.h 30, 37, 86
itol 7, 49

J 14, 21, 34, 35, 55, 58
Jac 4, 8, 13, 14, 20, 21
jac data 13, 20, 34, 35, 54, 55, 57, 58
Jacobian approximation routine

band, di�erence quotient 35
band, user-supplied 35 { 36
dense, di�erence quotient 33
dense, user-supplied 34
See also CVDenseJacFn, CVBandJacFn

jcur 31
jcurPtr 31, 62
jok 31, 38, 62

k 52
Krylov demonstration program 41
Krylov solver sample program

code cvkx.c 22 { 30
explanation of 30 { 31
output 32
problem solved by 22

l max 38
LEFT 37, 38
LENIW 53

LENRW 53

linear multistep formula 2
linear solver

need for in CVODE 2
See also generic, CVODE linear solvers

llnlmath.c 39, 44
llnlmath.h 6, 30
llnltyps.h 12, 39, 40, 44
lmm 7, 49
local error test 2
lr 38, 64
LSODE 1

machEnv 13, 49
macros (accessor)

BandMat

See band matrix macros
DenseMat
See dense matrix macros

N Vector
See vector macros

user-de�ned 12, 13, 14, 20, 31
matrix types

See DenseMat, BandMat
maxl 30, 37, 38, 61
MAXORD 53

memory allocation 6, 7
mlower 35, 36, 40, 57, 58
Modi�edGS 86
mupper 35, 36, 40, 57, 58
MX 15, 20
MXHNIL 53

MXSTEP 53

MY 15, 20, 21

N 34, 36, 38, 40, 48, 49, 55, 58, 62, 64
N VDATA 20, 31, 67
N Vector 4, 7, 12, 13, 14, 20, 31, 44, 64, 66
N VFree 4, 13, 21, 68
N VIth 12, 14, 67
N VNew 4, 13, 68
NCFN 53

NEQ 13, 20
NETF 53

NEWTON 13, 20, 30, 48
Newton matrix 2, 31
NFE 53

nfePtr 55, 58, 62, 64
nje 13
NNI 53
NONE 37
NORMAL 13, 31, 48
notational issues 3
NSETUPS 36, 53
NST 53

ONE STEP 48

OPT SIZE 13, 53
optIn 7, 49
optional inputs and outputs 7 { 8, 37, 52 { 53,

55 { 56, 58 { 59, 64

P data 37, 38, 61, 62, 64



INDEX 91

precision 39 { 40
Precond 4, 8, 30, 31, 41
precond 37, 38, 61
preconditioning

advice on 37, 42
setup and solve phases 42
See also CVSpgmrPrecondFn,

CVSpgmrPSolveFn
pretype 7, 30, 37, 38, 61
PrintFinalStats 13, 20, 21
PSolve 4, 8, 30, 31
psolve 37, 38, 61

QCUR 53

QRfact 86
QRsol 86
QU 53

r 38, 64
RCONST 39, 40
real 6, 12, 30, 39, 40, 44
reference guide 3, 47 { 86
reltol 13, 20, 49
RhsFn 48
RIGHT 37, 38
ropt 7, 8, 13, 49
RPowerR 39
RSqrt 39
RTOL 2

SetIC 20
SPGMR linear solver 2, 38, 86
spgmr.c 44, 86
spgmr.h 86
SPGMR LIW 38, 64
SPGMR LRW 38, 64
SPGMR NCFL 38, 64
SPGMR NLI 38, 64
SPGMR NPE 38, 64
SPGMR NPS 38, 64
SpgmrFree 86
SpgmrMalloc 86
SpgmrSolve 86
SQR 30
SS 7, 20, 48
sti� system 1, 2
SUCCESS 13, 51

SV 7, 13, 48

t 7, 13, 48, 51, 52, 55, 58, 62, 64
t0 7, 49
T0 20
T1 20
TCUR 53

tolerances
See error tolerances

TOLSF 53

tout 7, 13, 21, 51

uround 55, 58, 62
user-supplied functions 8

See also f, Jac, Precond, PSolve
user-supplied Jacobian

See Jacobian approximation function

vector kernels 46, 67 { 72
vector macros 66 { 67

See also N VIth, N VDATA
VECTOR package 44, 65 { 72
vector type 4, 6, 44, 66
vector.h 6, 12, 20, 65
VODE 1
VODPK 1

workspace 8
WRMS norm 2

y 4, 13, 14, 48, 55, 58, 62, 64
y0 7, 49
ydot 14, 48
yout 7, 51

z 38, 64


