
Measuring Point Set Similarity with the Hausdor� Distance:

Theory and Applications

Scott D. Cohen �

1 Introduction

We consider the problem of measuring the similarity between two �nite point sets using the
Hausdor� distance H(A;B). This distance is small when each point in A is close to some point
in B, and each point in B is close to some point in A. The de�nition does not require that A
and B have the same number of points. More importantly, H(A;B) is a metric. A point set is
identical only to itself, the order of comparison is irrelevant, and the triangle inequality holds. If
two point sets are similar to a third, then they are similar to each other. This agrees with our
intuition of shape similarity.

The Hausdor� distance is insensitive to small perturbations of the point sets. This stability is
important because it allows for small positional errors in point feature sets. Also, the Hausdor�
distance does not build one-to-one correspondences between the points in the two sets. Shape
matchers which do so will require an unreasonable amount of time when the number of features
detected becomes very large.

For cases in which we do not want symmetry, there is a directed version of the Hausdor�
distance, denoted h(A;B). This distance from A to B is small whenever each point of A is close
to some point in B. Consider, for example, an illustration retrieval system which compares point
feature sets of a database illustration and a given query. We may decide that a query is similar
to a database �gure if features present in the query are also present in the database �gure, but
not necessarily vice versa. In this case we would use the directed Hausdor� distance from the
query set to the database �gure set.

This paper is intended to be a summary and synthesis of four papers:

1. Geometric Pattern Matching under Euclidean Motion [2]

2. Geometric Pattern Matching in d-Dimensional Space [1]

3. Comparing Images Using the Hausdor� Distance [12]

4. Locating Objects Using the Hausdor� Distance [15].

Papers 1 and 2 are \theory" papers concerned with the exact computation of the Hausdor�
distance. Both present algorithms for the optimization problem: �nd ming2GH(A; g(B)), where
G is some transformation group. Paper 1 considers the case when A and B are point sets in R2

with G = E2, the group of planar Euclidean motions. Paper 2 works in Rd for d � 3, with G = T ,
the group of translations. Papers 3 and 4 are \application" papers which show how to use the

�Submitted on November 7, 1995 for the paper synthesis part of the Physical Qual.

1

Hausdor� distance to �nd a binary model within a binary image. They di�er in the allowable
transformations of the model that can be located. In paper 3, a rotated, translated version of a
given model can be recognized (i.e., G = E2). In paper 4, an a�ne transformation of the model
is allowed (i.e. G = A2).

The rest of this paper is organized as follows. In Section 2 we give some basic de�nitons.
In Section 3 we develop a common framework for papers 1 and 2. Details for the optimization
problem with d = 2 and G = E2 are presented in Section 4, and a brief discussion of the case
d � 3 and G = T is included in Section 5. In Section 6 we develop a common framework for
papers 3 and 4. Details for model location with G = T are presented in Section 7, and a brief
discussion of the case G = A2 is given in Section 8. Finally, Section 9 contains some concluding
remarks.

2 Basic De�nitions

The Hausdor� distance between two �nite point sets A = fa1; : : : ; amg and B = fb1; : : : ; bng is
de�ned as

H(A;B) = max(h(A;B); h(B;A));

where
h(A;B) = max

a2A
min
b2B

�(a; b)

is the directed Hausdor� distance from A to B. Here �(a; b) is the distance between a and b. In
this paper, � will be the L2 or L1 metric. For a transformation group G, we de�ne the Hausdor�
distance under G as

MG(A;B) = min
g2G

H(A; g(B)):

In words, we �nd the transformation g 2 G which matches A and g(B) as closely as possible.
In this paper, G will be the group of translations T , or planar Euclidean motions E2, or planar
a�ne transformations A2. In many applications, however, we will not be satis�ed with �nding
the exact minimum of H(A; g(B)). Rather, we will want to �nd all transformations g that make
H(A; g(B)) smaller than some speci�ed threshold �.

3 A Common Theory Framework

The goal in papers 1 and 2 is to solve

The Optimization Problem. Compute MG(A;B) = ming2GH(A; g(B)).

A closely related problem is

The Decision Problem. Given � > 0, does there exist g 2 G such that H(A; g(B)) � �?

The smallest � = �� for which the answer to the decision problem is yes is the answer to the
optimization problem. The general strategy used in both theory papers is to develop an algorithm
for the decision problem and then use this algorithm in some form of parametric search [13] to
get an algorithm for the optimization problem.

A common framework is used in attacking the decision problem. This framework turns the
decision problem into a geometric intersection problem. For the moment we assume G = T . Let
C� denote the closed \ball" of radius � centered at the origin:

C� = fx 2 Rd : kxk � �g:

2

When the L2 norm is used, C� is a true ball of radius �. When the L1 norm is used, C� is a cube
with side length 2�. Now de�ne

A� =
m[

i=1

(ai � C�);

where � represents Minkowski sum. In the plane with the L2 norm, A� is the union of m discs
with centers at the ai. The set of translations that cause some bj 2 B to fall within A� is simply
A�
j = A���bj , a translation of A� by �bj . The set of translations which cause all points in B to

fall within A� is

S(A; �; B) =
n\

j=1

A�
j :

The set S(A; �; B) is an intersection of n translated copies of A�. Clearly, there exists t 2 T such
that h(B � t; A) � � i� S(A; �; B) 6= ;. Using the fact that h(A;B � t) = h(A 	 t; B), we can
show that the answer to the decision problem is yes i� S(A; �; B)\ �S(B; �; A) 6= ;.

Let us rephrase the emptiness question for S(A; �; B). Suppose each bj 2 B has its own color
which is used to color the m balls in the union A�

j = A� � �bj . We call A�
j a layer because it is

composed of balls which are all the same color (the color assigned to bj). Thus S(A; �; B) is the
intersection of n di�erent colored layers. De�ne the depth of a point p to be the number of layers
A�
j which contain p. (This is the same as the number of di�erent colored balls which contain p.)

Then S(A; �; B) 6= ; i� there exists a point p of depth n.
In the next section we discuss the directed decision problem (more precisely, the decision

problem with H(A; g(B)) replaced by h(g(B); A)) for G = E2. Thus we need to introduce a
rotation parameter � into our geometric intersection formulation:

A�
j(�) = A� ��R�bj

S(A; �; B; �) =
n\

j=1

A�
j(�);

where R� denotes the standard rotation matrix for R2. The centers of the discs in the union
A�
j(�) are ai � R�bj, i = 1; : : : ; m. As � changes, the center ai � R�bj moves along a circular

path with center ai and radius kbjk. Thus each set of centers Sj(�) = A� �(R�bj) (along with
their corresponding discs) moves rigidly in the plane. The set A�

j(�) does not change shape or
orientation as � advances - it only changes position. In order to answer the directed decision
problem for G = E2, we answer question: Does there exist � 2 [0; 2�) such that S(A; �; B; �) 6= ;?
The answer to this question is yes i� the answer to the directed Hausdor� decision problem is
yes .

4 The Optimization Problem: d = 2, G = E2, � = L2

In this section we shorten S(A; �; B; �) to S(�). De�ne A(�) to be the arrangement formed by
overlaying the boundaries @(A�

j(�)); j = 1; : : : ; n. Since S(�) is the intersection of sets with
boundaries @(A�

j(�)), it consists of some (possibly zero) faces of the arrangement A(�). Clearly
S(�) is nonempty i� there exists a vertex of A(�) that has depth n. See Figure 1 to help get a
visual understanding of A(�) and S(�).

Our strategy is to \sweep" the transformation space from � = 0 to � = 2� while maintaining
the depth of the vertices in A(�). If at any time � during the sweep, a vertex (x; y) of depth n

is found, we stop the sweep and report that g = (x; y; �) is a Euclidean motion of B that makes

3

(a) (b) (c)

(d) (e) (f)

Figure 1: The sets in our geometric intersection formulation of the decision problem for G = E2
and � = L2. (a) A. (b) A�. Each A�

j(�) is a translated version of A�. (c) @(A�). (d) A(�), �
�xed, n = 2. This is the overlay arrangement of @(A�

1(�)) (solid) and @(A
�
2(�)) (dashed). (e) S(�)

is composed of faces of A(�). (f) The evolution of a single A�
j(�). The x's mark the centers of

rotation ai. The discs in each A�
j(�) move rigidly.

1

2

1 2

Figure 2: A Creation/Deletion Event. Vertices 1 and 2 are destroyed if we read the diagram from
left to right, and created if we read from right to left.

h(g(B); A) � �. If no such vertex is detected for � 2 [0; 2�), then no such Euclidean motion
exists. To perform the sweep, we need to process events in which a vertex is created or destroyed
or when an existing vertex changes depth. The latter event corresponds to a vertex entering or
leaving some A�

j(�).
The only time that a vertex of A(�) is created or destroyed is when two boundary arcs in A(�)

become tangent. We call this a creation/deletion event. See Figure 2. Every creation/deletion
event is a tangency of two discs in two di�erent A�

j(�)'s but not vice versa (an event requires that

the point of tangency is on the boundary of the two A�
j(�)

0s). Since the discs in each A�
j(�) are

executing circular motion, two such discs can have at most two times of tangency. Hence the total
number of creation/deletion events is O(m2n2). In fact, we can charge a creation/deletion event
involving circles with centers p 2 Sj1(�) and q 2 Sj2(�) to the Voronoi edge between p and q in the
dynamic Voronoi diagram of Sj1(�) [Sj2(�). (The point of tangency between the two boundary
arcs is a point on the edge determined by p and q.) Considering all O(m2n2) creation/deletion
events, no edge of a pairwise dynamic Voronoi diagram is charged more than twice.

4

2
4 5

3

1
4 5

2
3
11 1

4 5
3

2

Figure 3: A Depth Change Event. Reading from left to right, the depths of vertices 1, 2, and 3
increase by one. Reading from right to left, the depths of vertices 1, 2, and 3 decrease by one.

The only time that an existing vertex of A(�) changes depth is when three boundary arcs from
at least two di�erent A�

j(�)'s intersect at a point. We call this a depth change event. See Figure 3.
A coincidence of three boundary arcs centered at p 2 Sj1(�), q 2 Sj2(�), and r 2 Sj3(�) means
that p, q, and r are equidistant from one another and that no other point in Sj1(�)[Sj2(�)[Sj3 (�)
is closer to the point of coincidence than p, q, and r. Thus p, q, and r determine a vertex in the
pairwise (if only two jl are distinct) or triplewise (if all three jl are distinct) dynamic Voronoi
diagram of Sj1(�) [Sj2(�) [Sj3(�). Using this fact, we charge depth change events to vertices
in pairwise or triplewise dynamic Voronoi diagrams of fSj(�)g

n
j=1. Considering all depth change

events, no vertex of a pairwise or triplewise diagram is charged more than a constant number of
times. A result from Huttenlocher et. al. [10] states that there are O(m2k2�s(k)) topological
changes in the dynamic Voronoi diagram of [ki=1Ti when each set of points Ti, jTij = m, moves
rigidly (here s is a small constant). Therefore, the number of depth change events involving arcs
from the boundaries of a �xed pair or triple of A�

j(�)'s is O(m
2). It follows that the total number

of depth change events is O(m2n3).
We can compute a superset of the creation/deletion and depth change events by computing all

pairwise and triplewise dynamic Voronoi diagrams of fSj(�)g
n
j=1. Using a result from Guibas et.

al. [9], each pairwise or triplewise dynamic Voronoi diagram can be computed in time O(m2 logm)
: O(m) sources, O(m logm) to compute the initial Voronoi diagram at � = 0, and O(logm) per
update for O(m2) topological events. For each of the O(m2) edges and vertices that arise, we
consider the circles corresponding to the sources which de�ne the edge or vertex. We want to
determine all the creation/deletion which charged a given edge and all the depth change events
which charged a given vertex (possibly none). In either case, the times of tangency or coincidence
of the circles involved can be determined in constant time. We need to check at each time of
tangency (coincidence) if the point of tangency (coincidence) is \in" @(A�). We preprocess the
O(m) arcs in @(A�) as follows. Compute an array bdy in which bdy[i] contains a list of angle pairs
[�start; �stop] which de�ne the arcs of the circle with center ai that are in @(A�). Each arc list is
sorted cyclically around its center. The bdy array can be computed in O(m logm) time. Given a
point of tangency (coincidence) on a circle with center ai�R�bj , we lookup its angle � in bdy[i] in
time O(logm) to determine if the point is in @(A�). Since this is the same time bound as for the
update to the dynamic Voronoi diagram, we can compute all creation/deletion and depth change
events in time O(m2n3 logm).

We are now ready to fully describe and analyze the sweep algorithm to answer the directed

5

decision problem. We will store the vertices of the current A(�) in a dynamic dictionary V which
is implemented as some balanced tree structure. A vertex v which is de�ned by the intersection
of circle k and circle l is labelled with (k; l) (and stored twice in V - once as (k; l) and once as
(l; k)). The vertices stored in V are ordered by their �rst index, and ties are broken by ordering
the vertices (k; �) by their cyclic ordering around circle k. There are two types of vertices in
V : those that are vertices on the boundary of some A�

j(�) (type I), and those that are the
intersection between two arcs from the boundaries of two di�erent A�

j(�)'s (type II). A type I
vertex is de�ned by an intersection between two of m circles. Since two distinct circles intersect
in at most two places, the sequence of boundary arcs labelled with circles is an (m; 2) Davenport-
Schinzel sequence, and there are O(m) type I vertices from a single A�

j(�). Therefore there are
O(mn) type I vertices in V at any time �. By de�nition, a type II vertex is the intersection of one
of the O(m) arcs on @(A�

j1
(�)) with one of the O(m) arcs on @(A�

j2
(�)), j1 6= j2. Thus there are

O(m2) type II vertices for any �xed pair (j1; j2) and a total of O(m2n2) type II vertices present
in V at any time �. Since V is a balanced tree structure, we can perform lookups, insertions, and
deletions in time O(logmn). The algorithm to solve the directed decision problem is as follows:

Directed Decision Problem Algorithm

� For � = 0, compute the minimum Hausdor� distance under translation from B to A. For
�(�) = k � k2, this can be done in time O(mn2 logmn) [11]. If this distance is less than or
equal to �, then stop and answer yes .

� Compute the O(m2n3) events in time O(m2n3 logm).

� Sort the events in time O(m2n3 logmn).

� Consider each event e in succession.

{ If e is a depth change event, then up to three vertices in V will change depth by 1. In
constant time we compute whether each such vertex is entering or leaving some A�

j(�).
If a vertex is entering, we increment its depth. If a vertex is leaving, we decrement its
depth. Lookup of the vertices in V takes time O(logmn). Updating the depths takes
constant time. We must also swap the positions of O(1) vertices in V because some
cyclic orderings have changed. The total time for a depth change event is O(logmn)
and the total time for all depth change events is O(m2n3 logmn).

{ If e is a creation/deletion event, then two vertices of V are either being created or
destroyed. If the vertices are being destroyed, then we just delete them from V in
O(logmn) time. If the vertices are being created, we insert them into V in O(logmn)
time. In addition, we need to compute the depths of the new vertices. We do this
by examining the � 2 cyclic neighbors of the new vertices. The time for one cre-
ation/deletion event is thus O(logmn) and the total time for all creation/deletion
events is O(m2n2 logmn).

{ If e causes the discovery of a depth n vertex, then stop and answer yes .

� If all events are processed without discovering a depth n vertex, then answer no .

The total time for processing all events is O(m2n3 logmn). This is also the time to sort all the
events. Since no other step takes longer, the total sweep time is O(m2n3 logmn). We have thus
proven

6

Theorem 1 Given � and planar point sets A and B, jAj = m, jBj = n, the directed Hausdor�
decision problem from B to A under Euclidean motion can be solved in time O(m2n3 logmn).

In the (undirected) decision problem, we are searching for a Euclidean motion e 2 E2 for which
h(e(B); A) and h(A; e(B)) are simultaneously both less than or equal to �. This problem can be
solved using the same setup for the directed decision problem from B to A by constructing an
arrangement B(�) for h(A; e(B)) which is analogous to A(�) for h(e(B); A), and overlaying the
two arrangements. In this composite arrangement, we are looking for a vertex whose depth is
m+ n. The previous analysis can be modi�ed to show

Theorem 2 Given � and planar point sets A and B as above, the Hausdor� decision problem
under Euclidean motion can be solved in time O(m2n2(m+ n) logmn).

We now briey describe how parametric search can be used to get an algorithm for the
optimization problem using our algorithm for the decision problem. The idea is to run our decision
problem algorithm AS \generically", without specifying �, but with the intent of simulating the
execution of AS on ��. During the generic run, AS generates a list of event times that are functions
of �. To sort these event \times", we will use a sequential simulation of a parallel comparison-based
sorting routine AP . This sorting routine is parametrized by � and uses P processors in O(logP)
parallel steps. At each step, there are P independent comparisons to be made between two event
times. Suppose we are comparing �(�) � �̂(�). The critical values of � for this comparison are
the values for which equality holds and these values de�ne intervals over which the result of the
comparison is constant. For our problem, each comparison has O(1) critical values which can
be computed in O(1) time. The set of all critical values for all P independent comparisons for
one step in the parallel sort can be computed and sorted in O(P) time. Since we are trying to
mimic the execution of AS on ��, we want to resolve the comparisons at ��. The P comparisons
can be resolved in O(P) time once we locate �� within the sorted set of critical values. We can
do this by using AS to do comparisons during binary search. If we run AS on some critical
(concrete) value �c and it answers yes , then we know that �� � �c. If it answers no , then we
know that �� > �c. Since a binary search for �� only needs to do comparisons against ��, and
AS can be used to resolve any such comparison, we can locate �� in the set of critical values
without knowing the value of ��! In doing so, we have also narrowed down the location of ��

to a concrete interval. This interval constraint is updated after each parallel step. One parallel
step costs O(P + TS log P), where TS is the time for a concrete run of AS (we resolve O(logP)
comparisions during the binary search using AS). Since we simulate O(logP) parallel steps, the
total time for the algorithm is O(P logP + TS log

2 P). \The important property here is that ��

is a critical value for both the sorting algorithm and our sequential algorithm AS , ensuring that
it will be discovered during the parametric search." [2] The value of �� is the left endpoint of the
�nal interval constraint. Putting P = O(mn) and TS = O(m2n2(m + n) log(mn)), we see that
we can solve the optimization problem in time O(m2n2(m + n) log3mn). Using Cole's parallel
sorting algorithm and sequential simulation [4], we can remove one logmn factor. In summary,

Theorem 3 Given point sets A and B as above, the optimization problem for Euclidean motion
may be solved in time O(m2n2(m+ n) log2mn).

5 The Optimization Problem: d � 2, G = T , � = L1

The planar case for the L1 metric with G = T is considered in [3]. We start with the result for
the decision problem.

7

Theorem 4 Given � > 0 and two point sets A and B in the plane, and using the L1 distance
as the underlying metric, we can determine whether the minimum Hausdor� distance under
translation between A and B is less than or equal to � in time O(mn logmn), where m = jAj and
n = jBj.

Proof. (Sketch) We consider the directed problem from B to A. With the L1 metric, each layer
A�
j is a union ofm squares. As in the previous section, we are trying to determine if there is a point

in translation space which is covered by all the A�
j . If we break up each A�

j into nonoverlapping
rectangles, then the depth of a point becomes the number of rectangles which cover it. Since the
complexity of the boundary of a union of m axis-aligned squares is O(m), each A�

j can be divided
into O(m) nonoverlapping rectangles. Thus we have a total of O(mn) rectangles. The maximum
depth over all points in the union of O(mn) rectangles can be computed in O(mn logmn) time
by sweeping a segment tree [8] over the arrangement of rectangles. The events are the O(mn) y
coordinates of the horizontal sides of the rectangles, and the intervals inserted and deleted from
the segment tree are the horizontal sides. Simple modi�cations to the above proof show that this
is also the bound for the undirected problem.

A form of parametric search due to Frederickson and Johnson [5, 6] is used to obtain an algo-
rithm for the optimization problem from the algorithm given above for the decision problem.
The additional cost factor in passing from the decision problem to the optimization problem is
O(logmn):

Theorem 5 Given planar point sets A and B as above and using the L1 metric, the minimum
Hausdor� distance under translation can be computed in time O(mn log2mn).

The higher dimensional case for the L1 metric with G = T is treated in paper 2. As in the
plane, the strategy is to track depth information as a hyperplane is swept along xd. A higher
dimensional data structure to play the role of the segment tree is needed for this task. The authors
use a modi�ed version of the Orthogonal Partition Tree (OPT) �rst introduced by Overmars and
Yap [14]. They prove the following result:

Theorem 6 Given point sets A and B in d-space and using the L1 metric, the minimum Haus-
dor� distance under translation between A and B can be computed in time O(n3 log2 n) if d = 3
and O(n(4d�2)=3 log2 n) if d > 3, where n = max(jAj; jBj).

6 A Common Application Framework

Both application papers 3 and 4 use the Hausdor� distance to locate a binary model within a
binary image. The point set A de�nes the image and the point set B de�nes the model. These
are both nonnegative integer point sets:

A � f(i; j)2 Z2 : 0 � i < hI ; 0 � j < wIg

B � f(i; j)2 Z2 : 0 � i < hM ; 0 � j < wMg;

where the image is wI � hI and the model is wM � hM .
In the theory sections of this paper we were concerned with the optimization problem. In

searching for a model within an image, however, we may wish to �nd all occurrences of the model
within an image. That is, we would like to solve

8

The Reporting Problem. Given � > 0, compute fg 2 G : H(A; g(B))� �g.

The Hausdor� distance H(A;B) is too sensitive to outliers for use in applications. To compute
h(A; g(B)), we compute the distance of each point in A to its nearest neighbor in g(B), order these
distances, and then take the maximum distance. To allow for noisy data, we could generalize the
above procedure to take the Lth ranked distance, 0 � L � m = jAj. Thus we de�ne the partial
directed Hausdor� distance from A to B as

hL(A;B) = Lth
a2Amin

b2B
�(a; b):

The partial (undirected) Hausdor� distance between A and B is then de�ned as

HLK(A;B) = max(hL(A;B); hK(B;A)):

The user speci�es the fractions f1 and f2, 0 � f1; f2 � 1, which determine L = bf2mc and
K = bf1nc. In this way, the user does not need to know the number of points in the image or
model.

There are some important points to be made about the partial Hausdor� distance. First,
the de�nition of hL(A;B) does not require the L points used in the computation to be speci�ed
beforehand { the \best" L points are used. Second, the partial Hausdor� distance technically
does not obey the triangle inequality. If A and B are similar because A matches some piece of B,
and B and C are similar because C matches some piece of B, then A and C need not be similar.
This is perfectly reasonable when A and C match di�erent parts of B. The triangle equality will
indeed hold when A and C match the same part of B.

There is still a problem with using the value of hL(A; g(B)) as the distance from the image
to the transformed model. Ideally, when computing hL(A; g(B)) we only want to consider image
points which are close to the transformed model. Image points which are far away from the
transformed model are likely to be points which came from other objects in the image. In
practice, it su�ces to consider only the image points which lie underneath the transformed model.
Furthermore, the parameter L should still be present to handle occluded objects, but it should
depend directly on the number of image points m0 underneath the transformed model, not the
number of image points m. Thus we rede�ne L = bf2m

0c and we de�ne the partial \box"
Hausdor� distances as

hboxL (A;B) = Lth
a2A0 min

b2B
�(a; b)

Hbox
LK(A;B) = max(hboxL (A;B); hK(B;A));

where A0 denotes the points in the image which lie underneath B. When computing hboxL (A; g(B)),
A0 denotes the points in the image which lie underneath g(B). Both application papers 3 and 4
give algorithms for

The Practical Reporting Problem. Given � ,f1,f2, compute fg 2 G : Hbox
LK(A; g(B))� �g.

Only transformations in a discretized transformation space are reported. The key restriction in
de�ning the discretization is that if g and ĝ are neighbors in the discretized transformation space,
then, for any b 2 B, g(b) and ĝ(b) are neighbors on the image grid. In this way, moving one step
in transformation space changes the transformed model by very little.

9

The �nal ingredients in the algorithm for the model location problem are the model and image
distance transforms d(x) and d0(x), respectively:

d(x) = min
b2B

�(x; b)

d0(x) = min
a2A

�(a; x):

The function d(x) gives the distance from x to its nearest neighbor in B, while d0(x) gives the
distance from x to its nearest neighbor in A. Distance transforms can be computed very e�ciently
on an integer grid with the help of a rendering engine and z-bu�er [12].

7 Locating a Model within an Image: G = T

We now consider the model location problem with G = T ; i.e., the model is only allowed to
translate with respect to the image. For G = T we de�ne

fA(t) = hboxL (A;B � t) = Lth
a2A0d(a� t)

fB(t) = hK(B � t; A) = Kth
b2Bd

0(b+ t)

f(t) = max(fA(t); fB(t)):

fA(t), fB(t), and f(t) give the partial box distance from the image to the model, the partial
distance from the model to the image, and the partial box distance between the image and model,
respectively, as functions of the translation t. These functions are valid for any t = (x; y) 2 R2.
Here, however, we will only consider translations that keep the translated model on the integer
grid and with some overlap of the image. Thus we search in the discretized, �nite translation
space: ft = (x; y) 2 Z2 : �wM < x < wI ;�hM < y < hIg. Rasterizing d; d0; fA; fB; f , we get

D[x; y] = min
b2B

�((x; y); b)

D0[x; y] = min
a2A

�(a; (x; y))

FA[x; y] = Lth
a2A0D[ax � x; ay � y]

FB [x; y] = Kth
b2BD

0[bx + x; by + y]

F [x; y] = max(FA[x; y]; FB[x; y]):

Note that these functions/arrays are just sampled versions of their continuous counterparts.
A simple, but ine�cient algorithm for the reporting problem is to use the above de�nitions

to compute F [x; y] for each pair (x; y) in the valid translation range and report all translations
(x; y) for which F [x; y] � � . A few clever pruning techniques can be used to make the basic
algorithm much more e�cient. At the heart of each of these techniques is that we only want to
know whether F [x; y] � � , not the exact value of F [x; y].

7.1 Ruling Out Circles

An important property of the function FB[x; y] is that it does not decrease more rapidly than
linearly.

Claim 1 jFB[x1; y1] � FB [x2; y2]j � k(x1; y1) � (x2; y2)k. This is true for all values of f1 (the
fraction of nonzero model pixels considered).

10

Proof. Suppose (a1x; a
1
y) is the closest point in A to (x1; y1). Then D0[x1; y1] = k(x1; y1) �

(a1x; a
1
y)k. By the triangle inequality, D0[x1; y1] + k(x2; y2)� (x1; y1)k � k(x2; y2)� (a1x; a

1
y)k. But

D0[x2; y2] � k(x2; y2)� (a1x; a
1
y)k because it is the distance from (x2; y2) to its closest point in A.

Therefore
D0[x2; y2] � D0[x1; y1] + k(x2; y2)� (x1; y1)k: (1)

Now let v1 = FB [x1; y1] and v2 = FB [x2; y2]. WLOG, assume v1 � v2. By de�nition of FB [x1; y1],
there exists at least K = bf1nc model points (bjx; b

j
y), j = 1; : : : ; K, which, after translation by

(x1; y1), are each within distance v1 of its closest image point; i.e.,

D0[bjx + x1; b
j
y + y1] � v1 1 � j � K: (2)

Combining (1) and (2), we get

D0[bjx + x2; b
j
y + y2] � v1 + k(x2; y2)� (x1; y1)k 1 � j � K:

Since FB[x2; y2] is the K
th ranked value of D0[bx + x2; by + y2] over b 2 B, it follows that

v2 = FB [x2; y2] � v1 + k(x2; y2)� (x1; y1)k:

From the claim, if FB[x1; y1] = v > � , then FB [x; y] cannot be less than or equal to � inside a
circle C of radius v � � centered at (x1; y1) (the shape of the circle depends on the norm used).
Thus we can eliminate any translation (x; y) inside C from further consideration.

The claim says that moving the model a little bit will not change the model to image distance
by too much. This makes sense because the minimum distances from each model point to image
points will not change a lot (so neither will their Kth ranked value). The claim does not hold,
however, for FA[x; y] because the image points under the model may change when we move the
model by even a small amount.

7.2 Early Scan Termination

The idea is simple: Stop the computation of FB[x; y] when we are sure that the value will be
greater than � . As we probe D0[bx + x; by + y] with the points in B, we keep a count of the
number of times we get a value that exceeds � . If this count ever becomes greater than n �K,
then the Kth ranked value of the probes will be greater than � and we can deduce FB[x; y] > � .
If we assume all zero values for the remaining probes, we can compute a lower bound for FB [x; y].
This bound can be used to eliminate a circle about (x; y).

7.3 Skipping Forward

This technique is used to eliminate large sections of a row when we compute the values FB[x; y]
in row order. Let D0

+x[x; y] be the distance in the increasing x direction to the closest location
(x0; y) for which D0[x0; y] � � (and 1 if no such location exists).

Claim 2 D0
+x[x; y] � D0[x; y]� � .

Proof. If D0
+x[x; y] = 1, then the claim is obvious. Otherwise D0

+x[x; y] = �x is �nite and
D0[x + �x; y] � � . Applying (1) with (x2; y2) = (x; y) and (x1; y1) = (x + �x; y), we get

11

D0[x; y] � D0[x + �x; y] + D0
+x[x; y]. Using the fact that D0[x + �x; y] � � gives the desired

result.

Now De�ne
GB[x; y] = Kth

b2BD
0
+x[bx + x; by + y]:

Claim 3 If GB[x; y] = 0, then FB[x; y] � � .

Proof. This follows from the de�nition of GB[x; y] and the previous claim:

GB[x; y] = Kth
b2BD

0
+x[bx + x; by + y]

� Kth
b2B(D

0[bx + x; by + y]� �)

= (Kth
b2BD

0[bx + x; by + y])� �

= FB [x; y]� �:

Thus GB[x; y] � FB [x; y]� � , and GB[x; y] = 0 implies FB [x; y] � � .

A nonzero value for GB[x; y] provides even more useful information.

Claim 4 If GB[x; y] = �x > 0, then FB [x; y] > �; FB[x+ 1; y] > �; : : : ; FB[x+�x� 1; y] > � .

Proof. Suppose the ranked values of D0
+x[bx + x; by + y] are

D0
+x[b

1
x + x; b1y + y] � : : : � D0

+x[b
n
x + x; bny + y]:

Then GB[x; y] = �x > 0 implies

D0
+x[b

j
x + x; bjy + y] � �x > 0 j = K; : : :; n:

By de�nition of D0
+x[b

j
x + x; bjy + y], we must have

D0[bjx + x+ l; bjy + y] > � l = 0; : : : ;�x� 1(� 0) j = K; : : :; n:

Thus for each of l = 0; : : : ;�x� 1, there are n �K + 1 probes of D0[bx + (x+ l); by + y] which
are greater than � . The result follows.

For a �xed (x; y), terminating a scan as soon as possible when computing FB[x; y] or GB[x; y]
will tend to produce lower bounds which are close to � and 0, respectively. This means that
only very small circles or portions of a row can be eliminated. Thus we terminate the scan for
FB [x; y] only when we know FB[x; y] > � + r and for GB [x; y] when GB[x; y] � r. This allows the
elimination of a circle of radius r and r elements within a row, respectively.

To solve the reporting problem, we �rst generate a list of transformations for which the model
to image distance FB[x; y] is � � . This can be done e�ciently using the previously described
speedup techniques. We then check which of these transformations also makes the image to model
distance FA[x; y] � � . This veri�cation phase is usually not a bottleneck.

7.4 An Example

Figure 4 shows an example in which we try to locate translated versions of a window model
within a hotel image (using the e�cient algorithm described in the previous subsections). This
example is similar in complexity and timing results to the examples given in Section VI of [12].
The authors report achieving speedups of a factor of 1000 or more in some cases over the simple,
brute-force algorithm.

12

Figure 4: (top-left) The hotel image is 512 � 480. (top-right) Canny edge detection yields an
image point set with 15330 points. (bottom-left) The outlined window model is 44 � 103 and
contains 545 points. (bottom-right) Using � = 3 pixels and f1 = f2 = 0:90, eight translated
instances of the window model were located within the hotel image in just 18:3 seconds (on an
SGI Indigo workstation). Many similar translations were reported for each of the eight windows
located. Here we show a representative translation of the model for each such window location.
The code used to perform this experiment is available via anonymous ftp from cs.cornell.edu in
the /pub/wjr directory.

13

8 Locating a Model within an Image: G = A2

Weak perspective images of a shallow object (thickness small compared to camera distance) in
two di�erent poses are related approximately by an a�ne transformation. In paper 4, Rucklidge
considers the problem of locating an a�nely transformed model within an image (i.e., G = A2).
As in the previous section, we concentrate on the model to image distance. In the following
discussion, t denotes a planar a�ne transformation in discretized transformation space.

Let PB [t] denote the fraction of all values probed (with no early scan termination) to compute
FB [t] which are � � . Note that PB [t] � f1 i� FB[t] � � . The discretized search space is six-
dimensional, so developing e�cient search techniques is crucial. The search space is limited
to a �nite (but usually very large) number of transformations by the user. A multi-level cell
decomposition strategy is used to eliminate a large number of transformations without explicitly
considering each one. The initial space of transformations to search is tiled with rectilinear cells
of equal size. For each cell R, we determine an upper bound PB [R] for any PB [t] with t 2 R.
If this value is < f1, then we eliminate all the transformations in R from further consideration.
Otherwise, it is possible that there is a transformation t 2 R for which FB[t] � � and we mark the
cell R \interesting". After considering all the cells at the current level, we subdivide each of the
interesting ones and repeat the process. The end result is a set of interesting cells containing only
one transformation. These transformations satisfy FB [t] � � . This search process is a breadth
�rst search in the tree representing the recursive cell decomposition.

Rucklidge also considers the case when only a single match is required: either any match, or
the best distance match for a �xed fraction, or the best fraction match for a �xed distance. In
these cases, the search can be done much more e�ciently by doing a best-�rst search in which we
investigate the most promising interesting cells �rst. Interesting cells are ranked by the values
PB [R] which were used to label the cells interesting. The greater the value of PB[R], the more
likely (we hope) R is to contain a transformation that satis�es FB [t] � � . In the any match case,
we stop when a match is found. During the search for the best distance match for a �xed fraction
f1, each time we �nd t such that FB [t] � � , we decrease the value of � to FB[t] (and continue
the search). Decreasing the value of � used in computing PB[R] strengthens the pruning process.
Similarly, in the search for the best fraction match, we increase f1 as the search progresses.

Examples in [15] show that the method is accurate - it correctly locates a�nely transformed
versions of a model within an image. The time taken is quite low (seconds) when the point set
sizes are small or when the transformation range to be searched is strongly restricted. For large
point sets and weak restrictions on the transformation space, times increase dramatically. In one
example with 14834 image points and 1473 model points, the algorithm required 39 minutes 39
seconds to �nd the two a�nely transformed instances of the model within the image. The author
points out: \While this time is not as good as might be hoped for, it should be noted that the
number of points in the image and model are many times larger than can be handled by other
methods that search under a�ne transformation : : : ." [15]

9 Conclusion

We have considered three types of Hausdor� point set matching problems: the decision problem,
the optimization problem, and the reporting problem. The decision problem questions the ex-
istence of a transformation that makes the Hausdor� distance less than or equal to some given
threshold, while the optimization problem seeks the transformation which minimizes the Haus-
dor� distance. This minimum Hausdor� distance is the smallest threshold for which the answer

14

to the decision problem is yes . In a parametric search setting, we can obtain an optimization
problem algorithm by using a decision problem algorithm to compare hypothesized thresholds
with the minimum threshold that we seek. We showed how to rephrase the decision problem
for the group of translations as a problem in determining whether an intersection of translates
of a union of \spheres" is empty. The shape of the spheres depends upon the underlying point
distance metric. Details for the optimization problem for Euclidean motion in the plane with the
L2 point distance were presented.

The reporting problem asks for a list of transformations that makes the Hausdor� distance less
than or equal to some threshold. An example application is the problem of �nding all occurrences
of a binary model within a binary image. In this application, it was necessary to modify the
Hausdor� distance de�nitions to handle noisy data sets, images containing many objects, and
partially occluded objects. The main modi�cation was to replace the max in the \theoretical"
de�nitions with a percentile measure. The problem of locating translated versions of a model was
closely examined. Pruning techniques such as ruling out circles and early scan termination were
presented. We also briey considered the problem of locating an a�nely transformed model. The
high dimensionality of the transformation space makes an e�cient search strategy essential. The
main tool discussed was a recursive cell decomposition strategy in which we question whether a
cell in transformation space can possibly contain a transformation which we want to report. If
not, we never need to consider the transformations inside the cell. If so, we subdivide the cell
and repeat the process. The same framework can be used when we want to return only a single
match, say any match or the best match by distance. In this case, the search will be much more
e�cient if we subdivide and search the most promising cells �rst.

References

[1] L. Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric pattern matching in
d-dimensional space. Unpublished.

[2] L. Paul Chew, Michael T. Goodrich, Daniel P. Huttenlocher, Klara Kedem, Jon M. Kleinberg,
and Dina Kravets. Geometric pattern matching under euclidean motion. In Proceedings of
the Fifth Canadian Conference on Computational Geometry, pages 151{156, 1993.

[3] L. Paul Chew and Klara Kedem. Improvements on geometric pattern matching problems. In
O. Nurmi and E. Ukkonen, editors, Algorithm Theory - SWAT '92, pages 318{325. Springer-
Verlag, July 1992.

[4] Richard Cole. Parallel merge sort. SIAM Journal of Computing, 17(4):770{785, August
1988.

[5] Greg N. Frederickson. Optimal algorithms for tree partitioning. In Proceedings of the Second
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 168{177, 1991.

[6] Greg N. Frederickson and Donald B. Johnson. Finding kth paths and p-centers by generating
and searching good data structures. Journal of Algorithms, 4:61{80, 1983.

[7] Leonidas J. Guibas. Parametric search. In CS368: Geometric Algorithms. Stanford Univer-
sity, 1994.

[8] Leonidas J. Guibas and Lyle Ramshaw. The wonders of segment trees. In CS348a: Computer
Graphics { Mathematical Foundations. Stanford University, 1993.

15

[9] L.J. Guibas, J.S.B. Mitchell, and T. Roos. Voronoi diagrams of moving points in the plane.
In Seventeenth International Workshop on Graph-Theoretic Concepts in Computer Science.
Springer-Verlag, June 1991.

[10] Daniel P. Huttenlocher, Klara Kedem, and Jon M. Kleinberg. On dynamic voronoi diagrams
and the minimum hausdor� distance for point sets under euclidean motion in the plane.
In Proceedings of the Eighth Annual ACM Symposium on Computational Geometry, pages
110{119, 1992.

[11] Daniel P. Huttenlocher, Klara Kedem, and Micha Sharir. The upper envelope of voronoi
surfaces and its applications. Discrete and Computational Geometry, 9(3):267{291.

[12] Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. Comparing
images using the hausdor� distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(9):850{863, September 1993.

[13] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. Journal of the ACM, 30(4):852{865, October 1983.

[14] Mark H. Overmars and Chee-Keng Yap. New upper bounds in klee's measure problem.
SIAM Journal of Computing, 20(6):1034{1045, December 1991.

[15] William J. Rucklidge. Locating objects using the hausdor� distance. In Fifth International
Conference on Computer Vision, pages 457{464, 1995.

16

