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ABSTRACT
Two-player games of billiards, of the sort seen in recent
Computer Olympiads held by the International Computer
Games Association, are an emerging area with unique chal-
lenges for A.I. research. Drawing on the insight gained from
our victory in the 2008 ICGA billiards tournament, we de-
fine a game-theoretic model of these types of billiards games.
The modeling is surprisingly subtle. While sharing features
with existing models (including stochastic games, games on
a square, recursive games, and extensive form games), our
model is distinct, and consequently requires novel analysis.
We focus on the basic question of whether the game has an
equilibrium. For finite versions of the game it is not hard to
show the existence of a pure strategy Markov perfect Nash
equilibrium. In the infinite case, it can be shown that under
certain conditions a stationary pure strategy Markov perfect
Nash equilibrium is guaranteed to exist.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—games

General Terms
Theory

Keywords
Billiards games, game theory, stochastic games, equilibria,
best response

1. INTRODUCTION
The International Computer Games Association (ICGA)

has in recent years introduced computer billiards as a new
game in the Computer Olympiads. Our involvement began
when we entered and won the 2008 ICGA computer billiards
tournament. In the tournament, software agents compete
against one another using a physics simulator [8]. As the
game progresses in turns, an agent is presented with the
state of all balls on the table, and has to then decide on an
action specified by a vector of five real numbers. The five
numbers describe the orientation of the cue stick in 3D space,
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the spot on the cue ball where the cue stick will impact it,
and the velocity that the cue stick will impart to the cue ball
upon impact. Then, multivariate Gaussian noise is added
to this chosen action (with known standard deviations), and
the resulting action is input into the deterministic simulator.
Some state results, and the process repeats until one of the
agents has won. The precise tournament and scoring format
have changed from year to year. Typically, each agent plays
a series of games against each other agent, and points are
earned for each victory. While still young relative to other
tournaments, computer billiards is starting to attract the
attention of the research community; see, e.g., Smith [16]
for a description of a Computer Olympiad winning agent.

Games of billiards1 have several characteristics that make
them unique among games played by computer agents, and
indeed among games in general. In particular, they have
continuous state and action spaces, actions are taken at
discrete-time intervals, there is a turn-taking structure, and
the results of actions are stochastic. Computer chess, of
course, features discrete state and action spaces, and ac-
tions have deterministic outcomes. Even robotic soccer, also
a flourishing field, which does feature continuous state and
action spaces, is different since it features continuous control
and concurrent actions by both teams. Thus the challenge
of billiards is novel.

Figure 1: Display window for the ICGA billiards
simulator.

Tournaments can advance science in a number of ways,
and one is to put stress on existing theoretical models. The
most common stress is to expose the idealizing assump-
tions embodied in the model. For example, the Trading

1We use the term here to refer all cue games, played with
balls on a table.



Agent Competition (TAC) [18] demonstrated that game the-
oretic analysis does not necessarily provide insight in com-
plex games. But at least the TAC setting is easily modeled
game theoretically. Billiards games present a new kind of
stress: it is not clear what formal model to apply in the first
place. Game theory is blessed with a large number of differ-
ent game models, some more familiar than others, and one
would think that at least one of them would be appropriate.
So it is something of a surprise than none are; each one is
either not rich enough to apply, or too general to serve as
a basis for analysis. This paper is devoted to providing a
suitable model for billiard games, and proving the existence
of equilibria in that model.

The paper is organized as follows. In the next section we
go through various models that are suggested by features of
the game and show that none of them are appropriate with-
out change. We then provide a model, in two versions. The
easy case is for finite billiard games; in this case the natural
model is the extensive form. While it must be modified to al-
low for an uncountably infinite action space, the existence of
a pure strategy Markov perfect Nash equilibrium still follows
from a backward induction argument. The model for the in-
finite case is involved, and is based on a class of stochastic
games which we term turn-taking stochastic games; these
lie in between single-controller stochastic games and (sin-
gle agent) MDPs. Here, with some assumptions, we can
prove the existence of stationary pure strategy Markov per-
fect Nash equilibria. We conclude with a result on best re-
sponse strategies that demonstrates the application of this
model to billiard agent design.

2. IN SEARCH OF A MODEL
With the large number of existing game models, one would

be expected to capture billiards games. Surprisingly, the
unique characteristics of billiards games makes the model-
ing of it very subtle. Each distinct feature of billiards games
suggests a match with existing game forms, some more fa-
miliar than others. In the following sections the different
features of billiards games are examined along with existing
game models that capture these features.

2.1 Continuous Action Space
One feature of billiards games is the continuous action

space. The most basic of existing game models that captures
this are games on the square, which are the continuous action
space version of normal form (matrix), single stage games
[13]. In these games each player chooses an action from a
continuous interval, (say [0, 1]). The payoff of the game is
defined by a function K(a1, a2), which specifies a real value
reward for each pair of player actions.

Games on the square have been studied since the early
days of game theory [2]. Early work showed that games on
the square will have a value and a Nash equilibrium will ex-
ist if the function K is continuous in the joint action space.
If K is discontinuous the game may still have a solution, de-
pending upon the exact nature of the discontinuity. Games
of timing [15] fit in this category, as there is a discontinu-
ity in payoff based on which player acts first. Games on
the square help build an understanding of continuous action
spaces, but are too limited to capture other characteristics
of billiards games.

2.2 Turn-taking
Another distinctive feature of billiards games is that only

one player acts at a time. Extensive form games [5] are the
most common class of games built upon this idea and are
in this sense a great match to billiards games. Extensive
form games typically consist of finite game trees, where one
player makes a decision at each node, and payoffs are re-
ceived at the leaf nodes. These games can be converted to
normal form games, and thus have all of the typical normal
form solutions, including Nash equilibria. The turn-taking
nature of extensive form games also introduces new solu-
tion concepts and methods for determining solutions, both
of which are instructive in the context of billiards games.
A solution concept basic to extensive form games is that of
a subgame perfect equilibrium, which is a Nash equilibrium
where the strategies also form a Nash equilibrium for the
game starting at any node in the game tree. This concept is
applicable to billiards games. One characteristic of billiards
games that is not captured by typical extensive form games
is the possible infinite nature of the game. Payoffs in bil-
liards occur only when the game stops, but there is no limit
on how long this will be. This characteristic is found in the
games described in the next section.

2.3 Reward upon Game Termination
Recursive games2 were introduced in [3]. A recursive

game is a finite set of stage games, or game elements, where
the result of each stage game is a reward to the players
or a probabilistic transition to a new stage game, but not
both. This means that once the players receive a reward,
the game ends. Recursive games as introduced by Everett
do not specify the type of the stage games, and so these
could be normal form games, games on the square, or any
other two-player game. Everett gave conditions on the stage
games that ensure existence of ε-Nash equilibria. Everett’s
methods rely upon the set of stage games being finite and
do not immediately extend to the case where the set of stage
games is uncountably infinite. More recent work on recur-
sive games [17] has maintained the restriction that the set
of stage games be finite. Recursive games capture the con-
cept of a game only having reward upon termination, but
they cannot be easily adapted to represent continuous state
spaces. The fact that recursive games can be viewed as a
special case of stochastic games suggests a natural next place
to look.

2.4 Continuous State Space
Stochastic games were introduced by Shapley [14] and

have been studied extensively since. Most generally, a stochas-
tic game consists of a set of players, a state space and an
action space for each state of the game [10]. For each com-
bination of player’s actions, a payoff and subsequent prob-
abilistic transition to another state in the state space is de-
fined. Most commonly, stochastic games have finite state
and action spaces, and so a stochastic game is simply a col-
lection of single stage normal form games. At each discrete
time step, both players take actions, receive a reward, and
play transitions to a new stage game (possibly the same one).
The players attempt to maximize their reward over the infi-
nite future according to some criterion. The most common

2The authors thank Abraham Neyman for bringing this
model to their attention.



criteria used are the discounted total reward, where future
payoffs are discounted by some 0 ≤ β < 1, and average total
reward, where players seek to maximize

lim
k→∞

∑k
n=1 Reward in stage n

k
.

Stochastic games have been studied with continuous state
and action spaces [12, 9], and in this most general form, a bil-
liards game can be represented. Much of the related litera-
ture considers only the case of discounted rewards, although
some work also addresses undiscounted (positive) rewards.
In each case, continuity conditions on the reward function
were required to prove the existence of equilibrium strategies
for the two players. The simultaneous actions of the players
are the main component of the stochastic games that neces-
sitate such conditions. In the case of billiards games, there
are no simultaneous actions by the players, and so these
restrictions on the reward function are unnecessary.

We get closer with single-controller stochastic games [10],
a class of stochastic games where the actions of both players
affect the payoff they receive, but only one player’s action af-
fects the transition to the next state. However, both players
are still acting simultaneously in single-controller stochastic
games, and so an even more restricted setting is sought. If
we limit ourselves to single player stochastic games, then we
have Markov Decision Processes (MDPs) with their exten-
sive literature [4]. In MDPs both the transition of the game
and the payoff of the game clearly depend upon only the
actions of one player. Like MDPs, billiards games consist
of a single agent taking actions at discrete time intervals.
The main difference is that the player taking actions will
change based upon the current state. Billiards games be-
long in a space between single controller stochastic games
and MDPs. We call games in this gap turn-taking stochas-
tic games, and present billiards games as an example of a
turn-taking stochastic game.

Even though stochastic games with continuous state and
action spaces are not a perfect fit for billiards, they are nev-
ertheless the only existing model that can completely rep-
resent billiards games. As previously noted, the model for
these stochastic games is more general than is necessary for
billiards games, as it has to account for simultaneous ac-
tions by the players and accumulation of reward at each
state visited. While the results in the stochastic game liter-
ature are certainly applicable to billiards games, with a more
specific model it is possible to start with fewer assumptions
and produce results that are more precise. For example, in
the most applicable stochastic game work, Novak [11] shows
that player 2 has an optimal mixed strategy while player 1
has an ε-optimal mixed strategy. Using the billiards game
model we present in this paper, the existence of an equilib-
rium in pure strategies for both players is shown, without
the same assumptions on the reward function.

While the results presented here are perhaps not surpris-
ing to those familiar with the relevant stochastic game liter-
ature, the distinctions are noteworthy, specifically when ap-
plying this model to guide understanding of billiards games
and actual billiard agent design. The more specific model
also allows for different, and arguably simpler, proof tech-
niques. One purpose of this paper is to put forward a theo-
retical model of billiards games to enable future theoretical
work on billiards games by the computer billiards commu-
nity. As such, it is reasonable that future results will also be

more precise and applicable if the model used to generate
them is as specific to billiards games as possible.

2.5 Techniques
Methods for determining solutions to these different game

models inspired this paper’s approach for billiards games.
Extensive form games are commonly solved using backward
induction. Payoffs are specified at the leaf nodes in the game
tree. Working backwards from the leaves, each decision node
can be considered, and is assigned a value equal to the best
choice among its children for the player who makes the de-
cision at that node. In the case of stochastic transitions,
the action with the highest expected value is selected. This
process is repeated until every node in the tree has a value,
and an optimal action is determined for each player’s de-
cision node. The strategy pair where each player chooses
the action that maximizes the (expected) value of the re-
sulting node will, by construction, form a subgame perfect
Nash equilibrium. This technique will inspire our approach
to finite length billiards games.

Infinite length MDP models are often approached using
value iteration equations and the existence of a single fixed
point solution to these equations is proved. This single fixed
point specifies the value of each state of the game. The opti-
mal strategy for the agent then consists of taking the action
that maximizes the expected value of the next state. Condi-
tions under which optimal strategies for the agent will exist
are presented in the MDP literature for different situations
[6, 1]. We employ similar techniques in our analysis of infi-
nite length billiards games.

3. A BILLIARDS GAME MODEL
We present a model for billiards games which captures all

of the elements essential to understanding billiards games.
As previously noted, billiards games belong to a class of
turn-taking stochastic games. The model presented here is
general enough to represent other games in this class, al-
though our analysis is driven by the motivating application
of billiards games.

Definition 1. A Two-player Zero-sum Billiards Game3 is
a tuple (S,A, λ, p, s0, C, r) where:

• S ⊂ Rn is a compact n-dimensional state space, rep-
resented by a vector s = (s1, . . . , sn) of real numbers.

• A ⊂ Rm is the compact m-dimensional action space
for players 1 and 2, where an action is represented by
a vector a = (a1, . . . , am) of real numbers. at ∈ A is
the action chosen at time step t.

• λ : S 7→ {1, 2} is a function denoting the player whose
turn it is in a given state of the game. λ(st) indicates
the player whose turn it is to play in state st.

• p : S × A 7→ ∆(S) is the transition function, where
∆(S) is the set of all probability distributions over S.

• s0 is the starting state.

• λ(s0) is the player who gets the first turn of the game.

3This game could also be called a Two-player zero-sum turn-
taking stochastic game, but the term billiards game is used
here to remind of the motivation.



• C ⊆ S is the set of terminating states, which is a closed
subset of the state space.

• r : C 7→ R is the reward function, where r(s) specifies
the amount that player 2 must pay to player 1 if the
game ends in state s ∈ C.

The game begins in state s0 and player λ(s0) specifies an
action. The next state, s1, is determined from p(·|s0, a0),
and play continues with player λ(s1) specifying the next
action. This cycle continues until the state is some sT ∈ C,
at which point the game ends, and player 1 receives r(sT )
from player 2.

3.1 Strategies in Billiards Games
We define, for all n ≥ 1, the set of histories, Hn, as the

cross product S×(A×S)×. . .×(A×S) [S×n(S×A)′s]. We
call an element hn = (s0, a0, s1, . . . , an−1, sn) a history. A
pure strategy in a billiards game is a mapping σn : Hn 7→ A.
A strategy is called a Markov strategy, if σn(hn) = σn(h′n),
whenever hn(sn) = h′n(sn). This means that at stage n
of play, the player will take the same action for each state,
independent of how the state was reached. A strategy σ is
stationary, if it is a Markov strategy and selects the same
action in each state regardless of the game’s current stage. A
pair of strategies (σ1, σ2) will induce a distribution over his-
tories P∞σ1,σ2 , with which an expectation operator E∞σ1,σ2 can
be associated, indicating the expected amount that player
2 will pay player 1 if both players follow strategies σ1 and
σ2. The strategies σ1 and σ2 form a Nash equilibrium, if
E∞σ1,σ2 ≥ E∞σ′

1,σ2
for all other strategies σ′1 of player 1, and

E∞σ1,σ2 ≤ E∞σ1,σ
′
2

for all other strategies σ′2 of player 2. A

Nash equilibrium is a Markov perfect equilibrium if both
players have Markov strategies in the equilibrium and these
strategies form a Nash equilibrium for any starting state of
the game.

4. EXISTENCE OF EQUILIBRIUM
A natural first question to ask about a new model, such

as the billiards game model, is what conditions ensure the
existence of a Nash equilibrium in the game. The remainder
of this section is focused on answering this question.

Assumption 1.
∫
f(·)dp(·|s, a) is continuous in A for any

f ∈ B(S), where B(S) is the set of all bounded real-valued
functions on S.

Continuous functions on compact sets are guaranteed to
have a maximum value and a minimum value, and this fact is
used to select an action in each state, given a value function
over the other states. The next lemma will assist in showing
the results of this section.

Lemma 1. If a billiards game has a value v∗(s),∀s ∈ S,
where v∗(s) is the unique fixed point to the value iteration
equation

v′(s) =

{
maxa

[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 1

mina
[∫
S
v(·)dp(·|s, a)

]
if λ(s) = 2

then the strategies

σ1(s) = arg max
a

[∫
S

v∗(·)dp(·|s, a)

]

and

σ2(s) = arg min
a

[∫
S

v∗(·)dp(·|s, a)

]
will form a stationary pure strategy Markov perfect Nash
equilibium in the game.

Proof. Clearly the two strategies are stationary and pure,
as they have no dependence on the stage of the game and the
arg max and arg min operators will return a single action for
each state. These min and max actions will exist due to As-
sumption 1. If both players follow strategies σ1 and σ2, then
v∗(s) is equal to the expected total amount player 1 receives
from player 2 at the end of the game starting in state s, since
it is the unique fixed point of the above equation. Neither
player will have any incentive to deviate, as their actions are
already optimal with respect to v∗. Thus, the strategies σ1

and σ2 will be the best responses to each other, and they
will form a Nash equilibrium. This equilibrium is Markov
perfect since the strategies constitute a Nash equilibrium for
the subgame starting in any state s.

Conditions are now considered under which billiards games
will have a value. Different modifications of billiards games
are examined, where motivation for them could exist. Both
the bounded and unbounded length cases are considered.

4.1 Bounded Length Case
We define, for each billiards game, a game length, K,

which will be game specific. This will denote the maximal
length of the billiards game. If play has not terminated by
round K, then the game will be a tie, and player 1 will not
receive any payoff from player 2. This is inspired by bil-
liard’s stalemate rule, which allows a game to be terminated
by referee if progress towards a conclusion is not being made.
With a limited number of balls on the table, as in typical bil-
liards games, it is reasonable to conclude that a large enough
K will not affect player’s strategies significantly, assuming
those strategies are designed to move the game towards a
conclusion.

The maximal game length, K, allows us prove the exis-
tence of a Nash equilibrium in the game, and reason about
the players strategies in that equilibrium.

Theorem 1. If Assumption 1 holds, then a bounded length
billiards game will have a pure strategy Markov perfect Nash
equilibrium.

Proof. Consider the situation in round K − 1. Due to
Assumption 1, in all states s where λ(s) = 1, player 1 will
have a clearly defined best action, which will be entirely
independent of player 2’s strategy, since after this move the
game will end. Thus, player 1’s best action choice will be
arg maxa

∫
S
r(·)dp(·|s, a) for all states s such that λ(s) = 1.

A similar strategy will be best for player 2 in all states where
λ(s) = 2, replacing max with min. To each state s, then, we
can assign a value in round K − 1,

vK−1(s) =

{
maxa

∫
C
r(·)dp(·|s, a) if λ(s) = 1

mina
∫
C
r(·)dp(·|s, a) if λ(s) = 2

which will be the expected amount that player 2 will pay
player 1 if the game is in state s during round K − 1. We
can repeat this general process for each round K − 2,K −



3, . . . , 2, 1, 0, by iterating the following equation

vn−1(s) =


maxa[

∫
C
r(·)dp(·|s, a)

+
∫
S−C v

n(·)dp(·|s, a)] if λ(s) = 1

mina[
∫
C
r(·)dp(·|s, a)

+
∫
S−C v

n(·)dp(·|s, a)] if λ(s) = 2

Since in each round of the game there is a value for each
state, we can apply Lemma 1 and conclude that a pure strat-
egy Markov perfect Nash equilibrium will exist in the game.
We note here that the optimal strategies from Lemma 1 are
no longer stationary, because now each value corresponds
to a (state,stage) pair, and thus the corresponding strat-
egy as defined in Lemma 1 will depend on the stage of the
game, making it Markov. Thus, a separate optimal strategy
σn∗1 (s) = arg maxa

∫
S
vn(·)dp(·|s, a) will exist for player 1

in each stage of the game 0 ≤ n < K. Player 2 will have
similar optimal strategies, replacing max with min.

4.2 Unbounded Length Case
In this section billiards games with no bound on length

are analyzed. Within this setting there are different ways
of proving the existence of equilibria. Two separate situa-
tions are discussed in this section: games with discounted
rewards, following the lead of the stochastic game literature,
and games without discounting. The conditions under which
an equilibrium will exist differ for each case, and they are
considered separately in the next two sections.

4.2.1 Discounted Reward
In general, a discount factor denotes a preference of the

players for short games over long games. There may be
legitimate reasons for introducing this preference, which will
depend on specific game settings. An agent’s time could be
valuable, in which case it would be desirable to finish the
game as quickly as possible so the agent can do something
else, like play more games against more opponents. The
discount factor could also represent uncertainty about the
future, beyond the uncertainty represented by the transition
function. For example, it could represent the probability,
however slight, of the game ending without cause after any
round. Regardless of reason, we present here analysis of
billiards games with discounted rewards.

In this case, players will choose actions to maximize their
total expected discounted reward. A discount factor 0 ≤
β < 1 is given. The value iteration equation will then be the
following

v′(s) =


maxa[

∫
C
r(·)dp(·|s, a)

+β
∫
S−C v(·)dp(·|s, a)] if λ(s) = 1

mina[
∫
C
r(·)dp(·|s, a)

+β
∫
S−C v(·)dp(·|s, a)] if λ(s) = 2

Lemma 2. A discounted billiards game will have a value.

Proof. The value iteration equation is a contraction, and
as such, the Banach fixed point theorem [7] will apply, so
a unique fixed point solution exists, which we denote v∗(·).
Due to length considerations we do not include the full proof
here. The proof follows a proof of the same fact for the infi-
nite undiscounted case which is included in the next section.
A β must be added into each equation and the final inequal-
ity will hold because β is strictly less than 1.

Having shown that the discounted billiards game has a
value, we conclude that a stationary pure strategy Markov
perfect Nash equilibrium will exist.

Theorem 2. A stationary pure strategy Markov perfect
Nash equilibrium will exist in the discounted Billiards game.

Proof. Direct result of lemmas 1 and 2

4.2.2 Undiscounted Reward
In the most general case of billiards games, we would like

to consider the undiscounted future, and determine whether
a Nash equilibrium will exist in this case. To show existence
of an equilibrium, we need to make a few more assumptions
about the transition function and state space of billiards
games, which we introduce in the following section.

4.2.3 The Value of Billiards
We note that the state space of a billiards game can be

partitioned into a finite number of distinct subsets, where
each subset is compact and corresponds to all states of the
billiards game with a specific subset of the balls on the table.
If a game has n balls, then there will be 2n partitions, one for
each distinct subset of balls. Let B be a subset of balls, and
SB be the partition of the state space corresponding to all
non-terminal arrangements of the balls in B on the table. A
partial ordering over these partitions can be created, so that
SB � SB′ if |B| ≤ |B′|. We will assume that the transition
function gives a probability of zero to moving from a state
s ∈ SB to a partition SB′ if SB � SB′ . This simply restricts
our attention to billiards games where once a ball is no longer
in play, it cannot later return to play. The minimal partition
in this partial ordering is denoted by SC = C, which is the
set of terminal states. We will refer to the various levels of
the partial ordering � as C,C + 1, C + 2, and so on.

One additional assumption about the transition function
is needed. We assume that for any state s ∈ SB and any
action a ∈ A, the probability of remaining in partition SB is
strictly less than 1. This implies that for any action, there
is a non-zero probability of transitioning to a new partition
of S, which, due to our previous assumption regarding the
transition function, must be lower in the partial ordering.
Our assumptions are summarized here.

Assumption 2. The probability of transitioning from par-
tition SB to SB′ , where SB � SB′ , is 0.

Assumption 3. For any state sb ∈ SB, and for any ac-
tion a ∈ A, we have that

∫
SB

dp(·|sb, a) < 1.

These assumptions, along with Assumption 1, allow us
to show the existence of a stationary pure strategy Markov
perfect Nash equilibrium in undiscounted billiards games of
unbounded length. We state this result as Theorem 3.

Lemma 3. The value iteration equation for undiscounted
billiards games is a contraction and undiscounted billiards
game have a value.

Proof. Let SC+1 be a partition where only SC � SC+1.
By Assumption 2, for any state s ∈ SC+1 and any action a ∈
A there is zero probability of transitioning to any partition
other than SC+1 and SC . Also, the probability of ending up
in SC is positive for any s ∈ SC+1 and any action a ∈ A, by
Assumption 3.



We consider the value iteration equation, restricted now
to states sC+1 ∈ SC+1

v′(sC+1) =



maxa[
∫
SC

r(·)dp(·|s, a)

+
∫
SC+1

v(·)dp(·|s, a)] if λ(s) = 1

mina[
∫
SC

r(·)dp(·|s, a)

+
∫
SC+1

v(·)dp(·|s, a)] if λ(s) = 2

We show that this equation is a contraction. For any
two functions v1 and v2, both SC+1 7→ R, we must show
that maxs |v′1(s) − v′2(s)| < maxs |v1(s) − v2(s)|. We let
ε = maxs |v1(s)−v2(s)| and consider the left-hand term. To
simplify the following, attention is focused on those states
sC+1 ∈ SC+1 where λ(sC+1) = 1. A similar treatment works
for the other states (λ(sC+1) = 2) as well.

|v′1(s)− v′2(s)| =∣∣∣maxa
[∫
SC

r(·)dp(·|s, a) +
∫
SC+1

v1(·)dp(·|s, a)
]

− maxa
[∫
SC

r(·)dp(·|s, a) +
∫
SC+1

v2(·)dp(·|s, a)
]∣∣∣

≤
∣∣∣maxa[

∫
SC

r(·)dp(·|s, a) +
∫
SC+1

v1(·)dp(·|s, a)

−
∫
SC

r(·)dp(·|s, a)−
∫
SC+1

v2(·)dp(·|s, a)]
∣∣∣

≤ maxa

∣∣∣∫SC+1
(v1(·)− v2(·)) dp(·|s, a)

∣∣∣
≤ maxa

∫
SC+1

|(v1(·)− v2(·)) dp(·|s, a)|

≤ maxa
∫
SC+1

ε · dp(·|s, a)

= ε ·maxa
∫
SC+1

dp(·|s, a)

< ε

The last step is a result of Assumption 3. Thus, the value
iteration equation is a contraction. Since by assumption
SB is compact, the Banach fixed point theorem [7] can be
applied and we conclude that there will be a unique fixed
point, which we will denote here as v∗C+1.

This same technique can be used to prove the existence of
a value for all other partitions from which play can transition
only to themselves or to terminal partitions. Thus, for each
other partition S′C+1 at the C+1 level of the partial ordering
�, we have a value function v′∗C+1.

Consider now another partition SC+2 from which transi-
tions can occur either into a terminal partition SC or into
the partition level just discussed (C + 1). The same proof
technique can be repeated to show that there will be a fixed
point value for all states within this partition, and all other
partitions at the C + 2 level in the partial ordering. The
main difference in the proof would be the addition of an-
other term in the value iteration equation corresponding to
the probability of transitioning to each partition at level
C + 1. This process can be repeated for all levels of the
hierarchy, C + 3, C + 4, . . ., until we have a value for each
state s ∈ S.

Theorem 3. If the transition function obeys Assumptions
1-3, then undiscounted billiards games have a value, and a
stationary pure strategy Markov perfect Nash equilibrium ex-
ists.

Proof. Direct result of Lemmas 1 and 3.

5. BEST RESPONSE
Another natural use of a model is to give theoretical sup-

port for decisions made while designing an agent to partic-
ipate in the setting described by the model. In addition
to the knowledge that an equilibrium exists in the game,
as shown in the previous section, knowledge of the type of
strategy necessary to best respond to an opponent’s strat-
egy can motivate and justify the design decision to focus on
a narrower class of strategy types. To this end, the next
theorem is presented.

Theorem 4. In an undiscounted, unbounded length bil-
liards game, if the transition function obeys Assumptions
1-3, and player 1 is playing a pure stationary strategy, then
player 2’s best response will also be a pure stationary strat-
egy.

Proof. Let D : S 7→ A represent player 1’s stationary
pure strategy, selecting action D(s) each time state s is vis-
ited. We can replace the value iteration equation with the
following

v′(s) =



∫
SC

r(·)dp(·|s,D(s))

+
∫
S
v(·)dp(·|s,D(s)) if λ(s) = 1

mina[
∫
SC

r(·)dp(·|s, a)

+
∫
S
v(·)dp(·|s, a)] if λ(s) = 2

Since the situation is the same as for Lemma 3, we merely
have to show that the λ(s) = 1 portion of the equation is
a contraction. As before we must show that for any two
functions v1 and v2, both SC+1 7→ R, it is the case that
maxs |v′1(s) − v′2(s)| < maxs |v1(s) − v2(s)|. We let ε =
maxs |v1(s)− v2(s)| and consider the left-hand term.

|v′1(s)− v′2(s)| =∣∣∣∫SC
r(·)dp(·|s,D(s)) +

∫
SC+1

v1(·)dp(·|s,D(s))

−
[∫
SC

r(·)dp(·|s,D(s)) +
∫
SC+1

v2(·)dp(·|s,D(s))
]∣∣∣

=
∣∣∣∫SC+1

(v1(·)− v2(·)) dp(·|s,D(s))
∣∣∣

≤
∣∣∣∫SC+1

ε · dp(·|s,D(s))
∣∣∣

= ε ·
∣∣∣∫SC+1

dp(·|s,D(s))
∣∣∣

< ε

We again used the definition of ε = maxs |v1(s) − v2(s)|,
as well as Assumption 3 in the last step. Since the value
iteration equation is again a contraction, it is evident, as in
Lemma 3, that each state of the billiards game will have a
value, and we can conclude, as in Lemma 1, that a stationary
pure strategy for player 2 will perform optimally with regard
to this value function. Thus, player 2’s best response to
player 1’s strategy will also be a pure stationary strategy.

This result can guide as well as support design decisions
made while creating agents to compete in computer pool.
Suppose it is known that the opponent’s agent chooses the



same action in each state, as most existing billiards agents
do, thus employing a stationary strategy. Then restricting
one’s design space to pure stationary strategies in response
does not eliminate the best response to the opponent’s strat-
egy.

6. CONCLUDING REMARKS
We presented a model that represents billiards games,

along with initial analysis of these games under different
modeling conditions and assumptions. We showed the exis-
tence of a Markov perfect Nash equilibrium in each case. In
the case most closely corresponding to the actual billiards
games of the ICGA computer billiards tournament, we found
that the best response to a pure stationary strategy is also a
pure stationary strategy. In the future less stringent require-
ments under which equilibria exist will be explored, as well
as other solution concepts. Our model suggests many inter-
esting experimental topics, such as determining or approx-
imating the value in billiards games states, and computing
an optimal strategy efficiently given such a value function or
opponent strategy. This paper is intended to lay a founda-
tion for a formal understanding of billiards games, (and more
generally, turn-taking stochastic games), and lead to an im-
proved comprehension of the fundamental issues in these
games. This improved understanding will help advance the
state of the art in billiards software agents.
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