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ABSTRACT
We investigate the problem of truthfully eliciting an expert’s
assessment of a property of a probability distribution, where
a property is any real-valued function of the distribution like
mean or variance. We show that not all properties are elic-
itable; for example, the mean is elicitable and the variance
is not. For those that are elicitable, we provide a represen-
tation theorem characterizing all payment (or “score”) func-
tions that induce truthful revelation. We also consider the
elicitation of sets of properties. We then observe that prop-
erties can always be inferred from sets of elicitable proper-
ties. This naturally suggests the concept of elicitation com-
plexity ; the elicitation complexity of property is the minimal
size of such a set implying the property. Finally we discuss
applications to prediction markets.
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J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory
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1. INTRODUCTION
Asking an expert for a probability assessment, or paying

a fixed amount, gives the expert no reward for being accu-
rate or truthful. A scoring rule is a prescription for pay-
ing an expert that depends on both the expert’s report and
the actual outcome and rewards accuracy. A scoring rule is
proper if it maximally rewards truthfulness, meaning that
the expert maximizes expected score (payment) by report-
ing truthfully. Introduced by Brier, Good, and Savage [1,
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8, 14], scoring rules have been extensively studied over the
past five decades, validated experimentally [12] and applied
in a variety of domains [11, 17, 13]. Winkler [19] gives a
partial summary of the literature.

Scoring rules elicit probabilities directly. That is, the ex-
pert’s report takes the form of a full probability distribution.
This poses practical difficulties if the distribution is large or
complex. First, the expert may not know the full distribu-
tion, or its estimation may be infeasible from a computa-
tional or data acquisition perspective. Even if he does, the
full distribution may be too long to represent and commu-
nicate in practice. Or the expert may wish to keep certain
aspects of the distribution confidential. At the same time,
the person paying for the information may not care about
the entire distribution, but only about certain properties of
it, such as the mean, variance, or the probability it accords
to some specific event.

In this paper, we characterize when a property of a prob-
ability distribution is elicitable, meaning when it is possible
to induce a truthful estimate of the property with a given
dimensionality of reports.

We are aware of two prior publications on truthful elicita-
tion of specific properties. Savage’s [14] original article pro-
poses an adaptation of scoring rules to elicit expectations.
Cervera, Munoz, Gneiting, and Raftery [7, 3] suggest scores
that can elicit the quantiles for continuous outcomes. Our
results are considerably more general, and the highlights are
as follows.

A property is any real-valued function of a probability
distribution, and the expert is asked to report a single real
number estimate of the property. The property is directly
elicitable if the expert can be incented to report the true
value of the property. Unless explicitly stated, by elicitabil-
ity we mean direct elicitability.

In Section 3, we ask which properties are elicitable. We
show that the elicitable properties are functions whose level
sets are convex, or equivalently, functions which can be ex-
pressed as linear constraints on the probability distribution.
For example, the mean is elicitable but not the variance.

We next ask what payment rules induce truthful reports.
We propose a simple characterization of the contracts that
are incentive compatible: we will show that any property
is uniquely associated with a function, called a signature,
and that incentive compatible contracts are all positively
weighted mixtures of those functions.

We then turn our attention to properties that are not di-
rectly elicitable. In Section 4, we generalize the notion of
elicitability to sets of properties. For example, the expert



may be asked to declare a vector of three estimates, and
be incented based on her declaration and the realized value
of the outcome. It turns out that sets of properties can be
elicited even though the individual properties cannot. For
example, while the variance is not directly elicitable, the set
{mean,variance} is directly elicitable, and so the variance is
indirectly elicitable. In fact, any property is indirectly elic-
itable, because the entire distribution is directly elicitable,
from which any specific property follows. This naturally
gives rise to the notion of elicitation complexity, discussed
in Section 6. A property is of complexity Ck when the small-
est set of elicitable properties implying that property is of
size k.

Finally we discuss applications of our results to prediction
markets. We show that prediction markets reveal exactly
the same properties as in the scoring rule context. Prop-
erties of complexity Ck need at least k parallel markets to
be elicited. We will then address the more specific cases of
markets operated by continuous double auctions and those
operated by automatic market makers. In both cases, we
describe the form of the securities that can generate market
estimates for a given elicitable property.

2. MODEL

2.1 Setting and notations
We consider a setting with an experimenter and a fore-

caster. The experimenter wishes to learn information—
modeled as distribution properties—on a given random ex-
periment, whose outcome is drawn according to some proba-
bility. The forecaster has beliefs over that probability, which
is unknown to the experimenter. The experimenter can offer
contracts to the forecaster, which specify payments to the
forecaster as a function of the forecaster’s prediction and the
subsequent realized outcome.

We assume a finite set of outcomes Ω = {ω1, . . . , ωn},
and denote by RΩ the set of random variables over Ω, i.e.,
functions mapping elements of Ω to real values. We denote
by ∆(Ω) ⊂ RΩ the set of density functions over Ω and we
identify a probability P with its density function, with the
abuse of notation P ({ωi}) = P (ωi).

We will use RΩ as a linear space with the scalar prod-
uct 〈X,Y 〉 =

∑
ω∈Ω X(ω)Y (ω) and the distance d(X,Y ) =

‖X − Y ‖ =
√
〈X − Y,X − Y 〉. For a random variable X,

and a distribution P , we write EP [X] the expected value of
X under P . Our proofs will make extensive use of the fact
that

EP [X] = 〈P,X〉 .
For any set S of RΩ, there exists a unique smallest linear

subspace E of RΩ containing S, i.e., such that for any linear
subspace E ′ containing S, E ⊆ E ′. We say that E is the
linear extension of S, and we define the dimension of S by
dimS = dim E .

We recall that a set S is open in a metric space E when
any of its points X ∈ S may be surrounded by a ball {Y ∈
E/d(X,Y ) < ε}. The interior of S is the largest open set
contained in S and is denoted Int(S).

2.2 Distribution properties
Definition 1. Given a set D ⊆ ∆(Ω), a distribution prop-

erty Γ : D 7→ R is a function that assigns a real value to any
probability in D.

Common distribution properties include the probability
of some event A ⊂ Ω, ΓA(P ) = P (A), the expectation of a
given random variable X, Γµ(P ) = EP [X], or its standard

deviation Γσ(P ) =
√
EP [(X − EP [X])2], the kth centered

moment Γµk (P ) = EP [(X−EP [X])k], the skewness Γs(P ) =
Γµ3(P )/Γσ(P )3, the kurtosis Γk(P ) = Γµ4(P )/Γσ(P )4 − 3.
D is a set of probabilities which are considered “possible”,

it must include the true probability of the random exper-
iment. The experimenter usually considers the set of all
distributions ∆(Ω) or those assigning positive probability to
each outcome.

For the remaining of this paper we will make two assump-
tions. The first concerns the shape of the possible proba-
bilities: as in [10, 14] we will assume convex domains D.
The second concerns the property itself: we will restrict our
attention to nice properties Γ satisfying the following con-
ditions:

(1) Γ is continuous, and

(2) Γ is not locally constant.1

In the sequel when we mention properties we always mean
nice properties.

Since D is convex and Γ is continuous, the set of possi-
ble property values, Γ(D) = {Γ(P )/P ∈ D}, is an interval I,
and its interior Int(Γ(D)) = (a, b), for some a, b ∈ R∪{±∞},
is the same interval I without boundary points. We will only
accept reports of values that exclude boundary points. This
is not restrictive, it allows for unbounded score functions
such as the logarithmic score. When the score is bounded,
elicitation usually remains valid at boundary points by con-
tinuous extension of the score. [10, 14] make a similar as-
sumption for probability scoring rules.

When considering a property Γ, we call a report r (resp. a
probability P ) admissible when r ∈ Int(Γ(D)) (resp. Γ(P ) ∈
Int(Γ(D))).

2.3 Score functions
The family of contracts binding the experimenter and the

forecaster is expressed by score functions, which are proba-
bility scoring rules adapted to the case of distribution prop-
erties. A score function associates a real-valued function of
the outcomes to every valid report. It represents a contract
that specifies a payment for all possible outcomes.

Definition 2. A score function for a property Γ with do-
main D is a function s : Int(Γ(D)) 7→ RΩ.

When a forecaster reports a property value r, the experi-
menter and the forecaster commit to the contract c = s(r),
meaning that the experimenter pays the forecaster c(ω∗)
when the true outcome ω∗ of the random experiment be-
comes known.

A forecaster who believes in P and seeks to maximize her
expected reward makes a report r that solves

max
r
EP [s(r)] .

To induce truthful report of a property Γ, the score func-
tion used by the experimenter must ensure that the solution
to the above maximization problem is Γ(P ) for every admis-
sible probability P . When a score function is such that an

1Which means that there does not exist an open set of D on
which Γ is constant.



optimal report is always consistent with her subjective prob-
ability, it is strictly proper, by analogy to probability scor-
ing rules. In the broader game theory community, strictly
proper score functions would more naturally be called in-
centive compatible.

Definition 3. A score function s : Int(Γ(D)) 7→ RΩ is
strictly proper for a property Γ with domain D if

EP [s(r)] < EP [s(Γ(P ))]

for all admissible P and r 6= Γ(P ).

Note that looking at strictly proper scores does not pre-
vent from considering risk-averse or risk-seeking forecasters,
as long as they act as expected utility maximizers.2 In fact,
the question of whether we can or cannot elicit a certain
information is independent of the forecaster’s risk-attitude.

It may be desirable that a forecaster whose report is closer
to the true value of the property than that of another fore-
caster has higher expected reward. This idea originated from
Staël von Holstein [18] and was later investigated by Fried-
man [6]. We say that a score function whose expected value
increases with accuracy is accuracy-rewarding. Accuracy-
rewarding score functions are also strictly proper.

Definition 4. A score function s for a distribution prop-
erty Γ is accuracy-rewarding if EP [s(r)] < EP [s(r′)] when
either r < r′ ≤ Γ(P ) or Γ(P ) ≤ r′ < r for all admissible
r, r′, P .

Another interesting feature is that of first-order. It means
that the first-order condition of the optimization problem
determines the maximum of the expected score. This feature
is important when relating score functions to securities in
prediction markets, as equilibria are characterized by first-
order conditions (Section 6). First-order score functions are
also accuracy-rewarding and strictly proper.

Definition 5. A score function s for a property Γ is of
first-order if, for all admissible P , the function

r 7→ EP [s(r)]

is continuously differentiable and has a maximum deter-
mined by the first-order condition:

∂EP [s(r)]

∂r

∣∣∣∣
r=r∗

= 0 ⇔ r∗ = Γ(P ) .

3. DIRECT ELICITABILITY
The purpose of this section is (a) to determine the dis-

tribution properties that can be elicited truthfully directly,
that is, for which there exists contracts that induce a truthful
revelation the property by the forecaster, and (b) to identify
those contracts.

Definition 6. A property Γ is (directly) elicitable when
there exists a strictly proper score function for Γ.

2In the general case where the forecaster has a utility for
money u (with inverse u−1), then the experimenter can use
any score function s̃(r) = u−1 ◦s(r), with s a strictly proper
score, to obtain truthful reports. Inversely, if s̃ induces
truthful report, then s(r) = u ◦ s̃(r) is strictly proper. Con-
sequently, we can assume w.l.o.g. that the forecaster has
quasi-linear utility and concentrate on strictly proper score
functions.

Those properties are called directly elicitable because the
forecaster provides directly the value of the property: she
gives exactly the information of interest, and no more. If
the forecaster gives more information than the value of the
property under consideration (for example, the full distribu-
tion), a property which may not be elicitable directly could
still be inferred from that information. These cases of indi-
rect elicitability will be discussed in Sections 5 and 6. Unless
mentioned otherwise, in the rest of the paper elicitability will
always mean direct elicitability.

3.1 A characterization of elicitable properties
Not every distribution property Γ is elicitable. A nec-

essary condition is that Γ have its level sets convex. We
recall that the level sets of Γ are the sets of probabilities
Γ−1(r) = {P/Γ(P ) = r} that map to the same property
value.

Lemma 1. If a property Γ is elicitable, then Γ−1(r) is
convex for all admissible r.

Proof. Let s be strictly proper for Γ, r be admissible
property value, and P,Q ∈ Γ−1(r). Then for any admis-
sible r′ with r′ 6= r, EP [s(r)] > EP [s(r′)] and EQ[s(r)] >
EQ[s(r′)]. So, if 0 < λ < 1,

EλP+(1−λ)Q[s(r)] = λEP [s(r)] + (1− λ)EQ[s(r)]

> λEP [s(r′)] + (1− λ)EQ[s(r′)]

= EλP+(1−λ)Q[s(r′)] .

Hence Γ(λP + (1− λ)Q) = r.

We will see that convexity is also a sufficient condition of
elicitability. We will use convex maximal sets. Convex max-
imal sets are easier to manipulate than convex sets. While
convex sets contain all the barycenters of points with pos-
itive weights, convex maximal sets contain barycenters of
points with positive or negative weights. Intuitively, a set
is convex maximal in S when there does not exist a larger
convex set in S of the same dimension.

Definition 7. A set S is convex maximal in S ′, subset of a
linear space, if for all P1, . . . , Pk ∈ S, and all λ1, . . . , λk ∈ R
with

∑
i λi = 1,∑

i

λiPi ∈ S ′ ⇒
∑
i

λiPi ∈ S .

We omit to specify the reference set S ′ when there is no
ambiguity (in most of our applications, we use S ′ = D). The
following lemma will be useful.

Lemma 2. If a property Γ is such that for all admissible
r, Γ−1(r) is convex, then it is also convex maximal (in D).

Convex maximal sets of a set S are geometrically highly
regular: they are the intersection of S and linear spaces.
Using Lemma 2, we show that when a property has convex
maximal level sets, they form hyperplanes of the domain.

Lemma 3. If a property Γ is such that Γ−1(r) is convex
for all admissible r, then dim(Γ−1(r)) = dimD − 1.

Putting together Lemma 2 and Lemma 3, we can build an
appropriate score function for any property with convex level
sets, which permits a complete characterization of elicitable
properties.



Theorem 1. A distribution property Γ is elicitable if and
only if Γ−1(r) is convex for all admissible property values r.

Proof sketch. (⇒) We proved this side in Lemma 1.
(⇐)
Let (a, b) the set of admissible property values, interior

of Γ(D). Let E be the linear extension of D. By applying
Lemma 3, the linear extension of Γ−1(r) is an hyperplane
Hr of E , for any r ∈ (a, b).

Lemma 2 and the intermediate value theorem imply that
Hr divides D in two parts, a “negative half space”, the set
P−r composed of the probabilities P with Γ(P ) < r, and a
“positive half space”, the set P+

r composed of the probabili-
ties P with Γ(P ) > r.

Consequently we can generate a unique vector v(r) of
E orthogonal to Hr, normalized (such that ‖v(r)‖ = 1),
and oriented towards the positive half-space, meaning that
〈v(r), P 〉 > 0 when P ∈ P+

r , and 〈v(r), P 〉 < 0 when
P ∈ P−r .

We can show that v(r) is continuous in r by using the
continuity of Γ. Intuitively, a Γ continuous implies that the
hyperplanesHr vary“smoothly” in r, and so do the direction
of their normal vectors.

Continuity makes it possible to consider the function
s(r) =

∫ r
r0
v(t)dt on (a, b), for any r0 on (a, b). Take any

admissible r and P such that r < Γ(P ), then

dEP [s(r)]

dr
= 〈v(r), P 〉 > 0

as P is in the positive half-space P+
r , which implies that

EP [s(·)] is strictly increasing on the interval (a,Γ(P )). By
a symmetric argument, EP [s(·)] is strictly decreasing on the
interval (Γ(P ), b). Hence s is strictly proper for Γ, which
concludes the proof.

As the convexity of a property’s level sets is equivalent to
their maximal convexity, we also have:

Corollary 1. A property Γ : D 7→ R is elicitable if and
only if Γ−1(r) is convex maximal for all admissible property
values r.

This is useful to obtain an alternative view of elicitable
properties as defined by linear constraints. Indeed, elic-
itable properties Γ are exactly those for which the equation
Γ(P ) = r corresponds to a linear constraint on P . Applied to
common distribution properties, we find that probabilities,
expectations, and moments are elicitable, while variance,
centered moments, kurtosis and skewness are not whenever
|Ω| > 2.

We say that a function L : S 7→ R, for S ⊆ RΩ is linear in
S if for all x, y ∈ S, and all α, β ∈ R such that αx+βy ∈ S,
L(αx+ βy) = αL(x) + βL(y).

Theorem 2. A property Γ with domain D is elicitable if
and only if, for all admissible property value r, there exists a
function Lr : D 7→ R linear in D such that, for all admissible
r, P ,

Lr(P ) = 0 ⇔ Γ(P ) = r .

Proof. (⇐) This side follows directly from the linearity
of Lr. Indeed, let r be an admissible report, the charac-
terization of Γ as linear constraints gives Γ−1(r) = {P ∈
D/Lr(P ) = 0}. For any P1, . . . , Pk ∈ Γ−1(r), λ1, . . . , λk
with

∑
i λi = 1, Lr(

∑
i λiPi) =

∑
i λiL

r(Pi) = 0 so

∑
i λiPi ∈ Γ−1(r). Hence Γ−1(r) is convex maximal and

by Corollary 1, Γ is elicitable.
(⇒) Assume Γ is elicitable. Let r be an admissible re-

port. Let E be the linear extension D, and H the linear
extension Γ−1(r). By Lemma 3, H is an hyperplane of E .
Since hyperplanes are kernels of non-null linear forms, there
exist a linear form Lr on E such that Lr(P ) = 0 if and only
if P ∈ H. As Γ is elicitable, Γ−1(r) must be convex maxi-
mal by Corollary 1, so Γ−1(r) = H ∩D, and the restriction
of Lr to D is null exactly on Γ−1(r), which concludes the
proof.

3.2 Score function representations
Strictly proper score functions are not arbitrary but well

structured. One of the first characterizations goes back to
Shuford et al. [16], who considers eliciting a distribution on
binary events. The idea is pushed further by Schervish in
[15], who shows that there exists a one-to-one correspon-
dence between proper scoring rules (for probability of a bi-
nary event) and non-negative measures on [0, 1]. Recently,
Buja et al. [2] propose a taxonomy of scoring rules based on
their Schervish measure, and use it in a statistical learning
setting.

We obtain a generalization the results of Schervish [15].
We show that, for an elicitable property, there exists a
one-to-one association between continuously differentiable
score functions that are strictly proper and nonnegative ab-
solutely continuous measures on property values that are
not locally null. Indeed, each elicitable property is associ-
ated to a unique function, that we call signature. Strictly
proper scores for a property are mixtures of the signature of
that property, weighted positively almost everywhere. This
means that an incentive compatible payment scheme is fully
specified by two components: its signature, uniquely associ-
ated to the property that it elicits, and its weight function,
which assigns non-negative weights to property values.

Two incentive-compatible payment schemes differ only by
their weights. These functions indicate the amplitude of
variation of the payment with respect to the reports. As we
can choose them freely, more amplitude should be given in
regions of the property values that are of higher interest [14].

Once we know the signature of a property, it becomes
possible to generate a wealth of score functions – in fact,
all of them – very easily, by varying the weights, whose sole
constraint is to be positive almost everywhere. Besides, the
signature of a property Γ is easily determined by differenti-
ating any strictly proper score for Γ. Consequently we can
generate all the strictly possible incentive compatible pay-
ment functions from one sample.

Theorem 3. If a property Γ with domain D is elicitable,
denoting by (a, b) the interval of admissible reports for Γ,
and E the linear extension of D, then there exists a unique
function v : (a, b) 7→ RΩ, taking values in E, with ‖v(·)‖ = 1
and such that a continuously differentiable score function s
is strictly proper (resp. of first-order) for Γ if and only if

s(r) = s0 +

∫ r

r0

λ(t)v(t)dt (1)

for s0 ∈ RΩ and a continuous weight function λ : (a, b) 7→
[0,+∞) that is not locally null (resp. never null).

In this theorem, we call the function v the signature of the



property, and λ the weight function. For common domains,
e.g., D = ∆(Ω), E is RΩ the set of random variables over Ω.

Proof (Theorem 3). We start by constructing the sig-
nature of Γ. Let r ∈ (a, b), E be the linear extension of D.
By Lemma 3 the linear extension Hr of Γ−1(r) is an hyper-
plane of E . In the proof of Theorem 1, we identified a vector
v(r) ∈ E that is (1) normal to Hr, (2) continuous in r, and
(3) such that 〈v(r), P 〉 > 0 when r < Γ(P ) and such that
〈v(r), P 〉 < 0 when Γ(P ) < r. We refer to v as Γ’s signature.

We now proceed to the main proof.
(⇒) Assume s elicits Γ and s is continuously differentiable.

Then by the first-order condition

dEP [s(r)]

dr

∣∣∣∣
r=Γ(P )

= 0

for P admissible. Therefore〈
ds(r)

dr
, P

〉
= 0

for any r ∈ (a, b) and all P ∈ Γ−1(r).
Since vectors of Hr are linear combinations of Γ−1(r), if

a vector n is such that 〈n, P 〉 = 0 for all P ∈ Γ−1(r), then
〈n,X〉 = 0 for all X ∈ Hr. So ds(r)/dr is orthogonal to all
vectors of Hr, and, as Hr is an hyperplane of E , is colinear
to any normal vector of Hr in E . As v(r) is normal to Hr,
for all r ∈ (a, b),

ds(r)

dr
= λ(r)v(r) (2)

for some scalar λ(r). Note that ds(r)/dr is continuous,
‖v(·)‖ = 1, and v(·) is continuous, thus λ(·) is continuous.
Therefore, by integration, we obtain Equation (1). It re-
mains to prove that λ is nonnegative and not locally null,
and that the function v is unique.

If λ(r∗) < 0 for some r∗, by continuity λ is negative in a
neighborhood of r∗, on some interval (r∗−ε, r∗+ε) for some
ε > 0. Then, considering any P with Γ(P ) = r∗, we have,
for all r ∈ (r∗, r∗ + ε),

dEP [s(r)]

dr
= EP [λ(r)v(r)] = λ(r)〈v(r), P 〉 .

But within that range, λ(r) < 0 and 〈v(r), P 〉 < 0 since
r > Γ(P ). So EP [s(r)] > EP [s(Γ(P ))] and s is not strictly
proper. Hence λ ≥ 0.

If λ is locally null, then by Equation (2), s is locally con-
stant, and so EP [s(·)] is locally constant for all admissible
P , implying that s is not strictly proper. Therefore λ is not
locally null.

We now turn to uniqueness. Suppose there exists w(r) ∈
E , continuous in r, with ‖w(r)‖ = 1, and verifying Equa-
tion (1). Then ds(r)/dr is positively colinear with w(r), and
as it is orthogonal to Hr hyperplane of E , w(r) = µ(r)v(r)
for some scalar µ(r). But ‖v(r)‖ = 1, so, for any r, ei-
ther µ(r) = 1, or µ(r) = −1. Since µ must be continuous,
µ = 1 or µ = −1. Yet the only possible µ that induces a
nonnegative weight function is 1, so w(r) = v(r).

Of course, if s is of first-order, λ is never null, otherwise
the derivative of EP [s(r)] would always be null at r for which
λ(r) = 0, for all admissible P , thus violating conditions of
first-order.

(⇐) Let s be written as in Equation (1), with v being Γ’s
signature. Then s is differentiable and ds(r)/dr = λ(r)v(r).

We verify that s is strictly proper by expressing the deriva-
tive of the expected score in terms of v(r). For any admis-
sible P ,

dEP [s(r)]

dr
= EP

[
ds(r)

dr

]
=

〈
ds(r)

dr
, P

〉
= λ(r)〈v(r), P 〉 .

v is such that, if r < Γ(P ), 〈v(r), P 〉 > 0, and since λ ≥ 0,
dEP [s(r)]/dr ≥ 0, so the expected score r 7→ EP [s(r)] is
non-decreasing on (a,Γ(P )). By a symmetric argument,
r 7→ EP [s(r)] is non-increasing on (Γ(P ), b). Moreover, if
EP [s(r)] was constant on some open interval of values r,
λ(r) would be null on that interval, impossible by assump-
tion. Hence for all admissible P , r 7→ EP [s(r)] is strictly in-
creasing for r < Γ(P ) and strictly decreasing for r > Γ(P ),
thus s is strictly proper for Γ.

If, in addition, λ is never null, then according to the last
equation, dEP [s(r)]/dr is null exactly when 〈v(r), P 〉 is null,
and so is null only when r = Γ(P ), which means that s is of
first-order.

The Schervish theorem [15] is a special case when using
our result applied to a two-outcome space and Γ the proba-
bility of one outcome. Our result may be interpreted as fol-
lows: the direction and orientation of the gradients ds(r)/dr
is determined by the property that s elicits, while the gra-
dient norms λ(r) = ‖ds(r)/dr‖ are freely decided indepen-
dently of the property.

The theorem shows how to build a wide variety of score
functions that are strictly proper or of first-order. Further,
it implies that any score function that is continuously dif-
ferentiable and strictly proper is also accuracy-rewarding.

Corollary 2. A continuously differentiable score func-
tion is strictly proper if and only if it is accuracy-rewarding.

For example, if Ω contains only two outcomes 0 and 1,
then the signature of Γ(P ) = P (0) is

v(t) =
1√

t2 + (1− t)2

[
1− t
−t

]
.

The weight function of the logarithmic scoring rule,

s(r)(ω) = b[ω log r + (1− ω) log(1− r)] ,

is

λ(t) = b

√
1

t2
+

1

(1− t)2
,

and the weight function of the quadratic score

s(r)(ω) = −b(ω − r)2

corresponds to

λ(t) = b
√
t2 + (1− t)2 .

4. VECTORS OF PROPERTIES
We now consider vectors of properties, for two major rea-

sons. In the first place, the experimenter may be interested
in more than a single feature of the distribution, or in a fea-
ture that is only expressible as a multi-dimensional value.



Secondly, property vectors provide a solution to the prob-
lem of obtaining truthful reports of a property that is not
elicitable. In fact the properties that compose the vectors
need not be elicitable for the vector to be elicitable. For
example, the pair (expectation, variance) is elicitable while
variance is not. Note that eliciting a vector of properties is
equivalent to eliciting a set of those properties, but vectors
offer a convenient way to express score functions.

We will consider vectors composed of properties that share
the same domain, and that are independent, that is, for a
vector Γ = (Γ1, . . . ,Γk), the knowledge of the value of one
property does not give the value of another. More formally,
for i 6= j, and all admissible P , there exists an admissible
P ′ such that Γi(P ) = Γi(P

′) and Γj(P ) 6= Γj(P
′).

Getting reports for vectors of properties is accomplished
in a similar fashion as for single properties. The forecaster
provides a report for each of the properties composing the
vector. Based on these reports, the experimenter chooses a
contract that specifies payments to be made for every possi-
ble outcome of the random experiment. The family of con-
tracts is formulated as a score function, to be interpreted
in same way as for single properties and whose definition is
extended to the multi-dimensional case.

Definition 8. A score function for the vector of properties
(Γ1, . . . ,Γk) is a function s : (a1, b1) × · · · × (ak, bk) 7→ RΩ,
with (ai, bi) the interior Γi(D) with D domain of the vector.

Properties that compose the vector are often related, and
the shape taken by the range of possible vectors of property
values may not be a (multi-dimensional) rectangle. However
from a practical standpoint, it is more convenient to specify
a window of acceptable reports for each individual property
than a complex multi-dimensional object.

As previously, strictly proper scores maximize expected
score of truthful reports, and a property is (directly) elic-
itable when it admits a strictly proper score function.

Definition 9. A score function s is strictly proper for a
vector of properties Γ = (Γ1, . . . ,Γk) if

EP [s(r1, . . . , rk)] < EP [s(Γ1(P ), . . . ,Γk(P ))]

for all admissible P , (r1, . . . , rk) 6= (Γ1(P ), . . . ,Γk(P )).

Obviously a set composed of elicitable properties is elic-
itable, but an elicitable set may contain properties that are
unelicitable. In fact, some elicitable sets may be entirely
composed of unelicitable properties.

Convexity of the level sets is a necessary condition by the
same argument as in Lemma 1.

Theorem 4. If a vector of distribution properties Γ =
(Γ1, . . . ,Γk) is elicitable, then Γ−1(r1, . . . , rk) is convex for
admissible r1, . . . , rk.

Unfortunately Theorem 1 cannot be adapted as such, and
the question of whether convexity is a sufficient condition re-
mains open. However proposing rewards that increase with
the forecaster’s accuracy is also desirable in the present sit-
uation, and instead of identifying bundles of properties that
admit strictly proper scores we shall identify those that ad-
mit accuracy-rewarding scores, and give a simple character-
ization of those scores.

Regarding a vector of properties (Γ1, . . . ,Γk), a score func-
tion s is accuracy-rewarding if for all admissible (r1, . . . , rk)

and (r′1, . . . , r
′
k), with (r1, . . . , rk) 6= (r′1, . . . , r

′
k), when for

all i, either ri ≤ r′i ≤ Γ(P ) or Γ(P ) ≤ r′i ≤ ri, then
EP [s(r1, . . . , rk)] < EP [s(r′1, . . . , r

′
k)].

Unlike the case of a single distribution property, there
exists elicitable vectors that do not admit an accuracy-
rewarding score function. For example, the theorem that fol-
lows imply that there does not exist any accuracy-rewarding
score for the pair (expectation, variance). When a vector is
composed of elicitable properties, the experimenter can al-
ways use a sum of accuracy-rewarding score functions for
each of the properties as an accuracy-rewarding score func-
tion for the whole vector. The following result shows that
this is always the case. In particular, no score function is
accuracy-rewarding for a vector of properties that contains
at least one unelicitable property.

Theorem 5. A score function s for a vector of proper-
ties (Γ1, . . . ,Γk) that is twice continuously differentiable is
accuracy-rewarding if and only if there exists strictly proper
score functions si for Γi twice continuously differentiable and
such that

s(r1, . . . , rk) =
∑
i

si(ri) .

Proof. Let D be the domain of the vector of properties
and (ai, bi) be the interior of Γi(D).

(⇐) Take any admissible (r1, . . . , rk), (r′1, . . . , r
′
k) and an

admissible probability P , with (r1, . . . , rk) 6= (r′1, . . . , r
′
k),

and assume that, for 1 ≤ i ≤ k, either ri ≤ r′i ≤ Γi(P )
or Γi(P ) ≤ r′i ≤ ri. If the si are strictly proper they are
also accuracy-rewarding by Corollary 2. Hence, for all i,
EP [s(ri)] ≤ EP [s(r′i)] (with a strict inequality if ri 6= r′i).
Therefore,

EP [s(r1, . . . , rk)] =
∑
i

EP [si(ri)]

<
∑
i

EP [si(r
′
i)]

= EP [s(r′1, . . . , r
′
k)] .

Thus s is accuracy-rewarding.
(⇒) We will use the following lemma:

Lemma 4. If f : (a1, b1) × · · · × (ak, bk) 7→ R
function twice continuously differentiable verifies
∂2f(x1, . . . , xk)/∂xi∂xj = 0 for i 6= j, then there ex-
ists fi : (ai, bi) 7→ R such that

f(x1, . . . , xk) =
∑
i

fi(xi) . (3)

Consider any admissible (r1, . . . , rk), and any admissible
probability P . Let 1 ≤ ` ≤ k, and construct (r′1, . . . , r

′
k)

with r′i = ri for all i 6= `, and r′` = Γ`(P ). Then as s
is accuracy-rewarding, if r` 6= Γ`(P ), EP [s(r1, . . . , rk)] <
EP [(r′1, . . . , r

′
k)]. This means that r` 7→ s(r1, . . . , rk) is

strictly proper for all `, and also that Γ` is elicitable.
Take arbitrary i, j with i < j. For convenience, we use

the notation s(ri, rj) = s(r1, . . . , rk).
The first order condition, applied to the strictly proper

score functions s(·, rj) and s(ri, ·), gives

∂EP [s(ri, rj)]

∂ri

∣∣∣∣
ri=Γi(P )

= 0 ,

∂EP [s(ri, rj)]

∂rj

∣∣∣∣
rj=Γj(P )

= 0 .



As Ω is finite we can swap the differential operator and the
expectation operator. By a second differentiation, and not-
ing that ∂2s/∂ri∂rj = ∂2s/∂rj∂ri,

EP

[
∂2s(Γi(P ), rj)

∂ri∂rj

]
= 0 , (4)

EP

[
∂2s(ri,Γj(P ))

∂ri∂rj

]
= 0 . (5)

Consider any r∗i ∈ (ai, bi), r
∗
j ∈ (aj , bj). Let’s assume by

contradiction that

v =
∂2s(r∗i , r

∗
j )

∂ri∂rj
6= 0 .

Then for all Pi ∈ Γ−1
i (r∗i ), Pj ∈ Γ−1

j (r∗j ), by Equation (4)
and (5),

EPi [v] = EPj [v] = 0 , (6)

Besides, since Γi and Γj are elicitable, by Lemma 3, the
linear extensions Hi and Hj of respectively Γ−1

i (r∗i ) and
Γ−1
j (r∗j ) are hyperplanes of the linear extension E of D. Note

that we can write EQ[v] = 〈v,Q〉 for Q = Pi, Pj and any vec-
tor of Hi is a linear combination of vectors of Γ−1

i (r∗i ) (and
similarly for j). By linearity of 〈v, ·〉, Equation (6) implies
that 〈v,X〉 = 0 for all X ∈ Hi and all X ∈ Hj . As Hi and
Hj are both hyperplanes of E , they must be equal.

In addition, by Corollary 1, Γ−1
i (r∗i ) = Hi ∩ D and

Γ−1
j (r∗j ) = Hj∩D, so Γ−1

i (r∗i ) = Γ−1
j (r∗j ). Hence, if Q is such

that Γi(Q) = r∗i , then Γj(Q) = r∗j , and inversely. However
this is impossible by the independence assumption.

Therefore,

∂2s(r∗i , r
∗
j )

∂ri∂rj
= 0

for all r∗i , r
∗
j . By applying Lemma 4, s is additively separa-

ble. The components are all strictly proper since we showed
that r` 7→ s(r1, . . . , rk) is strictly proper.

5. THE COMPLEXITY OF DISTRIBU-
TION PROPERTIES

Our analysis so far has focused on properties that can be
directly elicited. In this section, we look at properties that
are not directly elicitable.

To elicit properties that are not directly elicitable, the ex-
perimenter must ask for more information than necessary,
and infer the property value from that information. For
example, she may call for reports of the full distribution,
in that sense every property is implicitly elicitable. For-
tunately, in most situations, less information is needed. In
general, the experimenter may infer a property (for example,
the variance of X) either from an elicitable set (for exam-
ple, {E[X],Var(X)}), or from a set of elicitable properties
(from example, {E[X], E[X2]}). In both cases, it would be
interesting to know what is the minimal size of the set from
which a property may be inferred. Obviously the minimal
size in the first case is no bigger than in the second case,
but the reverse is not obvious. Here we focus on the second
case: indirect elicitation from sets of directly elicitable prop-
erties. We do so for two reasons: as we argued in the previ-
ous section, accuracy-rewarding scores exist only for sets of
elicitable properties, and as we will see in the next section,
the minimal size of such set has a natural interpretation for
prediction markets.

If a property can be inferred from k elicitable properties,
it is k-elicitable. The notion of k-elicitability completes that
of direct elicitability.

Definition 10. A property Γ is said to be k-elicitable if
there exists elicitable properties Γ1, . . . ,Γk sharing the same
domain such that Γ = f(Γ1, . . . ,Γk) for some function f .

While directly elicitable properties are 1-elicitable, the re-
verse statement is not true. For example, |E[X]| is 1-
elicitable but is not directly elicitable.

Naturally, an experimenter typically wishes to use as few
properties as possible. The more reports needed, the harder
it is to evaluate a distribution property. In that sense, the
minimal number of elicitable properties needed to infer a
distribution property measures the difficulty to evaluate that
property. This leads to the introduction the complexity of
distribution properties.

Definition 11. A property is said to be of complexity Ck,
k ≥ 1 if it is k-elicitable, but is not (k − 1)-elicitable, when
k > 1.

For example, the probability of a binary event and the ex-
pectation of a random variables are properties of complexity
C1, the variance is of complexity C2. It can be shown that
the skewness is of complexity C3. The kurtosis is of com-
plexity C3 or C4 (we conjecture C4).

The notion of complexity extends our view beyond the
dichotomy of elicitability, and creates a rich taxonomy of
properties. Intuitively, properties of complexity Ca are more
difficult to elicit than those of complexity Cb when a > b,
and two properties of the same complexity are equally hard
to elicit. In particular, obtaining a truthful reports of a
property of complexity Ck is exactly as difficult as obtaining
truthful report of a full distribution with k+ 1 possible out-
comes. For example, eliciting variance is as hard as eliciting
a distribution in a 3-outcome worlds.

This raises a natural question: how hard can it be to
elicit a distribution property? Surprisingly, there are prop-
erties which are as hard to obtain as the full distribution,
as stated in the result below. For example, the property
maxω∈Ω P ({ω}) is of complexity C|Ω|−1: it is as difficult to
elicit as the |Ω| marginal probabilities that specify the dis-
tribution. Further, distributions properties can be more or
less difficult to evaluate, and form a continuum between the
properties that are directly elicitable and those which re-
quire the full distribution.

Theorem 6. If |Ω| = n, any property belongs to one of
the classes C1, . . . , Cn−1. In addition, none of the complexity
classes is empty.

6. APPLICATION TO PREDICTION MAR-
KETS

Prediction markets are markets designed for the purpose
of estimating probabilistic information. Empirical evidence
suggests that they are powerful prediction tools [5, 20], and
they are now used regularly in industry. In prediction mar-
kets, participants trade securities whose payoffs are contin-
gent upon the realization of uncertain events. Relying on
the efficient market hypothesis, these markets are designed
in such a way that the market state at equilibrium reveals
certain information of interest.



So far our analysis involved a single agent. In contrast, a
prediction market is a multi-agent setting. However, under
standard assumption, market equilibria lead to a consen-
sus of posterior beliefs, so that the crowd behaves as single
agent. While we cannot query this hypothetical agent, our
analysis may be applied to show that (a) with one type of
securities, markets reveal exactly the same information as
single-agent reward schemes, and (b) in the two main mar-
ket mechanisms, there exists a one-to-one correspondence
between securities and score functions.

As in the single-agent case, we assume that a random ex-
periment will produce an outcome of a finite set Ω according
to some probability a priori unknown, but on which market
participants form beliefs. We assume traders are risk-neutral
and seek to maximize their expected profit according to their
belief.

In most prediction markets, participants trade on securi-
ties indexed by a real-valued parameter r [20].3 Each secu-
rity is described by its price pr and its payoff qr. The payoff
gives, for each outcome ω, the monetary value qr(ω) of one
unit of security r. We will assume that prices and payoffs
vary continuously with the index. In the simplest situation,
securities are indexed by price and the payoff is 1 if some
event A occurs and 0 otherwise: for a security r, pr = r
and q(ω) = 1 if ω ∈ A, q(ω) = 0 otherwise. Following the
classification of Wolfers and Zitzewitz [20], this is a winner-
takes-all security, in use in a majority of markets, such as
TradeSports4 and the Iowa Electronic Market [5].

Wolfers and Zitzewitz describe two other types of securi-
ties commonly used in practical contexts: index securities,
with a variable price pr = r and a payoff that varies lin-
early with a numeric outcome qr(ω) = ω (e.g., the number
of points a sport team wins by), and spread securities, with
a fixed price pr = 1 and a payoff that depends on whether
a numeric outcome is below or above the index: qr(ω) = 2
if ω ≥ r and qr(ω) = 0 otherwise.

In many market environments, participants trade securi-
ties among themselves. In that case, there is equilibrium
when participants are no longer willing to trade with each
other. Formally, for any two traders with subjective proba-
bility P1 and P2, there does not exist a security r with

EP1 [qr]− pr > 0 , (7)

pr − EP2 [qr] > 0 . (8)

To reveal information, the market index, or the index of the
security of the most recent exchange, must have a particular
meaning. For example, the price of a winner-take-all security
gives the consensus probability of an event, the price of an
index security provides a market consensus on the expected
value of a numeric outcome, and spread securities give the
median of the distribution of a numeric outcome.

More generally, we say that a market reveals a prop-
erty Γ when, at equilibrium, the market index equals Γ(P )
for P the subjective probability of any trader. In particu-
lar, there is a unique equilibrium corresponding to a given
Γ(P ), and so, as prices and payoffs are continuous, by (7)
and (8), the equilibrium market index is characterized by
EP [qr]−pr = 0 for all P subjective probability of any trader.

3Although we consider only one family of securities, mar-
kets may contain multiple families, i.e., different types of
securities, typically one for each outcome.
4www.tradesports.com

Since EP [qr−pr] = 0 if and only if r = Γ(P ), by Theorem 2,
Γ is elicitable. Inversely, if Γ is elicitable, then by choosing
any pr, qr such that qr − pr equals the signature of Γ eval-
uated at r, the market reveals Γ. In other words, subject to
the continuity assumptions above, and considering a single
family of securities,

Theorem 7. Prediction markets reveal exactly the same
distribution properties as one-dimensional score functions.

This sheds new light on the interpretation of the complexity
of a property: Γ is of complexity Ck when at least k predic-
tion markets executed in parallel (or k types of securities)
are needed to compute a market estimate of Γ.

Thus only properties that correspond to linear constraints
may be revealed by the market. It is worth mentioning
the manifest connection between our findings and those of
Feigenbaum et al. [4]. Feigenbaum et al. model prediction
markets as Shapley-Shubik games in which traders receive
private binary signals. They show that, under Aumann’s
information partition model with common prior, prediction
markets may only reveal a statistic of signals when the statis-
tic is a linear function of the input signals.

In principle, these markets need not be organized: par-
ticipants can negotiate securities with each other directly.
However, when many traders are present, it is more efficient
to use a centralized mechanism. Most existing prediction
markets are of two sorts: markets using Continuous Double
Auctions (CDA) – used for example in TradeSports, Betfair,
the Iowa Electronic Markets, or the Google internal predic-
tion market – and markets operated by automatic market
makers, such as Hanson’s logarithmic market scoring rule
market maker [9] – used in YooNew5, Inkling Markets6, and
in Microsoft’s internal prediction markets.

6.1 Markets with continuous double auction
A Continuous Double Auction (CDA) attempts to match,

at any time, orders to buy a security with orders to sell. We
describe a general model of CDA, that can be used with any
family of securities, including winner-take-all, index, and
spread. Common CDAs, like those used in TradeSports,
Betfair, Iowa Eletronic Market, and many financial places,
are a special case.

A CDA allows traders to buy and sell securities as follows.
At any time, a trader may submit an order to buy (resp. sell)
a given quantity of securities whose index is below (resp.
above) some given index value. When submitting a buying
order (resp. selling order), the order is placed in a bid queue
(resp. ask queue). At any time, an attempt is made to
match orders of the bid queue with orders of the ask queue.
If rbid is the bid index, i.e., the highest index in the bid queue
and rask is the ask index, i.e., the lowest index in the ask
queue, and if rbid > rask, then a trade occurs between the
corresponding market participants on the security indexed
by r∗ with, for example, r∗ = (rbid + rask)/2.

The functioning of the CDA relies on the assumption that
a trader willing to buy (resp. sell) a security rbid (resp.
rask) is also willing to buy a security r < rbid (resp. sell a
security r > rask). Therefore, the family of securities must
conform to the following condition for any probability P , for

5www.yoonew.com
6www.inklingmarkets.com



all r′ < r,

EP [qr]− pr ≥ 0⇒ EP [qr′ ]− pr′ ≥ 0 , (9)

EP [qr′ ]− pr′ ≤ 0⇒ EP [qr]− pr ≤ 0 . (10)

The equilibrium condition imposes that the CDA reveals Γ
only when qr−pr is colinear to the signature of the property
defined in Theorem 2, and Equation (9) and (10) are veri-
fied only when the colinearity is positive. Therefore, from
Theorem 3,

Theorem 8. A CDA reveals a property Γ if and only if
each market security r has a price pr and a contingent pay-
off qr such that qr − pr = ds(r)/dr for a first-order score
function s for Γ.

Note that this may used in both ways: to design secu-
rities for prediction markets from score functions, and to
find strictly proper score functions from prediction market
securities.

6.2 Markets with automated market maker
In prediction markets with automated market maker

(MwAMM), participants do not trade directly with each
other, but with a market-maker, who decides of the offer.
Currently, many prediction markets use Hanson’s logarith-
mic market scoring rule market maker [9]. Traders may
sell or buy at any time the security present on the market,
which is fixed by the market maker. This type of markets
would correspond to a financial market where all traders
are price takers. When traders buy or sell securities, the
market-maker raises or lowers the index of the security be-
ing traded, effectively reacting to the demand by changing
the offer. Contrary to a CDA, the patron of a MwAMM is
subject to potential losses that occur almost certainly when
traders are better informed than the patron, a natural as-
sumption for prediction markets. Losses depend on how the
offer vary with the demand, as the offer is decided by the
market-maker, it is generally possible to keep a control over
the worst-case loss.

In addition to a family of securities, the market also spec-
ifies a function g that determines, at any time, the security
available for trade. The market-maker keeps track of the
net quantity of securities she has sold, Q, and sets r = g(Q)
as the index of the security available. To be consistent, the
market maker should keep moving the index in the same
direction when buying securities, so we can impose w.l.o.g.
that g be increasing.

Traders interact with the market by specifying a quantity
of securities to buy ∆Q (to sell if ∆Q < 0). As securi-
ties present on the market change continuously with trading
activity, prices and payoffs of a market order must be calcu-
lated by summing over infinitesimal trades. When a trader
buys a infinitely small quantity of securities dQ, he pays the
market maker prdQ and gets a payoff qr(ω)dQ for an out-
come ω, while the market maker raises the market index by
g′(Q)dQ. By integration, when a quantity ∆Q of securities
is purchased at a time when market maker has sold a net
quantity Q1 of securities, the price is∫ Q1+∆Q

Q1

pg(Q)dQ =

∫ g(Q1+∆Q))−g(Q1)

g(Q1)

pr
g′(g−1(r))

dr ,

and the payoff for outcome ω is∫ Q1+∆Q

Q1

qg(Q)(ω)dQ =

∫ g(Q1+∆Q)

g(Q1)

qr(ω)

g′(g−1(r))
dr .

Noting n(t) = qt − pt, the net profit at outcome
ω is (s(g(Q1 + ∆Q)) − s(g(Q1)))(ω) with the function
s(r) =

∫ r
r0
λ(t)v(t)dt and v(t) = n(t)/‖n(t)‖ and λ(t) =

‖n(t)‖/g′(g−1(t)). Note that s is a score function.
We say that the market is at equilibrium when no trader

can make a profit from an infinitesimal trade, that is, when
EP [qrdQ] − prdQ ≤ 0 and prdQ − EP [qrdQ] ≤ 0 for P
subjective probability of any trader. So the market reveals
Γ when Γ(P ) = r if and only if EP [qr] − pr = 0, which is
equivalent to saying that Γ(P ) = r if and only if EP [v(t)] =
0. Thus the market reveals directly Γ if and only the function
s defined above is a first-order score function for Γ.

Theorem 9. A MwAMM reveals a property Γ if and only
if there exists a first-order score function s such that qr −
pr = ds(r)/dr.

This means that the vector v above corresponds to the sig-
nature of the property being elicited.

In addition, the variation of the net profit is s(r2)− s(r1)
when trading activities move the index from r1 to r2. It
follows that trading in the market corresponds exactly to a
sequence of single-agent elicitation by the score function s,
in which, at any time, a trader can move the current market
estimate ri of round i of the market property value to ri+1

by accepting to pay the most recent person that changed it
an amount s(ri) while receiving s(ri+1). This is not surpris-
ing: Hanson already showed the equivalence between mar-
kets with binary securities and probability scoring rules [9].
What we get is a generalization to all types of securities.

In fact, we have just shown that any market with au-
tomated market maker and only one family of securities
is structurally equivalent to allowing agents to interact
with some score function strictly proper for some property:
the payoff from a traded quantity ∆Q after Q securities
have been sold in the former equals a difference of scores
s ◦ g(Q + ∆Q) − s ◦ g(Q) in the latter, where g is defined
as above and determines the offer, and s is some strictly
proper score function. Appropriate choices of s and g help
keep control over potential losses.

For example, applied to the case of probability elicitation
of a binary event, we deduct from Theorem 3 that securities
must have varying prices with fixed contingent payoffs. With
the logarithmic scoring rule, we get

1

g′(g−1(r))
=

b

r(1− r)

which implies

g(Q) =
1

1 + e−Q/b

confirmed by Hanson’s formula.



7. CONCLUSION
In this paper, we studied the problem of eliciting proba-

bilistic information from an expert, when considering a ran-
dom experiment with a finite set of outcomes. We made the
following contributions:

1. We showed that distribution properties are elicitable
only when, equivalently (a) their level sets are convex,
(b) their level sets are convex maximal, (c) they form
linear constraints.

2. We showed that properties are defined by their sig-
nature function, and provided a structural represen-
tation of incentive-compatible payments, described by
two components: (a) a weight-function, independent
of the property, which is any nonnegative density not
locally null, and (b) the property’s signature.

3. We investigated the elicitation of sets of proper-
ties, and showed that accuracy-rewarding multi-
dimensional score functions are exactly those addi-
tively separable into one-dimensional score functions
strictly proper for each property.

4. We introduced the complexity of distribution proper-
ties, that represent the minimal size of a set of elic-
itable properties from which a given property may be
inferred.

5. We showed that with n outcomes, the complexity of
properties vary from C1 to Cn−1, it particular, some
properties are as hard to get as the full distribution.

6. We showed that prediction markets reveal the same
properties as those directly elicitable in the single-
agent context.

7. We showed that, for the case of continuous double
auctions or automated market-makers, securities be-
ing traded for eliciting Γ take the form of gradients of
first-order score functions for Γ.

There are various avenues for future research. First, our
investigation concerned continuous properties. It turns out
that our results do not apply for more general properties,
in particular properties having a discrete range. In that
case, convexity of level sets is still a necessary condition,
but is no longer sufficient. Can we characterize elicitable dis-
crete properties? The second question refers to the outcome
space, which we assumed finite. Do our results hold for more
general spaces, especially continuous spaces? We conjecture
that this is not the case, as our results rely indirectly on the
topological completeness of a property’s domain. Perhaps
a workaround is to strengthen the continuity conditions, or
to allow scores to be generalized functions instead of well-
defined real-valued functions. Finally, many open questions
remain about sets of properties. The most important one
being the characterization of elicitable sets: we know that
convexity of level sets is a sufficient condition, but is it nec-
essary? We can also ask whether an integral representation
a la Schervish is possible, as we obtained for single proper-
ties. And, naturally, it would be very interesting to establish
the complexity of common distribution properties.
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