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We investigate the problem of incentivizing an expert to truthfully reveal probabilistic information

about a random event. Probabilistic information consists of one or more properties, which are any

real-valued functions of the distribution, such as the mean and variance. Not all properties can
be elicited truthfully. We provide a simple characterization of elicitable properties, and describe

the general form of the associated payment functions that induce truthful revelation. We then
consider sets of properties, and observe that all properties can be inferred from sets of elicitable

properties. This suggests the concept of elicitation complexity for a property, the size of the

smallest set implying the property.
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1. INTRODUCTION

Assume that, given an upcoming uncertain event, we ask an expert about some
features of its probability distribution. To incentivize the expert to provide true
information, we must reward the expert accordingly. Designing such rewards can
be a difficult task. Indeed, to enforce honest reports, the expert’s payment should
depend, in a nontrivial way, on both the expert’s response and the outcome of the
event.

In the special case where we are interested in obtaining the full probability dis-
tribution, we can use probability scoring rules [Good 1997; Brier 1950; Winkler
1996]. A scoring rule represents a reward function, it is said to be proper when the
expert gets the maximum expected score by reporting the true distribution of the
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event. Proper scoring rules can be easily described in variety of ways [Savage 1971;
Hendrickson and Buehler 1971; Schervish 1989], they have been validated experi-
mentally [O’Carroll 1977] and have appeared in a number of domains [Spiegelhalter
1986; Nelson and Bessler 1989].

However, probability scoring rules don’t allow to retrieve partial information on
the distribution. For example, we may be interested in a specific parameter, such
as the mean, instead of the distribution as a whole. Naturally, such information can
always be derived from the full distribution, however this poses practical difficulties.
The expert may not be able to give a full distribution, or may wish to keep certain
aspects confidential. When the distribution is large or complex, its estimation may
be infeasible, and the communication requirements may be high.

To our knowledge, probability scoring rules have been adapted only to two special
cases of partial information: eliciting the mean and quantiles of random variables
[Savage 1971; Cervera and Munoz 1996; Gneiting and Raftery 2007]. In this paper
we determine what partial information can be obtained truthfully, and how to
design the corresponding appropriate payment schemes.

2. MODEL

A principal wishes to learn information about a future random event, whose set of
outcomes Ω is finite. For simplicity we take a special case of [Lambert et al. 2008]
and assume that the probability distribution of the outcomes belong to ∆∗(Ω),
the set of probability distributions over Ω that assign a positive probability to
all outcomes. The information of interest takes the form of parameters of the
distribution of outcomes, called distribution properties. Formally, they are functions
that associate any possible probability distribution with a real value. Common
distribution properties include the probability of an event E, P 7→ P (E), the mean
of a random variable X, P 7→

∑
x xP (X = x), the variance, moments and centered

moments, skewness, kurtosis, or the entropy. We restrict our attention to nice
properties that are continuous and not locally constant. All the examples above
are nice properties, and in the sequel property will always refer to nice property.

With these conditions, the range of values taken by a property forms an interval,
and the expert is allowed to report any value of the interval except its boundary
points. Such possible reports are called admissible, and similarly a probability
distribution is admissible when its corresponding property value is admissible.

To incentivize the expert to provide true information, the principal offers a re-
ward, defined by score functions s(γ1, . . . , γk, ω) that may depend on the expert’s
estimates γ1, . . . , γk of the properties of interest and on the outcome of the event ω.
For simplicity, we consider a special case of [Lambert et al. 2008] and restrict our-
selves to continuously differentiable score functions. In the sequel, score function
will always refer to continuously differentiable score function.

A risk-neutral expert reports values γ1, . . . , γk that maximize the expected score

E
ω∼P

[s(γ1, . . . , γk, ω)] .

Using the terminology of the forecasting literature, scores that incentivize the expert
to make true predictions are said to be strictly proper : with strictly proper scores,
the maximum expected score can only be obtained by reporting the true values
ACM SIGecom Exchanges, Vol. 7, No. 3, November 2008.



Eliciting Properties of Probability Distributions: the Highlights · 3

of the properties. When there exist strictly proper scores for a property or set of
properties, it is possible to ask an expert for the true value of the property(ies)
without the need to ask for any extra information, and the property or set of
properties is (directly) elicitable.

If strictly proper scores enforce truthful reports, they don’t necessarily reward
the accuracy of the prediction: an agent far away from the truth may receive
higher expected rewards than an agent whose report is closer, but not equal, to
the true values of the properties. To prevent these issues, one can use accuracy-
rewarding scores, for which the expected score increases with the accuracy of the
prediction. More formally, considering properties Γ1, . . . ,Γk, a score function s
is accuracy-rewarding if, when an expert A reports γ1, . . . , γk while an expert B
reports γ′1, . . . , γ

′
k, given that both experts do not report the same set of values and

that, for all i, either γi ≤ γ′i ≤ Γi(P ) or Γi(P ) ≤ γ′i ≤ γi, then B’s expected score
is strictly higher than A’s. Note that accuracy-rewarding scores are always strictly
proper, but the opposite is not always true.

3. CHARACTERIZATION OF ELICITABLE PROPERTIES

3.1 Single properties

We start with the problem of eliciting a single property. Even in this simple case, not
all properties can be elicited directly, but elicitable properties are simply described:
a property is elicitable when its level sets are convex.

Theorem 3.1. A distribution property is elicitable if and only if Γ−1(γ) is con-
vex for all admissible property values γ.

The theorem can easily be applied to the examples of properties above, to find that
an event’s probability and the mean are elicitable, while the centered moments,
skewness, kurtosis and entropy are not.

Naturally, for properties that are elicitable, it is interesting to know the cor-
responding score functions that should be used. It can be shown that, for each
property, the strictly proper scores form a cone of the space of score functions, and
may be simply characterized as weighted integrals of the signature of the property.

Theorem 3.2. Let Γ be an elicitable property, with (a, b) the range of admissible
property values. There exists a unique normalized function v : (a, b)×Ω 7→ R such
that any score function s is strictly proper for Γ if and only if

s(γ, ω) = s0(ω) +
∫ γ

γ0

λ(t)v(t, ω)dt ,

for γ0 ∈ (a, b), a function s0 : Ω 7→ R and a continuous weight function λ : (a, b) 7→
[0,+∞) that is not locally null.

The function v depends only on the property of interest, and so is called the
signature of the property. Let’s consider, for example, the property “probability of
an event E”. In this particular case, score functions are called probability scoring
rules. The signature is given by the function

v(p, ω) =
1√

p2 + (1− p)2

{
p if ω ∈ E ,

1− p if ω 6∈ E .
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We can easily obtain the full set of strictly proper scoring rules by setting arbitrary
nonnegative weights that are not locally null. For example, the popular logarithmic
score has a weight λ(p) = b

√
1/p2 + 1/(1− p)2, while that of the quadratic score

is λ(p) = b
√
p2 + (1− p)2. It is interesting to note that, in the case of probability

scoring rules, our description of strictly proper scores reduces to the Schervish-
Choquet representation [Schervish 1989].

We may also consider accuracy-rewarding scores. It can be shown that, for single
properties, strictly proper is equivalent to accuracy-rewarding, and so the previous
characterizations remain valid.

3.2 Sets of properties

We are now interested in eliciting multiple properties simultaneously. The process
of eliciting sets of properties is different from that of eliciting each property inde-
pendently. In particular, the individual elements of an elicitable set of properties
need not be elicitable, so that eliciting sets of properties may be used to obtain
truthful estimates of properties that, alone, cannot be elicited. For example, the
variance alone is not elicitable, but the variance and mean together are elicitable.
Convexity of the level sets remains a necessary condition for a set of properties to
be elicitable, but is no longer sufficient. However, we can characterize the sets of
properties that are elicitable with accuracy-rewarding scores.

Theorem 3.3. A set of properties {Γ1, . . . ,Γk} is elicitable with an accuracy-
rewarding score if and only if each individual property Γi is elicitable.

Therefore, while we can elicit more information using sets of properties with strictly
proper scores, we cannot do so with accuracy-rewarding scores. Furthermore, elic-
iting sets of properties with accuracy-rewarding scores is strictly equivalent to elic-
iting each property independently, as those scores for the entire set are simply
expressed as sums of strictly proper scores for each individual property.

Theorem 3.4. A score function s for the properties Γ1, . . . ,Γk is accuracy-
rewarding if and only if there exist strictly proper score functions si for Γi such
that

s(γ1, . . . , γk, ω) =
∑
i

si(γi, ω) .

3.3 Elicitation complexity

Properties that cannot be elicited directly can always be inferred from some elic-
itable properties: by asking the probability of each outcome, we can derive the value
of any property. Often, we do not need to elicit the full distribution. For example,
the variance of a random variable can be inferred from the first and second moment,
both elicitable. The size of the smallest set of elicitable properties needed to infer
the value of a given property is a measure of the difficulty of obtaining a truthful
estimate of that property and is called the elicitation complexity : a property Γ has
complexity k if it can be inferred from some k elicitable properties, but cannot be
inferred from any k − 1 properties.1

1A property Γ can be inferred from properties Γ1, . . . , Γk when there exists a function f with

Γ = f(Γ1, . . . , Γk).
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With n outcomes, all properties have complexity at most n− 1 since they all can
be inferred from the full distribution. Further, it can be shown that for all 1 ≤ k ≤
n− 1, there exists a property of complexity k. In particular, there exist properties
that are as difficult to elicit as the full distribution. For example, the property
“maximum likelihood” P 7→ maxω∈Ω P ({ω}) has the maximum complexity n− 1.

4. CONCLUSION AND FUTURE WORK

This letter deals with the problem of eliciting partial information about the prob-
ability distribution of a random event. Given the space constraints, we restricted
our presentation to the highlights of the original paper [Lambert et al. 2008], where
the reader will find a more complete discussion.

We believe our initial investigation may be further extended in various directions.
First, we assume variables take values in a finite set. In many practical situations,
the variables are continuous. Is it possible to adapt the characterizations to gen-
eral probability spaces? Second, our results concerning sets of properties assume
accuracy-rewarding scores, but characterizing elicitable properties and valid pay-
ments for the case of strictly proper scores remains an open problem. Third, beyond
the mean and variance, little is known about the complexity of specific distribu-
tion properties. Finally, and most importantly, the results presented here focus on
theoretical aspects of elicitation, and still remain to be validated experimentally.
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