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Most of the past work on the seeding of a knockout tournament has focused on maximizing

the winning probability of the strongest player (so-called “predictive power”). In contrast, we
focus on finding a fair seeding. We consider two alternative fairness criteria, adapted from the
literature: envy-freeness and order preservation. For the first criterion we provide a solution for
unconstrained tournaments, and provide an impossibility result for balanced tournaments. For the

second criterion we have a similar result for unconstrained tournaments, but not for the balanced
case. We provide instead a heuristic algorithm which we show through experiments to be efficient
and effective. Surprisingly, the criterion becomes provably impossible to achieve when we add a

weak condition guarding against the phenomenon of tournament dropout.
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1. INTRODUCTION

Knockout tournaments are widely used in many different sporting events. In this
simple and familiar tournament format, the players are placed at the leaf nodes of a
binary tree (which is usually balanced). The players at sibling nodes will compete
against each other in pairwise matches and the winners will move up the tree. The
winner of the tournament is the player who reaches the root node of the tournament
tree. The arrangement of the players at the leaf nodes is called the seeding of the
tournament.

The seeding can significantly influence the result of a tournament. This has
been demonstrated in several papers, but most of them focus on how to find a
seeding that maximizes the winning probability of the strongest player (so-called
“predictive power”) (see, e.g., [Horen and Riezman 1985; Appleton 1995; Vu et al.
2009]). This usually means giving the strongest player the easiest schedule, while
making it harder for the remaining players. An example of such seedings is given
in Figure 1. In this example, players are numbered based on their strengths with
player 1 being the strongest player. This seeding is rarely seen in practice however,
because it seems to be very unfair to other players, especially the strong ones such
as 2 or 3.

On the other hand, the most popular seeding used in major sport tournaments
is the one that pairs up in the first stage the strongest player with the weakest
player, the second strongest player with the second weakest player, so on and so
forth. An example for 8 players is shown in Figure 2. One possible rationale is that
it seems fair: confrontations between strong players are delayed until later rounds,
and that helps to increase the chance that one of those strong players will win the
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Fig. 1. A biased seeding that maximizes winning probability of player 1

tournament. This raises several questions: How do we capture this intuition about
fairness? Is there any other seeding that is also fair? Can we always find such a
fair seeding?

Fig. 2. A popular seeding with 8 players

To answer these questions, we consider two alternative fairness criteria adapted
from the literature: envy-freeness and order preservation. We analyze separately
each criterion across different tournament settings, providing both possibility and
impossibility results. To explain our results we need to lay out the settings with all
its variants, which we do in the next section. In Section 3 we summarize the existing
results from the literature. We then analyze envy-freeness and order preservation
in Section 4 and 5 respectively, and conclude in Section 6.

2. SETTINGS

We consider two different types of tournament structures and two different player
models. Regarding the tournament structure, we address both balanced and un-
balanced trees (as long as it is a binary tree with n leaf nodes).

For unbalanced tournaments, we want to draw attention to a special structure
called “caterpillar” tree. In a tournament with a caterpillar structure, the players
are arranged in a particular order. The first two players will compete against each
other. The winner of the match will then advance forward and compete with the
third player, so on and so forth. An example is shown in Figure 3. This structure
is often addressed in the social choice literature as a voting tree structure with
interesting properties (e.g., see [Fischer et al. 2009]).
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n

n-1
……..

3

2 1

Fig. 3. A caterpillar tournament for n players

For balanced tournaments, S∗
n is a seeding formed by matching in the first stage

the strongest player with the weakest player, the second strongest player with the
second weakest player, and so on and so forth. For the successive stages, the sub-
tree containing the strongest player is combined with the sub-tree with the weakest
players possible, so on and so forth.

S∗
n =

[

[1, n], ..., [i, (n− i + 1)], [(
n

2
− i + 1), (

n

2
+ i)], ...

]

Here we encode the seeding by a permutation of the numbers between 1 and n.
The kth number is the ranking of the player that will be placed at the kth leaf node
of the binary tournament tree, from left to right. An example of S∗

n when n = 8 is
S∗

8 = [1, 8, 4, 5, 2, 7, 3, 6] as shown in Figure 2.
Regarding player models, we assume that for any pairwise match, the probability

of one player winning against the other is known. This probability can be obtained
from past statistics or from some learning models. In the first model, we do not
place any constraints on the probabilities besides the fundamental properties.

Definition 2.1 General Player Model. Given a set of n players, the winning prob-
abilities between the players form a matrix P such that pij denotes the probability
that player i will win against player j, ∀(i 6= j) : 1 ≤ i, j ≤ n, and P satisfies the
following constraints:
1. pij + pji = 1
2. 0 ≤ pij , pji ≤ 1

Note that there might be no transitivity between the winning probabilities, i.e., we
can have pij > 0.5, pjk > 0.5, and pki > 0.5.

The second player model is the monotonic model which is a special case of the
general model. This model is popular and well known in the literature (see for
example [Horen and Riezman 1985; Hwang 1982; Schwenk 2000; Vu et al. 2009]).
The players are assumed to have unknown but fixed intrinsic strengths or abilities.
They are numbered from 1 to n in descending order of their strengths and the
winning probabilities between the players reflect these rankings.

Definition 2.2 Monotonic Player Model. Given a set of n players, the winning
probabilities between the players form a matrix P such that pij denotes the proba-
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bility that player i will win against player j, ∀(i 6= j) : 1 ≤ i, j ≤ n, and P satisfies
the following constraints:
1. pij + pji = 1
2. 0 ≤ pij , pji ≤ 1
3. pij ≤ pi(j+1)

4. pji ≥ p(j+1)i (which is actually implied by (1) and (3))

We define a knockout tournament as the following:

Definition 2.3 General Knockout Tournament. Given a set N of players and a
matrix P such that pij denotes the probability that player i will win against player
j in a pairwise elimination match and 0 ≤ pij = 1−pji ≤ 1 (∀i, j ∈ N), a knockout
tournament KTN = (T, S) is defined by:
1. A tournament structure T which is a binary tree with |N | leaf nodes
2. A seeding S which is a one-to-one mapping between the players in N and the
leaf nodes of T

Note that we will write KTN as KT when the context is clear.
Given the winning probability matrix P for a set of players N and a tourna-

ment KTN = (T, S), the probability of player k winning the tournament, denoted
q(k,KTN ), is calculated by the following recursive formula:

1. If N = {j}, then q(k,KTN ) =

{

1 if k = j

0 if k 6= j

2. If |N | ≥ 2, let KTN1 = (T1, S1) and KTN2 = (T2, S2) be the two sub-
tournaments of KTN such that T1 and T2 are the two subtrees connected to the
root node of T , and N1 and N2 are the set of players assigned to the leaf nodes of
T1 and T2 by S1 and S2 respectively. If k ∈ N1 then

q(k,KTN ) =
∑

i∈N2

q(k,KTN1)× q(i,KTN2)× pki

and symmetrically for k ∈ N2.
Using the formula above, we can efficiently calculate the winning probabilities of

the players in O(|N |2).

3. PAST RESULTS

Most of the related work focuses on balanced knockout tournaments with the mono-
tonic player model. In [Schwenk 2000], it is suggested that good seedings should
satisfy a property called “Sincerity Rewarded”. The property requires that a better
ranked player should never be given a tournament schedule more difficult than that
of a lower ranked player.

Alternatively, in [Hwang 1982], a different property called “Monotonicity”1 is
used to evaluate seedings. This property is satisfied if and only if stronger players
have higher chance of winning than weaker players.

We generalize “Sincerity Rewarded” and “Monotonicity” so that they can also
be applied for the general player model. Unlike past work which uses probabilistic
seedings [Schwenk 2000] or dynamic seedings [Hwang 1982] (i.e., re-seeding the

1Not to be confused with the monotonic player model
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players after each round based on the results of the previous rounds), we focus on
deterministic and static seedings instead.

Interestingly, in [Horen and Riezman 1985] it is shown that for a balanced tour-
nament of size 4 with monotonic player model, the seeding [1 4 2 3] always achieves
“Monotonicity”. Tournament of size 4 is a special case due to its extremely small
size. For our paper, we focus on tournaments of sizes 8 or above.

4. FIRST FAIRNESS CRITERION: ENVY-FREENESS

In [Schwenk 2000], it is argued that a good seeding should not give any strong player
a harder tournament schedule than a weaker player. One of the main reasons is
that if strong players are given harder schedules, they will have incentives to under-
perform during the pre-season period or lie about their strengths in order to get
lower rankings instead. We formalize this intuition to define envy-freeness as the
first criterion for a seeding to be fair: no player envies the seeding position of
another player weaker than him.

First we need to specify when a player is considered to be stronger than another.
In the monotonic player model, the notion of a stronger player is clear. For any
pair of players (i, j) such that i < j, player i is always stronger than player j.
In the general model, that is no longer the case. Therefore we define a player
to be stronger between the two if he dominates the second player in the winning
probabilities against other players.

Definition 4.1 Dominance. Player i dominates another player j if and only if
∀k : 1 ≤ k ≤ n, it is the case that pik ≥ pjk (which also implies pij ≥ 0.5 ≥ pji).

Notice that the definition of Dominance applies naturally to the monotonic model
as well. When there is a tie between two players (i.e., all of their winning proba-
bilities are equal), we need a tie-breaking rule. Our results hold for any monotonic
tie-breaking rule. WLOG, we assume the tie is resolved based on lexicographic
ordering: for any pair of players (i, j) such that ∀k : 1 ≤ k ≤ n, pik = pjk and
pij = pji = 0.5, i is considered to dominate j if and only if i < j.

Given the definition of Dominance, we define Envy-freeness as the following.

Definition 4.2 Envy-free Seeding. Given a set N of players, a winning probabil-
ity matrix P , and a knockout tournament KT = (T, S), the seeding S is envy-free
if and only if ∀(i, j) ∈ N such that i dominates j, player i does not have a higher
probability of winning the tournament by swapping his position in the seeding S

with j’s, i.e., q(i, (T, S)) ≥ q(i, (T, S′ = Si↔j)).

Notice that in the general player model, if there is no pair of players such that one
dominates the other, any seeding will trivially satisfy the requirement above. On
the other hand, in the monotonic player model, an envy-free seeding will have to
satisfy the requirement for all pairs of players.

4.1 Envy-freeness for Unconstrained Tournaments

When there is no constraint on the structure of the tournament, envy-freeness can
be achieved by the following tournament structure and seeding method.

Theorem 4.3. Given a set N of players, a winning probability matrix P , envy-

freeness can be achieved by the knockout tournament with the caterpillar structure
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and the seeding S such that for every pair of players (i, j), if i dominates j then j

is placed below i on the tournament tree.

The seeding above can be achieved easily by first constructing a directed acyclic
graph in which each node represents a player and there is a directed edge from player
i to player j (∀(i, j) ∈ N) if and only if i dominates j. We then perform a topological
sort of the graph and use this ordering to place players on the tournament tree.

Proof of Theorem4.3. We proof the theorem using induction on the number
of players. Base case: When |N | = 2, there is only one possible binary tree with 2
leaf nodes.

Inductive step: Assume that the theorem holds for all N ′ such that |N ′| = n− 1,
we need to show for all N such that |N | = n, the seeding we construct as above is
envy-free. Let k∗ be the player at the root node of the dominance graph of N , i.e.,
there is no player k′ ∈ N such that k′ dominates k∗. Let N ′ = N \ {k∗}. Since N ′

has size n− 1, based on the inductive hypothesis we can find an envy-free seeding
S′. Let S be created by combining k∗ and S′ as in Figure 4. We need to show that
S is also envy-free.

k*

k
1

k
2

……..

kn-3

kn-2 kn-1

S’

Fig. 4. The caterpillar seeding S created by combining k∗ and S′

Since S′ is envy-free and k∗ is not dominated by any player in N ′, we just need
to show that k∗ will not have a higher winning probability by swapping its seeding
position with any player ki ∈ N ′. Using the same notation as in Section 2, we denote
S as [k∗, k1, k2, ..., ki−1, ki, ki+1, ..., kn−1]. Let Si be the seeding created after k∗ is
swapped with ki: Si = [ki, k1, k2, ..., ki−1, k

∗, ki+1, ..., kn−1]. Let p(kj), ∀j : i < j ≤
n− 1, be the probability that player kj will get to play against k∗ (in other words,
the probability that kj will win the sub-tournament among {ki+1, ..., kn−1}). The
probability that k∗ will win the tournament with the seeding Si, q(k∗, Si), is the
same as with the seeding S′

i = [k1, k2, ..., ki−1, ki, k
∗, ki+1, ..., kn−1] because:

q(k∗, Si) =
∑

j:i<j≤n−1

[p(kj)× pk∗kj
]×

∏

j:1≤j≤i

pk∗kj
= q(k∗, S′

i)
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Let’s consider the winning probability of k∗ in S′
i−1, which is created by swapping

k∗ and ki (i.e., S′
i−1 = [k1, k2, ..., ki−1, k

∗, ki, ki+1, ..., kn−1]).

q(k∗, S′
i−1) =

∑

l:i<j≤n−1

[p(kj)pkjki
pk∗kj

+ p(kj)pkikj
pk∗ki

]×
∏

j:1≤j≤i−1

pk∗kj

=
∑

l:i<j≤n−1

p(kj)[pkjki
pk∗kj

+ pkikj
pk∗ki

]×
∏

j:1≤j≤i−1

pk∗kj

≥
∑

l:i<j≤n−1

p(kj)×min(pk∗kj
, pk∗ki

)×
∏

j:1≤j≤i−1

pk∗kj

≥
∑

l:i<j≤n−1

p(kj)× pk∗kj
× pk∗ki

×
∏

j:1≤j≤i−1

pk∗kj

≥
∑

l:i<j≤n−1

p(kj)× pk∗kj
×

∏

j:1≤j≤i

pk∗kj

≥ q(k∗, S′
i)

The first inequality holds because pkjki
+ pkikj

= 1. The second inequality holds
because 0 ≤ pk∗kj

, pk∗ki
≤ 1.

This means when we swap the position of k∗ with the position of the player right
in front of k∗ in the seeding, the winning probability of k∗ does not decrease. Thus
if we keep swapping the position of k∗ with kj in S′

j sequentially for j = (i−1)→ 1,
we have the following sequence of inequalities:

q(k∗, Si) = q(k∗, S′
i) ≤ q(k∗, S′

i−1) ≤ ... ≤ q(k∗, S′
2) ≤ q(k∗, S′

1) ≤ q(k∗, S)

This shows that k∗ will not have a higher winning probability by swapping its
seeding position with player ki. Thus S is envy-free.

4.2 Envy-freeness for Balanced Tournaments

When the tournament structure has to be a balanced binary tree, it is no longer
possible to always achieve envy-freeness even when the winning probabilities be-
tween players are monotonic. Here we assume n, the number of players, is a power
of 2.

Theorem 4.4. For any n = 2k ≥ 8, there exists a set of n players with a

monotonic winning probability matrix P such that it is not possible to find an envy-

free seeding S for the balanced knockout tournament between these n players.

Proof. We first prove the result for the case when n = 8, and then for general
n.

The case of n = 8: We construct a tournament between 8 players with the
winning probability matrix as shown in Table I (note that we only show the top
half of the matrix). Since there are only 315 unique seedings for a tournament of 8
players, we can exhaustively check all of them by using a computer program. Given
this winning probability matrix, for each of those 315 seedings, there is always a
pair of players whose probabilities of winning the tournament violate the criterion.

The case of n > 8: To construct a tournament between n players, we add n− 8
dummy players to the set of 8 players above. The dummy players lose to the
original 8 players with probability 1. Note that player 7 and 8 can be regarded as
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2 3 4 5 6 7 8

1 0.5 0.5 0.5 0.5 + 2ε 0.5 + 2ε 1 1

2 - 0.5 0.5 0.5 0.5 + ε 1 1

3 - - 0.5 0.5 0.5 + ε 1 1

4 - - - 0.5 0.5 + ε 1 1

5 - - - - 0.5 1 1

6 - - - - - 1 1

7 - - - - - - 0.5

Table I. The winning probabilities between 8 players

the dummy players to the top 6 players since player 7 and 8 lose with probability
1 to these players. Let M denote the set of the top 6 players from 1 to 6. Notice
that the participations of the dummy players, 7, and 8 do not change the winning
probabilities of the players in M . Essentially the tournament between n players
is reduced to a tournament between the players in M as if we take out all of the
dummy players and player 7 and 8.

Let’s consider all possible tournament trees TM for these 6 players. We first
prove the following property of TM : For any seeding to be envy-free, in the reduced

tournament tree TM of the players in M , there exists no pair of players (i, j) such
that the difference between their depths is greater than 1 as in Figure 5.

jA B

C
i

Fig. 5. A reduced tournament structure that does not satisfy envy-freeness

This is true since we can always swap j with the dummy player who plays against
i in the original tournament and improve the winning probability of j. To show
this, let’s first calculate the winning probability of j before the swap:

Q1 =
∑

l∈B

[q(l, B)× pjl]×
∑

k∈A

[q(k,A)× pjk]× pji ×
∑

h∈C

[q(h,C)× pjh]

Recall that q(k,A) is the probability that player k will win the sub-tournament A.

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, x 20x.



Fair Seeding in Knockout Tournaments · 9

Fig. 6. Possible tournament trees for 6 players

After the swap, the winning probability of j becomes:

Q2 =
∑

l∈B

∑

k∈A

q(l, B)× q(k,A)× [pjlplk + pjkpkl]× pji ×
∑

h∈C

[q(h,C)× pjh]

≥
∑

l∈B,k∈A

q(l, B)× q(k,A)×min(pjl, pjk)× pji ×
∑

h∈C

[q(h,C)× pjh]

>
∑

l∈B,k∈A

q(l, B)× q(k,A)× (pjl × pjk)× pji ×
∑

h∈C

[q(h,C)× pjh]

=
∑

l∈B

q(l, B)× pjl ×
∑

k∈A

q(k,A)× pjk × pji ×
∑

h∈C

[q(h,C)× pjh] = Q1

The first inequality holds because plk+pkl = 1. The second inequality holds because
for j, l, and k in the top 6 players, pjl and pjk is less than 1. Note that we do not
assume any relationship between i and j here since our focus is on j being envious
of the dummy player who got matched up with i in the original tournament.

There are only 6 possible knockout tournament trees for 6 players as shown in
Figure 6. However, only the two top trees satisfy the condition that there is no pair
of players with a difference in their depths greater than 1. For each of these trees,
notice that for the two players who are placed at a smaller depth than the rest,
they must have played against dummy players in the original tournament before
they can advance to the current round. Thus for both choices, they are analogous
to a seeding of the 8 players we have considered in the first part of the proof (recall
that player 7 and 8 play the same role as the dummy players). Therefore there does
not exist any envy-free seeding for these two possible reduced trees either. This
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implies there is no envy-free seeding for the original tournament tree.

Note that the same result does not apply for unconstrained tournaments because
in the proof above, we make use of the fact that to advance to the next round, any
player must play against some player (which can be a dummy player). In the case
of unconstrained tournament, a player can be advance directly to the final round.

Since the monotonic player model is a special case of the general model, we have
the following corollary.

Corollary 4.5. For any given n = 2k ≥ 8, it is not always possible in the

general player model to find an envy-free seeding for a balanced knockout tournament

of size n.

The envy-freeness requirement is too strong to achieve for all cases of winning
probabilities when the tournament has to be balanced. In the next section we
discuss another criterion which seems to require a weaker condition for a seeding
to be fair with the hope that it can be easier to satisfied.

5. SECOND FAIRNESS CRITERION: ORDER PRESERVATION

Instead of focusing on the seeding positions of the players, we place a requirement
on their probabilities of winning the tournament instead: stronger players must
have higher probabilities of winning the tournament than weaker players. This
requirement seems to be less restrictive than the envy-freeness criterion, yet it still
encourages the players to perform accordingly to their strengths.

Definition 5.1 Order Preserving Seeding. Given a set N of players, a winning
probability matrix P , and a knockout tournament KT = (T, S), the seeding S

is order preserving if and only if ∀(i, j) ∈ N such that i dominates j, player i

does not have a lower probability of winning the tournament than player j, i.e.,
q(i, (T, S)) ≥ q(j, (T, S)).

The criterion is adapted and generalized from the notion of “Monotonicity” first
introduced in [Hwang 1982]. As with the first criterion, for any pair of players such
that no player dominates the other, we do not place any requirement on the relative
ordering of their winning probabilities.

5.1 Order Preservation for Unconstrained Tournaments

When there is no constraint on the structure of the tournament, it is easy to see
that the same tournament structure and seeding in Theorem 4.3 will achieve order
preservation.

Theorem 5.2. Given a set N of players, a winning probability matrix P , order

preservation can be achieved by the knockout tournament with the caterpillar struc-

ture and the seeding S such that for every pair of players (i, j), if i dominates j

then j is placed below i on the tournament tree.

Proof. Recall from Theorem 4.3 that the seeding S created as above is envy-
free. Using proof by contradiction, we assume S is not order preserving, and show
that it will not be envy-free either.

If S is not order preserving, there must exist two player i, and j such that i

dominates j, and the winning probability of i is smaller than j. Since i dominates
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j, i must be placed above j on the tournament tree. Let A be the set of players
placed above i on the tournament tree, B between i and j, and C below j. The
winning probabilities of j given the seeding S can be calculated as the following:

q(j, S) =
∏

k∈A

pjk × pji ×
∏

k∈B

pjk ×
∏

k∈C

q(k,C)pjk

Here we use q(k,C) to denote the probability that player k ∈ C will win the sub-
tournament between the players in C and advance to the match against player
j.

Notice that the method above does not take into consideration the actual values
of the winning probabilities between players. The criterion can be achieved as long
as the relative ordering of the players are known. It would be very useful if the same
result applied for the case of balanced tournament. Unfortunately, as we show in
the next section, no fixed seeding is always order preserving, even when the winning
probabilities are monotonic.

5.2 Order Preservation for Balanced Tournaments

If the seeding S∗
n as in Figure 2 could be shown to always satisfy order preservation,

this would justify its popularity in practice. However, as we show in the following
theorem, there are cases in which this seeding violates the criterion.

Theorem 5.3. For any fixed seeding S of a balanced tournament of size n =
2k ≥ 8, there exists a monotonic winning probability matrix P such that S is not

order preserving.

Proof. We first show by induction that if there exists a fixed seeding S that
always satisfies order preservation, then S has to be S∗

n (as defined in Section 2).
Base case: When n = 2, S∗

2 = [1 2] is the only seeding.
Inductive case: Assume that the claim holds for n = m, we need to show that it

also holds for n = 2m. Let’s consider the following winning probabilities between
the players:

—∀i, j : 1 ≤ i, j < 2m, pij = 0.5

—∀i : 1 ≤ i < 2m, pi(2m) = 1

The only order preserving seedings in this case are the ones that pair up player 1
and 2m in the first round. Otherwise whoever gets to play against player 2m will
have a winning probability of 2

m
, whereas player 1 only wins with probability 1

m
.

Consequently, for each player k from 2 to m, we show that k has to be matched up
with player 2m− k + 1 by using the following winning probabilities:

—∀i, j : 1 ≤ i, j ≤ 2m− k, pij = 0.5

—∀i, j : 1 ≤ i ≤ 2m− k, 2m− k + 1 ≤ j ≤ 2m, pij = 1

—∀i, j : 2m− k + 1 ≤ i, j ≤ 2m, pij = 0.5

Now let’s consider the case in which the top m players win against the bottom m

players with probability 1. We have shown above that player k has to be paired up

ACM Transactions on Intelligent Systems and Technology, Vol. x, No. x, x 20x.



12 · Thuc Vu and Yoav Shoham

with player 2m − k + 1. Therefore, all the top m players will advance to the next
round with probability 1. Based on the inductive hypothesis, they must be seeded
by S∗

m. This proves that the seeding for 2m players must be S∗
2m.

Since we have shown that the fixed seeding could only possibly be S∗
n, we just need

to find a winning probability matrix such that S∗
n violates the criterion. Consider

the following winning probabilities:

—∀i, j : 1 ≤ i < 6 < j ≤ n, pij = 1

—∀i : 1 ≤ i ≤ n, p7i = p8i = 1

—∀i, j : 1 ≤ i, j ≤ 5, pij = 0.5

—p36 = p46 = p56 = 0.5, and p16 = p26 = 1

—All other winning probabilities are 0.5

Let’s consider the last 3 rounds of the tournament. Only the top 8 players make
to these rounds and they are seeded by S∗

8 = [1, 8, 4, 5, 2, 7, 3, 6]. Intuitively, since
player 3 has only 50% chance of winning against player 6, player 2 has more chance
of getting into the final match than player 1. If we carry out the calculations, we
have q(1, S∗

n) = 0.25 < q(2, S∗
n) = 0.375, which violates order preservation.

Since the monotonic player model is a special case of the general model, we have
the following corollary.

Corollary 5.4. For any given n = 2k ≥ 8, there is no fixed seeding S that

is always order preserving for any balanced tournaments of size n in the general

player model.

The results above do not preclude the existence of a fair seeding for any given

set of players and winning probabilities. While we do not yet have a proof for such
existence, we propose a heuristic algorithm to find an order preserving seeding and
show through experiments that the algorithm is indeed efficient and effective. The
pseudocode is provided in Algorithm 1.

The recursive algorithm attempts to find a fair seeding for each half of the initial
seeding. It then checks to see if there are any pairs of players that violate the order
preserving condition. If there are, it will pick the pair with the maximum difference
between the players and swap the seeding positions of those players. It will then
repeat the whole process.

To test the algorithm, we generate 100k test cases for each of the values of n

between 8 and 256. For each test case, we randomly generate the winning probabil-
ity matrix for n players and then use the algorithm to find a seeding that satisfies
order preservation. We use S∗

n (defined in Section 2) as the initial seeding input.
It is not trivial to generate the winning probabilities since we need to make sure

the matrix satisfies the monotonicity condition while ensuring certain randomness.
The process is composed of the following steps:

(1) Generate the winning probabilities of player 1 by sampling (n− 1) values uni-
formly from [0.5,1] and sort them in ascending order.

(2) Assign pii = 0.5 ∀i.

(3) Generate pij (∀(i, j) : i < j) by sampling uniformly between pi(j−1) and p(i−1)j ,
and then assign pji = 1− pij .
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Algorithm 1 Find-fair-seed (S: Initial seeding)

if S satisfies fairness then

Return S;
end if

done← false;
while !done do

done← true;
Find-fair-seed (the first half of S);
Find-fair-seed (the second half of S);
N ← the set of players in S;
wp← winning probabilities of the players in N ;
max dif ← 0;
for i, j ∈ N : j − i > max dif do

if wp(i) < wp(j) then

done← false;
max dif ← j − i;
i∗ ← i;
j∗ ← j;

end if

end for

if !done then

Swap the seeding positions of i∗, j∗ in S;
end if

end while

Return S;

We show in Figure 7 a graph of the average and maximum number of swaps are
made before a fair seeding is found. The graph shows that both quantities grow
linearly with n. And even in the case of n = 256 players, the maximum number of
swaps needed is still very low. This shows that the algorithm indeed works well in
practice.

Even though a seeding that satisfies order preservation can be found efficiently
by the algorithm above, unfortunately the criterion becomes provably impossible
to achieve when a weak condition is added. We discuss this additional condition
and how it interacts with the order preservation criterion in the next section.

5.3 Robustness against Dropout

The experimental results of the heuristic algorithm in the previous section suggest
that perhaps it is easy and always possible to find an order preserving seeding.
However, this optimism is quite fragile. When we add a reasonable and innocuous
requirement of robustness against dropout, the criterion becomes provably impos-
sible to achieve in certain cases.

A dropout occurs when a player forfeits his participation in a tournament due
to exogenous factors such as injuries or illness, or in order to manipulate the out-
come of the tournament. This phenomenon can significantly influence the winning
probabilities of the remaining players. We define robustness against dropout as the
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Fig. 7. The average and maximum number of swaps over 100k tournaments for each n

following: there does not exist a pair of players (i, j) such that i dominates j, and
also j gains while i loses in winning probability after some player drops out. We
allow the re-seeding of the remaining players after a dropout and if the tournament
has to be balanced, a dummy player will be added.

Definition 5.5 Robustness against Dropout. Given a set N of players, a winning
probability matrix P , and a knockout tournament KT = (T, S). The seeding S is
robust against dropout if for any dropout of player k ∈ N , there exists a seeding
S′ for the remaining |N | − 1 players such that ∀(i, j) ∈ N , if i dominates j and
q(i, (T, S′))− q(i, (T, S)) ≤ 0 then q(j, (T, S′))− q(j, (T, S)) ≤ 0.

It is easy to show that given a winning probability matrix, the robustness re-
quirement is achievable for both balanced and unbalanced tournaments (e.g., the
tournament shown in Figure 3). Indeed the condition is quite weak. There are
other stronger conditions that can be used. For example, that no weak player gains
in winning probability more than the players stronger than him (this in fact implies
the requirement we proposed). Nevertheless, when we add this weak requirement to
the fairness criterion, surprisingly, it is no longer always possible to find a seeding
that can satisfy both (even when the winning probabilities are monotonic).

Theorem 5.6. For any n = 2k ≥ 8, there exists a set of n players with a

monotonic winning probability matrix P such that it is not possible to find a seeding

S such that S satisfies simultaneously the order preservation requirement and the

condition for robustness against dropout.

Proof. For a given n, we show how to construct the winning probability matrix
P . There will be 3 top players and n−3 dummy players. The winning probabilities
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between the top 3 players are: p1,2 = 0.5, p1,3 = 0.6, and p2,3 = 0.5. The dummy
players will lose against the top 3 players with probability 1. Thus the tournament
is reduced to a tournament between these 3 players. There are only three possible
seedings: [1 vs. 2] vs. 3, [1 vs. 3] vs. 2, or [2 vs. 3] vs. 1. The first two seedings are
not order preserving (e.g., for the first seeding S1, q(1, S1) = 0.3 < 0.45 = q(3, S1)).
The last seeding does not satisfy the necessary condition of robustness: when player
3 drops out, the winning probability of player 2 increases from 0.25 to 0.5, whereas
the winning probability of player 1 decreases from 0.55 to 0.5. Note that this proof
works for both balanced and unbalanced tournament.

6. CONCLUSION

We have introduced two alternative criteria for fairness: envy-freeness and order
preservation. We showed that when there is no constraint on the structure of
the tournament, fairness can be achieved easily for both criteria. For balanced
tournaments, we provided two impossibility results: one for any seeding under the
first criterion, and the other for any fixed seeding under the second criterion. When
the seeding can vary, depending on the actual values of the winning probabilities,
we proposed a heuristic algorithm to find a seeding that satisfies order preservation.
We showed that the algorithm is efficient and effective through experiments.

However, our hope of being able to find a fair seeding in all cases was dimmed by
that fact that when we included a requirement of robustness, the criterion became
provably impossible to satisfy for all cases. This suggests one should try to find
the conditions of the winning probabilities between players that will guarantee the
existence of a fair seeding. We leave this for future work.
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