1. Introduction
In this thesis, we present a narrow-phase algorithm for efficient distance computation between two flexible objects. The algorithm will allow for arbitrary deformations on the modeled objects. It will also allow for approximate distance computation with run-time settable error rates in order to provide a continuum of information between Boolean collision checking and exact distance computation. Moreover, this algorithm is designed to provide real-time performance on useful sized models.

Collision detection algorithms are an essential component of computer based physical simulations. In nature, objects naturally prevent themselves from occupying the same volume (through the electromagnetic force). Computer simulations of physical objects have no such natural behavior, and thus algorithms to explicitly determine the collision state of two bodies is required. Moreover, accurate simulations require collision response algorithms as well. These determine the simulated behavior of the objects to prevent physical overlap. Most often, the collision response is simply a repulsive force that avoids continued collision. In this paper, we discuss only collision detection and its close relative distance computation algorithms.

Distance computation algorithms are very similar to collision detection algorithms. While collision detection algorithms return a Boolean true/false in response to a collision query, distance checkers return a number representing the minimum distance separating two bodies. It is easy to observe that a distance-checking algorithm can be used to implement collision detection – simple return true if the distance is zero. Quinlan observed that a continuum of behavior exists between pure collision detection and pure distance computation.

The collision detection problem is usually posed as follows: “Given a list of objects, determine which pairs, if any, are in collision.” This definition implies that collision detection should be performed in two phases. Typically they are known as the broad phase and the narrow phase. The broad phase is responsible for determining which pairs of objects should be more closely inspected for collisions. After pairs have been identified as needing further processing, the narrow phase determines if a specific pair of object is indeed colliding. This paper will only deal with the narrow phase problem.

2. Previous Work

Collision detection algorithms can roughly be classified in two distinct groups: feature based algorithms and hierarchical bounding volume algorithms. Each of the two methods has distinct advantages and drawbacks. Feature based algorithms are better able to exploit temporal coherence in the model. This means that small motions of the simulated objects will require minimal correction to determine the new closest feature pairs. However, to exploit coherence, models are generally required to be convex or built of a small number of convex pieces. This is a significant limitation for the simulation of flexible objects. Hierarchical bounding volume algorithms require little of the underlying geometric models of the objects to be simulated. The most pathologically non-convex objects, polygon soups, are easily handled by hierarchical bounding volume approaches. Since the geometries allowed by bounding volume algorithms do not easily lend themselves to coherence-based speedups, incremental collision checks are just as costly as the first.

Feature based algorithms represent objects as a collection of features -- points, line segments, and facets. This construction leads to a topological map of the object. Moreover, they also maintain that this collection of features is the convex hull of the object. This assumption directly leads to the coherence-based speedups that make these algorithms attractive. The convexity allows algorithms to traverse features in search of globally optimal closest pairs without being trapped in local minima. One of the first feature-based algorithms was that of Baraff [???]. The Lin-Canny closest features algorithm is a more sophisticated feature based algorithms that allows distance computation between the polyhedra as well. Mirtich's V-Clip is an enhancement of Lin-Canny that eliminates numerical instabilities and allows for the computation of penetration distance for intersecting polyhedra.

3. Basic Algorithm

The algorithm presented here has several constraints that influence its design. Most importantly, this collision detector/distance checker must handle flexible objects well. Moreover, for generality, these flexible objects may be pathologically non-convex. This restriction eliminates the feature-based trackers from consideration. This limits the selection to the bounding volume methods. Since the underlying model will be changing – often frequently – the bounding volume hierarchy will have to be changed frequently. Spheres require few computations to fix the hierarchy. The basic algorithm we present to solve this problem is similar to that of Quinlan. Like that method we use a sphere tree as a bounding method.

{{{Unlike Quinlan, we do not tile each triangle with spheres. Our algorithm assigns each triangle in the model one leaf sphere.

Also different from Quinlan are the rules we impose on our hierarchy.}}}

4. Enhancements

Although the basic algorithm will correctly compute the distance between two time-varying flexible objects, a couple of core optimizations help speed computation considerably. The basic algorithm’s amortized performance deteriorates rapidly as more changes are made to the model between distance queries. The following modifications significantly improve its running time.

4.1. Batch processing of changes

In the basic algorithm described above, every time a triangle in the model is modified, changes will propagate all the way to the root of the tree. Moreover, if the same triangle is modified twice, this propagation will happen twice, even if no distance queries are made. These two problems can be solved by careful batch processing of deformations of the object.

A naïve solution would be to simply trap all deformations and apply only the final modification to any particular triangle when a distance query is made. This approach will solve the second problem: multiple changes made to a single triangle will result in only one propagation of the change. However, changes made to two triangles may still result in overlaps of their two propagation chains.

A better solution is to order the propagations by depth in the tree. The basic data structure required for this is a priority queue where deeper nodes are extracted first. We can easily add an extra attribute variable to each node in the tree to cache its depth. Consider the following pseudocode to handle propagation:

while notempty(pq)

node = extract(pq)

fix(node)

insert(pq, parent(node))

end while

Instead of following a continuous path from a node to the root, each level of the tree, deepest first, will be explored completely. This results in no unnecessary repeated updating. Moreover, this method has another advantage. If we make the valid assumption that neighbors at a particular level will be near each other in the system’s memory, the computer’s cache will better exploit the locality of memory references.

4.2. Loose bounding

5. Results

6. Conclusions and Future Work

